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Abstract

In 1987, Sullivan characterised the elements of the semigroup NP (X)
generated by the nilpotents in P (X), the semigroup (under composi-
tion) consisting of all partial transformations of a set X; and, in 1999,
Marques-Smith and Sullivan determined all the ideals of NP (X) for ar-
bitrary X. In this paper, we use that work to describe all the congruences
on NP (X).

1. Introduction

Throughout this paper, X is a non-empty set. In addition, P (X) denotes the semig-
roup under composition of all partial transformations of X (that is, all transforma-
tions α whose domain, dom α, and range, ran α, are subsets of X). Note that P (X)
contains a zero (namely, the empty mapping ∅): we say α ∈ P (X) is nilpotent with
index r if αr = ∅ and αr−1 6= ∅, and we let NP (X) denote the semigroup generated
by all nilpotents in P (X). In like manner, if I(X) denotes the symmetric inverse
semigroup on X, we write NI(X) for the semigroup generated by all nilpotents in
I(X).

In [4] the authors described the ideals of NP (X) and NI(X) as a prelude to de-
termining all congruences on these semigroups. The congruences on NI(X) were
described in [5], and here we do the same for NP (X). The case when X is finite
is considered in section 3, and we cover the cases when X has infinite regular or
singular cardinality in sections 4 and 5.

* This author gratefully acknowledges the support of Centro de Matematica, Univer-
sidade do Minho and the Portuguese Foundation for Science and Technology (FCT)
through the research program POCTI, during his visit in March–May 2006.
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2. Preliminary results

All notation and terminology will be from [1] and [4] unless specified otherwise. In
particular, if α ∈ P (X), we let r(α) denote the rank of α (that is, |Xα|) and put

D(α) = X\Xα, d(α) = |D(α)|,
G(α) = X\dom α, g(α) = |G(α)|.

The cardinal numbers d(α) and g(α) are called the defect and the gap of α and were
used by Sullivan in 1987 to characterise the elements of NP (X) for arbitrary X.

To state his result for the infinite case, first we recall that a cardinal k is regular
if |⋃{Ai : i ∈ I}| = k implies either |I| = k or some Ai has cardinal k; and k is
singular if it is not regular. And, we say α ∈ P (X) is spread over its rank if for each
cardinal p < r(α), there exists y ∈ X with |yα−1| > p. The following two results
summarise Corollary 3 and Theorem 4 in [6] and Lemmas 2.5 and 3.2 in [8].

Theorem 1. Let k be regular and α ∈ P (X). Then α ∈ NP (X) if and only if
g(α) 6= 0, d(α) = k, and g(α) = k or |yα−1| = k for some y ∈ X. Moreover, when
this occurs, NP (X) is a regular semigroup and each α ∈ NP (X) is a product of 3
or fewer nilpotents with index at most 3.

Theorem 2. Let k be singular and α ∈ P (X). Then α ∈ NP (X) if and only if
g(α) 6= 0, d(α) = k, and either g(α) ≥ r(α) or α is spread over its rank. Moreover,
when this occurs, NP (X) is a regular semigroup and each α ∈ NP (X) is a product
of 4 or fewer nilpotents with index at most 4.

For the finite case (see [6] Theorems 1 and 2), we need some additional notation.

If X is an arbitrary set with cardinal k and 1 ≤ r ≤ k, we write

Pr = {α ∈ P (X) : r(α) < r}
Dr = {α ∈ P (X) : r(α) = r}

and recall that the Pr constitute all the proper ideals of P (X) and that each Dr is a
D–class of P (X). Moreover, if k = n < ℵ0 then each α ∈ I(X)∩Dn−1 has a unique
completion α ∈ G(X), the symmetric group on X, defined by:

xα =

{
xα, if x ∈ dom α,
b, if x = a,

where X \ dom α = {a} and X \ ran α = {b} ([2] p 388). We write

En−1 = {α ∈ I(X) ∩Dn−1 : α is an even permutation}.

Theorem 3. Suppose n ≥ 3 and α ∈ P (X).

(a) If n is even then α ∈ NP (X) if and only if g(α) 6= 0.

(b) If n is odd then α ∈ NP (X) if and only if g(α) 6= 0 and α ∈ Pn−1 ∪ En−1.
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In what follows, we extend the convention introduced in [1] vol 2, p 241: namely, if
α ∈ P (X) is non-zero then we write

α =
(

Ai

xi

)
and take as understood that the subscript i belongs to some (unmentioned) index set
I, that the abbreviation {xi} denotes {xi : i ∈ I}, and that ran α = {xi}, xiα

−1 = Ai

and dom α =
⋃{Ai : i ∈ I}. In particular, if dom α = A and ran α = {b}, we write

α more simply as Ab, or ab if A = {a}. Also, we let idA denote the identity on A,
and we write Y = A ∪̇B if A ∩B = ∅.
In passing, we note that, although NI(X) and NP (X) are nilpotent-generated,
they are almost never isomorphic. This is because the first is an inverse semigroup,
but the second is not. For example, if X is infinite, then aa ∈ NI(X) (since its
gap and defect equal |X|), but aa has more than one inverse in NP (X): namely,
if a ∈ A ⊆ X, then aa = aa.Aa.aa and Aa = Aa.aa.Aa. Therefore, although
the congruences on NI(X) were determined in [5], to describe the congruences on
NP (X) is a related, but different, problem.

If α ∈ P (X), then α ◦ α−1 is an equivalence on dom α, hence it induces a partition
{Yi} of dom α. We say A is a cross-section of α ◦ α−1 (or of the corresponding
partition) if A ⊆ ⋃

Yi and |A ∩ Yi| = 1 for each i. If ρ is a congruence on a
transformation semigroup, we often write α ∼ β to mean (α, β) ∈ ρ. Also, sometimes
we write xα = ∅ to mean x /∈ dom α.

The following result is almost the same as [5] Lemma 1.

