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Abstract.
We characterize the pseudo-equivalence of a block lower triangular matrix T = [Tij ] over a regular

ring, and its block diagonal matrix D(T ) = [Tii], in terms of suitable Roth consistency conditions.
The latter can in turn be expressed in terms of the solvability of certain matrix equations of the
form TiiX − Y Tjj = Uij .
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1. Introduction and Definitions. Let R be a ring with unity 1, let Rm×n be
the set of m×n matrices over R, and shorten Rn×n to Rn. Throughout all our rings
will have an identity.

An element a ∈ R is said to be regular if a = axa, for some x, which is denoted
by x = a−. R is said to be regular if all of its elements are regular. A reflexive inverse
a is an element x, such that axa = a, xax = x. We shall denote such an inverse of a
by a+. The sets of inner and reflexive inverses of a, if any, will be respectively denoted
by is a{1} and a{1, 2}.

Definition 1.1. m,n ∈ R are pseudo-equivalent, m h n, provided there exist
regular elements p, q and p−, q− such that

n = pmq, m = p−nq−.

We may without loss of generality replace the inner inverses p−, q− by reflexive in-
verses p+, q+.

A ring R is called (von Neumann) finite if ab = 1 implies ba = 1, and it is called
stably finite if Rn is finite f or all n ∈ N.

A ring R is called unit regular if for every a in R, aua = a, for some unit u in R.
When p > q then Rp finite implies that Rq is finite.
Matrices A and B are said to be equivalent, denoted by A ∼ B, if A = PBQ

for some invertible matrices P,Q. Likewise, matrices A and B are said to be pseudo-
equivalent, denoted by A h B, if A = PBQ and B = P+BQ+ for some square
matrices P and Q, with reflexive inverses P+, Q+.

If A = [Aij ] is a block matrix over R with Aij of size pi × qj , and i, j = 1, . . . , n,
then Ak with k ≤ n, is the leading principal block-submatrix [Aij ] with i, j = 1, . . . , k.
The trailing principal submatrix is given by Âk = [Aij ] with i, j = n−k+1, . . . , n−1, n,
i.e.,

A =
[

Ak ?
? Ân−k

]
.
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Definition 1.2. For a block matrix A = [Aij ] we define its diagonal as the block
matrix D(A) = diag(A11, ..., Ann). We further set Dk(A) = diag(A11, ..., Akk).

2. Roth Conditions. Consider the matrix

M =
[

A 0
B D

]
.

When the matrix equation DX−Y A = B has a solution pair (X, Y ), one checks that[
I 0
Y I

] [
A 0
B D

] [
I 0
−X I

]
=

[
A 0
0 D

]
,(2.1)

i.e., M is equivalent to its block diagonal matrix N = diag(A,D).
On the other hand, for regular matrices A and D, the consistency of DX − Y A = B
is equivalent to the condition (1 − DD−)B(1 − A−A) = 0, for some and hence all
D−, A−.

Given consistency, it was shown in [4] that over a regular ring, the general solution
to DX − Y A = B is given by

X = D−B + D−ZA + (I −DD−)W
Y = −(I −DD−)BA− + Z − (I −DD−)ZAA−,

where W and Z are arbitrary.
In 1952, W.E. Roth proved the converse of 2.1 for matrices over a field F [16],

i.e.,

DX − Y A = B has a solution pair if and only if
[

A 0
B D

]
∼

[
A 0
0 D

]
.(2.2)

A ring R is said to have Roth’s equivalence property if the equivalence 2.2 is valid
for all matrices over R. Roth’s equivalence property was extended in [10], where it
was shown that over a unit regular ring,

[
a 0
b d

]
∼

[
a 0
0 d

]
⇔ dx− ya = b has a solution pair (x, y).

This result implies that such rings must be finite, and have Roth’s equivalence prop-
erty.
This result was later extended to regular rings by Guralnick [6], who showed that over
a regular ring, Roth’s equivalence property holds if and only if R is stably finite. In a
parallel paper [7], Gustafson proved that a commutative ring also must have Roth’s
equivalence property.

