
Refocusing generalised normalisation

José Esṕırito Santo?

Departamento de Matemática
Universidade do Minho

Portugal
jes@math.uminho.pt

Abstract. When defined with general elimination/application rules, nat-
ural deduction and λ-calculus become closer to sequent calculus. In order
to get real isomorphism, normalisation has to be defined in a “multiary”
variant, in which reduction rules are necessarily non-local (reason: no-
malisation, like cut-elimination, acts at the head of applicative terms,
but natural deduction focuses at the tail of such terms). Non-local rules
are bad, for instance, for the mechanization of the system. A solution
is to extend natural deduction even further to a unified calculus based
on the unification of cut and general elimination. In the unified calculus,
a sequent term behaves like in the sequent calculus, whereas the reduc-
tion steps of a natural deduction term are interleaved with explicit steps
for bringing heads to focus. A variant of the calculus has the symmetric
role of improving sequent calculus in dealing with tail-active permutative
conversions.
Keywords: normalisation, generalised elimination rules, multiarity

1 Introduction

Natural deduction with general elimination rules is closer to sequent calculus
than traditional natural deduction [10]. This paper investigates the exact re-
alization of this claim, and the outcome of such realization, in the context of
intuitionistic implicational logic.

In [10] von Plato obtains a perfect correspondence between “fully normal”
deductions and cut-free sequent derivation, extending to a bijection between nat-
ural deductions and a subset of sequent derivation (where cuts are necessarily
“right-principal”). In this paper we start by investigating the isomorphism be-
tween cut-elimination and generalised normalisation. The systems are presented
as typed λ-calculi, and a computational reading is present throughout.

Sequent calculus is presented as system λGm, where cuts are “right-principal”.
In λGm there is the so-called multiarity facility, i.e. the facility of not naming
an active, linearly left-introduced formula [9]. In this system cuts correspond to
applicative terms, consisting of a head, a list of arguments, and a “continuation”
(or tail).

? The author is supported by FCT through the Centro de Matemática da Universidade
do Minho.

In order to get real isomorphism, natural deduction is defined as the system
λNm, a multiary extension of von Plato’s system. However, normalisation has
to be defined with non-local reduction rules. The reason is simple: normalisation,
like cut-elimination, acts at the head of applicative terms, but natural deduction
focuses at the tail of such terms. Now, in a multiary system, heads are arbitrar-
ily distant from tails. So, we get isomorphism, but normalisation in the relevant
natural deduction system is just a clumsy way of doing cut-elimination. Sym-
metrically, sequent calculus is the wrong setting for doing tail-active permutative
conversions.

A way out of this situation, which is simultaneously the main outcome of
proving λGm ∼= λNm, suggested by the analysis of this isomorphism, is to extend
natural deduction even further, to a calculus λU that unifies λGm and λNm.
This unified calculus is based on the unification of cut and general elimination.

In the unified calculus all reduction rules are local, and a sequent term be-
haves like in the sequent calculus, whereas the reduction steps of a natural de-
duction term are interleaved with explicit steps for bringing heads to focus. This
gives an implementation of multiary normalisation with local reduction steps.

The unified calculus seems particularly appropriate for dealing with con-
versions with are both head-acting and tail-acting. A variant of the calculus
is suggested which has the role of improving sequent calculus in dealing with
tail-acting permutative conversions.

Structure of the paper: Section 2 presents λGm, λNm and λGm ∼= λNm.
Section 3 is the central contribution, presenting the unified calculus λU and its
properties and variants. Section 4 concludes.

Notations: Types (=formulas) are ranged over by A,B, C and generated
from type variables using the “arrow type” (=implication), written A ⊃ B.
Contexts Γ are consistent sets of declarations x : A. “Consistent” means that
for each variable x there is at most one declaration in Γ . The notation Γ, x : A
always denotes a consistent union, that is, one that produces a consistent set.
Barendregt’s variable convention is adopted. In particular, we take renaming of
bound variables for granted. Substitution is denoted by [/x] . “s.n.” abbreviates
“strongly normalising”.

