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Abstract
We solve and characterize the Lagrange multipliers of a reaction-diffusion system

in the Gibbs simplex of RN+1 by considering strong solutions of a system of parabolic
variational inequalities in RN . Exploring properties of the two obstacles evolution prob-
lem, we obtain and approximate a N -system involving the characteristic functions of
the saturated and/or degenerated phases in the nonlinear reaction terms. We also show
continuous dependence results and we establish sufficient conditions of non-degeneracy
for the stability of those phase subregions.

1 Introduction

This paper is motivated by the vector-valued reaction-diffusion equation

∂tU −∆U = F (x, t, U), in Q, (1)

for U = U(x, t), defined from Q = Ω × (0, T ) into RN+1, with homogeneous Neumann
condition on ∂Ω× (0, T ), where Ω is a bounded domain of Rn and T > 0 is arbitrary. We
are interested in the case when every component ui = ui(x, t) is nonnegative and the system
is subject to the multiphase non-voids condition with J = (1, . . . , 1) ∈ RN+1:

U · J =
N+1∑
j=1

uj = 1 in Q. (2)

From the equation (1) it is clear that the constraint (2) implies F (x, t, U) · J = 0 in Q

and so the reaction vector F should satisfy the necessary and very restrictive condition

FN+1(x, t, V ) = −
N∑

j=1

Fj(x, t, V ) in Q, ∀V = (v1, . . . , vn, 1−
N∑

j=1

vj), 0 ≤ vi ≤ 1. (3)

1



For instance, in replicator dynamics describing the evolution of certain frequencies in a
population, one possible definition of the reaction term with this compatibility condition
consists in choosing

Fi(x, t, V ) = vi[φi(x, t, V )−
N+1∑
j=i

vjφj(x, t, V )] in Q, i = 1, ..., N + 1, (4)

where vi represents the i-frequency of the population and φi the respective fitness (see,
for instance, [10] and [11]), the constraint (2) is essential to describe mixed strategies in
evolutionary game theory in spatially homogeneous population dynamics (see [18] and its
references) or to model the non-voids condition in biological tissue growing [15, 14]. In
phase fields models, the condition (2) arises naturally in simulation of multiphase flows
([13]) and multiphase systems with diffuse phase boundaries, as in solidification of alloys or
in grain boundary motion (see [9] or [3]).

Of course, in the case (3), in particular, if F = 0, the problem becomes a simple one if
the initial data U(0) = U0 also satisfies the constraint (2). However the situation is entirely
different in the general case of non trivial reactions, specially in multiphase problems where
at least one phase “i” in a subregion of Q is absent (i.e. ui = 0), or fulfils another subregion
(when ui = 1).

Instead of solving the system (1) in the Gibbs (N+1)-simplex

Ψ = {(v1, . . . , vN+1) ∈ RN+1 :
N+1∑
j=1

vj = 1 and vi ≥ 0, i = 1, . . . , N + 1},

we shall replace this problem by the study of a unilateral problem for the vector field of the
first N components u = (u1, . . . , uN ) of U , with the N + 1 convex constraints

N∑
i=j

uj ≤ 1 and ui ≥ 0 in Q, i = 1, . . . , N. (5)

This corresponds to solve the system of parabolic variational inequalities, at each time
t ∈ (0, T ),

u(t) ∈ K :
∫

Ω
∂tu(t) ·

(
v − u(t)

)
+

∫
Ω
∇u(t) · ∇(v − u(t))

≥
∫

Ω
f(u(t)) ·

(
v − u(t)

)
, ∀v ∈ K, (6)

under the initial condition

u(0) = u0 = (u01, . . . , u0N ) ∈ K. (7)
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Here K denotes the convex subset of the Sobolev space H1(Ω)N defined by

K = {v ∈ H1(Ω)N :
N∑

j=1

vj ≤ 1, vi ≥ 0, i = 1, . . . , N, in Ω}, (8)

where v = (v1, . . . , vN ).
The reaction term may have a general form fi(u) = fi(x, t, U(x, t)), i = 1, . . . , N , with

(x, t) ∈ Q and U =
(
u1, . . . , uN , 1−

N∑
j=1

uj

)
. We denote ∂t =

∂

∂t
and ∇ =

( ∂

∂x1
, . . . ,

∂

∂xn

)
.

The main part of this work is the analysis of the new unilateral problem (6)-(7) under
general assumptions on f : only continuity on u and integrability in (x, t) ∈ Q. In particular,
we prove that its solution u = u(x, t), which each component ui satisfies a double obstacle
problem

0 ≤ ui ≤ 1−
∑
j 6=i

uj in Q, i = 1, . . . , N, (9)

where
∑
j 6=i

uj denotes the sum of all N − 1 components but ui is, in fact, also the solution

of a reaction-diffusion system in the form

∂tui −∆ui = fi(u) + f−i (u)χ{ui=0}

−
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k

(
fi1(u) + · · ·+ fik(u)

)+χ
ii...ik , in Q. (10)

Here
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

denotes the summation over all the subsets {i1, . . . , ik} of {1, . . . , N}

to which i belongs, in particular, k varies from 1 to N . We also denote g+ = g ∨ 0 and
g− = −(g ∧ 0) the positive and negative parts of a scalar function g = g+ − g−, χ

A the
characteristic function of the set A, (i.e., χ

A = 1 in A and χ
A = 0 in Q \A) and χ

i1...ik the
characteristic function of the set

Ii1...ik =
{
(x, t) ∈ Q :

(
ui1+· · ·+uik

)
(x, t) = 1, uij (x, t) > 0, j = 1, . . . , k}, k ∈ {1, . . . , N}.

In particular {ui = 1} =
⋂
j 6=i

{uj = 0}, i.e., one component is fully saturated if and only if

the others are absent. Hence from (10) we see that, in general, the respective reaction terms
are coupled not only through the semilinear term f(u) but also through the characteristic
functions of the saturation sets of Ii1...ik .
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In this way, by setting for i = 1, . . . , N,

Fi(U) = fi(u) + f−i (u)χ{ui=0} −
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k

(
fi1(u) + · · ·+ fik(u)

)+χ
ii...ik ,

with U = (u, 1−
N∑

j=1

uj), we can solve the system (1) under the constraint (2) and identify

the respective Lagrange multipliers hi ≡ Fi(U)− fi(U) in a precise form.
To illustrate the meaning of the system (10), that contains 2N − 1 + N characteristic

functions, in general, we may consider the cases N = 1, 2 or 3. Denoting, for simplicity,
fi = fi(u), χ

i = χ{ui=1}, we may write the Lagrange multipliers as

h1 = f−1
χ{u1=0} − f+

1
χ

1 − 1
2(f1 + f2)+χ

12 − 1
2(f1 + f3)+χ

13 − 1
3(f1 + f2 + f3)+χ

123

h2 = f−2
χ{u2=0} − f+

2
χ

2 − 1
2(f1 + f2)+χ

12 − 1
2(f2 + f3)+χ

23 − 1
3(f1 + f2 + f3)+χ

123

h3 = f−3
χ{u3=0} − f+

3
χ

3 − 1
2(f1 + f3)+χ

13 − 1
2(f2 + f3)+χ

23 − 1
3(f1 + f2 + f3)+χ

123

Ignoring the third equation and all the terms involving the third component, we may
obtain the case N = 2. The first two terms of the right hand side of the first equation
correspond, in the case N = 1, to the scalar two obstacles problem that has been proposed
for phase separations in [4, 5].

