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Abstract

Suppose V is an infinite-dimensional vector space and let T (V ) denote the
semigroup (under composition) of all linear transformations of V . In this
paper, we study the semigroup OM(p, q) consisting of all α ∈ T (V ) for
which dim kerα ≥ q and the semigroup OE(p, q) of all α ∈ T (V ) for which
codim ranα ≥ q, where dim V = p ≥ q ≥ ℵ0. It is not difficult to see that
OM(p, q) and OE(p, q) are a right and a left ideal of T (V ), respectively,
and using these facts we show that they belong to the class of all semigroups
whose sets of bi-ideals and quasi-ideals coincide. Also, we describe the Green’s
relations and the two-sided ideals of each semigroup, and we determine its
maximal regular subsemigroup. Finally, we determine some maximal right
cancellative subsemigroups of OE(p, q).
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1. Introduction

Suppose V is a vector space over a field F with dimension p ≥ ℵ0 and let T (V )
denote the semigroup (under composition) of all linear transformations from V into
itself. Given α ∈ T (V ), we write ker α and ran α for the kernel and the range of α,
respectively, and put

n(α) = dim ker α, r(α) = dim ran α, d(α) = codim ran α.

As usual, these cardinals are called the nullity, the rank and the defect of α, respectively.

In [7], the authors considered the semigroups AM(p, q) = {α ∈ T (V ) : n(α) < q} and
AE(p, q) = {α ∈ T (V ) : d(α) < q}, where p ≥ q ≥ ℵ0, and they showed that they do
not belong to BQ, the class of all semigroups whose sets of bi-ideals and quasi-ideals
coincide. For each semigroup, they described its maximal regular subsemigroup and
characterised its Green’s relations and ideals. Also, they determined all the maximal
right simple subsemigroups of AM(p, q).

In this paper, we study related semigroups defined as follows. For each cardinal q such
that ℵ0 ≤ q ≤ p, we write

OM(p, q) = {α ∈ T (V ) : n(α) ≥ q} and
OE(p, q) = {α ∈ T (V ) : d(α) ≥ q}.

Clearly, 0 ∈ OM(p, q)∩OE(p, q), where 0 denotes the zero map on V . In [5] Theorem
3.3, Kemprasit and Namnak showed that OE(p,ℵ0) is in BQ and in [8] Theorem
3.4, they proved that OM(p,ℵ0) ∈ BQ. In section 2, we generalise these results: we
show that OM(p, q) and OE(p, q) are a right and a left ideal of T (V ), respectively,
and using this, we conclude that OM(p, q) and OE(p, q) are always in BQ. Also, we
characterise the regular elements of each semigroup and determine its unique maximal
regular subsemigroup. In section 3, we describe the Green’s relations and ideals in
OM(p, q) and OE(p, q).

In [6] Mendes-Gonçalves considered the semigroup KN(p, q) of all injective elements
of OE(p, q). In section 4, we prove that KN(p, q) is a maximal right cancellative
subsemigroup of OE(p, q). Moreover, we show that OE(p, q) admits other maximal
right cancellative subsemigroups.

2. Basic properties

In what follows, if Y is a disjoint union of A and B, we write Y = A ∪̇B, and idY

denotes the identity transformation on Y .

As an abbreviation, we write {ei} to denote a subset {ei : i ∈ I} of V , taking as
understood that the subscript i belongs to some (unmentioned) index set I. The
subspace A of V generated by a linearly independent subset {ei} of V is denoted by
〈ei〉, and we write dim A = |I|.
We adopt the convention introduced in [10]. That is, often it is necessary to define
some α ∈ T (V ) by first choosing a basis {ei} for V and some {ai} ⊆ V , and then
letting eiα = ai for each i and extending this action by linearity to the whole of V . To
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abbreviate matters, we simply say, given {ei} and {ai} within context, that α ∈ T (V )
is defined by letting

α =

(
ei

ai

)
.

It is easily verified that if α, β ∈ T (V ), then ker α ⊆ ker(αβ) and ran(αβ) ⊆ ran β.
Thus, n(α) ≤ n(αβ) and d(β) ≤ d(αβ), and these imply that the sets OM(p, q) and
OE(p, q), as defined above, are subsemigroups of T (V ). In fact, we may conclude that
OM(p, q) is a right ideal of T (V ) and OE(p, q) is a left ideal of T (V ). In passing, we
observe that OM(p, q) and OE(p, q) are semigroups even if q is finite.

