Sandra M. Aleixo (Instituto Superior de Engenharia de Lisboa, Mathematics Unit, DEC and CEAUL,
Rua Conselheiro Emidio Navarro, 1, 1949-014 Lisboa, Portugal,
e-mail: sandra.aleixo@dec.isel.ipl.pt)
J. Leonel Rocha (Instituto Superior de Engenharia de Lisboa, Mathematics Unit, DEQ,
Rua Conselheiro Emidio Navarro, 1, 1949-014 Lisboa, Portugal,
e-mail: jrocha@deq.isel.ipl.pt)
Dinis D. Pestana (Universidade de Lisboa, FCUL, DEIO and CEAUL,
Campo Grande, Edificio C4, 1749-016 Lisboa, Portugal,
e-mail: dinis.pestana@fc.ul.pt)
Dynamics of Populational Growth Models with Allee Effect
Abstract:
In this work, we consider populational growth models with Allee effect. These models are proportional to beta densities with shape parameters p and 2, where the dynamical complexity is related with the malthusean parameter r. For p>2, these models exhibit a population dynamics with natural Allee effect. However, in the case of 1 , the proposed models do not include this effect. In order to invoke the Allee effect, we present some alternative mechanisms and investigate their dynamics. Using dynamical symbolic techniques, we analise the complex behaviour of these models, in terms of topological entropy, in the parameter plane (r,p), defining different dynamical regimes.
Keywords: Beta Densities, Population Dynamics, Topological Entropy and Allee Effect.
MSC2000 Classification: 60E05, 92D25, 37B10, 37B40
References:
[1] S. M. Aleixo, J. L. Rocha and D. D. Pestana, Populational Growth Models in the Light of Symbolic Dynamics (in press), ITI2008 Conference Procedings, (accepted in May of 2008).
[2] D. S. Boukal and L. Berec}, Single-species Models of the Allee Effect: Extinction Boundaries, Sex Ratios and Mate Encounters, J. Theor. Biol., 218, (2002), 375-394.
[3] S. Brianzoni, C. Mammana and E. Michetti, Nonlinear Dynamics in a business-cycle model with logistic population growth , Chaos, Solitons and Fractals, (2007), doi:10.1016/j.chaos.2007.08.041
[4] R. S. Cantrell and C. Cosner, Density dependent behavior at habitat boundaries and the Allee effect, Bull. Math. Biol., 69, (2007), 2339-2360.
[5] F. M. Hilker, M. Langlais, S. Petrovskii and H. Malchow, A diffusive SI model with Allee effect and application to FIV, Math. Biosci., 206, (2007), 61-80.
[6] R. Lopez-Ruiz and D. Fournier-Prunaret, Indirect Allee effect, bistability and chaotic oscillations in a predator-prey discrete model of logistic type, Chaos, Solitons and Fractals, 24, (2005), 85-101.
[7] S. P. Rogovchenko and Y. V. Rogovchenko, Effect of periodic environmental fluctuations on the Pearl-Verhulst model , Chaos, Solitons and Fractals, (2007), doi:10.1016/j.chaos.2007.11.002
[8] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, Reading, MA., 1978.
[9] S. J. Schreiber, Allee effects, extinctions and chaotic transients in simple population models, Theor. Pop. Biol., 64, (2003), 201-209.
[10] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Math., 79, Springer-Verlag, 1981.
|