Lemma 1. Suppose |X| ≥ 3 and let ρ be a non-identity congruence on NP (X).
Then ∅ρ, the ρ–class containing ∅, is an ideal of NP (X) and it contains DP1, the
set of all constant maps in NP (X).

Proof. Suppose (α, β) ∈ ρ where α 6= β. Then xα 6= xβ for some x ∈ X and, without
loss of generality, we can assume xα = y 6= ∅. Let a, b ∈ X and λ = ax, µ = yb. Then
λ and µ have non-zero gap (since |X| ≥ 3) and it is easy to see that λ, µ ∈ NP (X).
In fact, λαµ = ab and λβµ = ∅ (even if x ∈ dom β), hence ab ∼ ∅. If Y ⊆6 X then
g(Ya) 6= 0 and, by one of the above Theorems, Ya ∈ NP (X). Now, Yb = Ya.ab,
so Yb ∼ ∅ and it follows that DP1 is contained in ∅ρ, which is clearly an ideal of
NP (X). tu

The proper ideals of NP (X) were described in [4] Theorems 6 and 15 as follows. In
[5] section 2, the authors remarked that, if X is infinite and r ≤ |X|, then the proper
ideals of NI(X) are simply those of I(X). However, this is not true for NP (X),
because each Pr contains total transformations (that is, α ∈ P (X) with dom α = X,
so g(α) = 0) and, by Theorems 1 and 2, these elements do not belong to NP (X).

Theorem 4. For any set X with (finite or infinite) cardinal k ≥ 3, the proper ideals
of NP (X) are precisely the sets

NPr = {α ∈ NP (X) : r(α) < r}

where 1 ≤ r ≤ k.
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Thus, if ρ is a non-identity and non-universal congruence on NP (X) then ∅ρ = NPr

for some r such that 1 ≤ r ≤ |X|: we call r the primary rank of ρ and denote it by
η(ρ). We also need the characterisation of Green’s D–relation on NP (X) given in
[4] Theorem 11 and p 312. We let DPr denote the D–class of NP (X) which contains
all elements with rank r.

Theorem 5. If X is any set (finite or infinite) and α, β ∈ NP (X) then β = λαµ
for some λ, µ ∈ NP (X) if and only if r(β) ≤ r(α). Hence, D = J for NP (X).

The proof of the next result closely follows the one for [5] Lemma 2, so we omit most
of the details. Here, as in [1] vol 2, p 227, we let NP ∗

r denote the Rees congruence
on NP (X) determined by the ideal NPr.

Lemma 2. If ρ is a non-identity congruence on NP (X) and η = η(ρ) then

NP ∗
η ⊆ ρ ⊆ NP ∗

η ∪ D.

Proof. It is easy to see that NP ∗
η ⊆ ρ, so we let (α, β) ∈ ρ and assume that

r(β) < r(α) = r.

(a) r is infinite. This means X is infinite and we note that the γ defined in case (a)
for the proof of [5] Lemma 2 has gap and defect equal to |X|. Hence, by Theorems
1 and 2 above, this γ belongs to NP (X) and, as before, we conclude that r < η.

(b) r is finite. In this case, X may be finite or infinite. However, for both possibilit-
ies, the γ and γi defined in case (b) for the proof of [5] Lemma 2 belong to NP (X).
Hence, that argument holds for this case, and we again conclude that r < η. tu

The L and R relations on P (X) are well-known: namely, α L β if and only if
ran α = ran β; and α R β if and only if α ◦ α−1 = β ◦ β−1. And, if X is infinite,
then NP (X) is a regular subsemigroup of P (X) by Theorems 1 and 2. Therefore,
to prove a result which is analogous to [5] Lemma 3, we need to know that NP (X)
is regular when X is finite (see [6] p 341).

Lemma 3. If X is finite and |X| = n ≥ 3 then NP (X) is a regular semigroup.

Proof. Suppose α ∈ NP (X) and write ran α = {x1, . . . , xr}. Let Ai = xiα
−1 and

choose ai ∈ Ai for each i = 1, . . . , r. If n is even then g(α) 6= 0, so α is not surjective.
Hence the map β : xi 7→ ai for i = 1, . . . , r belongs to NP (X) and α = αβα. The
same argument can be applied when n is odd and r(α) ≤ n − 2. Also, if n is odd
and α ∈ En−1 and g(α) 6= 0 then α is injective with rank n− 1: that is, Ai = {ai}
and α : ai 7→ xi for each i. Moreover, the completion of α is an even permutation.
Clearly this implies α−1 ∈ En−1 and so, in this case, α is also regular in NP (X). tu

Lemma 4. Let ρ be a congruence on NP (X) and suppose η(ρ) is finite. If (α, β) ∈ ρ
and η(ρ) ≤ r(α) < ℵ0 then (α, β) ∈ H.

Proof. The γ defined in the proof of [5] Lemma 3 belongs to NP (X) (regardless of
whether X is finite or infinite), hence we conclude, as before, that α L β.
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To show α R β, first we suppose dom α 6⊆ dom β. Choose x ∈ dom α \ dom β, and
let A be a cross-section of α ◦ α−1 which contains x. Then idA ∈ NP (X) (since
|A| = r(α), our justification for δ ∈ NI(X) in the proof of [5] Lemma 3 is also valid
here). Moreover, r(idA α) = r, but r(idA β) ≤ r−1 (since x /∈ dom β). Since idA α ∼
idA β, Lemma 2 implies r < η(ρ), a contradiction. Therefore, dom α ⊆ dom β and
similarly dom β ⊆ dom α, so dom α = dom β.

Next we suppose α ◦α−1 6⊆ β ◦ β−1. Then there exists (x, y) ∈ α ◦α−1 \ β ◦ β−1 and
we let B be a cross-section of β ◦ β−1 which contains x and y. Then idB ∈ NP (X)
(since |B| = r(β) = r < ℵ0, so the same justification as before can be applied)
and r(idB β) = r, but r(idB α) ≤ r − 1 (since xα = yα). Like before, this is a
contradiction since idB α ∼ idB β. Therefore, α ◦ α−1 ⊆ β ◦ β−1, and similarly for
the reverse inclusion, so we have shown α R β. tu

The next result is similar to [5] Lemma 4, but we include a proof for this new
context.