We shall show that in Roth’s equivalence property, we may replace equivalence
by pseudo-equivalence, provided the diagonal blocks Ai are regular and Rτ is finite,
for suitable τ .
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3. Lemmata. We begin by deriving some simple consequences of pseudo equiv-
alence.

Lemma 3.1. If n h m, then
(i) h is symmetric.
(ii) m is regular if and only if n is regular.
(iii) nR = pmR, Rn = Rmq.
(iv) mR ∼= nR.
Proof. (iv) Let φ(mx) = nqx. Then nqx1 = nqx2 ⇒ mx1 = pnqx1 = pnqx2 =

mx2. Also for any s, ns = nqq+s = φ(mq+s). As such φ is a one-one onto module
isomorphism, and therefore mR and nR are isomorphic.

We may at once apply these to the matrix rings over R, and state
Corollary 3.2. If M h D and M ∼ M ′, then R(D) ∼= R(M ′).
The following lemma was proved in [11] and characterizes the finiteness of Rn.
Lemma 3.3. Let e, f ∈ R with e2 = e and f2 = f. The following conditions are

equivalent:
1. R is finite.
2. eR ⊆ fR, eR ∼= fR =⇒ eR = fR.
3. Re ⊆ Rf,Re ∼= Rf =⇒ Re = Rf.

We shall apply this to regular matrix rings.

A key result in our reduction is the following “corner” lemma.
Lemma 3.4.

(a) When yd+ = 0 then
[

a 0
b d + y

]
∼

[
a 0

(1− dd+)b(1− a+a) d

]
.

(b) If M =
[

a 0
r d

]
, with r = (1 − dd+)b(1 − a+a), then there exists a 1-2

inverse

M+ =
[

a+ (1− a+a)r+(1− dd+)
0 d+

]
such that

MM+ =
[

aa+ 0
0 dd+ + rr+(1− dd+)

]
,

M+M =
[

a+a + (1− a+a)r+r 0
0 d+d

]
.

Proof. (a)[
1 0

−ba+ 1

] [
a 0
b d + y

] [
1 0

−d+b(1− a+a) 1

]
=

[
a 0

(1− dd+)b(1− a+a) d

]
.

(b) This fundamental result was shown in [9], pg 211 eq. (3.5).
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4. The Cornered Canonical Forms. We next turn to the block triangular
case. Let R be a regular ring and let

M =



A1 0
B2 A2

. . .
Bk Ak

...
. . .

Bn An


= D + B(4.1)

be a lower triangular block matrix with D = D(M) = diag(A1, .., An).

We shall assume that Ai is pi × qj and M is p× q, where p =
n∑

i=1

pi and q =
n∑

j=1

qj .

Our aim is to address the question of how to characterize M ∼ D and M h D. The
former was done in [12], with aid of the canonical form

PMQ = P (D + B)Q = N = D + Y =



A1 0
Y2 A2

. . .
Yk Ak

...
. . .

Yn An


,(4.2)

where

P = Pn

[
Pn−1 0

0 1

]
..

[
P2 0
0 In−2

]
=

[
∆k 0
0 In−k

]
,

Q =
[

Q2 0
0 In−2

]
..

[
Qn−1 0

0 1

]
Qn =

[
πk 0
0 In−k

]
,

(4.3)

∆k = Pk

[
Pk−1 0

0 1

]
...

[
P2 0
0 Ik−2

]
= Pk

[
∆k−1 0

0 1

]
and

πk =
[

Q2 0
0 Ik−2

]
...

[
Qk−1 0

0 1

]
Qk =

[
πk−1 0

0 1

]
.

In these expressions

Pk =
[

Ik−1 0
−Bkπk−1D

+
k−1 1

]
and

Qk =
[

Ik−1 0
−A+

k Bkπk−1(I −D+
k−1Dk−1) 1

]
=

[
Ik−1 0
−qk 1

](4.4)
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are both k × k.

