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Abstract: For computing square roots of a nonsingular matrix A, which
are functions of A, two well known fast and stable algorithms, which are
based on the Schur decomposition of A, were proposed by Björk and Ham-
marling [3], for square roots of general complex matrices, and by Higham
[10], for real square roots of real matrices. In this paper we further consider
(the computation of) the square roots of matrices with central symmetry.
We first investigate the structure of the square roots of these matrices and
then develop several algorithms for computing the square roots. We show
that our algorithms ensure significant savings in computational costs as
compared to the use of standard algorithms for arbitrary matrices.
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1 Introduction

Theory and algorithms for structured matrices have been a topic of research for
many years. There are many applications that generate structured matrices and
by exploiting the structure one may be able to design faster and/or more ac-
curate algorithms; furthermore, structure may also help in producing solutions
which have more precise physical meaning. Structure comes in many forms,
including Hamiltonian, Toeplitz, Vandermonde matrices and so on. Here, we
consider the problem of the square roots of matrices with a central symmetric
structure.

A matrix X is said to be a square root of A if X2 = A. The number of
square roots varies from two (for a nonsingular Jordan block) to infinity (any
involutary matrix is a square root of the identity matrix). If A is singular,
the existence of a square root depends on the Jordan structure of the zero
eigenvalues. See for example [5] and Theorem 6.4.12 in [16] . If A is real, it
may or may not have a real square root, a sufficient condition for one to exist
is that A has no real negative eigenvalues, see for instance [10] and Theorem
6.4.14 in [16].
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The computational mehthods for square roots of a nonsingular matrices can
be generally separated into two classes. The fisrt class of methods for com-
puting the square root of a matrix are iterative methods. Matrix iterations
Xj+1 = f(Xj), where f is a polynomial or a rational function, are attractive
alternatives to compute square roots for two reasons: they are readily imple-
mented in terms of standard “building blocks”, and they are potentially well
suited to parallel computation. see for example, [11, 13, 20] and reference
therein. The second is the so-called direct method for computing square roots
of a general complex matrix A is the Schur algorithm developed by Björk and
Hammarling for complex matrices [3]; Higham [10] has tailored the method for
the real case. The method first computes the Schur decomposition A = UTUH ,
where U is unitary and T is upper triangular; then finds S, upper triangular,
such that S2 = T , using a fast recursion (viz., Parlett recurrence [22, 23]); fi-
nally, computes X = USUH , which is the desired square root of A. Any square
root that is a function of A can be computed by this approach. Furthermore,
this method has been extended to compute matrix pth roots [24] and general
matrices functions [7].

As already said, our interest is focused in matrices with central symmetric
structure. Recall that a matrix A is said to be centrosymmetric if A = πAπ,
skew centrosymmetric if A = −πAπ, centrohermitian if A = πĀπ, where Ā
denotes the elementwise conjugate of the matrix A and π is the exchange matrix
with ones on the cross diagonal (bottom left to top right) and zeros elsewhere.

Symmetric (Hermitian) Toeplitz matrices form an important subclass of
centrosymmetric (centrohermitian) matrices which naturally occur in digital
signal processing and other areas, see, e.g., [1, 4, 18]. Centrosymmetric matrices
appear in their own right, for example, in the numerical solution of certain
differential equations [1], in the study of Markov processes [25] and in various
physics and engineering problems [6]. Centrohermitian matrices arise in digital
complex signal processing and image recovery, see for instance [4, 18].

This paper is organized as follows: after reviewing some basic properties of
centrosymmetric (centrohermitian) matrices in next section, we investigate the
structures of the square roots of centrosymmetric (centrohermitian) matrices
in section 3 and develop some algorithms for computing those square roots in
section 4. We end up with some conclusions and future work.

2 Preliminaries

Throughout this paper we denote the set of all n×n complex matrices by Cn×n

and the set of all n× n real matrices by Rn×n.
We first review the structure and reducibility of centrosymmetric (centro-

hermitian) matrices. All the formulas become slightly more complicated when
n is odd; for simplicity, we restrict our attention to the case of even n = 2m.