The mathematical treatment of this unilateral system is done in the following three
sections. In section 2, we consider the semilinear approximation of the unique solution of
(6)-(7) in the case of the reaction f is in L2(Q)N and independent of the solution. Although
there exists a large literature on parabolic variational inequalities (see, for instance, [16],
[6], [12], [7] or [8]), the direct approach of the bounded penalization used for the two
obstacles problem in [22] (see also [19]), extended here for the system (10), allows the use
of monotone methods. This yields a direct way of obtaining Lewy-Stamppachia inequalities
(26), obtained first by [7] for parabolic problems, implying the W 2,1

p and Hölder regularity
for the solution to (6). Similar results for the N -membranes stationary problem have been
obtained in [1, 2]. We note in our case the simplification due to homogeneous Neumann
condition.

In section 3, we extend the existence result to general nonlinear reaction f = f(u)
taking values in L1(Q)N . Here we explore the fact that the convex set (8) lies in the unit
disc and we extend the direct technique of [20]. We show also a continuous dependence
result and, in the case of λI − f being monotone non-decreasing, in particular if f is
Lipschitz continuous in u, also the uniqueness of solution and their strong approximation
by the penalized solutions.
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Finally, in the last section, we characterize the solution of the variational inequality (6)
as solutions of the reaction-diffusion system (10), by extending some remarks of [23] to the
two obstacles parabolic problem. We also show that

{ui = 0} ⊂ {fi(u) ≤ 0} and Ii1...ik ⊂
{ k∑

j=1

fij (u) ≥ 0
}

a.e. in Q, for 1 ≤ i1 < · · · < ik ≤ N , ∀ k = 1, . . . , N and we can modify the system (10)
(see (77)) and show that the a.e. pointwise nondegeneracy assumptions

k∑
j=1

fij (u) 6= 0, 1 ≤ i1 < · · · < ik ≤ N, k = 1, . . . , N,

are sufficient conditions for the local stability of the characteristic functions χ{ui=0} and
χ

i1...ik with respect to the perturbation of the nonlinear reaction terms f .

2 Approximation of strong solutions by semilinear problems

In this section we consider the case where f = (f1, . . . , fN ) depends only on (x, t) and
is given in L2(Q)N .

To prove existence of solution of the variational inequality (6)-(7), we consider a family
of approximating semilinear systems of equations. We define, for each ε > 0, θε : R −→ R
by

θε(s) =


0 if s ≥ 0

s/ε if − ε < s < 0

−1 if s ≤ −ε,

(11)

and we denote
Pu = ∂tu−∆u = (Pu1, . . . , PuN ),

where ∂tu = (∂tu1, . . . , ∂tuN ) and ∆u = (∆u1, . . . ,∆uN ). We also denote Pui = ∂tui−∆ui,
i = 1, . . . , N . The approximating problems are given by the following weakly coupled
parabolic system with Neumann condition

Puε
i + f−i θε(uε

i )−
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− uε

i1...ik
) = fi in Q, (12)

∂uε
i

∂n
= 0 on ∂Ω× (0, T ), (13)

uε
i (0) = u0i in Ω, (i = 1, . . . , N) (14)
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where
∂

∂n
is the outward normal derivative on ∂Ω× (0, T ), the meaning of

∑
1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

was explained in the introduction and

∀v = (v1, . . . , vN ) ∀ {i1, . . . , ik} ⊆ {1, . . . , N} vi1...ik = vi1 + · · ·+ vik . (15)

Defining the penalization operator Θε by

Θεu · v =
N∑

i=1

[
f−i θε(ui)−

∑
1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− ui1...ik)

]
vi (16)

=
N∑

i=1

f−i θε(ui)vi −
∑

1≤ i1<. . .< ik≤ N

1
k

(
fi1 + · · ·+ fik

)+
θε(1− ui1...ik)vi1...ik , (17)

we formulate (12)-(13) in variational form for a.e. t ∈ (0, T ),∫
Ω

∂tu
ε(t) · v +

∫
Ω
∇uε(t) · ∇v +

∫
Ω

Θε(uε(t)) · v =
∫

Ω
f(t) · v, ∀v ∈ H1(Ω)N , (18)

associated with the initial condition (14).

Proposition 2.1. Assuming that

f = (f1, . . . , fN ) ∈ L2(Q)N and u0 ∈ K, (19)

the problem (18)-(14) has a unique solution uε ∈ H1(0, T ;L2(Ω)N ) ∩ L∞(0, T ;H1(Ω)N )).

Proof. We begin by proving the monotonicity of the penalization operator Θε.
In fact, recalling that θε is monotone nondecreasing and the definition (15) we have(
Θεu−Θεv

)
·
(
u− v

)
=

N∑
i=1

f−i
(
θε(ui)− θε(vi)

)
(ui − vi)

−
∑

1≤ i1<. . .< ik≤ N

1
k

(
fi1 + · · · fik

)+(
θε(1− ui1...ik)− θε(1− vi1...ik)

)
(ui1...ik − vi1...ik),

≥ 0,

since f−j and
(
fi1 + · · · fik

)+ are nonnegative functions.
The existence and uniqueness of solution uε ∈ L2(0, T ;H1(Ω)N ) is immediate by ap-

plying the theory of monotone operators ([16], [25])).
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Setting v = (uε
1, . . . , u

ε
N ) in the approximating problem (18) and integrating in time,

letting

gε
i = Puε

i = fi − f−i θε(uε
i ) +

∑
1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− uε

i1...ik
),

which is bounded in L2(Q) independently of ε, we obtain that, for every 0 < t < T , with
Qt = Ω× (0, t),

1
2

∫
Ω
|uε(t)|2 +

∫
Qt

|∇uε|2 ≤ 1
2

∫
Ω
|u0|2 +

1
2

∫
Qt

|gε|2 +
1
2

∫
Qt

|uε|2.

The Grownwall inequality yields the uniform boundedeness (in ε) of uε, first in
L∞(0, T ;L2(Ω)N )) and afterwards also in L2(0, T ;H1(Ω)N ).