A subsemigroup Q of a semigroup S is called a quasi-ideal of S if SQ ∩ QS ⊆ Q. A
subsemigroup B of S is a bi-ideal of S if BSB ⊆ B. Clearly, every right and every
left ideal of S is a quasi-ideal, and every quasi-ideal Q of a semigroup S is a bi-ideal of
S (since QSQ ⊆ SQ ∩ QS). We denote the quasi-ideal and the bi-ideal generated by
a non-empty subset X of S by (X)Q and (X)B, respectively. If X = {x1, x2, . . . , xn}
then we write (x1, x2, . . . , xn)Q and (x1, x2, . . . , xn)B instead of ({x1, x2, . . . , xn})Q and
({x1, x2, . . . , xn})B, respectively. By [1] Vol. 1, pp. 84-85, Exercises 15 and 17, if X is
a non-empty subset of a semigroup S, then

(X)Q = S1X ∩XS1 = (SX ∩XS) ∪X, and
(X)B = (XS1X) ∪X = XSX ∪X ∪X2.

It is known that regular semigroups, right [left] simple semigroups and right [left] 0-
simple semigroups are in the class BQ of all semigroups whose sets of bi-ideals and
quasi-ideals coincide (see [4] Propositions 1.2 and 1.3). The following result and its
dual extend this remark: it can be used to simplify some of the arguments in [4], [5]
and [8].

Lemma 1. If S is a regular semigroup, then any right ideal R of S belongs to BQ.

Proof. Suppose S is a regular semigroup and let R be a right ideal of S. Let X
be a non-empty subset of R. We know that (X)B ⊆ (X)Q always. We assert that
(X)Q ⊆ (X)B. Let a ∈ RX ∩XR. Then, there exist b, c ∈ R and s, t ∈ X such that
a = bs = tc. Since S is regular, s = sxs for some x ∈ S. Since R is a right ideal of
S, cx ∈ R. Therefore, a = bs = b(sxs) = (bs)xs = (tc)xs = t(cx)s ∈ XRX. Hence,
RX ∩ XR ⊆ XRX and so (X)Q = R1X ∩ XR1 ⊆ XRX ∪ X ∪ X2 = (X)B. Thus,
(X)B = (X)Q for every non-empty subset X of R and so R ∈ BQ. tu

As mentioned before, OM(p, q) and OE(p, q) are a right and a left ideal of T (V ),
respectively. Moreover, by [1] Vol. 1, p. 57, Exercise 6, the semigroup T (V ) is regular.
Hence, by the above result and its dual, OM(p, q) and OE(p, q) are always in BQ.
We shall see that OM(p, q) and OE(p, q) are not regular semigroups and neither right
0-simple nor left 0-simple.

In [9], Namnak and Kemprasit considered the semigroup OM(p,ℵ0) ∩ OE(p,ℵ0), and
they showed that this is a regular subsemigroup of T (V ) and hence belongs to BQ.
The next result extends their work by determining all the regular elements of OM(p, q).
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Theorem 1. Let α ∈ OM(p, q). Then, α is regular if and only if α ∈ OE(p, q).
Consequently, OM(p, q) ∩OE(p, q) is the largest regular subsemigroup of OM(p, q).

Proof. Suppose α ∈ OM(p, q) ∩ OE(p, q) and let {ej} be a basis for ker α with |J | =
n(α) ≥ q. Expand {ej} to a basis {ej} ∪̇ {ei} for V and write eiα = ai for each i.
Then, {ai} is a basis for ran α and it can be expanded to a basis for V , say {ai} ∪̇ {ak},
where |K| = d(α) ≥ q. Define β ∈ T (V ) by

β =

(
ai ak

ei 0

)
.

Then, n(β) = dim〈ak〉 = d(α) ≥ q and d(β) = dim〈ej〉 = n(α) ≥ q, and hence
β ∈ OM(p, q) ∩OE(p, q). Also, αβα = α and so α is regular in OM(p, q).

Conversely, suppose α ∈ OM(p, q) and α = αβα for some β ∈ OM(p, q). Then d(α) =
d(α(βα)) ≥ d(βα). Since βα is idempotent, it follows that d(βα) = n(βα) ≥ n(β) ≥ q.
Hence α ∈ OE(p, q) as required. Also, if S is a regular subsemigroup of OM(p, q),
then it is contained in OE(p, q). Therefore, S ⊆ OM(p, q)∩OE(p, q) and the latter is
the largest regular subsemigroup of OM(p, q). tu

We now determine all regular elements of OE(p, q).

Theorem 2. Let α in OE(p, q). Then, α is regular if and only if α ∈ OM(p, q).
Consequently, OM(p, q) ∩OE(p, q) is the largest regular subsemigroup of OE(p, q).