Using an appropriate partition, the central symmetric character of a n× n
centrosymmetric matrix can be curved as follows:

A =
[

B πmCπm

C πmBπm

]
, (2.1)
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and the central symmetric character of a n × n skew centrosymmetric matrix
can be always written as follows:

A =
[

B −πmCπm

C −πmBπm

]
, (2.2)

where B and C are square matrices of order m = n/2.
Defining

P =
√

2
2

[
Im Im

πm −πm

]
, (2.3)

we have the following well known results, see, e.g., [1, 8, 19].

Lemma 1 (i). Let P be defined as in (2.3). Then, A is a n×n centrosymmetric
matrix if and only if

P T AP =
[

M
N

]
(2.4)

holds, where N = B − πmC and M = B + πmC.
(ii). Let P be defined as in (2.3). Then, A is a n×n skew centrosymmetric

matrix if and only if

P T AP =
[

E
F

]
(2.5)

holds, where E = B + πmC and F = B − πmC.

Similarly, any n×n centrohermitian matrix always takes the following form:

A =
[

B πmCπm

C πmBπm

]
. (2.6)

Defining

Q =
√

2
2

[
Im iIm

πm −iπm

]
, (2.7)

we have the following result, see for example [8, 14, 17].

Lemma 2 Let Q be defined as in (2.7). Then, A is a n × n centrohermitian
matrix if and only if

QHAQ = RA (2.8)

is a n× n real matrix, where

RA =
[

Re(B + πmC) −Im(B + πmC)
Im(B − πmC) Re(B − πmC)

]
,

with Re(T ) and Im(T ) denoting the real and imaginary parts of the matrix T ,
respectively.

We will say that the matrix on the right side of (2.4), (2.5) and (2.8) is the
reduced form of the matrix A in (2.1), (2.2) and (2.6), respectively.

We end up this section with a well known result regarding the square roots
of a nonsingular matrix [5] and a definition of matrix function [10, 24].
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Lemma 3 [5, Lemma 1] Any nonsingular matrix always has a square root.

Definition 1 For a given function f and a matrix A ∈ Cn×n, f(A) can be
defined as g(A), where g is a polynomial of minimal degree that interpolates f
on the spectrum of A, i.e.,

g(j)(λk) = f (j)(λk), 0 ≤ j ≤ nk − 1, 1 ≤ k ≤ s

where A has s distinct eigenvalues λk and nk is the largest Jordan block in
which λk appears.

In this paper we deal with the functions f(λ) = λ
1
2 and f(λ) = λ

1
4 which

are clearly defined on the spectrum of a nonsingular matrix A.

3 Square roots

In this section we present some new results which characterize the square roots
of nonsingular matrices with central symmetry.

3.1 Square roots of centrosymmetric matrices

It is known that the product of two centrosymmetric matrices is centrosymmet-
ric and the product of two skew centrosymmetric matrices is also centrosym-
metric. In fact, if πBπ = B, or πBπ = −B, then A = B2 implies πAπ = A.
One may ask whether a centrosymmetric matrix has square roots which are
also centrosymmetric or skew centrosymmetric. We have some answers to this
question.

Theorem 1 Let A ∈ Cn×n be centrosymmetric. Then, A has a centrosym-
metric square root if and only if each of M and N in (2.4) admits a square
root.

Proof. From the hypothesis, we have that A is centrosymmetric. Then, by
Lemma 1, A has the reduced form (2.4).

=⇒. Assume that A has a centrosymmetric square root, denoted by X̃.
Again, using Lemma 1, we have

P T X̃P = X =
[

X1

X2

]
,

where P is defined as in (2.3).
Note that X̃2 = A implies that X2

1 = M and X2
2 = N hold simultaneously,

i.e., X1 and X2 are square roots of M and N , respectively.
⇐=. If M and N in (2.4) have square roots X1 and X2, respectively, then

X =
[

X1

X2

]
is a square root of the matrix

[
M

N

]
. By Lemma 1,

X̃ = PXP T is a centrosymmetric square root of A. This means that A always
has a centrosymmetric square root X̃. �
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Corollary 1 A nonsingular centrosymmetric matrix A ∈ Cn×n always has a
centrosymmetric square root.

Proof. Because A is centrosymmetric and nonsingular, the matrices M and
N in the reduced form (2.4) of A are nonsingular. Then, by Lemma 3, each of
M and N has a square root. Therefore, by Theorem 1, we know that A always
has a centrosymmetric square root. �

It was shown in [20] that the principal square root¶ of a centrosymmetric
matrix having no eigenvalues on the nonpositive real axis is centrosymmetric.
We now present another result.