Lemma 5. Let ρ be a non-identity congruence on NP (X) and suppose η(ρ) is
finite. If (α, β) ∈ ρ where α 6= β and η(ρ) ≤ r(α) < ℵ0 then r(α) = η(ρ).

Proof. By Lemma 4, (α, β) ∈ H, so α and β have the same domain and range.
Hence we can write

α =
(

A1 . . . Ar

b1 . . . br

)
, β =

(
A1 . . . Ar

b1π . . . brπ

)

for some permutation π of {1, . . . , r}. Let {ai} be a cross-section of {Ai}. Since
α 6= β, there exists i such that i 6= iπ; and, since ρ is not the identity congruence,
we know η(ρ) ≥ 2 and thus r ≥ 2. If γ is the identity on {a1, . . . , ai−1, ai+1, . . . , ar},
then γ ∈ NI(X) (via the usual justification when X is finite or infinite) and so
γα ∼ γβ. But, since iπ−1 6= i, ran(γβ) contains bi, whereas ran(γα) does not.
Therefore (γα, γβ) /∈ H and so, by Lemma 4, r(γα) = r− 1 must be less than η(ρ).
Since r(α) = r ≥ η(ρ) by supposition, it follows that r = η(ρ). tu

3. Finite primary rank

In [4] p 316, the authors observed that, if X is finite and r < |X|, then NIr+1/NIr

is completely 0–simple. For what follows, we require a similar result for NP (X) but
one that is slightly more general: compare [5] Lemma 5. If r is any infinite cardinal
then r′ denotes the successor of r (that is, the least cardinal greater than r).

Lemma 6. If X is any set and 4 ≤ r < |X| then NPr′/NPr is 0–bisimple, and it
contains a primitive idempotent if and only if r is finite. Consequently, if r is finite
then NPr+1/NPr is completely 0–simple.

Proof. Suppose α, β ∈ NP (X) and r(α) = r(β) = r (finite or infinite). Choose
cross-sections {ap} and {bp} of α ◦ α−1 and β ◦ β−1, respectively, and write

α =
(

Ap

xp

)
, β =

(
Bp

yp

)
, γ =

(
Bp

xp

)
, λ =

(
Ap

bp

)
, λ′ =

(
Bp

ap

)
.
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If |X| = k ≥ ℵ0, then |P | = r < k implies d(γ) = k. Also, since γ ◦ γ−1 = β ◦ β−1

and r(γ) = r(β), the gap of γ satisfies the conditions of Theorem 1 or Theorem 2
(depending on the nature of k) and so γ ∈ NP (X). Likewise, λ, λ′ ∈ NP (X). Also,
α = λγ and γ = λ′α, thus α L γ and similarly γ R β. In other words, if X is
infinite then all elements of NP (X) with rank r are D–related, and so NPr′/NPr is
0–bisimple.

If |X| = n < ℵ0, then g(γ) = g(β) 6= 0, so Theorem 3 implies that γ ∈ NP (X)
when n is even, and when n is odd and r < n − 1. On the other hand, if n is odd
and r = n− 1, then α, β belong to En−1 (since their gaps are non-zero). Moreover,
in this case, NPn/NPn−1 = En−1 ∪ {0}, and this is 0–bisimple by [5] Lemma 5.

Suppose r is finite and let α = αβ = βα for non-zero idempotents α, β ∈ P (X),
each with rank r. Then ran α ⊆ ran β, and both these sets contain r elements, so
ran α = ran β. Therefore, for each x ∈ dom α, xα = (xβ)α = xβ (since xβ ∈ ran α),
hence dom α ⊆ dom β. Also, if y ∈ dom β then yβ = xα for some x ∈ dom α, so
yαβ = yβα = xα2 = xα (since xα ∈ dom α) and so y ∈ dom α. Thus, dom α =
dom β, and it follows that α = β. In other words, every non-zero idempotent
in NPr+1/NPr is primitive. Conversely, suppose β is a non-zero idempotent in
NPr′/NPr and assume r ≥ ℵ0. Then we can write

β =
(

Bi

bi

)
, α =

(
Bj

bj

)
,

where |I| = r, J = I \ {0} for some fixed 0 ∈ I, and bi ∈ Bi for each i. Since β ∈
NP (X), its gap satisfies the conditions of Theorems 1 or 2. Since g(α) ≥ g(β) and
r(α) = r(β), the same is true for α, and so α ∈ NP (X). In addition, α = αβ = βα.
In other words, if r ≥ ℵ0 then no non-zero idempotent in NPr′/NPr is primitive. tu

Next we prove a result which is similar to [5] Lemma 6 and, in doing so, we do not
assume any prior knowledge of the congruences on a completely 0–simple semigroup.

Lemma 7. Suppose X is any set and r is any positive integer with r + 1 ≤ |X|.
If σ is a non-universal congruence on NPr+1/NPr, then the relation σ+ defined on
NP (X) by

σ+ = idNP (X) ∪ [σ ∩ (DPr ×DPr)] ∪ (NPr ×NPr)

is a congruence on NP (X).

Proof. Clearly σ+ is an equivalence, so we aim to show it is left and right compatible
with composition on NP (X). To do this, we consider only the case when (α, β) ∈ σ
and r(α) = r(β) = r (the other possibilities are easy to check). First suppose
| ran α ∩ ran β| = s < r and write B = ran β. Then idB ∈ DIr (by the usual
argument) and hence, in the semigroup NPr+1/NPr, α. idB = 0 but β. idB = β.
Since σ is a congruence on NPr+1/NPr, it follows that (0, β) ∈ σ and hence σ is
universal on NPr+1/NPr, a contradiction. Thus, s = r and this implies ran α =
ran β = Y say. Let µ ∈ NP (X), and note that the ranks of αµ and βµ are equal
and at most r. In fact, if r(αµ) = r(βµ) < r, then (αµ, βµ) ∈ NPr × NPr ⊆ σ+,
as required. On the other hand, if r(αµ) = r(βµ) = r, then ran α is a cross-section
of r (disjoint) sets in the partition of dom µ determined by the equivalence µ ◦ µ−1

on dom µ. Hence, if µ′ = µ|Y , then g(µ′) ≥ d(α), and µ′ = µ if |X| = n is finite
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and odd, and r = n− 1. That is, the usual argument shows that µ′ ∈ DIr. Clearly,
αµ′ = αµ and βµ′ = βµ. Therefore, (αµ, βµ) ∈ σ ∩ (DPr ×DPr) ⊆ σ+. Hence σ+

is right compatible.