Proof. By Theorem 1, if α ∈ OM(p, q)∩OE(p, q) then there exists some β ∈ OM(p, q)
such that α = αβα and β = βαβ, and this implies β ∈ OE(p, q) (again, by Theorem
1). In other words, every α ∈ OM(p, q) ∩ OE(p, q) is a regular element of OE(p, q).
Conversely, suppose α ∈ OE(p, q) and α = αβα for some β ∈ OE(p, q). Then, n(α) =
n((αβ)α) ≥ n(αβ). Also αβ is an idempotent in T (V ), hence V = ker(αβ)⊕ ran(αβ)
and, since OE(p, q) is closed, it follows that n(α) ≥ n(αβ) = d(αβ) ≥ d(β) ≥ q.
Therefore, α ∈ OM(p, q) as required. Clearly, every regular subsemigroup of OE(p, q)
is contained in OM(p, q) ∩ OE(p, q), hence this semigroup is the largest regular sub-
semigroup of OE(p, q). tu

3. Green’s relations and ideals

It is well-known that if α, β ∈ T (V ), then α L β if and only if ran α = ran β, α R β if
and only if ker α = ker β, and D = J (see [1] Vol. 1, Exercise 2.2.6.). In this section,
we characterise Green’s relations on the semigroups OM(p, q) and OE(p, q): although
the L and J relations on OM(p, q) and the R and J relations on OE(p, q) can be
described just like the corresponding ones on T (V ), the other Green’s relations differ
substantially from the corresponding ones on T (V ).

We begin with analogues of [7] Lemmas 2 and 3, respectively: the proofs of those
Lemmas hold verbatim for the present situation but, for completeness, we include
proofs for the next two results.

Lemma 2. Let α, β ∈ OM(p, q). Then α L β if and only if ran α = ran β.

Proof. Let α, β ∈ OM(p, q) and suppose α L β. Then, β = λα and α = µβ, for some
λ, µ ∈ OM(p, q)1. Therefore, ran α = ran(µβ) ⊆ ran β and ran β = ran(λα) ⊆ ran α,
hence ran α = ran β.
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Conversely suppose α 6= β and ran α = ran β, and let {ej} be a basis for ker β. Expand
{ej} to a basis {ej} ∪̇ {ei} for V and write eiβ = bi for each i. Then, {bi} is a basis
for ran β = ran α. For every i, choose fi ∈ biα

−1. Clearly, {fi} is linearly independent.
Now define λ ∈ T (V ) by

λ =

(
ej ei

0 fi

)
.

Since ker λ = ker β, it follows that λ ∈ OM(p, q). Also, β = λα. Similarly, we conclude
that there exists µ ∈ OM(p, q) such that α = µβ, and so α L β. tu

Lemma 3. Let α, β ∈ OE(p, q). Then α R β if and only if ker α = ker β.

Proof. Suppose α, β ∈ OE(p, q) are such that α R β. Then, α = βλ and β = αµ, for
some λ, µ ∈ OE(p, q)1. Thus, ker α ⊆ ker(αµ) = ker β and ker β ⊆ ker(βλ) = ker α,
and so ker α = ker β.

Conversely, suppose α 6= β and ker α = ker β. Let {ej} be a basis for ker α and expand
it to a basis {ej} ∪̇ {ei} for V . For each i, write eiα = ai and eiβ = bi. Clearly, {ai}
and {bi} are bases for ran α and ran β, respectively. Now expand {bi} to a basis for V ,
say {bi} ∪̇ {b`}, and define λ ∈ T (V ) by

λ =

(
b` bi

0 ai

)
.

Since d(λ) = d(α), it follows that λ ∈ OE(p, q). Also, α = βλ. Similarly, expand {ai}
to a basis {ai} ∪̇ {ak} for V and define µ ∈ T (V ) by

µ =

(
ak ai

0 bi

)
.

Clearly, d(µ) = d(β) and so µ ∈ OE(p, q). Also, β = αµ. Hence, α, β are R–related in
OE(p, q). tu

Next, we characterise the R–relation on OM(p, q). To do this, we need [7] Lemma 4
which we quote below for convenience.

Lemma 4. If α, β, λ ∈ T (V ) satisfy α = βλ then

d(β) ≤ n(λ) + dim(ran λ/ ran α).

In fact, if we also have ker α = ker β, then d(β) = n(λ) + dim(ran λ/ ran α).