Theorem 2 If A ∈ Cn×n is a nonsingular centrosymmetric matrix, then all
square roots of A which are functions of A are centrosymmetric.

Proof. Assume that X̃ is a square root of A which is a function of A, that is,
X̃2 = A and X̃ = f(A). Using the fact that the sum and product of two cen-
trosymmetric matrices are also centrosymmetric, and f(A) = g(A) with g(A) a
polynomial in A, we then have that X̃ = g(A) is obviously centrosymmetric. �

Remark 1 Assume that X̃ is a square root of A which is a function of A.
Then, by Lemma 1 and Theorem 2, we have that

P T X̃P = X =
[

X1

X2

]
and P T AP =

[
M

N

]
,

which means that X1 = f(M) and X2 = f(N). Thus, the problem of computing
square roots of a centrosymmetric matrix A, which are functions of A, can be
reduced to that of computing square roots of two half size matrices M and N ,
which are functions of M and N , respectively. This is the basis of Algorithm 1
that will be given in section 4.

We have shown that a nonsingular centrosymmetric matrix always has a
centrosymmetric square root. However, it is not true that every centrosymmet-
ric matrix has a skew centrosymmetric square root.

Lemma 4 A nonsingular centrosymmetric matrix with odd order has no skew
centrosymmetric square roots.

Proof. By lemma 3, we know that A has a square root, which we denote by
Y . Assume that Y is skew centrosymmetric, viz. πY π = −Y and Y 2 = A.
We then have that det(A) = (det Y )2 and det(Y ) = (−1)n det(Y ). Since n is
odd, we get det(Y ) = 0 and det(A) = 0. This leads to a contradiction with the
assumption of nonsingularity of A. Therefore A has no skew centrosymmetric
square roots. �

¶Any matrix A having no nonpositive real eigenvalues has a unique square root for which
every eigenvalue has positive real part, denoted by A1/2 and called the principal square root;

That is, (A
1
2 )2 = A and Re(λk) > 0 for all k, where λk(A) denotes an eigenvalue of A.
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Theorem 3 Let A ∈ Cn×n be a nonsingular centrosymmetric matrix. Then,
A has a skew centrosymmetric square root if and only if M and N in (2.4) are
similar. Furthermore, if A has a skew centrosymmetric square root, then A has
infinitely many skew centrosymmetric square roots.

Proof. =⇒. Since A is a nonsingular centrosymmetric matrix, by Lemma 1, we
have that M and N in (2.4) are nonsingular. If A has a skew centrosymmetric

square root Ỹ , then by Lemma 1, we have P T Ỹ P =
[

Y1

Y2

]
. Also, by

Lemma 4, we have that n must be even. This means that M , N , Y1 and Y2 are
of the same order n/2.

Note that Ỹ 2 = A means that Y1Y2 = M and Y2Y1 = N . Therefore, Y1

and Y2 are both nonsingular (due to the non-singularity of M and N) and
N = Y −1

1 MY1 = Y2MY −1
2 .

⇐=. If M and N are similar, then there exists a nonsingular matrix S such
that S−1MS = N , i.e., MS = SN . Setting Y1 = S and Y2 = S−1M gives

Y2Y1 = N and Y1Y2 = M . In this situation, Y =
[

Y1

Y2

]
is a square root of

diag(M,N). Thus, by Lemma 1 again, Ỹ = PY P T is a skew centrosymmetric
square root of A.

Finally, to prove that if A has a skew centrosymmetric square root, then
A has infinitely many skew centrosymmetric square roots, it suffices to take
S = kY1, with k an arbitrary nonzero constant, and use the preceding reasoning.
�

In general, a nonsingular centrosymmetric matrix A, besides the centrosym-
metric square roots, possibly has other kinds of square roots (for example skew
centrosymmetric square roots), which are not functions of A. The existence
and the families of square roots depend on the spectrums of M and N . The
following theorem gives a classification of all the square roots of a nonsingular
centrosymmetric matrix.

