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Abstract.
The integral formulation of the transfer problem that represents the restriction of a strongly coupled system of nonlinear

equations dealing with radiative transfer in stellar atmospheres is our test problem. Computational approaches in open source
packages that consider parallel implementations, to solve the spectral problem is considered.
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INTRODUCTION. THE INTEGRAL PROBLEM

The emission of photons in stellar atmospheres can be modeled by a strongly coupled system of nonlinear equations.
Considering that temperature and pressure are given, we have a restriction of the system that represents a radiative
transfer problem

Tϕ = zϕ + f , (1)

defined on a Banach spaceX = L1([0,τ∗]), expressed by the following integral equation

(Tx)(τ) =
∫ τ∗

0
g(|τ− τ ′|)x(τ ′)dτ ′. 0≤ τ ≤ τ∗. (2)

For the astrophysics problem, the variableτ andτ∗ represents, respectively, the optical depth and the optical thickness
of a stellar atmosphere,z is on the resolvent set of the integral operatorT : X→X, andw∈]0,1[ is the albedo, that will
is assumed to be constant. The free termf , is taken to bef (τ) =−1 if 0≤ τ ≤ τ∗/2, and f (τ) = 0 if τ∗/2≤ τ ≤ τ∗.

The kernelg is defined asg(τ) =
w
2

E1(τ). whereE1 =
∫ +∞

1

exp(−τµ)
µ

dµ, τ > 0, is the first exponential-integral

function of the sequence defined by

Eν(τ) =
∫ +∞

1

exp(−τµν)
µ

dµ , τ ≥ 0,ν > 1, (3)

which has a logarithmic behavior in the neighborhood ofτ = 0.
Suppose we are interested in the computation of a cluster of eigenvalues and the associated invariant subspace of

dimensionµ for the operatorT.

PROJECTION PHASE. ITERATIVE REFINEMENT

The numerical solution used to solve this problem is usually based on the projection of the integral operador into a
finite dimensional subspace. So, the operatorT is thus approximated byTn, its projection onto the finite dimensional
subspaceXn, spanned byn linearly independent function inX (and we have(Tn−zI)ϕn = f ). In the subspaceXn will
be consider the basisen = [en,1 . . .en,n], of piecewise constant functions on each subinterval of[0,τ∗], determined by a
grid of n+1 points0 = τn,0 < τn,1 < · · ·< τn,1 = τ∗.



Let’s denote byT andTn, respectively, the operators that apply the operatorsT andTn to each element of an ordered

family of µ elements ofX. We must note thatTnx =
n

∑
j=1

< x, ln, j > en, j = en < x, ln > with ln, j = T∗e∗n, j . We want to

solve:

TΦ = ΦΘ (4)

whereXµ is the product space havingµ factors equal toX, Φ = [Φ1, . . . ,Φµ ] ∈ Xµ is normalized by< Φ,Ψn >= Iµ ,
with Iµ the identity matrix of orderµ ,Ψn ∈ (X∗)µ is given (wereX∗ is the Hilbert-adjoint space forX), and

ΦΘ =
[ µ

∑
j=1

Θ( j,1)Φ( j), . . . ,
µ

∑
j=1

Θ( j,µ)Φ( j)
]

(5)

for Φ =
[
Φ(1), . . . ,Φ(µ)

]
andΘ a complex matrix of orderµ.

The approximate problem is
TnΦn = ΦnΘn. (6)

whereΦn containsµ elements ofX which form a basis of the invariant subspace ofTn, associated to the spectrum of
Θn, which are considered as approximation of those ofΘ, andΨn is chosen as a basis of the invariant subspace ofT∗n
corresponding to the spectrum ofΘ∗

n (see [3] and [4] for details). We must note that (6) can be solved by means of the
n-dimensional matrix problem:

Anun = unΘn. (7)

For n large enough, there is a set ofn spectral values ofTn (with global algebraic multiplicityµ), approximating
the set of eigenvalues ofΘ. So, consideringn fixed, to approximate the cluster of eigenvalues ofΘ that we want, we
can apply for a refinement method to the invariant subspace basis of operatorTn corresponding to the eigenvalues of
Θn. The initial approximationϕ(0) will be refined byΦn andΘ(k) will denote the refinedk−iterative matrix, whose
eigenvalues approximate those ofΘ.