Now let λ ∈ NP (X) and suppose r(λα) = r(λβ) = r for the same α, β as at the
start. Let | dom α ∩ dom β| = t and C = dom β. Then an argument similar to the
one above leads us to conclude that t = r and hence that dom α = dom β = Z
say. Moreover, since r(λα) = r = r(α), there exists a subset A of ran λ which is a
cross-section of Z/(α ◦ α−1). Let λ0 = λ|(Aλ−1). Then

{xλ−1
0 : x ∈ A} ⊆ {xλ−1 : x ∈ ran λ}

and r(λ0) = r(λ). Thus, when X is infinite, if g(λ) ≥ r(λ) or |zλ−1| ≥ r(λ) for some
z ∈ A, then λ0 satisfies the same conditions and so λ0 ∈ DPr. Suppose λ is spread
over its rank, but λ0 is not: that is, there exists a cardinal p < r(λ0) ≤ k such that
|xλ−1

0 | ≤ p for all x ∈ A. This means dom λ0 =
⋃{xλ−1

0 : x ∈ A} has cardinal at
most p < k, and hence g(λ0) = k. Therefore, in this case, λ0 also belongs to DPr.

In fact, the same is true when |X| = n < ℵ0, including when n is odd and r = n− 1
(since then λ ∈ NP (X), g(λ) 6= 0 and r(λ) = n − 1 together imply λ ∈ En−1, and
hence λ0 = λ). Since λ0α = λα and λ0β = λβ, we conclude that (λα, λβ) ∈ σ+. tu

Remark 1. Recall that every non-universal congruence ρ on a 0–simple semigroup
is 0–restricted: that is, 0ρ = {0}; and clearly, by Lemma 6, NPr+1/NPr is 0–simple
for each (finite or infinite) r ≥ 4. Consequently, in the above result, σ+

1 = σ+
2

implies σ1 = σ2. For, if σ+
1 = σ+

2 then, by their definition, σ1 ∩ (DPr × DPr) =
σ2 ∩ (DPr ×DPr); and, since each σi is 0–restricted, this implies σ1 = σ2.

Using the results in section 2, we now determine all congruences ρ on NP (X) for
which η(ρ) is finite. Again, our argument closely follows that for [5] Theorem 5, but
we include all the details for this more general context.

Theorem 6. Let ρ be a non-identity and non-universal congruence on NP (X) and
suppose r = η(ρ) is finite. Then ρ = σ+ where σ is a non-universal congruence on
NPr+1/NPr.

Proof. Suppose (α, β) ∈ ρ. By the definition of η(ρ), if one of α or β has rank less
than r, then the other also has rank less than r, and thus (α, β) ∈ NP ∗

r . By Lemma
2, if the rank of α or β is at least r, then r(α) = r(β) = s say. We assert that if s
is infinite then α = β.

To see this, assume s ≥ ℵ0 and xα 6= xβ for some x ∈ dom α (without loss of
generality). Write xα = a and choose a partial cross-section Y of α ◦ α−1 such that
x ∈ Y, |Y | = r and a /∈ Y β (this is possible since s ≥ ℵ0 and r < ℵ0, and x /∈ aβ−1).
Let Z = Y α and observe that α′ = idY .α. idZ has rank r, whereas β′ = idY .β. idZ

has rank at most r − 1 (since a ∈ Z \ Y β). Moreover, both idY and idZ belong to
NI(X) since their ranks are finite. Therefore, (α′, β′) ∈ ρ. Since this contradicts
the choice of r = η(ρ), the assertion follows.

Consequently, if s ≥ ℵ0 then (α, β) ∈ idNP (X). On the other hand, if r ≤ s < ℵ0

and α 6= β, then Lemma 4 implies r = s. That is, (α, β) ∈ ρ ∩ (DPr × DPr). We
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assert that
σ = ρ ∩ (DPr ×DPr) ∪ {(0, 0)}

is a congruence on NPr+1/NPr. For, clearly it is an equivalence on NPr+1/NPr.
Also, if (α, β) ∈ ρ ∩ (DPr × DPr) and µ ∈ DPr then (αµ, βµ) ∈ ρ, where the
ranks of αµ and βµ are at most r. However, by the choice of r = η(ρ), either
r(αµ) = r(βµ) = r or both r(αµ) and r(βµ) is less than r: in the former case,
(αµ, βµ) ∈ ρ∩ (DPr ×DPr) and, in the latter case, αµ = βµ = 0 in the Rees factor
semigroup NPr+1/NPr. That is, σ is right compatible on NPr+1/NPr, and similarly
it is left compatible. Thus, we have shown that ρ ⊆ σ+ as defined in Lemma 7, and
clearly σ+ ⊆ ρ, so equality follows. Moreover, σ is non-universal on NPr+1/NPr:
otherwise, ρ ∩ (DPr ×DPr) = DPr ×DPr and hence

ρ = idNP (X) ∪ (DPr ×DPr) ∪ (NPr ×NPr)

which is not a congruence on NP (X) (for example, if |A| = |B| = r < ℵ0 and
A∩B = ∅ then (idA, idB) ∈ ρ, but (idA . idA, idA . idB) /∈ ρ by the definition of η(ρ)).
tu

Given the above result, we need more information about the congruences on NPr+1/NPr.
In fact, by Lemma 6, NPr+1/NPr is a completely 0–simple semigroup for finite r ≥ 4,
and thus all of its congruences can be described (see [1] section 10.7). To avoid the
complication which that entails, we prove the following result.