Lemma 5. Let α ∈ OM(p, q) and denote the R–class of OM(p, q) containing α by
Rα. Then,

(a) α /∈ OE(p, q) implies Rα = {α};
(b) α ∈ OE(p, q) implies Rα = {β ∈ OM(p, q) : β ∈ OE(p, q) and ker β = ker α}.
Proof. Suppose α /∈ OE(p, q) and α R β in OM(p, q) for some β 6= α. Then, ker α =
ker β and β = αµ for some µ ∈ OM(p, q). Thus, we have d(α) < q and n(µ) ≥ q, and
by Lemma 4 we have a contradiction: namely, d(α) = n(µ) + dim(ran µ/ ran β) ≥ q.
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To see that (b) holds, suppose α ∈ OM(p, q) ∩ OE(p, q) and α R β in OM(p, q).
Then, as usual, this implies ker α = ker β. Moreover, if β /∈ OE(p, q) then (a) implies
α ∈ Rα = Rβ = {β}, hence α = β, contradicting our supposition.

Conversely, suppose β ∈ OM(p, q) ∩ OE(p, q) and ker β = ker α. Since OM(p, q) ∩
OE(p, q) is a regular subsemigroup of OE(p, q) (by Theorem 2), Hall’s Theorem ([2],
Proposition II.4.5) implies that the R–relation on OM(p, q)∩OE(p, q) is the restriction
of the R–relation on OE(p, q) to OM(p, q) ∩ OE(p, q). In other words, since α, β ∈
OM(p, q) ∩ OE(p, q) and ker α = ker β, we deduce from Lemma 3 that α R β in
OM(p, q) ∩OE(p, q) and hence α R β in OM(p, q). That is, β ∈ Rα as required. tu

As observed above, the L–relations on OM(p, q) and on AM(p, q) have identical char-
acterisations (compare Lemma 2 and [7] Lemma 2), but the same does not happen for
the R–relations on these two semigroups (compare the previous Lemma and [7] Lemma
6).

Analogously, it is easy to see the similarity between the characterisations of the R–
relations on OE(p, q) and on AE(p, q) (compare Lemma 3 and [7] Lemma 3), but there
is a substantial difference between the characterisations of the L–relations on these
semigroups. As before, in order to describe the L–relation on OE(p, q) we need [7]
Lemma 7 (quoted below) as a preliminary Lemma.

Lemma 6. If α, β, λ ∈ T (V ) satisfy α = λβ, then

n(β) ≤ d(λ) + dim(ker α/ ker λ).

In fact, if ran α = ran β then n(β) = d(λ) + dim(ker α/ ker λ).

Lemma 7. Let α ∈ OE(p, q) and denote the L-class of OE(p, q) containing α by Lα.
Then,

(a) α /∈ OM(p, q) implies Lα = {α};
(b) α ∈ OM(p, q) implies Lα = {β ∈ OE(p, q) : β ∈ OM(p, q) and ran β = ran α}.
Proof. First suppose α /∈ OM(p, q). If β ∈ OE(p, q) is such that α L β and β 6= α,
then there exist λ, µ ∈ OE(p, q) such that α = λβ and β = µα, and so ran α = ran β.
By Lemma 6, we have q > n(α) = d(µ)+dim(ker β/ ker µ) ≥ q, a contradiction. Thus,
(a) holds.

To see that (b) holds, suppose α ∈ OM(p, q)∩OE(p, q) and α L β in OE(p, q). Then,
as usual, this implies ran α = ran β. Moreover, if β /∈ OM(p, q) then (a) implies
α ∈ Lα = Lβ = {β}, hence α = β, contradicting our supposition.

Now suppose β ∈ OM(p, q) ∩ OE(p, q) and ran β = ran α. Since OM(p, q) ∩ OE(p, q)
is a regular subsemigroup of OM(p, q), Hall’s Theorem implies that the L–relation on
OM(p, q) ∩ OE(p, q) is the restriction of the L–relation on OM(p, q) to OM(p, q) ∩
OE(p, q). In other words, since α, β ∈ OM(p, q) ∩ OE(p, q) and ran α = ran β, we
deduce from Lemma 2 that α L β in OM(p, q)∩OE(p, q) and hence α L β in OE(p, q).
That is, β ∈ Lα as required. tu

We proceed to describe the D and J relations on OM(p, q), and the characterisation
of its ideals follows from this.
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Theorem 3. If α, β ∈ OM(p, q) then α D β in OM(p, q) if and only if one of the
following occurs.

(a) α, β ∈ OE(p, q) and r(α) = r(β),

(b) α, β /∈ OE(p, q) and ran α = ran β.