Letting, formally, v = ∂tu
ε in (18) (in fact in the respective Faedo-Galerkin approxima-

tion) and integrating in time, we get∫
Qt

∣∣∂tu
ε
∣∣2 +

∫
Ω
|∇uε(t)|2 ≤

∫
Qt

|gε|2 +
∫

Ω
|∇u0|2

and so ∂tuε is also bounded in L2(Q)N and ∇uε in L∞(0, T ;L2(Ω)N ). Therefore

{uε}ε>0 is bounded in H1(0, T ;L2(Ω)N )) ∩ L∞(0, T ;H1(Ω)N ). (20)

�

Proposition 2.2. Assuming (19), the solution uε of the problem (18)-(14) satisfies

uε
i ≥ −ε, i = 1, . . . , N,

N∑
i=1

uε
i ≤ 1 + ε. (21)

Proof. In fact, we are going to prove the following more general set of inequalities

uε
i ≥ −ε, i = 1, . . . , N, and uε

i1...ir ≤ 1 + ε, ∀ 1 ≤ i1 < . . . < ir ≤ N

and the proof of the right hand side inequalities will be done by induction on r.
Let us prove the case r = 1, i.e., uε

i ≤ 1 + ε, for all i ∈ {1, . . . , N}. Multiplying the
i-th equation of the approximating system (12) by (uε

i − (1 + ε))+ and integrating over
Qt = Ω× (0, t), we have∫

Qt

∂tu
ε
i (u

ε
i − (1 + ε))+ +

∫
Qt

∇uε
i · ∇(uε

i − (1 + ε))+

=
∫

Qt

[
fi − f−i θε(uε

i ) +
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− uε

i1...ik
)
]
(uε

i − (1 + ε))+
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Recalling that −1 ≤ θε ≤ 0 and that, in the set {uε
i > 1 + ε}, we have θε(uε

i ) = 0 and
θε(1− uε

i ) = −1 we get

1
2

∫
Ω
|(uε

i − (1 + ε))+(t)|2 +
∫

Q
|∇(uε

i − (1 + ε))+|2 ≤
∫

Q
(fi − f+

i )(uε
i − (1 + ε))+ ≤ 0, (22)

so (uε
i − (1 + ε))+ ≡ 0, i.e. uε

i ≤ 1 + ε.
Assuming we have proved that uε

i1...ir
≤ 1+ε, we are going to show that uε

i1...irir+1
≤ 1+ε.

We multiply the equations ij , j = 1, . . . , r + 1, by (uε
i1...irir+1

− (1 + ε))+, sum from 1 to
r + 1 and integrate over Qt. We obtain∫

Qt

Puε
i1...irir+1

(uε
i1...irir+1

− (1 + ε))+ =
∫

Qt

[ r+1∑
j=1

fij −
r+1∑
j=1

f−ij θε(uε
ij )

+
r+1∑
j=1

∑
1≤ i1<. . .< ik≤ N

ij ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− uε

i1...ik
)
]
(uε

i1...irir+1
− (1 + ε))+.

Observe that, in the set {uε
i1...irir+1

> 1 + ε} we have uε
ij
≥ 0, for j = 1, . . . , r + 1, since,

by induction, uε
l1...lr

= uε
i1

+ · · · + uε
ir+1

− uε
ij
≤ 1 + ε. So, in that set θε(uε

ij
) = 0 and, on

the other hand, θε(1− uε
i1...irir+1

) = −1. The induction conclusion follows from∫
Ω
|(uε

i1...irir+1
− (1 + ε))+(t)|2 +

∫
Qt

|∇(uε
i1...irir+1

− (1 + ε))+|2

≤
∫

Qt

[ r+1∑
j=1

fij − (r + 1)
1

r + 1
(
fi1 + · · ·+ fir+1

)+
]
(uε

i1...irir+1
− (1 + ε))+ ≤ 0.

To prove that uε
i ≥ −ε, we multiply the i-th equation of (12) by (−uε

i − ε)+, obtaining

1
2

∫
Ω
|(−uε

i − ε)+(t)|2 +
∫

Q
|∇(−uε

i − ε)+|2 =
∫

Q

[
− fi + f−i θε(uε

i )

−
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+
θε(1− uε

i1...ik
)
]
(−uε

i − ε)+.

Let Jk,i = {i1, . . . , ik} \ {i} and denote the elements of Jk,i by j1 . . . jk−1. Since, in the
set {(−uε

i − ε)+ > 0} = {uε
i < −ε}, we have 1− uε

i1...ik
= 1− uε

j1...jk−1
− uε

i > 0 (recall that
uε

j1...jk−1
≤ 1 + ε). So,

1
2

∫
Ω
|(−uε

i−ε)+(t)|2+
∫

Q
|∇(−uε

i−ε)+|2 ≤
∫

Q

[
−fi−f−i

]
(−uε

i−ε)+ =
∫

Q
−f+

i (−uε
i−ε)+ ≤ 0,

that implies (−uε
i − ε)+ = 0, or uε

i ≥ −ε. �
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Theorem 2.3. Assuming (19), the variational inequality (6)-(7) has a unique solution u

such that
u ∈ H1(0, T ;L2(Ω)N ) ∩ L∞(0, T ;H1(Ω)N ) (23)

and
Pu ∈ L2(Q)N . (24)

Proof. Let uε be the solution of the problem (18). Using the uniform estimates (in ε)
obtained in (20), we know there exists u such that

uε −−−−→
ε

u in L2(Q)N strong,

uε −−−⇀
ε

u in L∞(0, T ;H1(Ω)N ) weak-∗,

∂tu
ε −−−⇀

ε
∂tu and Puε −−−⇀ Pu in L2(Q)N weak.

We have u(t) ∈ K, for a.e. t ∈ [0, T ], because uε satisfies the inequalities (21).
Given v ∈ L2(0, T ; K), set v(t)− uε(t) in (18) and integrate in time. Then∫

Q
∂tu

ε · (v − u) +
∫

Q
∇uε · ∇(v − u) ≥

∫
Q

f ε · (v − uε),

since
∫

Q

(
Θε(uε)−Θε(v)

)
· (v − uε) ≤ 0 and Θε(v(t)) = 0 if v(t) ∈ K. Passing to the limit

when ε → 0 and noting that

lim inf
ε→0

∫
Q

(
∂tu

ε · uε +∇uε · ∇uε
)
≥

∫
Q

(
∂tu · u +∇u · ∇u

)
,

we find that u satisfies (7) and∫
Q

∂tu · (v − u) +
∫

Q
∇u · ∇(v − u) ≥

∫
Q

f · (v − u), ∀v ∈ L2(0, T ; K), (25)

which is easily seen to be equivalent to (6). The uniqueness is immediate. �

We remark that no regularity of the boundary ∂Ω has been required in (18) and, in
fact, the Neumann boundary condition (13) is only formal. In the proof of Theorem 2.3
we have used the compactness of the sequence {uε}ε in L2(Q)N . This holds, for instance,
for domains with Lipschitz boundaries, but also, since the sequence {uε}ε is uniformly
bounded in L∞(Q)N , for a larger class of bounded open subsets of RN+1. However, the
approximation by semilinear parabolic equations yields immediately an additional regularity
of these strong solutions.
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Indeed, from the definitions of θε and Θε, from (18) with arbitrary ϕ ∈ D(Q), ϕ ≥ 0,
we find

fi −
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k

(
fi1 + · · ·+ fik

)+ ≤ Puε
i = fi −Θε(uε) ≤ fi + f−i = f+

i a.e. in Q.