A finer grid ofm+1 points,mÀ n, 0= τm,0 < τm,1 < · · ·< τm,m = τ∗ is set to obtain a projection operatorTm which
is only used to evaluate the operatorT in the refinement scheme (and not to solve the corresponding spectral problem
of dimensionm).

The iterative refinement formulae is, obtained consideringF : Xµ →Xµ and solvingF(x) = Tx−x< Tx,Ψn > with
an inexact Newton method [3]. The following algorithm, allows the computation of the new refined iterativeϕ(k+1)

from ϕ(k)
n :

ϕ(0) = Φn
for k = 0,1,2, . . .

Θ(k) =< Tϕ(k),Ψn >

ξ (k) = (Tϕ(k))(Θ(k)−1
)

ϕ(k+1) = ξ (k)−Σn(F(ξ (k)))

MATRIX COMPUTATION

ConsideringTn, the operator approximation ofT, corresponding to the its projection ontoXn, Tm, the operator
approximation ofT, corresponding to the its projection ontoXm, mÀ n (with the basisem = [em,1 . . .em,m] in Xm), An
the matrix (n×n) that represents the operatorTn restricted toXm, we denote byAm the matrix (m×m) that represents
the operatorTn restricted toXm. We will also denote byC the matrix (n×m) representing the restriction ofTn to Xm
and byD the matrix (m×n) representing the restriction ofTn to Xn.

Under the assumption that the coarse grid is a subset of the fine grid, we can calculateAm, a band and sparse matrix,
using the exponential-integrals defined by (3), and the coeficientes matricesC andD satisfyingC= RAm andD = AmE,
with RE= In, and:

R( j,k) =
{

hm,k/hn, j if q× ( j−1)+1≤ q× j
0 onterwise



and

E(k, j) =
{

1 if q× ( j−1)+1≤ q× j
0 onterwise

for q = m/n andhn, j = τn, j − τn, j−1.
For the n-dimensional matrix problem (7), we can chooseΦn = enun from the ordered setΦn, that forms a

basis for the invariant subspaceTn corresponding to the spectrum ofΘn. For them-dimensional matrix problem,
we have< Φn,e∗m >=< en,e∗m > un and soum = Eun. For the approximation problemT∗nΨn = ΨnΘ∗

n, that can
be solved by means of the matrix eigenvalue problemA∗vn = vnΘ∗

n, with vn(i, j) = Ψn, j(en,i) ∈ ICn×µ , we have
< x,Ψn >= Θ−1

n < en,Ψn >< x, ln > and sov∗m = Θ−1
n v∗nC. If we write x = enxn we will have< x,Ψn >= v∗mxm

(see [3] and [4] for details).
The computation ofx = ∑ny, for x,y∈ Xµ , where∑n is the block resolvent ofTn corresponding to the spectrum of

Θn, follow from the Sylvester equation:

Anxn−xnΘn = yn−unv∗nyn

wherev∗nxn = 0, and consideringx = (−y+Φn < y,Ψn > +enAnxn)Θ−1
n .

In the subspaceXµ
m, applying< .,e∗m >, we have:xm = (−ym+umv∗yn +EAnxn)Θ−1

n .

PARALLEL EXPERIMENTS

Due to the large dimensional cases of interest to the astrophysicists and due to the memory limitation of computers,
we need to use high performance computers as well as a scalable software. We are interested in investigating the trade
offs and capabilities implemented in some of the packages available in the DOE Advanced CompuTational Software
(ACTS) Collection [5], such as PETSc and SLEPc. SLEPc is based on the PETSc data structures and it employs the
MPI [9] standard for message-passing communication.

The Libraries PETSc and SLEPc

The Portable, Extensible Toolkit for Scientific Computation, PETSc [7], has successfully demonstrated that the use
of modern programming paradigms can ease the development of large-scale scientific application codes in Fortran,
C, and C++. One of the most importance feature of PETSc is it’s object-oriented design, witch provides important
advantages over traditional design, for instance, hiding details of parallel execution, and allows the user to work
at a higher level of abstraction. PETSc is built around a variety of data structures and algorithmic objects and the
application programmer works directly with these objects rather than concentrating on the underlying data structures.