Theorem 4 Let A ∈ Cn×n be nonsingular and centrosymmetric with reduced
form given by (2.4). Assume that M has s distinct eigenvalues and N has t
distinct eigenvalues. Let M = ZMJMZ−1

M with JM = diag(J1, J2, . . . , Jl) and
N = ZNJNZ−1

N with JN = diag(J̌1, J̌2, . . . , J̌r) be the Jordan decompositions of
M and N respectively.

i) If σ(M)
⋂

σ(N) = φ, where σ(W ) denotes the spectrum of matrix W ,
then A has 2s+t centrosymmetric square roots which are functions of A and
take the form

X̂ = PZL̂Z−1P T (3.1)

with
Z = diag(ZM , ZN ), L̂ = diag(L̂M , L̂N ) (3.2)

where L̂M denotes a square root of JM , which is a function of JM and L̂N

denotes a square root of JN , which is a function of JN . Furthemore, if s + t <
l+r then A has centrosymmetric square roots which are not functions of A and
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they form 2l+r − 2s+t parameterized families given by

X̃ = PZ diag(UM , UN )L̂ diag(U−1
M , U−1

N )Z−1P T (3.3)

where UM and UN are two arbitrary nonsingular matrices which commute with
JM and JN , respectively.

ii) If M and N have α common eigenvalues, then A has 2s+t−α centrosym-
metric square roots which are functions of A, taking the form given in (3.1);
and A has centrosymmetric square roots which are not functions of A; they form
2l+r− 2s+t parameterized families taking the form given in (3.3). Furthermore,
A has square roots which are not centrosymmetric and are not functions of A,
they form 2s+t − 2s+t−α parameterized families taking the following form:

X̃(U) = PZUL̂U−1Z−1P T , (3.4)

where U is an arbitrary nonsingular matrix which commutes with J = diag(JM ,
JN ) but does not have the form such as diag(UM , UN ).

Proof. i) We just need to apply Theorem 2 and Theorem 4 in [10] to diag(M,N)
which, according to the hypothesis, has s+t distinct eigenvalues and l+r Jordan
blocks. The centrosymmetry of the square roots in (3.1), which are functions
of A, is guaranteed by Theorem 2. For the square roots of the form (3.3),
which are not functions of A, we note that L̂ is a 2 × 2 block diagonal matrix
and ZL̂Z−1 and Z diag(UM , UN ) L̂ diag(UM , UN )−1 Z−1 are also 2× 2 block
diagonal matrices.

By Lemma 1, we conclude that these matrices are also centrosymmetric.
ii) If M and N have α common eigenvalues, then A has s + t − α distinct

eigenvalues. By Theorem 4 in [10] again, we then have that A has 2s+t−α square
roots which are functions of A and take the form (3.1). By Theorem 2, those
square roots are centrosymmetric. Furthermore, A has square roots which are
not functions of A, they form 2l+r − 2s+t−α parameterized families, which can
be expressed as the following form

X̌(V ) = PZV L̂V −1Z−1P T , (3.5)

where V is an arbitrary nonsingular matrix which commutes with J .
Those square roots consist of two groups: those that are centrosymmetric

and those that are not centrosymmetric. By Theorem 1 and Lemma 1 as well
as the first part, those square roots which are centrosymmetric take the form
as in (3.3), they form 2l+r − 2s+t parameterized families.

The remaining square roots are not centrosymmetric or functions of A, they
form 2s+t − 2s+t−α parameterized families and can be written as the following
form:

X̃(U) = PZUL̂U−1Z−1P T ,

where U is not able to be written as the form diag(UM , UN ). Thus we complete
the proof. �
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3.2 Square roots of skew centrosymmetric matrices

If A is a n×n nonsingular skew centrosymmetric matrix, then Lemma 4 implies
that n is even. Let (λ, x) be an eigenpair of A. From πAπ = −A we get
Aπx = −λπx which means that the eigenvalues of A must appear in ± pairs,
and A has a Jordan decomposition of the form

A = S diag(J, Ĵ)S−1 (3.6)

with
J = diag(J1, J2, . . . , Jl), Ĵ = diag(Ĵ1, Ĵ2, . . . , Ĵl)

where
Jj = λjI + E, Ĵj = −λjI + E, E = (δp,q−1)

are mj ×mj matrices such that
l∑

j=1
mj = n/2.

Assume that J has s distinct eigenvalues. We have the following result.