2 Isomorphism

Natural deduction with general elimination rules: This system [10] may
be presented as a type system for the λ-calculus with generalised application.
The latter is the system ΛJ of [6], which we rename here as λg, for the sake of
uniformity with the names of other calculi. Terms of λg are given by

M,N, P ::= x |λx.M |M(N,x.P)

The typing rule for generalised application is

Γ ` M : A ⊃ B Γ ` N : A Γ, x : B ` P : C

Γ ` M(N, x.P) : C
gElim

2

The λg-calculus has two reduction rules

(β) (λx.M)(N, y.P) → [[N/x]M/y]P
(π) M(N,x.P)(N ′, y.P ′) → M(N, x.P (N ′, y.P ′)) .

The usual λ-calculus embeds in λg by setting MN = M(N,x.x). Likewise,
modus ponens (=Gentzen’s elimination rule for implication) may be seen as the
particular case of gElim where B = C and the rightmost premiss is omitted.

Sequent calculus: We present the system λGm (“G” is after Gentzen). It
should be understood as an extension of the λ-calculus whose typing rules define
a sequent calculus. As an extension of the λ-calculus, it adds to the application
constructor the features of generality and multiarity, to be explained soon. As
a sequent calculus, λGm contains, as primitive, cuts of a special form, namely
those whose cut-formula in the right premiss is principal in a left-introduction.

There are two sorts of expressions in λGm:

(Terms) t, u, v ::= x |λx.t | tl
(Lists) l ::= u · (x)v |u :: l

A term of the form tl is called a cut. In general, l has the form u1 :: ... :: un−1 ::
un · (x)v, for some n ≥ 1. We regard these expressions as generalised lists. In tl,
think of t as a function and of l as an expression that provides a non-empty list
of arguments for t (this is the multiarity feature), plus some “continuation” (x)v,
specifying what to do after the last argument is consumed (this is the generality
feature).

Define [u] = u · (x)x. Expressions of the form u1 :: ... :: un−1 :: [un] are
regarded as lists, writen as [u1, ..., un−1, un], and interpreted in [5] as “applicative
contexts”. Lists in λGm may be interpreted as generalised applicative contexts.

There are two sorts of sequents in λGm, namely Γ ` t : A and Γ ; A ` l : B.
The distinguished position in the antecedent of sequents of the latter kind is
named the stoup. Typing rules are as follows:

Γ, x : A ` x : A
Axiom

Γ, x : A ` t : B

Γ ` λx.t : A ⊃ B
Right

Γ ` u : A Γ ;B ` l : C

Γ ;A ⊃ B ` u :: l : C
plLeft

Γ ` t : A Γ ; A ` l : B

Γ ` tl : B
Cut

Γ ` u : A Γ, x : B ` v : C

Γ ; A ⊃ B ` u · (x)v : C
gLeft

These rules define a sequent calculus, with a primitive rule of cut, and two sorts of
primitive left-introduction rules: general left-introduction (gLeft) and principal-
linear left-introduction (plLeft). The system is such that, in any derivation, the
stoup always contains a formula that is principal and linear, that is, principal in
a left-introduction rule, and introduced without contraction. Given that the cut
rule and the left-introduction rules require some of the active formulas and/or

3

the principal formula to be in the stoup, these inference rules are of a particular
kind. The cut-formula is always an implication and cut is right-principal. As to
left-introduction rules, they are both linear, in the sense that they both intro-
duce without contraction. In addition, rule plLeft, by requiring its right active
formula to be principal and linear, is of the restricted form identified in [5, 1, 7].

There are three reduction rules

(β1) (λx.t)(u · (y)v) → [[u/x]t/y]v (π) (tl)l′ → t(l@l′)
(β2) (λx.t)(u :: l) → ([u/x]t)l

where l@l′ is the “append” of generalised lists l and l′, defined by

(u :: l)@l′ = u :: (l@l′) (u · (x)v)@l′ = u · (x)(vl′) .

Let β = β1 ∪ β2. By cut-elimination we mean βπ-reduction. A βπ-nf is a term
where every cut has the form xl. These normal forms correspond exactly to the
multiary sequent terms of [9]. In λGm, a λg-term is a term without occurrences
of u :: l (hence every cut in a λg-term is a g-application t(u · (x)v)).

Multiary natural deduction: We present the system λNm. It should be
understood as an extension of the λg-calculus and of natural deduction with
general elimination rules. This system has an implementation of the multiarity
feature (the ability of forming chains of arguments for a function) within the
framework of natural deduction.