Lemma 8. Suppose X is any set and 4 ≤ r < |X|, and let σ be a non-universal
congruence on NPr+1/NPr. Then, for each Y ⊆ X with cardinal r, there exists
N / G(Y ) such that

σ = {(λ. idY .µ, λ.γ.µ) : λ, µ ∈ DPr and γ ∈ N} ∪ {(0, 0)}.

Proof. Clearly, NIr+1/NIr is a subsemigroup of NPr+1/NPr. Hence, the restriction
σ of σ to NIr+1/NIr is a congruence on NIr+1/NIr. Moreover, σ is non-universal:
otherwise, (α, 0) ∈ σ ⊆ σ for some α ∈ DIr and then, by Lemma 6, each β ∈ DPr

equals λαµ for some λ, µ ∈ DPr, which implies (β, 0) ∈ σ, and thus σ is universal,
a contradiction. Therefore, by [5] Lemma 7, for each Y ⊆ X with cardinal r, there
exists N / G(Y ) such that

σ = {(λ′. idY .µ′, λ′.γ.µ′) : λ′, µ′ ∈ DIr and γ ∈ N} ∪ {(0, 0)}.

We assert that, for this N / G(Y ), σ equals the relation:

τ = {(λ. idY .µ, λ.γ.µ) : λ, µ ∈ DPr and γ ∈ N} ∪ {(0, 0)}.

To see this, note that σ ⊆ σ and, in particular, (idY , γ) ∈ σ for all γ ∈ N . Hence,
τ ⊆ σ. Conversely, suppose (α, β) ∈ σ. In the proof of Lemma 7, we showed that
ran α = ran β, and that similarly dom α = dom β. In fact, since r is finite, we can
adapt the argument in the last paragraph of the proof of Lemma 4 to show that
α ◦ α−1 = β ◦ β−1. Thus we can write

α =
(

A1 . . . Ar

x1 . . . xr

)
∼σ β =

(
A1 . . . Ar

x1π . . . xrπ

)
,
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where π is a permutation of {1, . . . , r}. Clearly, if Y = {y1, . . . , yr}, then

α =
(

Ai

yi

)
◦ idY ◦

(
yi

xi

)
, β =

(
Ai

yi

)
◦

(
yi

yiπ

)
◦

(
yi

xi

)
,

where the first and last mappings in these expressions for α and β are elements
of DPr, by a now-standard argument (as usual, the exceptional case occurs when
|X| = n is odd and r = n − 1, but then NPr+1/NPr = En−1 ∪ {0} and this
was discussed fully in the proof of [5] Lemma 7). Moreover, if ai ∈ Ai for each
i = 1, . . . , r, then

idY =
(

yi

ai

)
◦ α ◦

(
xi

yi

)
∼σ

(
yi

ai

)
◦ β ◦

(
xi

yi

)
=

(
yi

yiπ

)
= γ (say).

Since this pair belongs to σ, it follows that γ ∈ N and thus (α, β) ∈ τ . tu

The next result extends [5] Corollary 1 to arbitrary sets.

Corollary 1. For any set X, the set of all congruences on NP (X) with finite
primary rank forms a chain with respect to ⊆.

Proof. Let ρ1 and ρ2 be distinct congruences on NP (X), neither of which equals
the identity or the universal congruence on NI(X), and write η(ρi) = ri, where ri

are positive integers for i = 1, 2. Then ρi = σ+
i for some (unique) congruence σi on

NPri+1/NPri
. If r1 < r2 then NPr1 ⊆6 NPr2 and

σ1 ∩ (DPr1 ×DPr1) ⊆6 NPr2 ×NPr2 ,

from which we deduce that ρ1 ⊆ ρ2. Suppose r1 = r2 = r, say. By Lemma 8, σ1 is
determined by some N1 / G(Y ) and σ2 by some N2 / G(Y ) where |Y | = r (note: the
same Y can be used). Since the normal subgroups of G(Y ) form a chain, it follows
from Lemma 8 that σ1 ⊆ σ2 or σ2 ⊆ σ1, and hence that ρ1 ⊆ ρ2 or ρ2 ⊆ ρ1. tu

4. Infinite primary rank for NP (X) when |X| is regular

Henceforth, X is an infinite set with cardinal k.

Suppose ρ is a congruence on NP (X) and let

ρ = ρ ∩ [NI(X)×NI(X)].

Clearly, ρ is a congruence on NI(X); and, if η(ρ) is infinite, then η(ρ) is also (for
example, if η(ρ) ≥ ℵ0 then NPℵ0 × NPℵ0 ⊆ ρ and thus NIℵ0 × NIℵ0 ⊆ ρ, so
η(ρ) ≥ ℵ0). In this event, [5] Theorem 8 enables us to describe ρ in terms of a finite
number of Rees congruences and Malcev congruences, as follows.

Theorem 7. Suppose |X| = k ≥ ℵ0. If ρ is a non-universal congruence on NI(X)
for which η(ρ) ≥ ℵ0 then

ρ = I∗η1
∪ [∆ξ1 ∩ I∗η2

] ∪ · · · ∪ [∆ξr−1 ∩ I∗ηr
] ∪ [∆n ∩ (DIk ×DIk)] (1)

where η1 = η(ρ) and the cardinals ξi, ηi form a sequence:

n ≤ ξr−1 < · · · < ξ1 ≤ η1 < · · · < ηr ≤ k,

in which ξr−1 is infinite, either n = 1 or n is infinite, and if n ≥ ℵ0 then ηr = k.
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Conversely, if ρ is a relation on NI(X) defined as in (1) for a sequence of cardinals
with the above properties, then ρ is a non-universal congruence on NI(X).