(26)
By the conclusion of Theorem 2.3 we also obtain, for each i = 1, . . . , N,

fi −
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k
(fi1 + · · ·+ fik)+ ≤ Pui ≤ f+

i a.e. in Q (27)

and we can apply directly the second order linear parabolic theory (see [17]) in the Sobolev
spaces

W 2,1
p (Q) = W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)), 1 < p < ∞.

These spaces satisfy the Sobolev imbeddings, for p > (n + 2)/(2− k), with k = 0, 1,

W 2,1
p (Q) ⊂ Ck,0

α (Q), 0 ≤ α < 2− k − (n + 2)/p,

where Ck,0
α (Q) denotes the spaces of Hölder continuous functions v in Q, with exponent α

in the x-variables and α/2 in the t-variable and, in the case k = 1, with ∇v satisfying the
same property (see [17], p. 80). Therefore, as a consequence of (27), we conclude. �

Theorem 2.4. Assume that ∂Ω is smooth, say of class C2 and

f ∈ Lp(Q)N and u0 ∈ K ∩W 2−2/p,p(Ω)N , 1 < p < ∞, (28)

with each component u0i satisfying the compatibility condition
∂u0i

∂n
= 0 on ∂Ω if p > 3.

Then the unique solution u of the variational inequality (6)-(7) is such that

u ∈ W 2,1
p (Q)N ∩ L∞(0, T ; K), (29)

and, in particular, is Hölder continuous in Q if p > (n + 2)/2 and has ∇u also Hölder
continuous if p > n + 2.

�

We observe that, when p < 2, the inclusion W 2,1
p (Q) ⊂ L2(0, T ;H1(Ω)) only takes

place if p ≥ (2n+4)/(n+4) but, as we shall see in the next section and since K is bounded,
(6)-(7) is solvable for any f ∈ L1(Q)N .
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3 Existence and uniqueness of variational solutions

In this section, requiring the compactness of the inclusion of H1(Ω) into L2(Ω) by
assuming a Lipschitz boundary ∂Ω, we show how we can still solve the variational inequality
(25) for a more general initial condition

u0 ∈ K̃ = {v ∈ L2(Ω)N :
N∑

j=1

vj ≤ 1, vi ≥ 0, i = 1, . . . , N, in Ω} (30)

and for general nonlinear f = f(u) defining a continuous operator from L2(0, T ; K̃) in
L1(Q)N . We shall assume that f = f(x, t, v) : Q× [0, 1]N → RN satisfies

f = f(x, t, v) is continuous in v for a.e. (x, t) ∈ Q, (31)

∃ϕ1 ∈ L1(Q) : |f(x, t, v)| ≤ ϕ1(x) ∀v ∈ [0, 1]N , for a.e. (x, t) ∈ Q. (32)

However, now the solution has less regularity, namely

u ∈ C([0, T ];L2(Ω)N ∩ K̃) ∩ L2(0, T ;H1(Ω)N ) (33)

and its derivative may not be a function, since we only have

∂tu ∈ L1(Q)N + L2
(
0, T ;

(
H1(Ω)N

)′)
. (34)

Hence the first term in the variational inequality (25) should be interpreted in the duality
sense between L1(Q)N + L2

(
0, T ;

(
H1(Ω)N

)′) and L∞(Q)N ∩ L2(0, T ;H1(Ω)N ), namely
through the formula

〈∂tu,v〉t =
∫

Qt

Pu · v −
∫

Qt

∇u · ∇v, ∀v ∈ L∞(Q)N ∩ L2(0, T ;H1(Ω)N ), (35)

for arbitrary t ∈ (0, T ] since, as we shall see, (27) yields Pu ∈ L1(Q)N .

Theorem 3.1. Under the assumptions (30), (31)and (32), the variational inequality (25)
has a solution u satisfying (33), (34), (27) and u(0) = u0 and we can write∫

Q

(
Pu− f(u)

)
· (v − u) ≥ 0, ∀v ∈ L2(0, T ; K̃). (36)

Proof. We consider the closed convex subset of L2(Q)N

K = L2(0, T ; K̃) = {v ∈ L2(Q)N : ui ≥ 0, i = 1, . . . , N,

N∑
i=1

ui ≤ 1 in Q}

11



and we define Φ : K → K as the nonlinear operator that associates to each w ∈ K the
solution uw = Φ(w) of the variational inequality (25) with f replaced by g = f(x, t, w)
and fixed initial data u0 ∈ K̃.

By showing that Φ is a continuous and compact operator, a fixed point u = Φ(u), given
by Schauder Theorem, will provide a solution with the required properties.

Indeed, first we observe that if we consider any sequence K 3 wν −−−−→
ν

w ∈ K in

L2(Q)N , by (31) and (32), the Lebesgue Theorem implies

gν = f(wν) −−−−→
ν

f(w) = g in L1(Q)N .

Next, for any g ∈ L1(Q)N and any u0 ∈ K̃ we consider sequences gν ∈ L2(Q)N and
u0ν ∈ K such that

gν −−−−→
ν

g in L1(Q)N and u0ν −−−−→
ν

u0 in L2(Ω)N

and we denote by uν ≡ S(u0ν , gν) the unique solution of (25)-(7) given by Theorem 2.3,
for each gν and u0ν . We observe that each component of Puν satisfies the inequality (27)
with fi replaced by (gν)i. From (25) for uµ and uν , we easily find, for a.e. t ∈ (0, T )

1
2

d

dt

∫
Ω
|uµ − uν |2 +

∫
Ω
|∇(uµ − uν)|2 ≤

∫
Ω
(gµ − gν) · (uµ − uν)

and, integrating in time, we obtain

sup
0<t<T

∫
Ω
|uµ(t)− uν(t)|2 +

∫
Q
|∇(uµ − uν)|2 ≤

∫
Ω
|u0µ − u0ν |2 + 4

∫
Q
|gµ − gν |. (37)

This estimate shows that {uν}ν is a Cauchy sequence in the Banach space

W = C([0, T ];L2(Ω)N ) ∩ L2(0, T ;H1(Ω)N ) (38)

with respect to the norm

‖|v‖| =
(

sup
0<t<T

∫
Ω
|v(t)|2 +

∫
Q
|∇v|2

)1/2
(39)

and, hence, there exists a function ug ∈ W

uν −−−−→
ν

ug in W .