Proof. Suppose α L γ R β in OM(p, q). By Lemma 5(b), if β ∈ OE(p, q) then
γ ∈ OE(p, q) and ker β = ker γ. Suppose {ej} is a basis for ker β = ker γ and expand
it to a basis {ej} ∪̇ {ei} for V . Then {eiβ} and {eiγ} are bases for ran β and ran γ,
respectively, and hence r(β) = r(γ). By Lemma 2, ran α = ran γ, so r(α) = r(β); also
d(α) = d(γ) ≥ q, so α ∈ OE(p, q). Conversely, suppose α, β ∈ OM(p, q) ∩ OE(p, q)
and r(α) = r(β). Let {ek} and {fj} be bases for ker α and ker β, respectively, with
|K| = n(α) ≥ q and |J | = n(β) ≥ q. Expand these sets to two bases for V , say
{ek} ∪̇ {ei} and {fj} ∪̇ {f`}, respectively. Then, {eiα} is a basis for ran α and {f`β} is
a basis for ran β. Since r(α) = r(β), we have |I| = |L|, so we can write {fi} and {fiβ}
instead of {f`} and {f`β}, respectively. Now define λ ∈ T (V ) by

λ =

(
fj fi

0 eiα

)
.

Since n(λ) = n(β) ≥ q and d(λ) = d(α) ≥ q, we have λ ∈ OM(p, q) ∩ OE(p, q). In
fact, ran α = ran λ and ker λ = ker β, hence α L λ R β by Lemmas 2 and 5(b). In
other words, we have shown that α D β in OM(p, q).

Now suppose α L γ R β in OM(p, q) and β /∈ OE(p, q). Then, β = γ by Lemma 5(a),
and so α L β. Hence, ran α = ran β and α /∈ OE(p, q). Conversely, if α, β /∈ OE(p, q)
and ran α = ran β then α L β (by Lemma 2), and the result follows. tu

Theorem 4. If α, β ∈ OM(p, q) then α = λβµ for some λ, µ ∈ OM(p, q)1 if and only
if r(α) ≤ r(β). Consequently, α J β in OM(p, q) if and only if r(α) = r(β).

Proof. Let α, β ∈ OM(p, q) and suppose α = λβµ for some λ, µ ∈ OM(p, q)1. Then,
r(α) ≤ r(βµ) ≤ r(β). Conversely, suppose r(α) ≤ r(β) and let {ej} and {fk} be bases
for ker α and ker β, respectively, with |J | = n(α) ≥ q and |K| = n(β) ≥ q. Expand
{ej} to a basis {ej} ∪̇ {ei} for V and write eiα = ai for each i. Clearly, {ai} is a
basis for ran α. Similarly, expand {fk} to a basis for V , say {fk} ∪̇ {f`}, and write
{f`} = {gi} ∪̇ {gm} (note that {f`β} is a basis for ran β and r(β) ≥ r(α) = |I|). Now
write giβ = bi and gmβ = bm for each i and each m. Since {bi} ∪̇ {bm} is a basis for
ran β, it can be extended to a basis {bi} ∪̇ {bm} ∪̇ {br} for V , where |R| = d(β).

If |M | ≥ q or |R| ≥ q, define λ, µ ∈ T (V ) by

λ =

(
ej ei

0 gi

)
, µ =

(
bi bm br

ai 0 0

)
.

Then n(λ) = n(α) ≥ q and n(µ) = |M |+ |R| ≥ q, so λ, µ ∈ OM(p, q). Also, α = λβµ.
On the other hand, suppose that |M | < q and |R| < q. Then, r(β) + d(β) = p implies
|I| = p. Since p is infinite, we can write {gi} = {ui} ∪̇ {vi}. For every i, write uiβ = ci

and viβ = di, and define λ, µ in T (V ) by

λ =

(
ej ei

0 ui

)
, µ =

(
ci di bm br

ai 0 0 0

)
.
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Clearly, n(λ) = n(α) ≥ q and n(µ) = dim〈di, bm, br〉 = p ≥ q. Hence, λ, µ ∈ OM(p, q).
Also, α = λβµ. tu

It is well known that the ideals of T (V ) are precisely the sets

Iξ = {α ∈ T (V ) : r(α) < ξ}

where 1 ≤ ξ ≤ p′ and p′ denotes the successor of p (compare [3] Vol. 2, section IX.9).
As remarked in section 2, each OM(p, ξ), with ℵ0 ≤ ξ ≤ p, is a right ideal of T (V ) and
each OE(p, ζ), with ℵ0 ≤ ζ ≤ p, is a left ideal of T (V ). Hence, OE(p, ζ).OM(p, ξ) is
an ideal of T (V ) for all cardinals ζ and ξ such that ℵ0 ≤ ζ, ξ ≤ p. Next we show that,
in fact, OE(p, ζ).OM(p, ξ) = T (V ). To do this, let α ∈ T (V ) and write, in the usual
way,

α =

(
ej ei

0 ai

)
.