In the above, for each proper ideal Ir = I(X)∩ Pr = NIr of NI(X), I∗r denotes the
corresponding Rees congruence on NI(X): compare [1] vol 1, p 17 and vol 2, p 227.
Also, as in [5], DIr denotes the D–class of NI(X) which contains all elements with
rank r. In addition, for each α, β ∈ P (X) and n ≥ ℵ0, we let

D(α, β) = {x ∈ X : xα 6= xβ}, dr (α, β) = max (|D(α, β)α|, |D(α, β)β|)

∆n = {(α, β) ∈ P (X)× P (X) : dr (α, β) < n}.

Then, by [7] Theorem 3.1, each ∆n is a so-called Malcev congruence on P (X). Note
that for the definition of D(α, β), we use the convention: xα = ∅ if and only if
x /∈ dom α.

Since NI(X) ⊆ NP (X) and ρ ⊆ ρ, we know each term in (1) is contained in ρ. We
assert that, if |X| = k is regular, then

ρ = NP ∗
η1
∪ [∆ξ1 ∩NP ∗

η2
] ∪ · · · ∪ [∆ξr−1 ∩NP ∗

ηr
] ∪ [∆n ∩ (DPk ×DPk)] (2)

where the cardinals ξi, ηi are the same as those corresponding to ρ in (1).

In fact, since ρ ⊆ ρ, we know η(ρ) ≤ η(ρ). For the reverse inequality, suppose
(α, ∅) ∈ ρ for some α ∈ NP (X) and let A be a cross-section of α ◦ α−1. Since k is
regular and α ∈ NP (X), Theorem 1 implies that g(α) 6= 0, and either g(α) = k or
|zα−1| = k for some z ∈ X. Clearly, in each case, idA ∈ NI(X) and so (idA .α, ∅) ∈ ρ,
where idA .α belongs to NI(X) and has the same rank as α. This implies η(ρ) ≤ η(ρ)
and equality follows. In addition, since I∗η1

⊆ ρ, we know (idA, ∅) ∈ ρ for each A ⊆ X
with cardinal less than η1. Consequently, if α ∈ NP (X) has range A, then α = α. idA

and so (α, ∅) ∈ ρ. In other words, NP ∗
η1
⊆ ρ.

To consider the other terms in (1), we will need the following result: see [7] Lemma
3.4.

Lemma 9. If α, β ∈ P (X) and dr (α, β) = ζ ≥ ℵ0 then there exists Y ⊆ D(α, β)
such that Y α ∩ Y β = ∅ and max (|Y α|, |Y β|) = ζ.

The next result will simplify some of our argument regarding (2): we omit a proof
since it is exactly the same as that for [5] Lemma 11.

Lemma 10. If the ranks of α, β ∈ NP (X) are not equal, and at least one of them
is infinite, then dr (α, β) = max (r(α), r(β)).

Remark 2. This result implies that, if ℵ0 ≤ ξ ≤ η and (α, β) ∈ ∆ξ ∩NP ∗
η , where

r(α) > r(β) and r(α) ≥ ℵ0, then r(α) = dr (α, β) < ξ, and so (α, β) ∈ NP ∗
ξ .

Moreover, since ξ ≥ ℵ0, the same conclusion holds if r(α) and r(β) are both finite
(since, for example, D(α, β)α ⊆ ran α). In other words, suppose (α, β) ∈ ∆ξ ∩NP ∗

η ,
where r(α) ≥ r(β) and r(α) ≥ ℵ0. If we can show that there exists λ ∈ NIη for which
λα, λβ ∈ NI(X) and r(λα) = r(α), then either (λα, λβ) ∈ NI∗ξ if r(λα) > r(λβ),
or (λα, λβ) ∈ ∆ξ ∩NI∗η if r(λα) = r(λβ).
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We now return to the argument regarding (2). If (α, β) ∈ ρ and dr (α, β) = d ≥
ℵ0 then, without loss of generality, there exists Y = {yi} ⊆ D(α, β) such that
Y α ∩ Y β = ∅ and |Y α| = d. Clearly, although α may not be injective, we can
assume Y is a partial cross-section of α ◦ α−1, and then |I| = d. Let D = D(α, β)
and C = Dα ∪Dβ. Then ran α \ C = ran β \ C = {ej} say, and, for each j, there
exists rj ∈ dom α ∩ dom β such that rjα = ej = rjβ (this is true by our convention:
xα = ∅ if and only if x /∈ dom α, mentioned above).

Let λ be the identity on Y ∪{rj}. Again, since k is regular and α ∈ NP (X), Theorem
1 implies that g(α) 6= 0, and either g(α) = k or |zα−1| = k for some z ∈ X. In the
first case, g(λ) ≥ g(α) implies λ ∈ NI(X); and, in the second case, if z equals yiα
or rjα for some i or j, then zα−1∩dom λ equals yi or rj, hence g(λ) ≥ |zα−1| and so
λ ∈ NI(X) (clearly, if z /∈ Y α ∪ {rjα}, then the same conclusion holds). It follows
that dr (λα, λβ) = d and

λα =
(

yi rj

ai ej

)
∼ρ λβ =

(
yi rj

bi ej

)
, (3)

where bi may not exist for some i (that is, when yi /∈ dom β) and the bi may not
be distinct (for example, if β is not injective on Y ). If |{bi}| = d, write {bi} = {b`}
where the b` are distinct and fix y` ∈ Y such that y`β = b`. If λ′ is the identity on
{y`} ∪ {rj} then, as before, λ′ ∈ NI(X) and we obtain

λ′α =
(

y` rj

a` ej

)
∼ρ λ′β =

(
y` rj

b` ej

)
, (4)

and these are elements of NI(X) whose difference rank equals |L| = d. On the other
hand, if |{bi}| < d then {ai} \ {bi} = {a`}, say, has cardinal d. In this event, if µ is
the identity on {a`} ∪ {ej} then µ ∈ NI(X) (since d(µ) ≥ d(α) = k) and from (3)
we obtain:

λαµ =
(

y` rj

a` ej

)
∼ρ λβµ =

(
rj

ej

)
. (5)

Hence, again we find a pair in ρ whose difference rank equals |L| = d. In other
words, if ρ contains a pair of elements which differ at d ≥ ℵ0 places, then ρ does
also.