In addition, ug ∈ L2(0, T ; K) ∩ C([0, T ]; K̃) and Pug ∈ L1(Q)N , which implies, by
(35), that ∂tug satisfies (34). Hence, using (35), we may pass to the limit in ν in

〈Puν − gν ,v − uν〉 =
∫

Q
(Puν − gν) · (v − uν) ≥ 0

12



for an arbitrary v ∈ L2(0, T ; K) ⊂ L∞(Q)N , and using the formula

2〈∂tug,ug〉t =
∫

Ω
|ug(t)|2 −

∫
Ω
|u0|2, ∀ t ∈ (0, T ],

we conclude that ug = S(u0, g) is the (unique) solution of the variational inequality (25)
(or equivalently (36)) with data g ∈ L1(Q)N and u0 ∈ K̃. In particular, from (37), we also
obtain that, for fixed u0 ∈ K̃, the operator Σ : g 7→ ug = S(u0, g) is Hölder continuous of
order 1/2, from L1(Q)N into W .

Since ∂tug satisfies the property (34), it is in fact in L1(0, T ;H−s(Ω)N ), for s sufficiently
large and, by a well known compactness embedding (see [24] or Theorem 3.11 of [25]), the
compactness of H1(Ω) ⊂ L2(Ω) implies that, in fact, Σ regarded as an operator from
L1(Q)N into K ⊂ L2(Q)N is, therefore, completely continuous. Hence, Φ = Σ ◦ f fulfils
the requirements of the Schauder fixed point theorem and the proof is complete. �

Remark 3.2. It is clear that if u0 ∈ K and, in (32), ϕ1 ∈ L2(Q), we obtain in Theorem
3.1 the existence of a strong solution satisfying (23) and (24). Of course, if we have the
regularity assumptions of Theorem 2.4, i.e., ϕ1 ∈ Lp(Q), implying by the inequalities (27)
that Pu ∈ Lp(Q)N , we also obtain solutions in W 2,1

p (Q)N , in particular Hölder continuous
solutions if p > (n + 2)/2.

In general (36) may have more than one solution, but if we assume, in addition, that
for some λ > 0, λ I − f is monotone non-decreasing in [0, 1]N , i.e.

∃λ > 0 : λ|v−w|2−
(
f(x, t, v)−f(x, t, w)

)
· (v−w) ≥ 0, (x, t) ∈ Q, ∀v,w ∈ [0, 1]N ,

(40)
in particular, if f is Lipschitz continuous in v, then there exists at most one solution u of
the variational inequality (25) in the class (33) and initial condition u0 ∈ K̃.

In order to prove the uniqueness of solution, we suppose that u1 and u2 are two solutions
of the variational inequality (25) with initial condition u0 ∈ K̃ and f = f(u1), f = f(u2)
respectively. Then, choosing u2 and u1 as test functions, respectively, using (40) we find

1
2

∫
Ω
|u2(t)− u1(t)|2 +

∫
Qt

|∇(u2 − u1)|2

≤
∫

Qt

(
f(u2)− f(u1)

)
·
(
u2 − u1) ≤ λ

∫
Qt

|u2 − u1|2

and so, by Grownvall inequality u1 = u2 a.e. in Q, since u1(0) = u2(0) = u0.

13



We redefine the variational formulation of the approximating problem (18) in the frame-
work of this section with Θε defined in (16) and with initial condition only in L2(Ω)N ,∫

Q
∂tu

ε ·v+
∫

Q
∇uε ·∇v+

∫
Q

Θε(uε)·v =
∫

Q
f(uε)·v, ∀v ∈ L2(0, T ;H1(Ω)N )∩L∞(Q)N .

(41)
Arguing as in Theorem 3.1 we may prove the existence of a solution of the approximating

problem (12), with initial condition u0 ∈ K̃ as long as f satisfies (31) and (32). We also
have uniqueness if we assume (40).

Theorem 3.3. Suppose that f satisfies (31), (32) and (40) and u0 ∈ K̃.
Let uε and u be, respectively, the unique solution of the approximating problem (12)

and of the variational inequality (25), both with initial condition u0. Then there exists a
positive constant c = c(ϕ1, T ) such that the following estimate in the norm (39) of W =
C([0, T ];L2(Ω)N ) ∩ L2(0, T ;H1(Ω)N ) holds,

‖|uε − u‖| ≤ c
√

ε. (42)

Proof. We choose in (41) v = uε − u as test function. Since u ∈ K, then∫
Q

Θε(uε) · (uε − u) ≥ 0

and so ∫
Qt

∂tu
ε · (uε − u) +

∫
Qt

∇uε · (uε − u) ≤
∫

Qt

f(uε) · (uε − u). (43)

Choosing, as test function in (25) vε =
(
(uε

1 − ε
N )+, . . . , (uε

N − ε
N )+) we get∫

Qt

∂tu · (uε − u) +
∫

Qt

∇u · ∇(uε − u)

≥
∫

Qt

f(u) · (uε − u) +
∫

Qt

[
Pu− f(u)

]
· (uε − vε) (44)

and subtracting (44) from (43) we get

1
2

∫
Ω
|uε(t)− u(t))|2 +

∫
Qt

|∇(uε − u)|2

≤
∫

Qt

(f(uε)− f(u)) · (uε − u) +
∫

Qt

[
Pu− f(u)

]
· (vε − uε) (45)

≤ λ

∫
Qt

|uε − u|2 + ε

∫
Qt

|Pu− f(u)|,
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since ‖vε − uε‖L∞(Q)N ≤ ε. Letting C = C(ϕ1, T ) = ‖Pu − f(u)‖L1(Q)N and dropping

the nonnegative term
∫

Qt

|∇(uε − u)|2 in (45) we obtain, by application of the Grownwall

inequality, ∫
Ω
|uε(t)− u(t)|2 ≤ 2εCe2λt

and using again (45), also
|‖uε − u‖| ≤ c

√
ε.

�

With similar arguments we may give a continuous dependence result for solutions of the
variational inequality (36).

Suppose we have a sequence fν −−−−→
ν

f in the following sense

fν = fν(x, t, v) are continuous in v ∈ [0, 1]N , for a.e. (x, t) ∈ Q

fν(·, ·,v) −−−−→
ν

f(·, ·,v) in L1(Q)N for all fixed v ∈ [0, 1]N .