Theorem 5 Let the nonsingular skew centrosymmetric matrix A ∈ Cn×n, of
order even, have the Jordan decomposition (3.6), and let s ≤ l be the number
of distinct eigenvalues of J . Then A has 4s square roots, which are functions
of A, taking the form

X = S diag(L̂, L)S−1,

where L̂ is a square root of J and L is a square root of Ĵ .
If s < l, then A has square roots which are not functions of A, they form

4l − 4s parameterized families, which can be written as

X(U) = SU diag(L̂, L)U−1S−1,

where U is an arbitrary nonsingular matrix which commutes with diag(J, Ĵ).

Proof. The proof consists in using again Theorem 4 in [10] and the fact that
A has 2s distinct eigenvalues and 2l Jordan blocks. �

From the computational point of view, we now consider the structure of the
square roots of a nonsingular skew centrosymmetric matrix A, which are func-
tions of A. Let A be partitioned as in (2.2). By Lemma 1, we have that P T AP
takes the form (2.5). Exploiting this form, we have the following theorem:

Theorem 6 Let A ∈ Cn×n be a nonsingular skew centrosymmetric matrix of
even order n. Assume that two matrices Z̃, Z ∈ Cn×n, with Z̃ = PZP T , are
partitioned as follows

Z =
[

Z1 Z2

Z3 Z4

]
, Z̃ =

[
Z̃1 Z̃2

Z̃3 Z̃4

]
(3.7)

which are conformable with the partition of A in (2.2). Then Z̃ is a square root
of A if and only if

(A) Z2Z3 is a square root of −1
4EF
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(B) Z1 is a fourth root of −1
4EF ;

(C) Z4 is a fourth root of −1
4FE;

(D) Z2 is a solution of Z1Z2 + Z2Z4 = E;
(E) Z3 = E−1Z2F ;

hold simultaneously, where E, F and P are defined as in (2.5) and (2.3), re-
spectively.

Proof. If A is nonsingular and skew centrosymmetric, then A has a square
root. Furthermore, we have that E and F in (2.5) are two nonsingular matrices
of order n

2 .
=⇒. Let Z̃ denote a square root of A, i.e., Z̃2 = A. Then P T Z̃2P =

(P T Z̃P )2 = Z2 = P T AP gives[
Z1 Z2

Z3 Z4

]2

=
[

E
F

]
(3.8)

subject to [
Z1 Z2

Z3 Z4

] [
E

F

]
=

[
E

F

] [
Z1 Z2

Z3 Z4

]
‖

holds.
A straightforward expansion of (3.8) gives

Z2
1 + Z2Z3 = 0

Z1Z2 + Z2Z4 = E
Z3Z1 + Z4Z3 = F
Z2

4 + Z3Z2 = 0

(subject to)


EZ3 = Z2F
EZ4 = Z1E
FZ1 = Z4F
FZ2 = Z3E

(3.9)

Assume that Z2 is nonsingular. It follows that Z1, Z3 and Z4 are also
nonsingular.∗∗ Therefore Z2Z3 being nonsingular means that −Z2Z3 has a
square root, say X. Also, because −Z3Z2 is similar to −Z2Z3, Y = Z3XZ−1

3 is
a square root of −Z3Z2.

Due to Z1Z2 + Z2Z4 = E, we have XZ2Z3 + Z2Z3X = EZ3, which im-
plies that X3 = −1

2EZ3. From (3.9), we know that EZ3 = Z2F and we
can write X6 = (−Z2Z3)3 = 1

4Z2FEZ3, which gives −(Z2Z3)2Z2 = 1
4Z2FE.

Since (Z2Z3)2Z2 = Z2(Z3Z2)2, we get that (Z3Z2)2 = −1
4FE. Moreover, us-

ing EZ3 = Z2F and FZ2 = Z3E, we obtain that (Z2Z3)2 = Z2(Z3Z2)2Z−1
2 =

−1
4Z2FEZ−1

2 = −1
4EF . Also, since X2 = −Z2Z3 and Y 2 = −Z3Z2, we have

that X is a fourth root of −1
4EF , and Y is a fourth root of −1

4FE.
By now, we have proved that if Z̃ is a square root of A and if Z2 is non-

singular, then statements (A), (B), (C), (D) and (E) hold. The remaining is to
show that Z2 must be nonsingular. Note that

Z1Z2 + Z2Z4 = E

‖If X is a square root of A, then AX = XA.
∗∗In general, if we assume that one of the matrices {Zj}4

j=1 in (3.9) is nonsingular, then it
follows that the other 3 matrices are also nonsingular.
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can be written as [
Z1 Z2

] [
Z2

Z4

]
= E

Because N (A) = N (A2)†† and N (AB) ⊇ N (B) for any matrices A and B, of
order n (see, for example, [21, Ex. 4.5.18, (a)], and [21, Ex. 4.2.12, (b)]), from
(3.9) we have that

N (Z4) = N (Z2
4 ) = N (Z3Z2) ⊇ N (Z2).