In addition, the submatrices Yk of N , are defined by

Yk = (1−AkA+
k )Bkπk−1(I −D+

k−1Dk−1).(4.5)

The reduction as given in 4.2 is equivalent to the “horizontal” reduction

V −1M(U−1Z) = N = D + Y(4.6)

in which U = I + D+B, V = I + BD+ and Z = I + D+BDD+ are all invertible.

In order to solve the pseudo-equivalence problem, we shall need a second parallel
canonical form, which again uses Lemma 3.4,

P ′MQ′ = P ′(D + B)Q′ = N ′ =



A1 0
R2 A2

. . .
Rk Ak

...
. . .

Rn An


= D + R.(4.7)

The steps in this reduction are identical to those used to obtain N , except that
we replace Dk by the principal block N ′

k at each stage. This gives

P ′ = P ′
n . . .

[
P ′

k 0
0 In−k

]
. . .

[
P ′

2 0
0 In−2

]
=

[
∆′

k 0
0 In−k

]
,

Q′ =
[

Q′
2 0

0 In−2

]
. . .

[
Q′

k 0
0 In−k

]
. . . Q′

n =
[

π′k 0
0 In−k

]
,

(4.8)

and

∆′
k = P ′

k

[
P ′

k−1 0
0 I

]
. . .

[
P ′

2 0
0 Ik−2

]
and

π′k =
[

Q′
2 0

0 Ik−2

]
. . .

[
Q′

k−1 0
0 I

]
Q′

k.

(4.9)

In these products,

P ′
k =

[
Ik−1 0

−Bkπ′k−1(N
′
k−1)

+ I

]
and

Q′
k =

[
Ik−1 0

−A+
k Bkπ′k−1(I − (N ′

k−1)
+N ′

k−1) I

]
=

[
Ik−1 0
−q′k I

](4.10)
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are both are k × k.

It should be noted that

π′2 = π2 = Q2 =
[

I 0
−B2A

+
1 I

]
and

∆′
2 = ∆2 =

[
I 0

−A+
2 B2(I −A+

1 A1) I

]
.

The submatrices Rk of N ′ in 4.7 are defined by

Rk = (1−AkA+
k )Bkπ′k−1(I − (N ′

k−1)
+N ′

k−1).(4.11)

There does not seem to be an obvious “horizontal” reduction (using D, B and (.)+)
that is equivalent to this “total” block reduction!

We next take advantage of the special form of N ′. Using Lemma 3.4 we obtain the
following

Theorem 4.1. Let N ′ be as in 4.7. Then there exists a reflexive inverse (N ′)+

such that
N ′(N ′)+ = diag(A1A

+
1 , A2A

+
2 +R2R

+
2 (1−A2A

+
2 ), ..., AnA+

n +RnR+
n (1−AnA+

n )) = D

Proof. If N ′
k =

[
N ′

k−1 0
Rk Ak

]
then by Lemma 3.4 we can find a reflexive inverse

(N ′)+k =
[

(N ′)+k−1 (I − (N ′)+k−1N
′
k−1)R

+
k (1−AkA+

k )
0 A+

k

]
.

Recalling that A+
k Rk = 0 and Rk(N ′)+k−1 = 0, we may conclude that

(N ′)k(N ′)+k =
[

(N ′)k−1(N ′)+k−1 0
0 AkA+

k + Rk(Rk)+(1−AkA+
k ).

]
(4.12)

We note in passing that RkD+
k 6= 0 in general.

It now follows by induction, that if N ′
k−1(N

′)+k−1 is diagonal, then so is N ′
k(N ′)+k , and

has the form
N ′

k(N ′)+k = diag[A1A
+
1 , A2A

+
2 +R2(R2)+(1−A2A

+
2 ), ..., AkA+

k +Rk(Rk)+(1−AkA+
k )]

for k = 1, . . . , n.
When k = n, we arrive at D = N ′

n(N ′)+n , as desired.

Because the product of AkA+
k and I −AkA+

k is zero, we see that

R[AkA+
k + Rk(Rk)+(1−AkA+

k )] = R[AkA+
k ] u R[Rk(Rk)+(1−AkA+

k )]
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as an internal direct sum, and hence that

R(Ak) = R(AkA+
k ) ⊆ R[AkA+

k + Rk(Rk)+(1−AkA+
k )].

