
Completing Herbelin’s programme

José Esṕırito Santo

Departamento de Matemática
Universidade do Minho

Portugal
jes@math.uminho.pt

Abstract. In 1994 Herbelin started and partially achieved the pro-
gramme of showing that, for intuitionistic implicational logic, there is
a Curry-Howard interpretation of sequent calculus into a variant of the
λ-calculus, specifically a variant which manipulates formally “applicative
contexts” and inverts the associativity of “applicative terms”. Herbelin
worked with a fragment of sequent calculus with constraints on left intro-
duction. In this paper we complete Herbelin’s programme for full sequent
calculus, that is, sequent calculus without the mentioned constraints, but
where permutative conversions necessarily show up. This requires the
introduction of a lambda-like calculus for full sequent calculus and an
extension of natural deduction that gives meaning to “applicative con-
texts” and “applicative terms”. Such extension is a calculus with modus

ponens and primitive substitution that refines von Plato’s natural de-
duction; it is also a “coercion calculus”, in the sense of Cervesato and
Pfenning. The proof-theoretical outcome is noteworthy: the puzzling re-
lationship between cut and substitution is settled; and cut-elimination in
sequent calculus is proven isomorphic to normalisation in the proposed
natural deduction system. The isomorphism is the mapping that inverts
the associativity of applicative terms.

1 Introduction

Herbelin’s CSL’94 paper [11] is an integrated contribution into two closely related
subjects: structural proof theory and the study of the computational interpreta-
tion of sequent calculus. Here, structural proof theory is taken in the restricted
sense of the study of the relationship between natural deduction and sequent
calculus, the two kinds of proof systems introduced since the subject was born
[10]. Such relationship is a puzzle that constantly attracted attention during the
last 70 years [10, 18, 22, 17, 14, 20]. The study of the computational interpretation
of sequent calculus, with the purpose of extending the Curry-Howard correspon-
dence, is a relatively recent topic, with the first explicit contributions starting
in the early 1990’s [9, 21, 13]. An integrated contribution to the two subjects is
desirable: one should understand the differences and similarities between nat-
ural deduction and sequent calculus, if one wants to extend the Curry-Howard
correspondence; and a way of expressing those differences and similarities is,
precisely, via the corresponding computational interpretations.

Herbelin’s paper initiates the programme of defining a λ-calculus (with a
strongly normalising set of reduction rules) such that, by means of the calculus,
the following two goals are achieved simultaneously: (1) to give a convincing
computational interpretation of (a fragment of) sequent calculus, along the lines
of the Curry-Howard correspondence; and (2) to express the difference between
sequent calculus and natural deduction, reducing it to the mere inversion of the
associativity of applicative terms.

Herbelin studied a fragment LJT of sequent calculus LJ and gave its com-
putational interpretation in terms of the so-called λ-calculus. Contrary to earlier
contributions, whose focus was on the feature of pattern matching, in λ the nov-
elty is the existence of an auxiliary syntactic class of applicative contexts. In the
case of intuitionistic implication, an applicative context is simply a list of terms,
understood as a “multiary” argument for functional application. Hence, “applica-
tive terms” in λ have the form t[u1, ..., um]. Herbelin concludes that the difference
between sequent calculus and natural deduction resides in the organization of ap-
plicative terms: sequent calculus is right-associative t(u1 :: ...(un :: [])), whereas
natural deduction is left-associative (...(MN1)...Nm).

Herbelin’s paper achieved (1) for LJT and has the merit of suggesting that
(2) can be achieved. Verification of (2) happened in later papers. The mapping
that inverts the associativity of applicative terms is proved in [3] to be a bijec-
tion between normal λ-terms and cut-free λ-terms, in [5] to be an isomorphism
between the λ-calculus and a fragment of λ, and in [6] to be an isomorphism
between an extension of the λ-calculus and a larger fragment of λ. Fulfillment of
(2) is useful for (1), because only an isomorphic natural deduction system gives
rigorous meaning to “applicative context” and “applicative term”.

Notwithstanding the parts of Herbelin’s programme already completed (in-
cluding the extension of (1) to classical logic in [2]), a lot remains unfinished.
LJT is a permutation-free fragment, where only a restricted form of left intro-
duction is available and where the computational meaning of permutation (so
typical of sequent calculus) is absent. In addition, the fulfilment of (2), in con-
nection with larger fragments of sequent calculus, requires the extension of the
natural deduction system. One idea for this extension is in [6], and turns out to
be the idea of defining natural deduction as a “coercion calculus”, in the sense
of Cervesato and Pfenning [1]. Another idea is that of generalised elimination
rules, due to von Plato [20].

In the setting of intuitionistic implicational logic, we contribute to the com-
pletion of Herbelin’s programme for full sequent calculus, that is, sequent calcu-
lus without constraints on left introductions (but where permutative conversions
necessarily show up). The computational interpretation is in terms of a λ-calculus
λGtz with a primitive notion of applicative context, taken in a natural, generalised
sense. In order to fulfil (2), a system of natural deduction λNat is defined that
extends and refines von Plato’s natural deduction. It is a calculus with modus
ponens and primitive substitution and it is also a coercion calculus. Then we
prove that λGtz ∼= λNat in the fullest sense: the mapping that inverts the associa-
tivity of applicative terms is a sound bijection between the sets of terms of the

2

two calculi and, in addition, establishes an isomorphism between cut-elimination
in λGtz and normalisation in λNat. Strong cut-elimination for λGtz is proved via
an interpretation into the calculus of “delayed substitutions” λs of [7]; strong
normalisation for λNat follows by isomorphism. These results constitute, for the
logic under analysis here, considerable improvements over [11, 1, 20, 6].