Expressions in λNm are given by:

(Terms) M,N, P ::= x |λx.M | app(F, N, (x)P)
(Functions) F ::= hd(M) |FN

This is a syntax with two syntactic classes: terms and functions. A term of the
form app(F, N, (x)P) may be called either gm-application or outer application.
Think of this construction as an extension of the generalized application of λg.
Indeed, generalized application is recovered as app(hd(M), N, (x)P), because
any term M can be coerced to a function hd(M). There is a second kind of
application construction, FN , named inner application or mp-application. Here
mp is mnemonic of modus ponens.

The elements of the second syntactic class are named functions because, in
expressions, they only occur in the function position of applications. Application
FN is inner because, being a function, occurs in the function position of another
application. The general form of a function is hd(M)N1...Nm−1, for some m ≥ 1.
A function of the form hd(M) is called a head. An intuition about functions is
that they are expressions which require an immediate and linear use. On the
other hand, in app(F, N, (x)P), the use of the application of F to N , specified
by the “continuation” (x)P is required neither to be immediate nor linear.

There are two sorts of sequents in λNm, namely Γ ` M : A and Γ B F : A.
Typing rules are as follows:

4

Γ, x : A ` x : A
Assumption

Γ ` M : A
Γ B hd(M) : A

Coercion

Γ, x : A ` M : B

Γ ` λx.M : A ⊃ B
Intro

Γ B F : A ⊃ B Γ ` N : A
Γ B FN : B

mpElim

Γ B F : A ⊃ B Γ ` N : A Γ, x : B ` P : C

Γ ` app(F, N, (x)P) : C
gmElim

In accordance with what was observed before, this is a natural deduction system
extending that of von Plato’s. The system contains two primitive elimination
rules, general multiary elimination (or outer elimination) and inner elimination,
the latter being a form of modus ponens. There is a further rule, whose instances
are called coercions, with coercion formula A. The general elimination rule is
recovered as a combination of outer elimination and coercion. In addition, a
sequent of the form Γ B F : A occurs in a derivation of the system iff it occurs
as the major premiss of an elimination and A is an implication. The Coercion
rule, then, means that any sequent of the first kind can serve as major premiss
of an elimination.

There are three reduction rules: two β-rules

(β1) app(hd(λx.M), N, (y)P) → [[N/x]M/y]P
(β2) hd(λx.M)N → hd([N/x]M) ,

and rule (π)

app(hd(app(F, N, (x)P))N1...Nm−1, Nm, (y)P ′) →
→ app(F, N, (x)app(hd(P)N1...Nm−1, Nm, (y)P ′)) ,

where m ≥ 1. Let β = β1 ∪ β2. By gm-normalisation we mean βπ-reduction.
Notice that rule β2 is a relation on functions. As to rule π, if F = hd(M) and
m = 1, we recognize the π rule of λg. In the general case, rule π is non-local,
because, if we let the redex be app(F ′, Nm, (y)P), it requires the full inspection
of F ′ until the head emerges. Also a β2-reduction step requires the full inspection
of function F of the application app(F,N, (y)P) where the β2-redex is located.

In λNm, a λg-terms is a term without occurrences of FN (hence every gm-
application in a λg-term is a g-application app(hd(M), N, (x)P)). M is in βπ-nf
iff every coercion in M is of the form hd(x). A derivation D in λNm is βπ-normal
iff every coercion formula occurring in D is an assumption. In particular, this
gives von Plato’s criterion of normality for λg-terms, because in λg coercion
formula = main premiss of elimination.

Remark: Both λGm and λNm are new presentations of the system λJm of
[3]. A gm-application is written there t(u1, [u2, ..., un], (x)v). This representation
brings to the surface both the head t and the “continuation” (x)v. The price
to pay for these advantages is that the presentation in op. cit. has a hybrid

5

proof-theoretical character. The typing rule of the gm-application constructor
in op. cit. is an elimination rule, but lists l of a restricted form are primitive.
Nevertheless, λGm and λNm inherit the properties of λJm [4]:

Theorem 1. In λGm and λNm, βπ-reduction is s.n. on typable terms and
confluent.

Mappings Θ and Ψ : We now define mappings between the set of λGm-
terms and the set of λNm-terms. Once and for all, variables and λ-abstractions
are mapped identically. The question will always be how to map cuts, left intro-
ductions and eliminations.