If Z2 is singular, then N (Z2) is nontrivial. Let x 6= 0 ∈ N (Z2) ⊆ N (Z4). We
have that

Ex =
[

Z1 Z2

] [
Z2

Z4

]
x = 0,

which implies that N (E) is nontrivial. This yields a contradiction with the
nonsingularity of E. So Z2 must be nonsingular.

⇐=. Assume that (A), (B), (C), (D) and (E) hold. Since A is nonsingular, E
and F are also nonsingular. Then, from (E), i.e., Z3 = E−1Z2F , we have EZ3 =
Z2F . Combined with (D), i.e., Z1Z2 + Z2Z4 = E, we have Z3Z1 + Z4Z3 = F .
Denoting by X a fourth root of −1

4EF which corresponds to the square root of
−Z2Z3 and by Y a fourth root of −1

4FE which corresponds to the square root

of −Z3Z2 and forming Z =
[

X Z2

Z3 Y

]
show that Z2 =

[
E

F

]
. That is to

say that Z̃ = PZP T is a square root of A. �

We give a remark to end this subsection.

Remark 2 1. Unlike nonsingular centrosymmetric matrices, which always
have centrosymmetric square roots, a nonsingular skew centrosymmetric ma-
trix A has no specially structured square roots, see Theorem 6.

2. From the computational point of view, Theorem 6 provides an efficient
approach to computing the square roots of a nonsingular skew centrosymmetric
matrix A, see Algorithm 2. In this algorithm, we need to compute a fourth
root of −1

4EF , which is a function of −1
4EF (for more details concerning pth

roots, see [24]), and solve a Sylvester equation XZ2 + Z2Y = E which has a
unique solution for a given X having no repeated eigenvalues, because X and
Y are similar. By Theorem 2.2 in [24] we know that a nonsingular matrix
B ∈ Cn×n with s distinct eigenvalues has precisely 4s fourth roots which are
function of B. Furthermore, since A is skew centrosymmetric, A has n/2 dis-
tinct ± eigenvalues, which implies that EF has n/2 distinct eigenvalues. So
1
4EF has 4

n
2 = 2n fourth roots which are functions of 1

4EF . In this situation,
equation XZ2 + Z2Y = E has precisely 2n solutions. This means we can form
2n square roots of A which are functions of A, this coincides with the conclusion
of Theorem 5.

††N (A) denotes the nullspace of the matrix A.
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3.3 Square roots of centrohermitian matrices

In this subsection we look at the square roots of a nonsingular centrohermitian
matrix A. Due to πAπ = Ā we have that B = A2 is also centrohermitian.
However, we find that not every centrohermitian matrix has a centrohermitian
square root.

Theorem 7 A nonsingular centrohermitian matrix A ∈ Cn×n has a centroher-
mitian square root if and only if A’s reduced form RA ∈ Rn×n in (2.8) has a
real square root.

Proof. =⇒. Assume that A is a centrohermitian matrix and has a centro-
hermitian square root Y , i.e., Y 2 = A. Then, by Lemma 2, we have that
RY = QHY Q and RA = QHAQ are real and R2

Y = RA, where Q is defined in
(2.7). This means that RA has a real square root.

⇐=. If RA has a real square root C, i.e., RA = C2. By Lemma 2, we then
have that A = QRAQH and Y = QCQH are centrohermitian. Furthermore, we
have that A = Y 2, which means that Y is a centrohermitian square root. �

It is showed in Theorem 2 that all the square roots of a nonsingular cen-
trosymmetric matrix A which are functions of A are centrosymmetric. But for
nonsingular centrohermitian matrices, this conclusion does not hold anymore
in general. However, if a square root of a nonsingular centrohermitian matrix
A is a real coefficient polynomial in A, then this conclusion does hold.

Corollary 2 If A ∈ Cn×n is nonsingular and centrohermitian, then all square
roots of A which are polynomials in A with real coefficients (if exist) are cen-
trohermitian.