The paper is organized as follows. Section 2 presents λGtz. Section 3 presents
λNat. Sections 4 and 5 prove and analyze λGtz ∼= λNat. Section 6 concludes.

Notations: Types (=formulas) are ranged over by A,B,C and generated
from type variables using the “arrow type” (=implication), written A ⊃ B.
Contexts Γ are consistent sets of declarations x : A. “Consistent” means that
for each variable x there is at most one declaration in Γ . The notation Γ, x :
A always produces a consistent set. Meta-substitution is denoted with square
brackets [/x] . All calculi in this paper assume Barendregt’s variable convention
(in particular we take renaming of bound variables for granted).

Naming of systems: sequent calculi are denoted λS (where S is some
tag); natural deduction systems introduced here are denoted λS ; more or less
traditional systems of natural deduction are denoted λS.

2 Sequent calculus

The sequent calculus we introduce is named λGtz (read “λ-Gentzen”).
Expressions and typing rules: There are two sorts of expressions in λGtz:

terms t, u, v and contexts k.

(Terms) t, u, v ::= x |λx.t | tk
(Contexts) k ::= (x)v |u :: k

Terms are either variables x, y, z, abstractions λx.t or cuts tk. Contexts are either
a selection (x)v or a linear left introduction u :: k, often called a cons. x is bound
in (x)v. 1 A computational reading of contexts is as a prescription of what to
do next (with some expression that has to be plugged in). A selection (x)v says
“substitute for x in v” and a cons u :: k says “apply to u and proceed according
to k”. A cut tk is a plugging of a term t in the context k. We will use the following
abbreviations: [] = (x)x, [u1, ..., un] = u1 :: ...un :: [], and 〈u/x〉t = u(x)t.

The typing rules of λGtz are as follows:

Γ, x : A ⊢ x : A
Axiom

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊃ B
Right

Γ ⊢ u : A Γ ;B ⊢ k : C

Γ ;A ⊃ B ⊢ u :: k : C
Left

Γ ⊢ t : A Γ ;A ⊢ k : B

Γ ⊢ tk : B
Cut

Γ, x : A ⊢ v : B

Γ ;A ⊢ (x)v : B
Selection

1 In order to save parentheses, the scope of binders extends to the right as far as
possible.

3

There are two sorts of sequents in λGtz, namely Γ ⊢ t : A and Γ ;A ⊢ k : B. The
distinguished position in the antecedent of sequents of the latter kind contains
the selected formula. There is a typing rule Selection that selects an antecedent
formula. Besides this rule, there are the axiom rule, the introductions on the
left(=antecedent) and on the right(=succedent) of sequents, and the cut.

The typing rules follow a reasonable discipline: active formulas in the an-
tecedent of sequents have to be previously selected (the B in Left and one A
in Cut); and a formula introduced on the left is selected. The latter constraint
implies that a left introduction u :: k is a linear introduction, because there
cannot be an implicit contraction. Full left introduction is recovered as a cut
between an axiom and a linear left introduction, corresponding to x(u :: k). The
cut-elimination process will not touch these trivial cuts. More generally, given
a context k, xk represents the inverse of a selection, that is, the operation that
takes a formula out of the selection position and gives it name x. An implicit
contraction may happen here.

Reduction rules: The reduction rules of λGtz are as follows:

(β) (λx.t)(u :: k) → 〈u/x〉(tk) (σ) 〈t/x〉v → [t/x]v
(π) (tk)k′ → t(k@k′) (µ) (x)xk → k, if x /∈ k

where

(u :: k)@k′ = u :: (k@k′) ((x)v)@k′ = (x)vk′

By cut-elimination we mean βπσ-reduction. Rules β, π and σ aim at eliminating
all cuts that are not of the form x(u :: k). The procedure is standard. If a cut
is a key-cut (both cut-formulas main(=introduced) in the premisses) with cut-
formula A ⊃ B, the cut is reduced to two cuts, with cut-formulas A and B. This
is rule β. If a cut, not of the form x(u :: k), is not a key cut, this means that
it can be permuted to the right (rule σ) or to the left (rule π). The particular
case of σ when v = x is named ǫ and reads 〈t/x〉x → t or t[] → t. A term t is a
βπσ-normal form iff it is generated by the following grammar:

t, u, v ::= x |λx.t |x(u :: k)
k ::= (x)v |u :: k

(1)

There is a further reduction rule, named µ, of a different nature. It undoes the
sequence of inferences consisting of un-selecting and selecting the same formula,
if no implicit contraction is involved. A similar rule has been defined for Parigot’s
λµ-calculus [16], but acting on the RHS of sequents.

Consider the term (λx.t)(u :: k). After a β-step, we get v = 〈u/x〉(tk). If u is
a cut t′k′, v is both a σ- and a π-redex. In this case, there is a choice as to how
to continue evaluation. Opting for σ gives ([u/x]t)k, whereas the π option gives
t′(k′@(x)tk). According to [2], this choice is a choice between a call-by-name and
a call-by-value strategy of evaluation.