Note that, with the above notation, r(β) ≤ r(α) = r, say, and

Y α ⊆ Dα = Dα ∩ ran α and Dβ ∩ ran α ⊆ Dβ.

Hence, |C ∩ ran α| = |(Dα ∩ ran α) ∪ (Dβ ∩ ran α)| = d, and

r(α) = |C ∩ ran α|+ | ran α \ C| = |I|+ |J | = r(λα) ≥ r(λβ).

Clearly, we will reach the same conclusion if λ′ or µ are used in the above argument.

Therefore, by Remark 2, if ℵ0 ≤ ξ ≤ η and (α, β) ∈ ∆ξ ∩ NP ∗
η , then (λα, λβ) ∈

∆ξ ∩ I∗η for some λ ∈ NI(X). In other words, we have shown that: if there exists
(α, β) ∈ ρ for which r(β) ≤ r(α) = r and dr (α, β) = d ≤ r, then there exists
(α, β) ∈ ρ for which r(β) ≤ r(α) = r and dr (α, β) = d. Clearly, the converse also
holds since ρ ⊆ ρ, and Iη = NIη ⊆ NPη implies that ∆ξ ∩ I∗η ⊆ ∆ξ ∩NP ∗

η .
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In addition, since ∆ξi−1
∩ I∗ηi

⊆ ρ for each i = 1, . . . , r, we know (idA∪B, idA) ∈ ρ,
where X = A ∪̇B ∪̇Z, |A| < ηi, |B| < ξi−1 < ηi and |Z| = k. Consequently, if α ∈
NP (X) has range A∪B, then α. idA∪B = α and (α, β) ∈ ρ, where β = α. idA, r(α) =
r(β) = |A| and dr (α, β) = |B|. From this, it follows that ∆ξi−1

∩NP ∗
ηi
⊆ ρ for each

i = 1, . . . , r.

It remains to consider the last term in (1) and the corresponding one in (2).

If n = 1 in (1), then no pair of distinct elements of NI(X) with rank k are ρ–
equivalent. Suppose there exists (α, β) ∈ ρ ∩ (DPk ×DPk) where α 6= β. Without
loss of generality, we assume that aα 6= aβ for some a ∈ dom α, and let A = {ai} be
a cross-section of α ◦α−1 which contains a = a0, say. Then, as before, idA ∈ NI(X)
and we have:

idA .α =
(

ai

aiα

)
∼ρ idA .β =

(
ai

aiβ

)
, (6)

where the aiβ are not necessarily distinct. If |{aiβ}| = k, write {aiβ} = {ajβ}
where the ajβ are distinct (if non-empty), 0 ∈ J and |J | = k. Let B = {aj}. Then
idB ∈ NI(X) and

idB .α =
(

aj

ajα

)
∼ρ idB .β =

(
aj

ajβ

)
.

Since a0 ∈ B, idB .α 6= idB .β and these are ρ–equivalent elements of NI(X) with
rank k, contradicting our initial assumption that n = 1.

Hence, if n = 1 then |{aiβ}| < k and so {aiα} \ {aiβ} = {ajα} = Z, say, has
cardinal k. Then idZ ∈ NP (X) (since |X \Z| ≥ d(α) = k) and from (6) we obtain:

idA .α. idZ =
(

aj

ajα

)
∼ρ idA .β. idZ = ∅.

It follows that η(ρ) = k′ and ρ is universal, contradicting our basic supposition.

Suppose instead that n ≥ ℵ0 in (1), and hence that ηr = k (by the condition on the
cardinals). This means that, if X = A ∪̇B ∪̇Z, |A| = |Z| = k and |B| < n, then

(idA∪B, idA) ∈ ∆n ∩ (DIk ×DIk) ⊆ ρ.

From this, like before, it follows that ∆n ∩ (DPk ×DPk) ⊆ ρ.

Consequently, we have proved half of the following result. For its converse, we note
that, just as in [5], Lemma 10 can be used to show that ρ is a congruence on NP (X),
provided the cardinals have the properties stated: the difference between the last
paragraph in the proof of [5] Theorem 8 and the current one is simply a matter of
notation (that is, ‘I’ and ‘NI’ become ‘NP ’).

Theorem 8. Suppose |X| = k ≥ ℵ0 and k is regular. If ρ is a non-universal
congruence on NP (X) for which η(ρ) ≥ ℵ0 then

ρ = NP ∗
η1
∪ [∆ξ1 ∩NP ∗

η2
] ∪ · · · ∪ [∆ξr−1 ∩NP ∗

ηr
] ∪ [∆n ∩ (DPk ×DPk)] (7)

where η1 = η(ρ) and the cardinals ξi, ηi form a sequence:

n ≤ ξr−1 < · · · < ξ1 ≤ η1 < · · · < ηr ≤ k,

in which n is infinite and ηr = k.
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Conversely, if ρ is a relation on NP (X) defined as in (8) for a sequence of cardinals
with the above properties, then ρ is a non-universal congruence on NP (X).

5. Infinite primary rank for NP (X) when |X| is singular

In this section, X is an infinite set whose cardinal k is singular: that is, according to
[3] Lemma 10.2.2, k =

∑
km for some distinct infinite cardinals km, where |M | < k

and km < k for each m ∈ M . To describe all the congruences on NP (X) for such
X, we closely follow the argument in section 4. In fact, here the only differences
will occur when we need to ensure that a specific transformation belongs to NP (X):
that is, it satisfies the conditions of Theorem 2.