This allows us to conclude that
Corollary 4.2.

R(D) =

 R(A1)
...

R(An)

 ⊆


R(A1)
R(A2) u R[R2(R2)+(1−A2A

+
2 )]

...
R(An) u R[Rn(Rn)+(1−AnA+

n )]

 = R(D) = R(N ′
n)

We may now combine Corollaries 3.2 and 4.2 to conclude that
(i) R(D) ⊆ R(D).
(ii) R(M) ∼= R(N ′) = R[N ′(N ′)+] = R(D).
(iii) If M h D then R(D) ∼= R(M) ∼= R(D).

Now if Rp×p is finite then by Theorem 1 of [10], we may conclude that R(D) = R(D)
and thus R[RkR+

k (1 − AkA+
k )] = 0. This means that Rk = Rk(Rk)+Rk = 0, for

k = 1, 2, . . . , n and we have the Roth Consistency Conditions R = 0, i.e.,

Rk = (1−AkA+
k )Bkπ′k−1(I − (N ′)+k−1N

′
k−1) = 0.(4.13)

In order to relate these conditions to the condition that Y = 0, we shall need the
following

Lemma 4.3. Let N ′ be as in 4.7. For each 1 ≤ t ≤ n, the following are equivalent.
(i) N ′

k(N ′)+k = DkD+
k , k = 1, . . . , t.

(ii) Rk = 0, k = 2, . . . , t.
(iii) (N ′

k)+N ′
k = D+

k Dk, k = 1, . . . , t.
(iv) Yk = 0, k = 2, . . . , t.

Proof. We shall use induction in all four cases.
(i) ⇒ (ii) From Theorem 4.1 we see that for k ≤ t,

N ′
k(N ′)+k =

[
(N ′)k−1(N ′)+k−1 0

0 AkA+
k + Rk(Rk)+(1−AkA+

k )

]
.

If this equals DkD+
k , then we must have Rk(Rk)+(1 − AkA+

k ) = 0 for k ≤ t. Post-
multiplication by Bkπ′k−1(I − (N ′)+k−1N

′
k−1) then shows that Rk = 0.

(ii) ⇒ (i). Indeed, if N ′
k−1(N

′)+k−1 = Dk−1D
+
k−1 then setting Rk = 0 in 4.12, we see

that

N ′
k(N ′)+k =

[
N ′

k−1(N
′)+k−1 0

0 AkA+
k

]
=

[
Dk−1D

+
k−1 0

0 AkA+
k

]
= DkD+

k .

(ii) ⇒ (iii). One checks that N+
2 N2 = D+

2 D2. Next we assume it holds for k =

r − 1. Then from Lemma 3.4 we see that for N+
r Nr =

[
N+

r−1Nr−1 0
0 A+

r Ar

]
=[

D+
r−1Dr−1 0

0 A+
r Ar

]
= D+

r Dr.
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(iii)⇒(ii). If N+
k Nk =

[
N+

k−1Nk−1 + (I −N+
k−1Nk−1)R+

k Rk 0
0 A+

k Ak

]
= D+

k Dk,

then

N+
k−1Nk−1 + (I −N+

k−1Nk−1)R+
k Rk = D+

k−1Dk−1.

For k = 2 we have D+
2 D2 = N+

2 N2 and thus (I − A+
1 A1)R+

2 R2 = 0. This gives
R2 = 0. Assuming Rk = 0 for k < r, shows that

D+
r Dr = N+

r Nr =
[

(N ′)+r−1(N
′)r−1(I −N+

r−1Nr−1)R+
r Rr 0

0 A+
r Ar

]
=

[
D+

r−1Dr−1 + (I −D+
r−1Dr−1)R+

r Rr 0
0 A+

r Ar

]
.

This gives (I −D+
r−1Dr−1)R+

r Rr = 0 and hence that Rr = 0.

(ii)⇒ (iv). If N+
k Nk = D+

k Dk for k ≤ t then π′k = πk and Rk = Yk.