Strong normalisation: We give a proof of strong normalisation for λGtz by
defining a reduction-preserving interpretation in the λs-calculus of [7].

The terms of λs are given by:

4

M,N,P ::= x |λx.M |MN | 〈N/x〉M

This set of terms is equipped with the following reduction rules:

(β) (λx.M)N → 〈N/x〉M (π1) (〈P/x〉M)N → 〈P/x〉(MN)
(σ) 〈N/x〉M → [N/x]M (π2) 〈〈P/y〉N/x〉M → 〈P/y〉〈N/x〉M

where meta-substitution [N/x]M is defined as expected. In particular

[N/x]〈P/y〉M = 〈[N/x]P/y〉[N/x]M .

Let π = π1 ∪ π2. We now define a mapping ()
∗

: λGtz → λs. More precisely,
mappings ()

∗
: λGtz − Terms → λs− Terms and (,)

∗
: λs− Terms × λGtz −

Contexts → λs− Terms are defined by simultaneous recursion as follows:

x∗ = x (M, (x)v)
∗

= 〈M/x〉v∗

(λx.t)
∗

= λx.t∗ (M,u :: k)
∗

= (Mu∗, k)
∗

(tk)
∗

= (t∗, k)
∗

The idea is that, if t, ui and v are mapped by ()
∗

to M , Ni and P , respectively,
then t(u1 :: · · ·um :: (x)v) is mapped to 〈MN1 · · ·Nm/x〉P .

Proposition 1. Let R ∈ {β, π, σ, µ}. If t →R u in λGtz, then t∗ →+
βπσ u∗ in λs.

Proof: Follows from the following four facts: (i) (〈N/x〉M,k)
∗ →+

π 〈N/x〉(M,k)
∗
;

(ii) ((M,k)
∗
, k′)

∗
→+

π (M,append(k, k′))
∗
; (iii) ([t/x]u)

∗
= [t∗/x]u∗; and (iv)

〈M/x〉(N, k)
∗ →σ ([M/x]N, k)

∗
, if x /∈ k. �

Theorem 1 (Strong cut-elim.). Every typable t ∈ λGtz is βπσµ-SN.

Proof: [7] proves that every typable t ∈ λs is βπσ-SN (if we use for λs the ob-
vious typing rules). The theorem follows from this fact, the previous proposition
and the fact that ()

∗
preserves typability. �

Related systems: We can easily embed LJ in λGtz, if we define LJ as the
typing system for some obvious term language. The embedding is given by:

Axiom(x) x Left(x,L1, (y)L2) x(u1 :: (y)u2)
Right((x)L) λx.t Cut(L1, (x)L2) t1(x)t2

The cut-free LJ terms correspond to the sub-class of terms in (1) such that k in
x(u :: k) has to be a selection (y)v. These correspond also to von Plato’s “fully
normal ” natural deductions. βπσ-normal forms correspond exactly to Schwicht-
enberg’s multiary cut-free terms [19]. We refer to these as Schwichtenberg nfs.

A context u1 :: ... :: um :: (x)x (m ≥ 0) is called an applicative context, and
may be regarded as a list [u1, ..., um], if we think of (x)x as []. If every context in
a term t is applicative, t is a λ-term. A term t is βπσ-normal and only contains

5

applicative contexts iff t is a cut-free λ-term, in the sense of [11]. We refer to
such terms as Herbelin nfs. They are given by t, u ::= x |λx.t |x(u :: k) and k ::=
[] |u :: k. Another characterisation of this set is as the set of Schwichtenberg’s
terms (1) normal w.r.t. certain permutative conversions [19].

Every cut in λGtz is of the form t(u1 :: ... :: um :: (x)v), with m ≥ 0. Several
interesting fragments of λGtz may be obtained by placing restrictions on m. There
is a m ≥ 1-fragment, which gives a version of the system λJm studied in [8].
There is a m ≤ 1-fragment, which gives a version λgs of the λg-calculus with
explicit substitution λgs, to be defined in the next section. The m ≤ 1-terms are
the terms normal w.r.t. the following permutation rule

(ν) t(u :: v :: k) → t(u :: (z)z(v :: k)) ,

with z /∈ v, k. Notice that →ν⊆→−1
µ . Clearly, ν is terminating and locally con-

fluent. The ν-nf of t is written ν(t).

3 Natural deduction

The natural deduction system we introduce is named λNat (read “λ-natural”).
It is an improvement of natural deduction with general elimination rules.

Natural deduction with general elimination rules: This system [20]
may be presented as a type system for the λ-calculus with generalized applica-
tion. The latter is the system ΛJ of [12], which we rename here as λg, for the
sake of uniformity with the names of other calculi. Terms of λg are given by
M,N,P ::= x |λx.M |M(N,x.P). The typing rule for generalized application
is

Γ ⊢ M : A ⊃ B Γ ⊢ N : A Γ, x : B ⊢ P : C

Γ ⊢ M(N,x.P) : C
gElim

The λg-calculus has two reduction rules:

(β) (λx.M)(N, y.P) → [[N/x]M/y]P
(π) M(N,x.P)(N ′, y.P ′) → M(N,x.P (N ′, y.P ′)) .