The Scalable Library for Eigenvalue Problem Computations, SLEPc [8], is a software library for computing a
few eigenvalues and associated eigenvectors of a large sparse matrix or matrix pencil. It has been developed on top of
PETSc and enforces the same programming paradigm. SLEPc is not only an extension of PETSc but it is also portable,
scalable, efficient, and flexible, and very important are the features related with is extensibility and interoperability. The
new functionality provided by the SLEPc library is organized around two objects, EPS (Eigenvalue Problem Solver), is
the main object provided by SLEPc, and ST (Spectral Transformation), which encapsulates the functionality required
for acceleration techniques based on the transformation of the spectrum such as shift to origin, shift and invert, and the
Cayley transformation.

Results and discussion

As it was explained the ideia of the method is to solve the eigenvalue problem in a low dimensional discretization
space and then, make use of an iteratively refinement of the corresponding spectral elements to yield an approximation
to the spectral elements ofT. In order to go throw higher dimensions, the development and implementation of parallel
codes to run on high performance computers must be consider; the aim is to reduce the computing times, providing
that, to be efficient these codes need to minimize as much as possible the communication overheads, and as it is
always the case with parallel algorithms, a major challenge here is the so-calledscalability, that is, we would like to
gomassively paralleland still attain good efficiency.



The eigenvalue problem was implemented in a sequencial code, for dense matrix [3], [4]. A fixed value for albedo
w was considered (w = 0.75), as as well as possible range forτ∗ (from 1000 to 4000).

MatrizesAn andAm (replacen by m) were obtained using the exponential-integrals (3):

An(i, j) =





w
2hn,i

[
E3(|τn,i−1− τn, j |)−E3(|τn,i − τn, j |)+E3(|τn,i − τn, j−1|)−E3(|τn,i−1− τn, j−1|)

]
, if i 6= j

w

[
1+

1
2hn,i

(E3(hn,i −0.5))
]

, if i = j

and, this is the most time consuming phase, due to the large number of exponential calculations. Nevertheless, we
claim that the parallelization of this phase will reduce very significantly the time to solution. As we are interested in
very large dimensions and because of that, matrixAm does not fit in only one processor, it has to be computed in a
distributed way. One possible distribution for the elements of matrixAm is to consider a cyclic distribution by columns.
As matrixAm is a band matrix, scalability will be achieved. and the coeficientes matricesC, satisfyingC = RAm, can
easlybe obtain since we considerC distributed by block columns.

We must note that, considering the already done implementations of the sequencial version of the method [3], [4],
we can say that it performs very well, if the desired eigenpairs are few of the largest ones. We also have that, it is
needed an higher number of iterations to compute the largest eigenvalues than to compute the one’s with smaller
absolute value (form= 4000andn = 800, the largest one eigenpair only required 125.8 seconds, and 49 iterations,
and to the [7] fourth eigenpair are required 194.0 seconds, and 106 iterations). This may be occur more drastically,
when we have very high matrix dimensions and we want to obtain eigenvalues with very good precision. Taking in
account the dimension of the initial matrixAn, and the dimension ofAm, considering theratio q = m/n constant, as
the dimensionm grows, the cpu times required to obtain the largest eigenpairs tends to decrease. It is also true that,
for larger fixedm, as theratio q = m/n increases, the number of iterations tend to be increase, although the method
converge (form = 4000with q = m/n = 10, are required 143 iterations, and withq = m/n = 40 are required 839
iterations). This can be very important when we want to solve very high dimensional problems, although it usually
requires greater number of iterations, but not cpu time. However, if the eigenpairs to refine are good approximations,
(largen), the cost to get so good inicial approximations could have been so higher that it overcomes the smaller number
of iterations. As expected, we also have that, as more precision is required, the number of iterations grows.

We also must refer that, for those eigenvalues that are not very close, the iterative refinement may be done in parallel,
without any communication need among processors, which will certain give significant gains

Due to parallel proprieties of the algorithm, our parallel implementation will scales well but this needs to be
supported by results obtained on parallel platforms with a larger number of processors (preliminary results are being
obtained on a parallel computer with 30 processors available).
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