Proof. Assume that Y is a square root of A which is a polynomial in A with
real coefficients; that is, Y 2 = A and Y = g(A), where all coefficients of g(A) are
real. Using the fact that the sum and product of two centrihermitian matrices
are also centrohermitian, we then have that Y = g(A) is centrohermitian. �

Clearly, whether A has a centrohermitian square root or not is equivalent
to whether RA has a real square root or not.

Corollary 3 Let A ∈ Cn×n be nonsingular and centrohermitian. A has a
centrohermitian square root if and only if each elementary divisor of A corre-
sponding to a real negative eigenvalue occurs an even number of times.

Proof. The proof is a straightforward extension of Theorem 5 in [10] by using
the fact |λI −A| = |λI −RA|, and is omitted. �

At last, we give a classification of the square roots of a nonsingular centro-
hermitian matrix A. Assume that A is a nonsingular centrohermitian matrix, λ
is an eigenvalue of A and x is a eigenvector corresponding to λ, viz., Ax = λx.
Because πAπ = Ā, we have that Aπx = λ̄πx, which means the complex eigen-
values of A must appear in conjugate pairs, and A has a Jordan decomposition
of the form

A = S diag(JR, JC , J̄C)S−1, (3.10)
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with
JR = diag(J1, J2, . . . , Jl), JC = diag(Ĵ1, Ĵ2, . . . , Ĵr)

where Jk is the real Jordan block corresponding to real eigenvalues λk for k =
1, . . . , l; Ĵk is the Jordan block corresponding to complex eigenvalues λl+k,
k = 1, . . . , r.

Theorem 8 Let the nonsingular centrohermitian matrix A ∈ Cn×n have the
Jordan decomposition (3.10). Assume that s ≤ l be the number of distinct
real eigenvalues of JR, and t ≤ r be the number of distinct complex conjugate
eigenvalue pairs.

If s ≤ l or t ≤ r, then A has 2s+2t square roots which are functions of A.
If s + t < l + r, then A has square roots which are not functions of A; they

form 2l+2r − 2s+2t parameterized families.
Furthermore, if A has a real negative eigenvalue, then A has no centroher-

mitian square roots which are functions of A;
If A has no real negative eigenvalues, then A has 2s+t square roots which

are polynomial in A with real coefficient.

Proof. The first part is a straightforward application of Theorem 4 in [10] to
centrohermitian, and the last part can be easily derived from Theorem 7 in [10]
and Corollary 2. �

4 Comparison of algorithms

In this section we will propose algorithms for computing the square roots of ma-
trices A with central symmetry, which are functions of A. In order to compare
the computational costs of our algorithms with the standard Schur algorithm for
computing a square root of a general nonsingular complex matrix, we assume
that the QR Algorithm ([9, Algorithm 7.5.2]) is used. Thus, the computational
costs of the Schur algorithm for computing a square root of a complex ma-
trix A are: about 25n3 complex flops (see [9, 24]) for computing Schur form
T = UHAU where T is upper triangular and has distinct eigenvalues; about
3
2n3 complex flops (see [9]) for computing the upper triangular square root
S = f(T ), where f = λ

1
2 is defined on λ(T ); about 3n3 complex flops (see [24])

for computing X = USUH . Therefore the total cost is about 291
2n3 complex

flops.

Algorithm 1 Computes a square root of a nonsingular centrosymmetric ma-
trix A ∈ Cn×n, which is a function of A,

where A is allowed to have repeated eigenvalues of multiplicity not larger
than 2 which are required to distribute in σ(M) and σ(N) in (2.4) respectively.
Stage 1. to compute the reduced form P T AP = diag(M,N) in (2.4);
Stage 2. to compute the Schur decompositions TM = UH

MMUM and TN =
UH

N NUN , respectively, where TM and TN are two upper triangular matrices;
Stage 3. to compute the upper triangular square roots SM = f(TM ) and SN =
f(TN ), where TM has n

2 distinct eigenvalues and so does TN , and f = λ
1
2 is

defined on λ(diag(TM , TN ));
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Stage 4. to compute XM = UMSMUH
M and XN = UNSNUH

N ;
Stage 5. to compute X = P diag(XM , XN )P T .

The costs of Stage 1 and Stage 5 in Algorithm 1 are about O(n2) complex
flops and are neglected. The main costs are to implement Stages 2-4. Those
are about 73

8n3 complex flops. This means that our algorithm is about 4 times
cheaper than the standard one.