Rule π corresponds to the permutative conversion allowed by general elimina-
tions. The βπ-normal terms are given by M,N,P ::= x |λx.M |x(N, y.P) and
correspond to von Plato’s “fully normal” natural deductions. A βπ-normal form
M is called a Mints normal form if, for every application x(N, y.P) in M , P is
y-normal [4]. P is y-normal if P = y or P = y(N ′, y′.P ′) and y /∈ N ′, P ′ and P ′

is y′-normal. Another characterisation of Mints nfs is as βπ-normal forms which
are, in addition, normal w.r.t. a set of permutation rules given in [4].

The λgs-calculus is the following version of λg with explicit substitution. A
new term constructor, explicit substitution 〈N/x〉M , is added. In rule β

(β) (λx.M)(N, y.P) → 〈N/x〉〈M/y〉P ,

two explicit substitutions are generated, instead of two calls to the meta-substitu-
tion. π stays the same. Finally, the calculus contains a new reduction rule, named

6

σ, and defined by 〈N/x〉M → [N/x]M . A λgs-term is in βπσ-normal form iff it
is a λg-term in βπ-normal form.2

The usual λ-calculus embeds in λg by setting MN = M(N,x.x). Likewise,
modus ponens (=Gentzen’s elimination rule for implication) may be seen as the
particular case of the gElim where B = C and the rightmost premiss is omitted.
The set of β-normal λ-terms is in bijective correspondence with the set of Mints
normal forms [14, 4].

Motivation for λNat: If one sees generalised application M(N,x.P) as a sub-
stitution subst(MN,x.P) (the notation here is not important), then one can say
that in λg every ordinary application MN occurs as the actual parameter of a
substitution. This situation has a defect: it is cumbersome to write iterated, ordi-
nary applications. For instance, MNN ′ is written subst(subst(MN,x.x)N ′, y.y),
with x, y fresh. A solution is to allow m ≥ 0 application as actual parameters of
substitutions: subst(MN1...Nm, x.P). The particular case m = 0 encompasses
explicit substitution. The usefulness of allowing m > 1 is precisely in having the
alternative way subst(MNN ′, x.x) of writing MNN ′.

Expressions and typing rules: There are two syntactic classes in λNat:
terms M,N,P and elimination expressions E.

(Terms) M,N,P ::= x |λx.M | {E/x}P
(Elimination-Expressions) E ::= hd(M) |EN

Terms are either variables x, y, z, abstractions λx.M or (primitive) substitutions
{E/x}P . Elimination expressions (EEs, for short) are either coercions hd(M)
(a.k.a. heads) or eliminations EN . So an EE is a sequence of zero or more
eliminations starting from a coerced term and ending as the actual parameter
of a substitution. Hence, every substitution has the form {hd(M)N1...Nm/x}P ,
with m ≥ 0. Generalised elimination is recovered as {hd(M)N/x}P , that is the
particular case m = 1. Ordinary elimination is {hd(M)N/x}x. We will use the
following abbreviations: ap(E) = {E/z}z, MN = ap(hd(M)N) and 〈N/x〉M =
{hd(N)/x}M .

The typing rules of λNat are as follows:

Γ, x : A ⊢ x : A
Assumption

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A ⊃ B
Intro

Γ ⊲ E : A ⊃ B Γ ⊢ N : A
Γ ⊲ EN : B

Elim

Γ ⊲ E : A Γ, x : A ⊢ P : B

Γ ⊢ {E/x}P : B
Subst

Γ ⊢ M : A
Γ ⊲ hd(M) : A

Coercion

There are two sorts of sequents in λNat, namely Γ ⊢ M : A and Γ ⊲ E : A. The
typing system contains an assumption rule, an introduction rule, an elimination

2 For a slightly different definition of λgs see [7].

7

rule and a rule for typing substitution. These are standard, except for the use
of two sorts of sequents. The coercion rule changes the kind of sequent. The
displayed formula of the coercion rule is the coercion formula. The construction
ap(E) (={E/x}x) represents the inverse of the coercion rule.

Reduction rules: The reduction rules of λNat will act on the head of sub-
stitutions {hd(M)N1...Nm/x}P . In order to have access to such heads, it is
convenient to introduce the following syntactic expressions:

C ::= {[]/x}P |N · C

These expressions are called meta-contexts of λNat. As opposed to the contexts of
λGtz, which are formal expressions of λGtz, meta-contexts are not formal expres-
sions of λNat, but rather a device in the meta-language. Intuitively, a meta-
context is a substitution with a “hole”: {[]N1...Nk/x}P . Formally, given E,
we define C[E] (the result of filling E in the hole of C) by recursion on C:
({[]/x}P)[E] = {E/x}P and (N · C)[E] = C[EN]. So N · C can be thought
of as the meta-context C[[]N].

The reduction rules of λNat are as follows:

(β) C[hd(λx.M)N] → 〈N/x〉(C[hd(M)]) (σ) 〈M/x〉P → [M/x]P
(π) C[hd({E/x}P)] → {E/x}(C[hd(P)]) (µ) {E/x}(C[hd(x)]) → C[E]

There are three reduction rules, β, π and σ, enforcing every head to be of the
form hd(x) and to be in the function position of some application (hence not in
the actual-parameter position of some substitution). The βπσ-normal forms are
given by:

M,N,P ::= x |λx.M | {EN/x}P
E ::= hd(x) |EN

Later on, we will refer to this set as A .