Like before, given a congruence ρ on NP (X), we let ρ denote the restriction of
ρ to NI(X) and observe that if η(ρ) is infinite, then η(ρ) is also. In fact, since
ρ ⊆ ρ, we know η(ρ) ≤ η(ρ). For the reverse inequality, suppose (α, ∅) ∈ ρ for
some α ∈ NP (X) and let A be a cross-section of α ◦ α−1. Since k is singular and
α ∈ NP (X), Theorem 2 implies that g(α) 6= 0, and either g(α) ≥ r(α) or α is spread
over its rank. If r(α) < k then |A| < k, so |X \ A| = k and hence idA ∈ NI(X).
Suppose r(α) = k. If g(α) ≥ r(α) then |X \A| ≥ g(α) = k; and, if α is spread over
its rank then, for each m ∈ M (see the start of this section), there exists ym ∈ X
such that |ymα−1| > km. Since A contains exactly one element from each ymα−1,
we see that, for each m, |ymα−1 \ A| > km. Hence, k =

∑
km ≤ ∑ |ymα−1 \ A|, and

it follows that |X \A| = k. Thus, idA ∈ NI(X) in all cases and, as in section 4, we
deduce that η(ρ) ≤ η(ρ) and equality follows. Moreover, since η(ρ) = η1 < k, we
know |X \A| = k for each A ⊆ X with cardinal less than η1, hence idA ∈ NIη1 and
so, like before, we conclude that NP ∗

η1
⊆ ρ.

Next, both Lemma 9 and Lemma 10 hold for any set X, so they can be applied in
the present situation. In particular, Remark 2 remains valid.

Now, using the same notation as before, we let λ be the identity on B = Y ∪ {rj}.
Since k is singular and α ∈ NP (X), Theorem 2 implies that g(α) 6= 0, and either
g(α) ≥ r(α) or α is spread over its rank. If r(α) < k then |I| + |J | < k, hence
g(λ) = k and λ ∈ NI(X). Suppose instead that r(α) = k. Then, the above
argument for the set A applies equally here for the set B, and we deduce that λ ∈
NI(X) in all cases. As at (3), this implies that (λα, λβ) ∈ ρ, where dr (λα, λβ) = d
and, as before, the same proviso holds. Then the same λ′ belongs to NI(X) (since
{y`}∪{rj} ⊆ Y ∪{rj} = B) and we again obtain (4). On the other hand, if µ is the
identity on the set {a`}∪{ej} specified before, then µ ∈ NI(X) (since, by Theorem
2, d(µ) ≥ d(α) = k) and thus we again obtain (5).

Consequently, when k is singular, we have shown that: there exists (α, β) ∈ ρ for
which r(β) ≤ r(α) = r and dr (α, β) = d ≤ r if and only if there exists (α, β) ∈ ρ
for which r(β) ≤ r(α) = r and dr (α, β) = d. And, like in section 4, it follows that
∆ξi−1

∩NP ∗
ηi
⊆ ρ for each i = 1, . . . , r.

Finally, we compare the last term in (1) with the corresponding one in (2). We
have already seen that, if k is singular and A is a cross-section of α ◦ α−1, then
idA ∈ NI(X) and thus we obtain (6). By continuing to follow the argument in
section 4, we see that B = {aj} ⊆ A, hence |X \ B| = k and so idB ∈ NI(X).
This gives a contradiction like before. Since the rest of the previous argument holds
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verbatim, we conclude that n ≥ ℵ0 in (1) and hence that ηr = k. Like before, it
then easily follows that ∆n ∩ (DPk ×DPk) ⊆ ρ.

Thus, we have proved a result which is exactly the same as Theorem 8, except that
|X| = k is a singular cardinal.

We now deduce a result similar to [5] Corollary 2. Our proof follows the one for
NI(X) but, since it depends on Theorem 8 (and the corresponding result for singular
cardinals), we include all the details.

Corollary 2. Suppose |X| = k ≥ ℵ0 and write ∆+
k = ∆k ∩ [NP (X) × NP (X)].

Then ∆+
k is the only maximal congruence on NP (X), and hence NP (X)/∆+

k is a
congruence-free nilpotent-generated regular semigroup.

Proof. First we note that ∆+
k is a non-universal congruence on NP (X): for example,

if X = A ∪̇B where |A| = |B| = k, then idA ∈ NP (X) and dr (idA, ∅) = k, so
(idA, ∅) /∈ ∆+

k .

Since NP (X) is nilpotent-generated and regular (by Theorems 1 and 2), and ∆+
k

is a congruence on NP (X), it follows that NP (X)/∆+
k is also nilpotent-generated

and regular.

Suppose ∆+
k ⊆ ρ for some non-universal congruence on NP (X). Now, η(ρ) equals

the least cardinal greater than r(α) for each α ∈ NP (X) such that (α, ∅) ∈ ρ. But,
if A ⊆ X has cardinal less than k, then d(idA) = k and g(idA) = k > |A| = r(idA),
so (idA, ∅) ∈ ∆+

k ⊆ ρ. In particular, since ℵ0 ≤ |A| < k can occur, we deduce
that η(ρ) ≥ ℵ0. Therefore, ρ has the form displayed in (7), regardless of whether
k is regular or singular. Clearly, (α, ∅) ∈ ∆+

k ⊆ ρ for each α ∈ NPk, so η1 = k.
Moreover, if X = A ∪̇B ∪̇C where |A| = |C| = k and |B| < k, then both idA∪B and
idA have gap and defect equal to k, so they belong to DPk and hence

(idA∪B, idA) ∈ ∆k ∩ [DPk ×DPk].

It follows that n ≥ k. Since NP ∗
k ⊆ ∆+

k , this implies that each term in (7) is
contained in ∆+

k , hence ρ ⊆ ∆+
k and equality follows.

Finally, suppose ρ is a maximal congruence on NP (X) for which there exists (α, β) ∈
ρ with dr (α, β) = k. Then r(α) = r(β) = k (by the definition of ‘difference rank’).
Since such pairs (α, β) do not belong to the congruences described in Theorem 6,
we deduce that η(ρ) ≥ ℵ0. However, then (7) implies that n = k′, and so we have a
contradiction:

k′ ≤ ξr−1 < · · · < ξ1 ≤ η1 < · · · < ηr ≤ k.

Thus, dr (α, β) < k for all (α, β) ∈ ρ, hence ρ ⊆ ∆+
k , and equality follows by the

maximality of ρ and the fact that ∆+
k is non-universal. tu
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