(iv)⇒(ii) If Y2 = 0 then clearly R2 = 0. So assume that Ri = Yi = 0 for i =
2, . . . , k − 1. Then for these values of i, N+

i Ni = D+
i Di and π′i = πi. Consequently

Rk = (I −AkA+
k )Bkπ′k−1(I −N+

k Nk) = (I −AkA+
k )Bkπk−1(I −D+

k Dk) = Yk = 0.

We may now combine all the above in
Theorem 4.4. Let M be a block triangular matrix as in 4.1 and suppose that

Rp×p is finite regular, then the following are equivalent:
(i) M ∼ D(M).
(ii) M h D(M).
(iii) Rk = 0, k = 2, . . . , n.
(iv) Yk = 0, k = 2, . . . , n.

5. Back to the Roth Conditions. Let us now turn the Roth conditions Y = 0,
into matrix equations. It should be noted that the equivalent condition R = 0 is not
so transparent. When k = 2, we see that the first Roth consistency condition becomes

R2 = (1−A2A
+
2 )B1(I −A+

1 A1) = 0,

which return us to A2X − Y A1 = B2.
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For general k, we recall the consistency condition [12]

(I − E)BU−1(I − F ) = 0

in which E = DD+ and F = D+D. Using path products this gives for the (p, q)
block,

(I −ApA
+
p )[(BU−1)pq](I −A+

q Aq),(5.1)

where
(BU−1)pq = Bpq +

r∑
k=1

(−1)k
∑

p>i1>i2>..>ik>q

Bp,i1A
+
i1

Bi1,i2A
+
i2

...Bik−1,ik
A+

ik
Bikq.

This leads at once to the Roth-matrix consistency condition

ApX − Y Aq = (BU−1)pq p, q = 1, . . . , n.(5.2)

We may now combine the above with the results of [6] and [7].
Theorem 5.1. Let R be a regular ring. The following are equivalent:

(i) R has Roth’s pseudo equivalence property, i.e., M h D(M) ⇒ Yk = 0 (Rk = 0).
(ii) R has Roth’s equivalence property, i.e., M ∼ D(M) ⇒ Yk = 0 (Rk = 0).
(iii) R is stably finite.

Proof. (i)⇒(ii). This always holds.
(ii)⇒(iii). This was shown in [6].
(iii)⇒(i). If R is stably finite and regular, then RN is finite for all N . Now if
in addition, M h D(M) then by Theorem 4.4, we see that the Roth consistency
conditions Yk = 0 hold for k = 1, . . . , n.

6. The Columnspace Case. The key condition in Theorem 4.1 was that Rp

is finite. This condition can be weakened when q < p, to Rq being finite. To do
this we have to repeat the above procedure with column spaces instead of row spaces.
This time we start from the lower right corner rather from the upper left corner and
use Lemma 3.4 to reduce the trailing principal submatrices M̂k . Again we have two
canonical forms corresponding to the horizontal factorization WV −1MU−1 = N =
D + Y . If we again want to use the matrices Dk, it is more convenient to reverse the
numbering of the blocks.

M =


An 0

An−1

. . .
Cn Cn−1 · · · A2

· · · C2 A1

 = D + C(6.1)

Even though the new consistency conditions take a different form from the original
Roth conditions, we shall show that we actually do get the same canonical matrix
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M ′! This will become clear once we identify this reduction with the factorization
WV −1MU−1 = M ′.

Our aim is to show that the reduction in this case can actually be obtained from the
first procedure. We need two concepts.

Definition 6.1. If A = [aij ] is m× n then
(i) Ā = [āij ], where aij = am+1−j,n+1−i

(ii) A∼ = [a∼ij ] where in a∼ij we reverse all products, if any.
The former can be thought of as Ā = (FAF )T , where F is the ‘flip’ matrix 0 1

.. .

1 0

 ,

provided we block transpose.
In particular if D = diag(A1, .., An) then D̄ = diag(An, .., A1).
We shall need
Theorem 6.2. Consider the matrices Am×k, Bk×` and C`×n over an arbitrary

ring. Then (ABC)∼ = C̄B̄Ā

Proof. (C̄B̄Ā)ij =
∑̀
u=1

k∑
v=1

(C̄)iu(B̄)uv(Ā)vl which in turn equals

∑̀
u=1

k∑
v=1

c`+1−u,n+1−ibk+1−v,`+1−uam+1−j,k+1−v.