Algorithm 2 Computes a square root of a nonsingular skew centrosymmetric
matrix A ∈ Cn×n, which is a function of A, where A has distinct eigenvalues.

Stage 1. to compute the reduced form P T AP =
[

E
F

]
in (2.5);

Stage 2. compute the Schur decompositions T = UH(−1
4EF )U , where T is

upper triangular;
Stage 3. compute the upper triangular fourth roots S = f(T ) (for more details,
see [24]), where T has n

2 distinct eigenvalues and f = λ
1
4 is defined on λ(T );

Stage 4. solve the Sylvester equation SẐ2 + Ẑ2S = I;
Stage 5. compute Z̃2 = UHẐ2U ;
Stage 6. compute Z2 = Z̃2E and Z3 = FZ̃2;
Stage 7. compute Z4 = E−1SE;
Stage 8. form Z according to (3.7);
Stage 9. compute X = QZQH .

Similarly to Algorithm 1, the dominant computational cost comes from
Stages 2-7. In Stage 2, we need to compute the product −1

4EF , it takes about
1
4n3 complex flops by a conventional algorithm for computing matrix-matrix
multiplication. The computation of the Schur decomposition of −1

4EF requires
about 25

8 n3 complex flops. In Stage 3, to compute the upper triangular fourth
roots S = f(T ) needs about 3

16n3 complex flops. The cost of Stage 4 amounts
to 1

4n3 complex flops, see Bartels-Stewart Algorithm in [2, 9]. In Stage 5 and
6, we need to compute Z̃2, Z2 and Z3. Again, by conventional algorithms for
computing matrix-matrix multiplication, it takes about n3 complex flops to
calculate those three matrices. Stage 7 involves a matrix-matrix multiplication
and a solution of a linear system of equations with multiple right hand sides.
So to do this stage needs about 7

12n3 complex flops. Thus the whole sum is
about 519

48n3 flops, which means this structured algorithm is approximately 5.5
times cheaper than the standard one.

Algorithm 3 Computes a square root of a centrohermitian matrix A, which is
a function of A ∈ Cn×n, where A has distinct eigenvalues.
Stage 1. to compute the reduced form RA = QHAQ in (2.8).
Stage 2. to compute the real Schur decomposition T = V T RAV , where T is a
upper quasi-triangular matrix.
Stage 3. to compute S = f(T ) (see [10] for more details), where T is upper
quasi-triangular with distinct eigenvalues and f = λ

1
2 is defined on λ(T ).
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Stage 4. to compute S̃ = V SV T .
Stage 5. to compute X = QS̃QH .

Again, the dominant cost in Algorithm 3 is to operate the Stage 2-4, it re-
quires about 59

2 n3 real flops. Note the fact that a complex addition is equivalent
to 2 real additions and a complex multiplication is equivalent to 4 real multipli-
cations and plus 2 real additions. So this structured algorithm is approximately
8 times cheaper than the standard one.

5 Conclusions and future work

We have exploited the reduced forms of centrosymmetric, skew-centrosymmetric
and centrohermitian to study the structure of square roots of such matrices
and also to design algorithms for computing those square roots. In the case
of centrosymmetric matrices, the corresponding reduced forms are direct sums
of matrices of half the size of the initial matrix; since the computation of a
square root of a matrix of order n is O(n3) process, computing squares roots
of two matrices of order n/2 involves about 4 times less arithmetic. In the case
of skew-centrosymmetric matrices, the corresponding algorithm based on the
reduce form involves the computation of the fourth root, the Sylvester equation
and the solution of a linear equation with multiple right hands, which are of
half size of the initial matrix. The new structure algorithm is approximately
5.5 times cheaper than the standard one. In the case of centrohermitian ma-
trices, the corresponding reduce forms are real matrices of the same size of the
initial matrix, structured algorithm is approximately 8 times cheaper than the
standard one.

We claim that Algorithm 1 and Algorithm 3 are stable under proper condi-
tions, based upon a simple argument similar to the ones in [3] and [10]. The sta-
bility of Algorithm 2 is more complicated because the fourth root, the Sylvester
equation and the solution of a linear equation with multiple right hands are in-
volved. We are currently exploring the stability and the accuracy of Algorithm
2.
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