We start with a mapping Ψ : λNm−Terms −→ λGm−Terms. Let Ψ(M) =
t, Ψ(Ni) = ui and Ψ(P) = v. The idea is to map, say, app(hd(M)N1N2, N3, (x)P)
to t(u1 :: u2 :: u3 · (x)v). This is achieved with the help of an auxiliary function
Ψ : λNm− Functions× λGm− Lists −→ λGm− Terms as follows:

Ψ(x) = x Ψ(hd(M), l) = (ΨM)l
Ψ(λx.M) = λx.ΨM Ψ(FN, l) = Ψ(F, ΨN :: l)

Ψ(app(F,N, (x)P)) = Ψ(F, ΨN · (x)ΨP)

Next we consider a mapping Θ : λGm − Terms −→ λNm − Terms. Let
Θ(t) = M , Θ(ui) = Ni and Θ(v) = P . The idea is to map, say, t(u1 :: u2 ::
u3 · (x)v) to app(hd(M)N1N2, N3, (x)P). This is achieved with the help of an
auxiliary function Θ : λNm− Functions× λGm−Lists −→ λNm− Terms as
follows:

Θ(x) = x Θ(F, u · (x)v) = app(F, Θu, (x)Θv)
Θ(λx.t) = λx.Θt Θ(F, u :: l) = Θ(FΘu, l)

Θ(tl) = Θ(hd(Θt), l)

Theorem 2 (Isomorphism). Mappings Ψ and Θ are sound, mutually inverse
bijections between the set of λGm-terms and the set of λNm-terms. Moreover,
for each R ∈ {β1, β2, π}:
1. M →R M ′ in λNm iff ΨM →R ΨM ′ in λGm.
2. t →R t′ in λGm iff Θt →R Θt′ in λNm.

The proof follows the pattern of proof of similar results in [2].

3 Unification

A problem of wrong focus: Applicative terms in λGm and λNm have the
form of cuts and gm-eliminations

t(u1 :: ... :: um−1 :: um · (x)v) , (1)
app(hd(M)N1...Nm−1, Nm, (x)P) . (2)

6

respectively. In both cases there is a head, m arguments (m ≥ 1) and a tail (or
continuation). In the first case, the term is split next to the head, with the rest
of data organized as a list l; in the second case, the term is split just before the
tail, with the rest of data organized as a function F . In the first case, the head
is focused, in the second it is the tail that is focused.

Now both cut-elimination and gm-normalisation aim at reducing heads to
variables, and are a process of transforming heads. In this respect, the focus
of tails is unfortunate and explains the fact that both β2 and π are non-local
reduction rules in the natural deduction system λNm.

Non-local rules are bad, for instance, for the implementation of λNm, where
the search for heads has to be made explicitly. The solution we propose is to
extend λNm to a calculus where applicative terms are split at arbitrary position,
and not just around the tail. This means that both functions F and lists l are
used in the representation of applicative terms, and this representation turns out
to unify both cuts and gm-eliminations.

The telescopic effect: The idea of manipulating functions F and lists l in
the same system has many motivations. For instance, the intuition about lists l
is that they are “applicative contexts”, prescribing a linear and immediate use
to some expression to be supplied; symmetrically, functions F are expressions
which are used in a linear and immediate way (in the function position of some
application). But so far functions and lists live in separate systems.

Another motivation is as follows. Let M0 be the gm-application (2), and let
Θt = M , Θui = Ni and Θv = P . There are m choices of F, l such that M0 =
Θ(F, l), ranging from the choice F = hd(M)N1...Nm−1 and l = um · (x)v to the
choice F = hd(M) and l = u1 :: ...um−1 :: um · (x)v. This last case is particularly
important, because the representation of application M0 as Θ(hd(M), l), for such
l, brings to the surface the head hd(M). In general, we will use pattern matching
of gm-application with Θ(hd(M), l) to obtain the effect of extracting the head
of the application, an effect we call the telescopic effect. Similarly one extracts
the tail of cuts by pattern-matching with Ψ(F, u · (x)v).

