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MAIN RESEARCHACHIEVEMENTS

Roughly speaking most of his work his concerned with the glldbeory of ordi-
nary differential equations. The best known part of thisknorresponds to the papers
[15], [17], [19] and this is nowadays referred to as Peb®itieorem. In [40] Peixoto

found find a careful presentation of how it came about and homas instrumental



in putting the qualitative theory of flows on differentiabieanifolds on a solid set-
theoretical basis with reasonably well defined goals anblpros exhibiting a certain
unity.

The gist of his contribution here is: (i) the introductiontbé space of all flows; (ii)
the modification of the original definition of structurallsilily by Andronov - Pontrja-
gin freeing it from the requirement of a small, ? - homeomat (iii) the recognition
of the importance and of the difficulty of the differentiabédosing lemma". Concer-
ning (i) it should be remarked that this modified nondefinition of structural stability
was introduced in 1959, [15, p. 201] and is nowadays the wefalition of structural
stability. We remark that as late as 1986, Anosov in a survégl@about structural
stability [Structurally stable systems, Proc. Steklowvt.Inglath., issue 4, pp. 61-95]
still refers to this usual definition as “structural staffyiin the sense of Peixoto".

The above Theorem was the starting point for the setting uplagh dimension
qualitative theory of flows and diffeomorphisms on manifotbat was undertaken by
Smale and his school in the sixties and seventies and casttouthis day.

If we add to this the remarkable contributions of Kolmogoréwnold, Moser and
others who look at these problems from a somewhat differante metric point of
view we get a vast body of knowledge that constitutes whatied nowadays Dy-
namical Systems. Thanks to the immense progress of congutathniques these
theoretical concepts became more and more amenable tecatppis in the physical
sciences. This seems to be the reason why the above Theofeing its place in
many text books of applied mathematics even at the undargtadevel. A final com-
ment about the above Theorem is that a natural complemaristfound in [ 28 ] where
it is given a complete classification of structurally staftbevs (i. e. Morse-Smale) on
compact surfaces. This is done by means of “distinguishaghg"associated to such
flows. In a recent paper by X. Wang [Ergod. Th. Dynam. Sys. 01920, 565-
597] a close relationship is shown to exist between thegghgrand the”*- algebra
of the corresponding flows. This approach offers a kind oélafgic substratum to the
distinguished graphs of [ 28 ] and ties up nicely the abovesifization with modern
algebraic trends. We now turn to another aspect of Peixdigt'®f Publications. |
wish to point out to a string of some 12 papers starting at my fiest contribution
[1] and eleven of the last ones ([34] - [36], [39], [40] and [4347]). They are all
somehow connected with the 2-point boundary value problemafsecond order or-
dinary differential equation and more precisely to the pEobof counting how many
solutions do pass through the end points. In the case whéyeoar such solution

exists the subject relates naturally to the concept of gdized convexity with respect



to the family of solutions of the equatiaff = F(z,y,y’). In particular | proved the
following characterization theorem [7]: a function g(x)dsnvex with respect to the
family of solutions of the above equation if and onlyff > F(x, g, ¢’). This theorem
generalizes the classical result thié{x) > 0 is a necessary and sufficient condition
for ordinary convexity ofg. Ordinary convexity ammounts to generalized convexity
with respect to the solutions of the equatigh(x) = 0. An application of our the-
orem to a mechanical problem was made in [11, pp. 102-108}inGiup the very
special case where the 2-point problem has always a unidugosg Peixoto came
back to this problem in [ 25 ] with the knowledge | had acquiedynamical system
theory and put some genericity into the picture. So [ 25 ] imedind of Kupka -
Smale theorem (Kupka thesis at IMPA) in the context of theoRvpproblem. What
takes the places of the stable and unstable manifolds of {8eh€orem are the “lifted
manifolds"at each point i.e. at each point Peixoto make®w bolp in 3-space of the
totality of the trajectories through the point. We now cormg¢34] where Peixoto in-
troduced the concept of focal decomposition (originalljfechsigma-decomposition)
associated to the 2-point problem. Given a second ordetiequé’ = F (¢, =,z and
fixing a pointAy(to, zo), €ach other point, ) is labeled by an integer the number
of solutions i of the equation through (t0, x0) and (t,x). Wert call ?i the totallity
of points (t,x) to which the indexhas been assigned. The fundamental problem then
is: to study the nature of the setsand of the decomposition of the plane determined
by them. In [35,36], joint work with R. Thom Peixoto generaldl the above problem
letting the base point vary also so that we get a sigma decsitigpoof R* into setsy;

. They then show the existence of a certain 4-dimensionalfoldr2 ¢ R® and of a
projectionlI : RS — R*such thatt,, x,,ts, z2) € 3, if and only if the cardinality of
(IT|2) =Y (t1, 21, t2, 22) is . From this and from results of Hironaka and Thom, it fol-
lows that when the differential equation is analytic andghgection(I1|Q2) is proper,
then calling the diagonat; = t5 in R4(t1, x1, t2, x2) We have that there is a Whitney
stratification ofR* — § such that each; — ¢ is the union of strata. In [ 35 ] we construct
the focal decomposition associated to the pendulum equatior sinz = 0. It exhi-
bits non empty; for all indices:. In [38], in collaboration with A. R. Silva, Peixoto
showed that some results of S. Bernstein fit nicely with tiselte of [34, 35]. In [39],
joint work with Kupka, Peixoto extended focal decompositio the case of geodesics.
In the case of the flat torus the corresponding focal decoitiposFig. 1 of [39], is a
most fascinating object, identical with the extension @& #guationzs + y» = N to
the whole plane (in a natural sense) and to the Brillouin gari@ cubic crystal.



SPONTANEOUS COMMENTARYS FROM OTHER AUTHORS

Steve Smale, in the book “The Mathematics of Time"(Springstag 1980), se-
lects six of his papers on Dynamical Systems and Economyrandgthem, the article
"What is global analysis?"(Am. Math. Monthly vol. 76 ,196%.4-9) is essentially
PeixotoOs theorem. In the same book he gives the followistimeny: “It was around
1958 that | first met Mauricio Peixoto. We were introduced loy& who was finishing
his Ph.D. at that time with Ed Spanier. Through Lefschetixd?e had become interes-
ted in structural stability and he showed me his own resultstiuctural stability on the
disk D2 (in a paper that was to appear in the Annals of Mathies)et959). | was im-
mediately enthusiastic, not only about what he was doinguitiitthe possibility that,
using my topology background, | could extend his work to nefigions. “Peixoto told
me that he had met Pontryagin, who said that he did not bahesteuctural stability in
dimensions greater than two, but that only increased thikecigee."René Thom in the
article “The role of qualitative dynamics in applied sciee{"Geometric dynamics",
edited by Jacob Palis, Lecture Notes in Mathematics, nurh®@7, Springer Verlag,
1983, pp. 784-788), wrote:

“Now the global theory of topological stability of flows, gihated by Poincaré,
and developed by him for the study of the 3 - body problem @iscy of homocli-
nic, heteroclinic points) found its first major developmeiith G.D. Birkhoff (1920),
who introduced the fundamental notions of wandering, andwandering points. The
second decisive progress came from the Soviet School, whdroAov-Pontrjagin, in-
troduced the notion of structural stability of flows (1930he third decisive progress
came with the results of S. Smale and M.M. Peixoto, e.g. theiteof stable flows on

surfaces."
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