Now set r = ` + 1− u and s = k + 1− v. This gives

(C̄B̄Ā)ij =
∑̀
r=1

k∑
s=1

cr,n+1−ibs,ram+1−j,s.

On the other hand, (ABC)ij =
k∑

s=1

∑̀
r=1

aisbsrcrj and hence

(ABC∼)ij =
k∑

s=1

∑̀
r=1

crjbsrais.

Next we have
(
(ABC)∼

)
ij

=
k∑

s=1

∑̀
r=1

cr,n+1−ibsram+1−j,s, which is the (i, j) entry in

the RHS.
We shall apply this to the reduction P ′MQ′ = N ′, as given in 4.8-4.11.
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Theorem 4.4 ensures that Q̄′M̄P̄ ′ = N̄ ′, in which

N̄ ′ =


An 0

An−1

. . .
R̄n R̄n−1 · · · A2

· · · R̄2 A1

 ,(6.2)

with R̄k = (I −N ′
k−1(N

′)+k−1)π̄k−1Ck(I −A+
k Ak) and

P̄ ′ =
[

In−2 0
0 P̄ ′

2

]
...P̄ ′

n =
[

In−k 0
0 ∆̄k

]
,

with ∆̄k =
[

Ik−2 0
0 P̄ ′

2

]
..

[
1 0
0 P̄ ′

k−1

]
P̄ ′

k and

Q̄′ = Q̄′
n..

[
In−2 0

0 Q̄′
2

]
=

[
In−k 0

0 π̄k

]
,

with π̄k = Q̄′
k

[
1 0
0 Q̄′

k−1

]
...

[
Ik−2 0

0 Q̄′
k−1

]
, in which

P̄ ′
k =

[
1 0

−(N ′)+k−1π̄
′
k−1Ck Ik−1

]
and

Q̄′
k =

[
1 0

−(I −N ′
k−1(N

′)+k−1)π̄′k−1CkA+
k Ik−1

]
.

To identify this canonical form we recall that

∆′
k+1 = P ′

k+1

[
∆′

k 0
0 1I

]
=

[
∆′

k 0
−Bk+1πkD+

k ∆′
k 1

]
and

π′k+1 =
[

π′k 0
0 I

]
Q′

k+1 =
[

π′k 0
−q′k+1 1

] .(6.3)

Again using Theorem 4.4 we now obtain

π̄′k+1 =
[

1 0
−q̄′k+1 π̄′k

]
and ∆̄′

k+1 =
[

1 0
−∆̄kD+

k π̄′kCk+1 ∆̄′
k

]
.(6.4)

In particular,

Q̄′ =


1 0

1
. . .

−̄q′n −̄q′n−1 · · · 1
· · · −̄q′2 1

 .(6.5)
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From the form of Q̄′ we see that Q̄′ = I−(I−DD+)Q̄′CD+, in which DD+Q̄′ = DD+

(Here D is labeled backwards!). This gives Q̄′(I +CD+) = I +DD+CD+ from which
we see that Q̄′ = (I + DD+CD+)(I + CD+)−1. Since M = D + B = D + C
(with column partitioning and reverse numbering), we can identify these matrices as
Q̄′ = WV −1, where W = I + DD+CD+ and V = I + CD+.

Lastly, if U = I + D+C =
[

? ?
? Uk

]
then

Uk+1 =
[

1 0
D+

k Ck+1 Uk

]
and consequently,

U−1
k+1 =

[
1 0

−U−1
k D+

k Ck+1 U−1
k

]
.

On the other hand, we may match this with 6.4 in which U−1
2 = ∆2. Note that this

uses D+
k π̄′k = D+

k ! We have thus shown that U−1 = P ′.