If |J | ≥ ζ and |J | ≥ ξ then define β ∈ T (V ) by

β =

(
ej ei

0 ei

)
.

Clearly, β ∈ OE(p, ζ) and α = βα. Since α ∈ OM(p, ξ) in this case, it follows that
α ∈ OE(p, ζ).OM(p, ξ). Now if |J | < ζ ≤ p or |J | < ξ ≤ p, then |I| = p, hence we can
write {ei} = {fi} ∪̇ {gi}. Define δ, γ ∈ T (V ) by

δ =

(
ej ei

0 gi

)
, γ =

(
ej fi gi

0 0 ai

)
.

Then, d(δ) = dim〈ej, fi〉 = p ≥ ζ and n(γ) = dim〈ej, fi〉 = p ≥ ξ. Since α = δγ, we
have α ∈ OE(p, ζ).OM(p, ξ). Therefore, OE(p, ζ).OM(p, ξ) = T (V ).

If ξ ≤ p then Iξ ⊆ OM(p, q) (since r(α) < p and p = n(α)+ r(α) imply n(α) = p ≥ q).
Hence, each Iξ, with 1 ≤ ξ ≤ p, is an ideal of OM(p, q), and clearly it is a proper
subset of OM(p, q). The next result shows that these are exactly the proper ideals of
OM(p, q).

Theorem 5. The proper ideals of OM(p, q) are precisely the sets Iξ where 1 ≤ ξ ≤ p.
Moreover, the set Iξ is a principal ideal of OM(p, q) if and only if ξ is a successor
cardinal.

Proof. By the remark above, each Iξ, with 1 ≤ ξ ≤ p, is a proper ideal of OM(p, q).
Conversely, let I be any proper ideal of OM(p, q) and let ξ be the least cardinal
greater than r(β) for every β ∈ I (possible since the cardinals are well-ordered). Then,
1 ≤ ξ ≤ p′ and I ⊆ OM(p, q) ∩ Iξ. Given α ∈ OM(p, q) ∩ Iξ, we know n(α) ≥ q and
r(α) < ξ. Thus, there exists β ∈ I such that r(α) ≤ r(β): otherwise, r(β) < r(α) < ξ
for every β ∈ I, and this contradicts our choice of ξ. Therefore, by Theorem 4, α = λβµ
for some λ, µ ∈ OM(p, q)1 and so α ∈ I. Hence I = OM(p, q) ∩ Iξ, and this equals Iξ

precisely when ξ 6= p′ (since Iξ = T (V ) when ξ = p′).

Next we determine all principal ideals of OM(p, q). To do this, let ξ be a successor
cardinal, say ξ = η′, and choose α ∈ Iξ with r(α) = η. Then r(β) ≤ η for every β ∈ Iξ
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(otherwise, r(β) > η implies r(β) ≥ η′ = ξ, a contradiction). Therefore, by Theorem 4,
β ∈ J(α), the principal ideal of OM(p, q) generated by α. Hence, Iξ ⊆ J(α) and clearly
the reverse inclusion also holds. Thus, Iξ is principal. Conversely, suppose Iξ = J(α)
for some α ∈ OM(p, q). Let r(α) = η and suppose η < χ < ξ ≤ p for some cardinal
χ. Clearly, χ = r(β) for some β ∈ OM(p, q) and, by Theorem 4, α = λβµ for some
λ, µ ∈ OM(p, q)1. Therefore, J(α) ⊆6 J(β) ⊆ Iξ, contradicting our supposition. In
other words, ξ is the least cardinal greater than η, and so ξ = η′. tu

From the Theorem above, it follows that the semigroup OM(p, q) is neither left 0-
simple nor right 0-simple (recall a remark before Theorem 1). In passing, we note that
this is true even if q is finite. For, in this case, the sets Iξ with 1 < ξ ≤ p still are
non-zero proper ideals of OM(p, q).

Similarly, we can determine the ideals of OE(p, q). To do so, we first describe the D
and J relations on this semigroup.

Theorem 6. If α, β ∈ OE(p, q) then α D β in OE(p, q) if and only if one of the
following occurs.

(a) α, β ∈ OM(p, q) and r(α) = r(β),

(b) α, β /∈ OM(p, q) and ker α = ker β.

Proof. Suppose α L γ R β in OE(p, q). By Lemma 7(b), if α ∈ OM(p, q) then
γ ∈ OM(p, q) and ran α = ran γ. By Lemma 3, ker β = ker γ, so r(β) = r(γ) and
n(β) = n(γ) ≥ q. Therefore, β ∈ OM(p, q) and r(α) = r(β). Conversely, if α, β ∈
OM(p, q) ∩ OE(p, q) and r(α) = r(β), then the same argument as that used in the
proof of Theorem 3(a) shows that α D β in OE(p, q).