 (46)

In addition, the assumption (32) is satisfied for all f uniformly in ν, i.e., there is a
common ϕ1 such that (32) holds for all ν, and the initial data are such that

K̃ 3 uν
0 −−−−→

ν
u0 in L2(Ω)N . (47)

Hence, by Theorem 3.1, it is clear that there are solutions {uν}ν∈N to the corresponding
problems associated with fν and uν

0 and, moreover, they satisfy (33) and (34) uniformly in
ν, i.e., their norms in those spaces are bounded by a constant independent of ν. Therefore,
we have a function u in the same class (33) and (34), and a subsequence, still denoted by
ν, such that

uν −−−⇀
ν

u in L2(0, T ;H1(Ω)N ) weak and in L∞(0, T ; K̃) weak-∗ (48)

uν −−−−→
ν

u a.e. in Q and in Lp(Q)N , ∀ 1 ≤ p < ∞. (49)

By assumption (46) and Lebesgue Theorem, we conclude first that fν(uν) −−−−→
ν

f(u)

a.e. in Q and in L1(Q)N , as well as∫
Q

fν(uν) · uν −−−−→
ν

∫
Q

f(u) · u, (50)

∫
Q

(
fν(uν)− f(u)

)
· (uν − u) −−−−→

ν
0, (51)

15



since, in particular, |uν | ≤ 1 and |u| ≤ 1 a.e. in Q.
Recalling (27) for each ν, we may take the limit in∫

Q

(
Puν − fν(uν)

)
· (v − uν) ≥ 0 (52)

for a fixed v ∈ L2(0, T ; K̃). Using (50) and (48), that in particular imply

Pu ∈ L1(Q)N and lim inf
ν

∫
Qt

Puν · uν ≥
∫

Qt

Pu · u, ∀ t ∈ (0, T ),

we conclude that u is a solution of (36) with initial condition u0.
Using v = uχ

(0,t) + uνχ
(t,T ) in (52) and v = uνχ

(0,t) + uχ
(t,T ) in (36) we find, for a.e.

t ∈ (0, T ),

1
2

∫
Ω
|uν(t)−u(t)|2 +

∫
Qt

|∇(uν −u)|2 ≤
∫

Qt

[
fν(uν)− f(u)

]
· (uν −u) +

1
2

∫
Ω
|uν

0 −u0|2

and, by (51), we conclude that uν −−−−→
ν

u strongly in W . Therefore, we have proved the
following result

Theorem 3.4. If uν denotes the solution to the variational inequality (36) with fν satisfying
the assumptions (46) and (32) uniformly in ν and initial condition satisfying (47), then there
exists a subsequence {uν}ν∈N such that

uν −−−−→
ν

u in C([0, T ];L2(Ω)N ∩ K̃) ∩ L2(0, T ;H1(Ω)N ) ∩ Lp(Q)N , ∀ 1 ≤ p < ∞,

where u is a solution to (36) corresponding to the limit f and the limit initial condition u0.
In addition, if f satisfies (40), by uniqueness of u, the whole sequence {uν}ν∈N converges.

�

4 The multiphases system and its characterization

In this section we consider a variational solution u of (25) obtained in Theorem 3.1, i.e.,
satisfying (33) and (34). Setting

wi(u) = 1−
∑
j 6=i

ui, i = 1, . . . , N, (53)
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each component ui satisfies a double obstacle problem

0 ≤ ui(x, t) ≤ wi(x, t) a.e. (x, t) ∈ Q, i = 1, . . . , N. (54)

For an arbitrary nonnegative and bounded function ϕ = ϕ(x, t) defined for (x, t) ∈ Q,
such that

Kϕ
0 = {v ∈ L2(0, T ;H1(Ω) : 0 ≤ v ≤ ϕ in Q} 6= ∅, (55)

and for a given g ∈ L1(Q), we may introduce the parabolic double obstacle scalar problem

u ∈ Kϕ
0 :

∫
Q

∂tu(v − u) +
∫

Q
∇u · ∇(v − u) ≥

∫
Q

g(v − u) ∀v ∈ Kϕ
0 , (56)

subject to a given compatible initial condition

u(0) = u0 in Ω. (57)

For each i = 1, . . . , N , we have ui ∈ Kwi
0 and, by choosing in (25) v ∈ L2(0, T ; K), such

that vj = uj for j 6= i and vi = v ∈ Kwi
0 arbitrarily, it is clear that ui is a solution of

the scalar double obstacle problem (56) with ϕ = wi and g = fi(u). Hence we can obtain
further properties of our solution by applying the general theory of the obstacle problem.
For the sake of completeness we prove here the result below.

Let
ϕ ∈ L2(0, T ;H1(Ω)) ∩ L∞(Q) with ϕ ≥ 0 a.e. in Q, (58)

∂tϕ ∈ L2
(
0, T ;

(
H1(Ω)

)′) with Pϕ ∈ L1(Q),
∂ϕ

∂n
= 0 on ∂Ω× (0, T ), (59)

and
g ∈ L1(Q), u0 ∈ L2(Ω), 0 ≤ u0 ≤ ϕ(0) in Ω. (60)

We observe that (59) means that ϕ satisfies the formula

〈∂tϕ, v〉t =
∫

Qt

v Pϕ−
∫

Qt

∇ϕ · ∇v, ∀v ∈ L2(0, T ;H1(Ω)) ∩ L∞(Q).

Proposition 4.1. Under the assumptions (58)-(60) the unique solution u ∈ Kϕ
0 to the scalar

problem (56)-(57) is such that

u ∈ C([0, T ];L2(Ω)) ∩ L∞(Q), ∂tu ∈ L1(Q) + L2(0, T ;
(
H1(Ω)′

)
, (61)

and it satisfies the parabolic semilinear equation

Pu = g + g−χ{u=0} − (Pϕ− g)−χ{u=ϕ} a.e. in Q. (62)
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Proof. Using the function θε given by (11) and defining

ϑε(v) = g−θε(v)− (Pϕ− g)−θε(ϕ− v) (63)

we can consider the approximating problem, for ε > 0,∫
Q

(
Puε + ϑε(uε)

)
v =

∫
Q

gv, ∀ v ∈ L2(0, T ;H1(Ω)) ∩ L∞(Q), (64)

with the initial condition uε(0) = u0 in Ω. Since ϑε is monotone and ϕ is bounded, arguing
as in Theorem 3.1, the problem (64) has a unique solution uε in the class (61). Moreover,
it satisfies

−ε ≤ uε ≤ ϕ + ε a.e. in Q, (65)

as we can show by choosing, in (64), v = (−uε − ε)+ and v = (uε − ϕ − ε)+, respectively.
Indeed, in the first case we have∫