By normalisation we mean βπσ-reduction. At the level of derivations, the
normality criterion is: a derivation in λNat is βπσ-normal if every coercion for-
mula occurring in it is an assumption and the main premiss of an elimination.
This extends von Plato’s criterion of normality. Indeed, if m is always 1 in
{hd(M)N1...Nm/x}P , coercion formula = main premiss of elimination, and the
criterion boils down to: the main premiss of an elimination is an assumption.

The particular case P = x of rule σ reads ap(hd(M)) → M and is named ǫ.
There is a fourth reduction rule, named µ, which is a handy tool not available in
λg. Consider the λ-term xN1N2, that is, ap(hd(ap(hd(x)N1))N2). After a π step
we get {hd(x)N1/z1}{hd(z1)N2/z2}z2 (zi’s fresh), which is a βπσ-normal form,
if N1, N2 are. After a µ step one gets ap(hd(x)N1N2), which is much simpler.

Related systems: A term M is βπσ-normal and only contains substitutions
of the form ap(E) iff M is a normal term of Cervesato and Pfenning’s coercion

calculus in [1]. Later on, we will refer to the class of such terms as B . They

8

are given by M,N ::= x |λx.M | ap(EN) and E ::= hd(x) |EN . Another char-
acterisation of this set is as the set of β-normal forms of λN , a coercion calculus
studied in [5].

Fragments of λNat are determined by placing restrictions on the number m
in {hd(M)N1...Nm/x}P . There is a m ≤ 1-fragment, which gives a version λgs

of the λg-calculus with explicit substitution λgs. The β-rule of λgs is recovered
as follows. Let C = {[]/y}P . Then {hd(λx.M)N/y}P = C[hd(λx.M)N] →β

〈N/x〉C[hd(M)] = 〈N/x〉〈M/y〉P . The π-rule of λgs is recovered as follows. Let
E = hd(M)N and C = N ′ · {[]/y}P ′. Then {hd({hd(M)N/x}P)N ′/y}P ′ =
C[hd({E/x}P)] →π {E/x}C[hd(P)] = {hd(M)N/x}{hd(P)N ′/y}P ′.

The m ≤ 1-terms are the terms normal w.r.t. the following permutation rule

(ν) {ENN ′/y}P → {EN/z}{hd(z)N ′/y}P ,

with z /∈ N ′, P . Notice that ν ⊆ µ−1. Clearly, ν is terminating and locally
confluent. The ν-nf of M is written ν(M).

4 Isomorphism

Mappings Ψ and Θ: We start with a mapping Ψ : λNat − Terms −→ λGtz −
Terms. Let Ψ(M) = t, Ψ(Ni) = ui and Ψ(P) = v. The idea is to map, say,
{hd(M)N1N2N3/x}P to t(u1 :: u2 :: u3 :: (x)v). This is achieved with the help
of an auxiliary function Ψ ′ : λNat −EEs× λGtz −Contexts −→ λGtz − Terms as
follows:

Ψ(x) = x Ψ ′(hd(M), k) = (ΨM)k
Ψ(λx.M) = λx.ΨM Ψ ′(EN, k) = Ψ ′(E,ΨN :: k)

Ψ({E/x}P) = Ψ ′(E, (x)ΨP)

Next we consider a mapping Θ : λGtz−Terms −→ λNat−Terms. Let Θ(t) =
M , Θ(ui) = Ni and Θ(v) = P . The idea is to map, say, t(u1 :: u2 :: u3 :: (x)v)
to {hd(M)N1N2N3/x}P . This is achieved with the help of an auxiliary function
Θ′ : λNat − EEs × λGtz − Contexts −→ λNat − Terms as follows:

Θ(x) = x Θ′(E, (x)v) = {E/x}Θv
Θ(λx.t) = λx.Θt Θ′(E, u :: k) = Θ′(EΘu, k)

Θ(tk) = Θ′(hd(Θt), k)

Contexts vs meta-contexts: Let MetaContexts be the set of meta-contexts
of λNat. It is obvious that there is a connection between contexts of λGtz and meta-
contexts of λNat. There is a function Θ : Contexts → MetaContexts defined
by Θ(x)v = {[]/x}Θv and Θu::k = Θu ·Θk, and a function Ψ : MetaContexts →
Contexts defined by Ψ{[]/x}P = (x)ΨP and ΨN ·C = ΨN :: ΨC .

We can identify each meta-context C of λNat with a function of type EEs →
Substs, where Substs is the set {M ∈ λNat : M is of the form {E/x}P}; it is the
function that sends E to C[E] (hence C(E) = C[E]). Now let k be a context of
λGtz and consider Θ′(, k) : EEs → Substs. By induction on k one proves easily
that Θ′(, k) and Θk are the same function, i.e. Θk[E] = Θ′(E, k).