Now suppose α L γ R β in OE(p, q) and α /∈ OM(p, q). Then, α = γ by Lemma
7(a), and so α R β. By Lemma 3, ker α = ker β, hence β /∈ OM(p, q). Conversely, if
α, β /∈ OM(p, q) and ker α = ker β then α R β (by Lemma 3), and the result follows.tu

Theorem 7. If α, β ∈ OE(p, q) then α = λβµ for some λ, µ ∈ OE(p, q)1 if and only if
r(α) ≤ r(β). Consequently, α J β in OE(p, q) if and only if r(α) = r(β).

Proof. Suppose α = λβµ for some λ, µ ∈ OE(p, q)1. Then, as before, r(α) ≤ r(β).
Conversely, assume r(α) ≤ r(β) and write, in the usual way,

α =

(
ej ei

0 ai

)
, β =

(
fk gi gm

0 bi bm

)

(note that this is possible since r(β) ≥ r(α) = |I|). Clearly, {ai} and {bi} ∪̇ {bm}
are bases for ran α and ran β, respectively. Hence, they can be expanded to bases
for V , say {ai} ∪̇ {as} and {bi} ∪̇ {bm} ∪̇ {br}, respectively, where |S| = d(α) ≥ q and
|R| = d(β) ≥ q. If |K| ≥ q or |M | ≥ q, then define λ, µ ∈ T (V ) by

λ =

(
ej ei

0 gi

)
, µ =

(
bi bm br

ai 0 0

)
.

Since d(λ) = dim〈fk, gm〉 ≥ q and d(µ) = d(α) ≥ q, it follows that λ, µ ∈ OE(p, q).
Also, α = λβµ. Now suppose |K| < q and |M | < q. Then, n(β) + r(β) = p implies
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|I| = p. Therefore, we can write {gi} = {ui} ∪̇ {vi} (because p is infinite). Let uiβ = ci

and viβ = di for each i and define λ, µ ∈ T (V ) by

λ =

(
ej ei

0 ui

)
, µ =

(
ci di bm br

ai 0 0 0

)
.

Clearly, d(λ) = dim〈fk, vi, gm〉 = p ≥ q and d(µ) = d(α) ≥ q. Hence, λ, µ ∈ OE(p, q).
Also, α = λβµ. tu

The following result determines the proper ideals of OE(p, q): they are exactly the
proper ideals of T (V ).

Theorem 8. The proper ideals of OE(p, q) are precisely the sets Iξ where 1 ≤ ξ ≤ p.
Moreover, the set Iξ is a principal ideal of OE(p, q) if and only if ξ is a successor
cardinal.

Proof. If 1 ≤ ξ ≤ p then Iξ ⊆ OE(p, q) (since r(α) < ξ ≤ p and p = r(α) + d(α) imply
d(α) = p ≥ q). Since each Iξ, with 1 ≤ ξ ≤ p, is an ideal of T (V ) (see a remark before
Theorem 5) it is an ideal of OE(p, q). For the converse, let I be an ideal of OE(p, q)
and let ξ be the least cardinal greater than r(β) for every β ∈ I (this is possible
since the cardinals are well-ordered). Then, 1 ≤ ξ ≤ p′ and I ⊆ OE(p, q) ∩ Iξ. Let
α ∈ OE(p, q) ∩ Iξ. Then, d(α) ≥ q and r(α) < ξ, hence (as before) there exists β ∈ I
such that r(α) ≤ r(β). Therefore, by Theorem 7, α = λβµ for some λ, µ ∈ OE(p, q)1

and so α ∈ I. Hence, I = OE(p, q)∩ Iξ and this equals Iξ precisely when ξ 6= p′ (since
Iξ = T (V ) when ξ = p′). Using an argument similar to that in the proof of Theorem
5, we conclude that Iξ is principal if and only if ξ is a successor cardinal; and in this
case, Iξ = J(α) for some α such that r(α)′ = ξ. tu
It is now easy to see that the semigroup OE(p, q) is neither left 0-simple nor right
0-simple (recall a remark before Theorem 1), and this is true even if q is finite (since,
in this case, the sets Iξ with 1 < ξ ≤ p still are non-zero proper ideals of OE(p, q)).

Given the results above on the ideals of the semigroups OM(p, q) and OE(p, q) and
the results obtained in [7] section 3 on the ideals of AM(p, q) and AE(p, q), we end
this section by illustrating the ideal structure of these four semigroups: it is now easy
to see that their ideal structures are extremely connected. Clearly, the three columns
below the first row in the following diagram are mutually disjoint.