Q
vPv = −

∫
Q

vPuε =
∫
{v>0}

v (ϑ(uε)− g) =
∫
{uε<−ε}

(−g− − g) ≤ 0,

since ϑε(uε) = −1 and ϑε(ϕ−uε) = 0, because uε < −ε and ϕ−uε > ε, and, in the second
case, ∫

Q
vPv =

∫
Q

vP (uε − ϕ) =
∫
{v>0}

v (g − ϑ(uε)− Pϕ)

=
∫
{ϕ−uε>ε}

(
−(Pϕ− g)− (Pϕ− g)−

)
≤ 0,

since ϑε(ϕ− uε) = −1 and ϑε(uε) = 0 if ϕ− uε < −ε and uε > ϕ + ε.
Hence, using the monotonicity argument, we easily conclude that u = lim

ε→0
uε ∈ Kϕ

0 is

the unique solution of the variational inequality (56). Remarking that, from (63) we have

−g− ≤ ϑε(uε) ≤ (Pϕ− g)− a.e. in Q,

from (64) we deduce in the limit the Lewy-Stampacchia inequalities

(Pϕ− g)− ≤ Pu− g ≤ g− a.e. in Q.

In particular, this yields Pu ∈ L1(Q) and (56) implies that u also solves∫
Q

(
Pu− g

)
(v − u) ≥ 0, ∀ v ∈ K̃ϕ

0 , (66)

where K̃ϕ
0 = {v ∈ L2(Q) : 0 ≤ v ≤ ϕ in Q} ⊂ L∞(Q).
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Let O ⊂ Q be an arbitrary measurable set and set v = u in Q \ O and v = δϕ in O,
with δ ∈ [0, 1], in (66). Since O is arbitrary, we conclude the pointwise inequality(

Pu− g
)
(φ− u) ≥ 0 ∀φ ∈ [0, ϕ(x, t)] a.e. in Q, (67)

which implies, up to null measure subsets of Q,

Pu− g ≥ 0 in {u = 0}, Pu− g ≤ 0 in {u = ϕ}, (68)

Pu = g in Λ = {0 < u < ϕ}. (69)

On the other hand, arguing as in Lemma 2 of [23] and noting that V = (u,−∇u) ∈
L1(Q)n+1 and D · V = Pu ∈ L1(Q), with D = (∂t, ∂x1 , . . . , ∂xn), we have

Pu = 0 a.e. in {u = 0} and Pu = Pϕ a.e. in {u = ϕ}.

Hence, by (67), up to neglectable sets, we have {u = 0} ⊂ {g ≤ 0} and {u = ϕ} ⊂
{Pϕ ≤ g}, and using also (68), we finally conclude (62). �

Theorem 4.2. Any solutions u of the variational inequality (25) (or (36)) under the con-
ditions of Theorem 3.1 satisfy the semilinear parabolic system

Pui = fi(u) + f−i (u)χ{ui=0}

−
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k
(fi1(u) + · · ·+ fik(u))+χ

i1...ik a.e. in Q, (70)

where χ
i1...ik = χ

Ii1...ik
, for k = 1, . . . , N , denotes the characteristic function of

Ii1...ik = {(x, t) ∈ Q : ui1...ik(x, t) = 1, uij (x, t) > 0 for all j = 1, . . . , k}. (71)

Proof. We notice that the regularity (58), (59), holds for wi = 1−
∑
j 6=i

uj , so wi can be

chosen as the upper obstacle of each component ui, i = 1, . . . , N , of u, to which we can
apply the conclusions of Proposition 4.1. Since {ui = 0} ⊂ {fi(u) ≤ 0} a.e., for each
i = 1, . . . , N , we have

Pui = fi(u) + f−i (u)χ{ui=0} − (Pwi − fi(u))−χ{ui=wi, ui>0} in Q, (72)

and the condition (70) will follow if we show that

(Pwi − fi(u))−χ{ui=wi, ui>0} =
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k

(
fi1(u) + · · ·+ fik(u)

)+χ
i1...ik in Q,

(73)
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Observe that {
ui = wi, ui > 0

}
=

⋃
1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

Ii1...ik ,

and these sets are a.e. disjoint. Here the union is taken also over all the subsets {i1, . . . , ik}
of {1, . . . , N} that include i and over all k = 1, . . . , N . We remark that Pwi = Pui in that
subset and

• in the sets Ii = {ui = 1}, Pwi = 0 and (Pwi − fi(u))− = fi(u)+, for i = 1, . . . , N ;

• in each set Ii1...ik , for k ≥ 2, as we shall see,

(Pui − fi(u))− =
1
k

(
fi1(u) + · · ·+ fik(u)

)+
,

and this fact concludes the proof.

Let (x0, t0) ∈ Ii1...ik . Recall that {i1, . . . , ik} is the set of indexes for which we have
0 < uij (x0, t0) (notice that i ∈ {i1, . . . , ik}). Denoting α = min{uij (x0, t0) : j = 1, . . . , k},
the set O =

⋂k
j=1{uij > α/2} is measurable and contains (x0, t0). Given any measurable

set ω ⊂ O, choose, in (36), as test function v = (v1, . . . , vN ) defined by

vi1 = ui1 ± δχω, vij = uij ∓ δχω for a fixed j ∈ {2, . . . , k}, vl = ul ∀ l 6= i1, ij ,

observing that
N∑

j=1

vj =
N∑

j=1

uj ± δχω ∓ δχω =
N∑

j=1

uj ≤ 1

and
vj ≥ 0, j = 1, . . . , N, as long as 0 < δ ≤ α/2.

Returning to the inequality (36) and setting Sj = Puj − fj(u), we get

±δ

∫
Q

Si1
χ

ω ∓ δ

∫
Q

Sij
χ

ω ≥ 0.

Since ω ⊃ {(x0, t0)} was taken arbitrarily in O and (x0, t0) is a generic point of Ii1...ik ,
we conclude that

Si1 = Sij , a.e. in Ii1...ik, for any j ∈ {2, . . . , k}. (74)

Recalling that
N∑

j=1

Puj = Pui1...ik = 0, in the set Ii1...ik we get, using (74), that

kSi1 = Si1 + · · ·+Sik =
(
Pui1−fi1

)
+ · · ·+

(
Puik−fik

)
= Pu1+ · · ·+PuN−(fi1 + · · ·+fik),
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where, for simplicity, we set fj = fj(u), and so

Si = Si1 = −1
k

(
fi1 + · · ·+ fik

)
.

But in Ii1...ik we have Si ≤ 0 (recall that ui = wi and (68)) and so

(Pui − fi(u))− = −(Pui − fi(u)) = −Si =
1
k

(
fi1 + · · ·+ fik

)
=

1
k

(
fi1 + · · ·+ fik

)+
.

�

Corollary 4.3. Let u be the solution of the variational inequality (25) (or (36)) under the
conditions of Theorem 3.1.