9

Theorem 2 (Isomorphism). Mappings Ψ and Θ are sound, mutually inverse
bijections between the set of λGtz-terms and the set of λNat-terms. Moreover, for
each R ∈ {β, σ, π, µ}:

1. t →R t′ in λGtz iff Θt →R Θt′ in λNat.
2. M →R M ′ in λNat iff ΨM →R ΨM ′ in λGtz.

Proof: For bijection, prove ΘΨM = M and ΘΨ ′(E, k) = Θ′(E, k) by simulta-
neous induction on M and E, and prove ΨΘt = t and ΨΘ′(E, k) = Ψ ′(E, k),
by simultaneous induction on t and k. It follows that k = ΨC iff C = Θk. As
to isomorphism, the “if” statements follow from the “only if” statements and
bijection. We just sketch the “only if” statement 1, which is proved together
with the claim that, if k →R k′ in λGtz, then, for all E, Θk[E] →R Θ′

k[E] in
λNat. The proof is by simultaneous induction on t →R t′ and k →R k′, and uses
the following properties of Θ: (i) if Θ′(E′, k) = Θ′(E, (x)v) then Θ′(E′, k@k′) =
{E/x}Θ′(hd(Θv), k′); (ii) Θ(〈u/x〉t) = 〈Θu/x〉Θt; (iii) Θ([u/x]t) = [Θu/x]Θt.
Here are the base cases:

Case β.

Θ((λx.t)(u :: k)) = Θu::k[hd(λx.Θt)] = (Θu · Θk)[hd(λx.Θt)] = Θk[hd(λx.Θt)Θu]
↓

Θ(〈u/x〉(tk))
(ii)
= 〈Θu/x〉Θ(tk) = 〈Θu/x〉Θk[hd(Θt)]

Case π. Suppose Θ′(hd(Θt), k) = Θ′(E, (x)v).

Θ((tk)k′) = Θk′ [hd(Θ′(hd(Θt), k))] = Θk′ [hd(Θ′(E, (x)v))] = Θk′ [hd({E/x}Θv)]
↓

Θ(t(k@k′)) = Θ′(hd(Θt), k@k′)
(i)
= {E/x}Θ′(hd(Θv), k′) = {E/x}Θk′ [hd(Θv)]

Case σ: Θ(〈t/x〉v)
(ii)
= 〈Θt/x〉Θv →σ [Θt/x]Θv

(iii)
= Θ([t/x]v).

Case µ: Θ(x)xk[E] = {E/x}Θ(xk) = {E/x}Θk[hd(x)] → Θk[E]. �

Corollary 1 (SN). Every typable t ∈ λNat is βπσµ-SN.

Proof: From Theorems 1 and 2. �

5 Analyzing the isomorphism

Cut vs substitution, left introduction vs elimination, cut-elimination
vs normalisation: There is an entanglement in the traditional mappings be-
tween natural deduction and sequent calculus. An elimination is translated as a
combination of cut and left introduction [10] and a left introduction is translated

10

as a combination of elimination and meta-substitution [18]. With these mappings
one proves that normalisation is a “homomorphic” image of cut-elimination [22,
17].3

The typing system of λNat clarifies the puzzling relation between cut and
substitution. Consider rule Cut in λGtz and rule Subst in λNat. First, we observe,
as Negri and von Plato in [15], that the right cut-formula of Cut, but not the
right substitution formula in Subst, may be the conclusion of a sequence of left
introductions. Second, and here comes the novelty, we may also observe that
the left substitution formula in Subst, but not left cut-formula in Cut, may be
the conclusion of a sequence of elimination rules. So, cut is more general on the
right, whereas substitution is more general on the left.

Mapping Ψ establishes bijective correspondences between occurrences of elim-
ination EN (resp. of substitution {E/x}P) in the source term and occurrences
of left introduction u :: k (resp. of cut tk) in the target term (inversely for Θ). So
the entanglement of traditional mappings is solved, and the outcome is that nor-
malization in λNat becomes the isomorphic image, under Θ, of cut-elimination
in λGtz.

Applicative terms: The presentation of sequent calculus and natural de-
duction as systems λGtz and λNat, respectively, reduces the difference between
the two kinds of systems to the difference between two ways of organizing “ap-
plicative terms”. By “applicative term” we mean the following data: a function
(or head), m arguments (m ≥ 1) and a continuation (or tail). The notion of
applicative term is intended as a common abstraction to the notions of cut in
λGtz

t(u1 :: ... :: um :: (x)v) , (2)

and substitution in λNat

{hd(M)N1...Nm/x}P . (3)

When (2) and (3) are regarded in the abstract way of just providing the data
that constitutes an applicative term, the only difference that remains between
the two expressions is that (2) associates to the right, so that the head t is at
the surface and the continuation (x)v is hidden at the bottom of the expression,
whereas (3) associates to the left, so that the head hd(M) is hidden at the bottom
of the expression, and the continuation x, P is at the surface. The isomorphism
λGtz ∼= λNat may, then, be described as a mere inversion of the associativity of
applicative terms.

Interpretations of λGtz: From the previous paragraph follows that an in-
terpretation of λGtz is as a λ-calculus with right associative applicative terms.
Another interpretation is as a formalized meta-calculus for λNat (and not for a
smaller natural deduction system, like λg or λgs, let alone λ). Contexts in λGtz

are the formal counterpart to meta-contexts in λNat and the interpretation of
cut Θ(tk) = Θk[hd(Θt)] is “fill Θt in the hole of Θk”.