AM(p, q) OE(p, q) OM(p, q) AE(p, q)

↘ ↙ ↘ ↙ ↘ ↙

AM(p, q) ∩OE(p, q) OE(p, q) ∩OM(p, q) OM(p, q) ∩ AE(p, q)
... ↓ ...

AM(p, q) ∩OE(p, ξ) Ip OM(p, ξ) ∩ AE(p, q)
...

...
...

AM(p, q) ∩OE(p, p) I1 OM(p, p) ∩ AE(p, q)
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4. Maximal right cancellative subsemigroups

In [6], the author studied basic properties of the semigroup KN(p, q) consisting of
all injective linear transformations α ∈ T (V ) for which d(α) ≥ q. She showed that
KN(p, q) is a right cancellative semigroup without idempotents; and if p > q then
its right ideals form a chain and it has no maximal principal left ideals. Also, by [6]
Theorem 6, any semigroup with these properties can be embedded in some KN(p, q),
where p = |S|. Clearly KN(p, q) ⊆ OE(p, q). In fact, it is a maximal right cancellative
subsemigroup of OE(p, q), as we proceed to show.

Lemma 8. Let S be a subsemigroup of T (V ) containing KN(p, q) and at least one
non-injective element of T (V ). Then, there exists some α ∈ S such that n(α) ≥ 2.

Proof. Suppose n(α) < 2 for every α ∈ S. Since S is not contained in the semigroup
of all injective linear transformations of V , there exists γ ∈ S such that n(γ) = 1. Let
a ∈ ker γ be non-zero and suppose {a} ∪̇ {ai} is a basis for V , with |I| = p. Write
{ai} = {b} ∪̇ {ci} (note that this is possible since p is infinite). Clearly, {bγ} ∪̇ {ciγ}
is a basis for ran γ, hence it can be extended to a basis for V , say {bγ} ∪̇ {ciγ} ∪̇ {d`},
where |L| = d(γ) ≤ p. Now write {ci} = {ei} ∪̇ {fi} ∪̇ {g`} and define λ, µ ∈ T (V ) by

λ =

(
a b ci

b a ei

)
, µ =

(
bγ ciγ d`

a ei g`

)
.

Then n(λ) = 0 = n(µ) and d(λ) = p = d(µ), so λ, µ ∈ KN(p, q) ⊆ S. Therefore,
λγµγ ∈ S and we have aλγµγ = 0 = bλγµγ. Since {a, b} is linearly independent, it
follows that n(λγµγ) ≥ 2, a contradiction. Hence, there exists some α ∈ S such that
n(α) ≥ 2. tu

Theorem 9. The semigroup KN(p, q) is a maximal right cancellative subsemigroup
of OE(p, q).

Proof. Suppose KN(p, q) ⊆ M ⊆ OE(p, q), where M is a right cancellative subsemi-
group of OE(p, q). If M contains some non-injective element, then there exists β ∈ M
such that n(β) ≥ 2 (by Lemma 8). Suppose {ej} is a basis for ker β and let a, b ∈ {ej},
a 6= b. Now expand {a, b} to a basis {a, b} ∪̇ {ei} for V , with |I| = p, and write
{ei} = {fi} ∪̇ {gi} (possible since p is infinite). Define λ, µ ∈ T (V ) by

λ =

(
a b ei

a b fi

)
, µ =

(
a b ei

b a fi

)
.

Then n(λ) = 0 = n(µ) and d(λ) = p = d(µ), hence λ, µ ∈ KN(p, q) ⊆ M . Clearly
λβ = µβ and, since M is right cancellative, it follows that λ = µ, a contradiction.
Therefore, all elements of M are one-to-one and, since M ⊆ OE(p, q), it follows that
M ⊆ KN(p, q). Hence, M = KN(p, q) and we have the required result. tu

The following example illustrates the fact that OE(p, q) contains maximal right can-
cellative subsemigroups which do not equal KN(p, q).
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Example 1. Let V = U ⊕〈xi〉 where dim U = q and |I| = p, and let H denote the set
of all α ∈ T (V ) with the form:

α =

(
U xi

0 xiπ

)

for some π ∈ G(I), the symmetric group on the set I. It is easy to see that H is a
subgroup of OE(p, q), and clearly H contains no injective elements. Moreover, if F
denotes the family of all right cancellative subsemigroups of OE(p, q) that contain H,
then F is non-empty. Thus, we can use Zorn’s Lemma to show that F contains a
maximal element, H ′ say. Then H ′ is a maximal right cancellative subsemigroup of
OE(p, q) which does not equal KN(p, q).
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