Then, denoting by |A| the (n + 1)-Lebesgue measure of A ⊂ Q, we have∣∣∣{ k∑
j=1

fij (u) < 0
}
∩

{ k∑
j=1

uij = 1, uij > 0, j = 1, . . . , k
}∣∣∣ = 0 (75)

for each partial coincidence subset Ii1...ik , as well as∣∣{fi(u) > 0} ∩ {ui = 0}
∣∣ = 0, i = 1, . . . , N. (76)

Proof. Being Ii1...ik defined in (71), using the equation (70), we obtain, for each ij with
j = 1, . . . , k, denoting fij = fij (u),

Puij = fij −
1
k

(
fi1 + · · ·+ fik

)+ a.e in Ii1...ik .

Summing these k equations, we have

0 =
k∑

j=1

Puij = fi1 + · · ·+ fik −
(
fi1 + · · ·+ fik

)+ =
(
fi1 + · · ·+ fik

)− a.e in Ii1...ik .

So, in Ii1...ik =
{ ∑k

j=1 uij = 1, uij > 0, j = 1, . . . , k
}

we have
k∑

j=1

fij ≥ 0 a.e. and (75)

follows.
The proof of (76) is similar (recall (68)).

�

As a consequence of this corollary the semilinear system (70) can, in fact, be written in
the equivalent form for i = 1, . . . , N ,

Pui = fi(u)− fi(u)χ{ui=0}

−
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k
(fi1(u) + · · ·+ fik(u))χi1...ik a.e. in Q, (77)
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since {ui = 0} ⊂ {fi(u) ≤ 0} and Ii1...ik ⊂
{ k∑

j=1

fij (u) ≥ 0
}

up to a neglectable subset of

Q.
This remark combined with the continuous dependence of the variational solutions ob-

tained in Theorem 3.4 yields an interesting criteria of local stability of the characteristic
functions of the coincidence sets in the Lebesgue measure. Denote

χν
i1...ik

= χ{uν
i1...ik

=1, uν
ij

>0 ∀j=1,...,k}, 1 ≤ i1 < · · · < ik ≤ N, i ∈ {i1, . . . , ik}.

Theorem 4.4. Let the assumptions and notations of Theorem 3.4 hold. Suppose that in
some subset of positive measure ω ⊆ Q the following assumption on the limit problem holds

k∑
j=1

fij (u) 6= 0 a.e. in ω, 1 ≤ i1 < · · · < ik ≤ N, k = 1, . . . , N. (78)

Then the associated characteristic functions are such that

χ{uν
i =0} −−−−→

ν
χ{ui=0} in Lp(ω), ∀ i = 1, . . . , N, (79)

χν
i1...ik

−−−−→
ν

χ
i1...ik in Lp(ω), ∀ i1, . . . , ik, (80)

for all p, 1 < p < ∞.

Proof. We observe that each uν solves the system

Puν
i = fν

i − fν
i
χ{uν

i =0} −
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k
(fν

i1 + · · ·+ fν
ik

) χν
i1...ik

a.e. in Q (81)

where, for simplicity, we set fν
i = fν

i (uν). By the convergence uν −−−−→
ν

u, we have
Puν −−−⇀

ν
Pu in the distributional sense. Since 0 ≤ χν

i1...ik
≤ 1, there exists χ∗

i1...ik
, with

0 ≤ χ∗
i1...ik

≤ 1 in Q, such that

χν
i1...ik

−−−⇀
ν

χ∗
i1...ik

in L∞(Q) weak- ∗ .

Analogously, for some χ∗
i,0, with 0 ≤ χ∗

i,0 ≤ 1 in Q, we have

χ{uν
i =0} −−−⇀

ν
χ∗

i,0 in L∞(Q) weak- ∗ .

We are going to prove that, in fact,

χ∗
i,0 = χ{ui=0} and χ∗

i1...ik
= χ

i1...ik a.e. in ω,
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which concludes the proof, since the weak convergence to characteristic functions in Lp(ω)
is in fact strong, as it is well known.

Passing to the limit in (81), we obtain

Pui = fi − fi
χ∗

i,0 −
∑

1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k
(fi1 + · · ·+ fik) χ∗

i1...ik
a.e. in Q

where, for simplicity, we have also set fij = fij (u).
But each ui also solves the equation (77), so, by subtraction, we obtain a.e. in Q,

−fi

(
χ{ui=0} − χ∗

i,0

)
−

∑
1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k
(fi1 + · · ·+ fik)

(
χ

i1...ik − χ∗
i1...ik

)
= 0. (82)

Noticing that χ{uν
i =0}u

ν
i = 0, passing to the limit, we get χ∗

i,0ui = 0, which means that
χ∗

i,0 = 0 whenever ui > 0. To conclude that χ∗
i,0 = χ{ui=0} we only need to prove that

χ∗
i,0 = 1 if ui = 0.

Recall that the sets {ui = 0} and Ii1...ik , 1 ≤ i1 < . . . < ik ≤ N , i ∈ {i1, . . . , ik},
k = 1, . . . , N , are mutually disjoint. Hence in {ui = 0} we obtain

−fi(1− χ∗
i,0) +

∑
1≤ i1<. . .< ik≤ N

i ∈ {i1, . . . , ik}

1
k
(fi1 + · · ·+ fik)χ∗i1...ik

= 0

and since the left hand side is nonnegative, by the assumption (78) we conclude that

χ∗
i,0 = 1 and χ∗

i1...ik
= 0 in {ui = 0} ∩ ω.

Since χν
i1...ik

(1 − uν
i1...ik

) = 0 a.e. in Q, taking the limit in ν, we also obtain
χ∗

i1...ik
(1 − ui1...ik) = 0 a.e in Q, i.e. χ∗

i1...ik
= 0 if ui1...ik < 1. It remains to evaluate

χ∗
i1...ik

when ui1...ik = 1 and uij > 0, for all j = 1, . . . , k or when uij = 0, for some
j = 1, . . . , k.

In this later case, where uij = 0, for some j = 1, . . . , k, we have χ
i1...ik = 0 and, since

we already know that χ{uij
=0} = χ∗

ij ,0, from (82) for the index ij , we get

∑
1≤ i1<. . .< ik≤ N

ij ∈ {i1, . . . , ik}

1
k
(fi1 + · · ·+ fik)χ∗i1...ik

= 0.

Then, by the assumption (78) we have χ∗
i1...ik

= 0 in
(
Q \ Ii1...ik

)
∩ ω.
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Finally, in Ii1...ik ∩ ω, again from (82), we obtain

1
k
(fi1 + · · ·+ fik)

(
1− χ∗

i1...ik

)
= 0

and the assumption (78) yields that χ∗
i1...ik

= 1, completing the proof. �
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