3 For a study of the traditional mappings between sequent calculus and natural de-
duction, and some of their optimizations, see [7].

11

Fig. 1. Particular cases of the isomorphism and important classes of terms

λ
Gtz �

Ψ, Θ
- λNat

λgs
��

νν
--

Schwichtenberg nfs

βπσ

?
?

�
Ψ Θ

- A

βπσ

?
?

von Plato nfs

βπσ

?
? ��

νν --

Herbelin nfs

?
?

...................

�
Ψ Θ

- B

?
?

...................

Mints nfs

?
?

........................
��

νν
--

Variants of the isomorphism: λGtz ∼= λNat is a particular manifestation of
the isomorphism between sequent calculus and natural deduction. For instance,
if rule π of λGtz is taken in the call-by-name version (tk)(u :: k′) → t(k@(u :: k′))
[2], avoiding a critical pair with σ, then there is corresponding version for rule
π of λNat C[hd({E/x}P)N] → {E/x}(C[hd(P)N]).

Another variant of rule π is the “eager” variant, determined by a slight
change in the definition of @: ((x)V)@k = (x)V k, if V is a value (i.e. variable
or abstraction); and ((x)tk′)@k = (x)t(k′@k). So, one keeps pushing k until a
value is found.

Let {Es/xs}P denote a sequence of substitutions {E1/x1}...{En/xn}P . The
eager variant of π for natural deduction is C[hd({Es/xs}V)] → {Es/xs}C[hd(V)].
So, the eager variant takes a sequence of substitutions out, as opposed to the
lazy variant, which takes them one by one.

Theorem 2 still holds with eager π. In the proof fact (i) becomes slightly
different: if Θ′(E′, k) = {Es/xs}V then Θ′(E′, k@k′) = {Es/xs}Θ′(hd(V), k′).

Particular cases of the isomorphism: We now analyze the diagram in
Figure 1. The m ≤ 1-fragment λgs of λGtz and the m ≤ 1-fragment λgs of λNat

are two copies of λgs, hence isomorphic. They are identified in Figure 1. In
both cases, the fragment consists of the ν-nfs. The isomorphism λgs ∼= λgs is
a degenerate form of Theorem 2, with Θ and Ψ translating between t(x)v and
{hd(M)/x}P , and between t(u :: (x)v) and {hd(M)N/x}P . The latter are two
decompositions of generalised elimination:

12

Γ ⊢ t : A ⊃ B

Γ ⊢ u : A

Γ, x : B ⊢ v : C

Γ ;B ⊢ (x)v : C
Selection

Γ ;A ⊃ B ⊢ u :: (x)v : C
Left

Γ ⊢ t(u :: (x)v) : C
Cut

Γ ⊢ M : A ⊃ B
Γ ⊲ hd(M) : A ⊃ B

Coercion
Γ ⊢ N : A

Γ ⊲ hd(M)N : B
Elim

Γ, x : B ⊢ P : C

Γ ⊢ {hd(M)N/x}P : C
Subst

The λ-calculus is absent from Figure 1 (λ-terms form a subset of λgs), but
there are three sets in bijective correspondence with the set of β-normal λ-terms,

namely Herbelin nfs , B and Mints nfs , the lower triangle. Herbelin nfs ∼=

Mints nfs was known [4], the bijection being the restriction of ν to Herbelin nfs .

A degenerate form of Theorem 2 is Herbelin nfs ∼= B . The latter bijection (but

not the former) extends to another bijection, namely Schwichtenberg nfs ∼= A

(the former bijection does not extend to another bijection because many “multi-

ary” cut-free derivations in Schwichtenberg nfs have the same ν-normal form in

von Plato nfs). The bijection Schwichtenberg nfs ∼= A is in turn the residue

of the isomorphism λGtz ∼= λNat, because it is the bijection between the sets
of βπσ-nfs. The dotted arrows represent three reduction relations generated by
permutative conversions. Two of such relations have been characterised [4, 19].

6 Final remarks

Contributions and related work: This paper completes Herbelin’s programme,
for the logic under analysis here. As compared to [11], we covered full sequent
calculus, where the constraints on left introduction that define Herbelin’s frag-
ment LJT are dropped, but where the phenomenon of permutative conversions,
typical of sequent calculus, shows up. In addition, we fully achieved the second
goal of Herbelin’s programme, residually present in [11], implicitly considered in
[1] and already addressed in [5, 6]. The improvement over [1] and [5, 6] is that
the spine calculus, when restricted to the logic of this paper, and the sequent
systems in [5, 6] are all fragments of Herbelin’s LJT and, therefore, are under
the restrictions already mentioned.

In order to fully achieve the second goal, one has to define an extension of
natural deduction that combines the idea of coercion calculus with von Plato’s
idea of generalised elimination rule [20]. On the one hand, von Plato’s work goes
much farther than this paper, in that [20] covers the whole language of first order
logic; on the other hand, it lacks an analysis of the correspondence between cut-
elimination and normalisation, indispensable to attaining the second goal. This

13

paper may then be seen as containing an extension of von Plato’s work. Not only
we extended and refined system λg (and here it is quite appealing that we end up
in a system where generalised application is decomposed into modus ponens and
substitution), but also we give the precise connection between generalised nor-
malisation and cut-elimination, which is this: von Plato’s normalisation, taken
in the already slightly extended sense embodied in system λgs, is the common
core of cut-elimination (in λGtz) and normalisation (in λNat) - in particular, it is
a fragment of the former.