The telescopic effect is useful in making global rules look local. This is
achieved by manipulating simultaneously, in the meta-language, both functions
F and lists l. For instance, reduction rule π in λNm may be defined as follows:

(π) Θ(hd(app(F, N, (x)P)), l) → app(F, N, (x)Θ(hd(P), l)) .

The calculus we introduce next manipulates expressions Θ(F, l) formally.
The unified calculus: Expressions in λU are given by:

(Terms) M, N,P ::= x |λx.M | θ(F, L)
(Functions) F ::= hd(M) |FN
(Lists) L,K ::= N :: L |N · (x)P

θ(F,L) is called a unified cut. The symbol θ is a formal counterpart of Θ. In
θ(F,L), we say that F is in focus. The new typing rule is:

7

Γ B F : A Γ ; L : A ` B

Γ ` θ(F, L) : B
uCut

In λU , a sequent term is a term with no occurrences of FN , i.e an elimination-
free term, whereas a natural deduction term is a term with no occurrences of
N :: L, i.e. a left-introduction-free term. In sequent terms and natural deduction
terms, unified cuts have the form

ML = θ(hd(M), L) app(F,N, (x)P) = θ(F, N · (x)P)

respectively. These equations show how unified cut unifies cut and and gm-
elimination. Sequent terms (resp. natural deduction terms) dispense with the
syntactic class of functions F (resp. lists L) and constitute a copy of λGm-terms
(resp. λNm-terms) in λU . Given a λGm-term t (resp. λNm-term M), we denote
by t′ (resp. M ′) its copy in λU .

The reduction rules of λU are as follows:

(β1) θ(hd(λx.M), N · (y)P) → [[N/x]M/y]P
(β2) θ(hd(λx.M), N :: L) → θ(hd([N/x]M), L)
(π) θ(hd(θ(F, L)),K) → θ(F,L@K)
(ψ) θ(FN, L) → θ(F,N :: L)

Let β = β1∪β2. Rules β and π require a head in focus. For this reason, are local
transformations. Rule ψ is a step towards focusing a head. A λU -term is a ψ-nf
iff it is a sequent term. ψ-reduction is terminating (it decreases the number of
occurrences of FN) and locally confluent. Hence it is confluent. We denote by
ψ(M) the unique ψ-nf of a λU -term M . It holds, for all M ∈ λNm, that

ψ(M ′) = Ψ(M)′ .

It is easy to see that sequent terms are closed for βπ-reduction, and a λGm-
term t βπ-reduces in λGm exactly as t′ βπ-reduces in λU . Let us see what
happens when we βπ-reduce M ′ in λU , for M ∈ λNm.

Proposition 1. Let R ∈ {β1, β2, π}.
1. In λU , if M →R M1 and M →ψ M2 then there is M3 such that M2 →R M3

and M1 →∗
ψ M3.

2. If M →R N in λNm, then there are M1, N1 such that, in λU : M1 →R N1

and M →∗
ψ M1 and N →∗

ψ N1.

Theorem 3. Suppose M1 →R1 M2 → (· · ·) → Mn →Rn Mn+1 is a βπ-
reduction sequence in λNm (hence each Ri ∈ {β1, β2, π}). Then, the reductions
in λU depicted in Fig. 1 hold, when vertical arrows denote ψ-reduction.

Proof: By induction on n, using the previous proposition and confluence of ψ. ¥

8

Fig. 1. Normalisation in λU

M1
R1- M2

R2- M3
- (· · ·) - Mn

Rn- Mn+1

M ′
1 M ′

2 M ′
3 (· · ·) M ′

n M ′
n+1

•
??

.........

R1

- •
??

.........

•
??

..........

R2

- •
??

..........................

(· · ·)

•
??

..

Rn

- •
??

...

ψ(M ′
1)

??

...
R1- ψ(M ′

2)

??

..........................
R2- ψ(M ′

3)

??

..........................

- (· · ·) - ψ(M ′
n)

??

........
Rn- ψ(M ′

n+1)

??

........

Regarding Fig. 1 again, we can now compare reduction of M1 in λNm with
reduction of M ′

1 in λU . The latter is obtained from the former by interleaving
ψ-reduction steps. To a possibly non-local reduction step →Ri in the former
corresponds a necessarily local reduction step →Ri in the latter. The interleaved
ψ-reduction steps do explicitly the focusing of heads implicit in the reduction
steps at the λNm level. The reduction of ψ(M ′

1) is morally the same as the
reduction of Ψ(M1) in λGm. Fig. 1 is a refinement of the “only if” part of
statement 1 in Theorem 2.