Remarks
(i) The “horizontal” reductions V −1MU−1Z and WV −1MU−1, respectively, corre-
spond to the “row” and “column” partitioned cases.
(ii) Since V −1MU−1Z = WV −1MU−1 = D + Y = D + Ȳ , we see that we have two
sets of consistency conditions for M ∼ D, i.e., Y = 0 and Ȳ = 0. That is,

Yk = (1−AkA+
k )Bkπk−1(I −D+

k−1Dk−1) = 0, k = 2, . . . , n(6.6)

and

Ȳk = (1−Dk−1D
+
k−1)π̄k−1Ck(I −A+

k Ak) = 0, k = 2, . . . , n.(6.7)

These respectively correspond to the rows or columns of Y being zero.

In conclusion, let us return to Theorem 4.1.

Consider

N̄ ′ =
[

? ?
? N̄ ′

k

]
and R̄k as given in 6.2. We may again apply Lemma 3.4 together with R̄kA+

k = 0
and N̄ ′+

k−1R̄k = 0, to obtain a reflexive inverse inverse N̄ ′
k such that
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N̄ ′+
k N̄ ′

k =
[

A+
k Ak + (I −A+

k Ak)R̄+
k R̄k 0

0 N̄ ′+
k−1N̄

′
k−1

]
It now follows by induction, that if (N̄ ′)+k−1N̄

′
k−1 is diagonal, then so is N̄ ′

kN̄ ′
k,

and has the form
N̄ ′+

k N̄ ′
k = diag[A+

k Ak + (I −A+
k Ak)R̄+

k R̄k, . . . , A+
2 A2 + (1−A+

2 A2)R̄+
2 R̄2, A+

1 A1]
for k = 1, . . . , n.

When k = n, we arrive at D̄ = N̄ ′+
n N̄ ′

n, as desired.

As before, because the product of A+
k Ak and I −A+

k Ak is zero, we see that

RS[A+
k Ak + (1−A+

k Ak)R̄+
k R̄k] = RS(A+

k Ak) u RS[(1−A+
k Ak)R̄+

k R̄k]

as an internal direct sum, and hence that

RS(Ak) = RS(A+
k Ak) ⊆ RS[A+

k Ak + (1−A+
k Ak)R̄+

k R̄k)].

This allows us to infer that
Corollary 6.3.

RS(D̄) =

 RS(A1)
...

RS(An)

 ⊆


RS[A+
n An u (1−A+

n An)R̄+
n R̄n]

...
RS[A+

2 A2 u (1−A+
2 A2)R̄+

2 R̄2]
RS(A+

1 A1)

 = RS(D̄)

We may now combine Corollaries 3.2 and 6.3 to conclude that
(i) RS(D̄) ⊆ RS(D̄)
(ii) RS(M̄) ∼= RS(N̄ ′) = RS[N̄ ′+N̄ ′] = RS(D̄)
(iii) If M̄ h D̄ then RS(D̄) ∼= RS(M̄) ∼= RS(D̄).

Now if Rq×q is finite, then by Theorem 1 of [10], we may conclude that RS(D) =
RS(D̄) and thus RS[(1−A+

k Ak)R̄+
k R̄k = 0. This means that R̄k = R̄kR̄+

k R̄k = 0, for
k = 1, 2, . . . , n and we have the dual Roth Consistency Conditions R̄ = 0, i.e.,

R̄k = (I − N̄ ′
k−1N̄ ′+

k−1)π̄′k−1Ck(1−A+
k Ak) = 0,(6.8)

with reverse numbering.
As before, we can use the ‘barred’ version of Lemma 4.3 to show that these are

equivalent to the simpler consistency conditions that Ȳk = 0 of 6.7.

7. Questions. We close this section with several open questions.
1. Can we improve on the Roth-matrix consistency conditions of 5.2 in terms of

the blocks of the matrix M?
2. Can we use the above technique to derive consistency conditions for the Stein

equation?
3. What is the block form of N+N? Can we use induction?
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4. Are there any other applications of the “bar” lemma?
5. What horizontal consistency conditions does the second canonical form cor-

respond to?
6. Can we deduce Theorem 6.2 from the corresponding result with just two

factors ?
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