Finally, observe that part 1 of Proposition 1 allows the projection of βπψ-
reduction sequences of λU into βπ-reduction sequences of λGm. So, it is easy to
lift Theorem 1 from λGm to λU .

Theorem 4. βπψ-reduction in λU is s.n. on typable terms and confluent.

Variant of the unified calculus: Consider a variant of permutative con-
version p of λJm [3], given here for λGm with the help of telescopic effect:

(p) Ψ(F, u · (x)v) → [Ψ(F, [u])/x]v, if v 6= x .

This rule acts on tails, eliminating occurrences of general left-introduction. It is
a non-local rule in λGm. A variant of the unified calculus, seen as an extension
of λGm, can be defined for tail-active conversions, with terms:

t, u, v ::= x |λx.t |ψ(f, l)

9

The p-rule now reads ψ(f, u · (x)v) → [ψ(f, [u])/x]v. In ψ(f, l) the focus is l and
a rule θ is needed for bringing continuations to focus: ψ(f, u :: l) → ψ(fu, l).

4 Conclusions

From a logical point of view, λU achieves the same goal as the “uniform” calculus
of [8], but with a radically different approach (the latter approach is to extend
natural deduction with general elimination and general introduction rules).

It is to be expected that λU admits extensions (encompassing a sequent
calculus where cuts are not necessarily right-principal) and further variants. For
instance, consider the following rules for λNm, given with telescopic effect:

(µ) Θ(F,N · (x)Θ(hd(x), l)) → Θ(FN, l), if x /∈ l .

This is a natural deduction variant of rule µ introduced in [9]. Consider the
µ-redex. We analyze the tail of the outer applicative term and the head of the
inner applicative term. This rules needs a mix of head and tail focus. Maybe a
good system for dealing with such rules is a variant of the unified calculus with
reduction modulo the equation θ(FN,L) = θ(F, N :: L).1

References

1. R. Dyckhoff and L. Pinto. Permutability of proofs in intuitionistic sequent calculi.
Theoretical Computer Science, 212:141–155, 1999.

2. J. Esṕırito Santo. Conservative extensions of the λ-calculus for the computational
interpretation of sequent calculus. PhD thesis, University of Edinburgh, 2002.
Available at http://www.lfcs.informatics.ed.ac.uk/reports/.

3. J. Esṕırito Santo and Lúıs Pinto. Permutative conversions in intuitionistic multiary
sequent calculus with cuts. In M. Hoffman, editor, Proc. of TLCA’03, volume 2701
of Lecture Notes in Computer Science, pages 286–300. Springer-Verlag, 2003.

4. J. Esṕırito Santo and Lúıs Pinto. Confluence and strong normalisation of the gen-
eralised multiary λ-calculus. In Ferruccio Damiani Stefano Berardi, Mario Coppo,
editor, Revised selected papers from the International Workshop TYPES 2003, vol-
ume 3085 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

5. H. Herbelin. A λ-calculus structure isomorphic to a Gentzen-style sequent calculus
structure. In L. Pacholski and J. Tiuryn, editors, Proceedings of CSL’94, volume
933 of Lecture Notes in Computer Science, pages 61–75. Springer-Verlag, 1995.

6. F. Joachimski and R. Matthes. Short proofs of normalization for the simply-typed
lambda-calculus, permutative conversions and Gödel’s T. Archive for Mathematical
Logic, 42:59–87, 2003.

7. G. Mints. Normal forms for sequent derivations. In P. Odifreddi, editor,
Kreiseliana, pages 469–492. A. K. Peters, Wellesley, Massachusetts, 1996.

8. S. Negri and J. von Plato. Structural Proof Theory. Cambridge, 2001.
9. H. Schwichtenberg. Termination of permutative conversions in intuitionistic

gentzen calculi. Theoretical Computer Science, 212, 1999.
10. J. von Plato. Natural deduction with general elimination rules. Annals of Mathe-

matical Logic, 40(7):541–567, 2001.

1 Acknowledgment: The diagram in Fig. 1 was produced with Paul Taylor’s macros.

10