Once one has the natural deduction system λNat, one can clarify the con-
nection between cut and substitution, and translate between sequent calculus
and natural deduction in a way that the classical mappings of Gentzen [10] and
Prawitz [18] never could: elimination and substitution correspond to left intro-
duction and cut, respectively. At the term calculi level, this mapping inverts the
associativity of applicative terms, as envisaged by Herbelin. Then, such bijection
at the level of proofs proves to be an isomorphism between cut-elimination and
normalisation. This result improves, for the logic examined here, the classical
results of Zucker and Pottinger [22, 17].

Applications and future work: An issue that deserves further considera-
tion is the use of languages λGtz and λNat in practice. As emphasized in [1], the
spine calculus, Herbelin’s λ and - we add - λGtz, give a useful representation of
λ-terms for procedures that act on the head of applicative terms, like normali-
sation or unification. It seems that the role of languages like λGtz or λNat is not
as languages in which someone writes his programs, but either as internal lan-
guages for symbolic systems, like theorem provers, or as intermediate languages
for compilers of functional languages. On the other hand, languages λGtz and
λNat are good tools for doing proof theory efficiently, as this paper shows. We
plan to keep using these languages in a more comprehensive study of permuta-
tive conversions. As the study of rule ν shows so far, calculus λNat is no worse
than calculus λGtz for that purpose.

Conclusions: Herbelin’s seminal suggestion in [11] is that the (computa-
tional) difference between sequent calculus and natural deduction may be re-
duced to a mere question of representation of λ-terms, when these are conceived
in a sufficiently extended sense. We proposed an abstract, robust extension of
the concept of λ-term, under two concrete representations (λGtz-terms and λNat-
terms), and studied the languages where these representations live. Represen-
tation questions (like whether there is direct head access in applicative terms)
prove to have impact in the real word [1]. But, as expected, they also impact
on foundational matters. Indeed, they allow a radical answer to a long-standing
problem of structural proof-theory: if normalisation is extended as we propose,
then the meaning of λGtz ∼= λNat is that cut-elimination and normalisation are
really the same process, they only look different because they operate with dif-
ferent representations of the same objects.

Acknowledgments: The author is supported by FCT, through Centro de
Matemática, Universidade do Minho. We have used Paul Taylor’s macros for
typesetting Fig. 1.

14

References

1. I. Cervesato and F. Pfenning. A linear spine calculus. Journal of Logic and Com-

putation, 13(5):639–688, 2003.
2. P.-L. Curien and H. Herbelin. The duality of computation. In Proceedings of

International Conference on Functional Programming 2000. IEEE, 2000.
3. R. Dyckhoff and L. Pinto. Cut-elimination and a permutation-free sequent calculus

for intuitionistic logic. Studia Logica, 60:107–118, 1998.
4. R. Dyckhoff and L. Pinto. Permutability of proofs in intuitionistic sequent calculi.

Theoretical Computer Science, 212:141–155, 1999.
5. J. Esṕırito Santo. Conservative extensions of the λ-calculus for the computational

interpretation of sequent calculus. PhD thesis, University of Edinburgh, 2002.
Available at http://www.lfcs.informatics.ed.ac.uk/reports/.

6. J. Esṕırito Santo. An isomorphism between a fragment of sequent calculus and an
extension of natural deduction. In M. Baaz and A. Voronkov, editors, Proceedings

of LPAR’02, volume 2514 of Lecture Notes in Artificial Intelligence, pages 354–366.
Springer-Verlag, 2002.

7. J. Esṕırito Santo. Delayed substitutions. In Franz Baader, editor, Proceedings of

RTA’07, Lecture Notes in Computer Science. Springer-Verlag, 2007.
8. J. Esṕırito Santo and Lúıs Pinto. Permutative conversions in intuitionistic multiary

sequent calculus with cuts. In M. Hoffman, editor, Proc. of TLCA’03, volume 2701
of Lecture Notes in Computer Science, pages 286–300. Springer-Verlag, 2003.

9. J. Gallier. Constructive logics. Part I: A tutorial on proof systems and typed
λ-calculi. Theoretical Computer Science, 110:248–339, 1993.

10. G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The

collected papers of Gerhard Gentzen. North Holland, 1969.
11. H. Herbelin. A λ-calculus structure isomorphic to a Gentzen-style sequent calculus

structure. In L. Pacholski and J. Tiuryn, editors, Proceedings of CSL’94, volume
933 of Lecture Notes in Computer Science, pages 61–75. Springer-Verlag, 1995.

12. F. Joachimski and R. Matthes. Short proofs of normalization for the simply-typed
lambda-calculus, permutative conversions and Gödel’s T. Archive for Mathematical

Logic, 42:59–87, 2003.
13. D. Kesner, L. Puel, and V. Tannen. A typed pattern calculus. Information and

Computation, 124(1), 1995.
14. G. Mints. Normal forms for sequent derivations. In P. Odifreddi, editor,

Kreiseliana, pages 469–492. A. K. Peters, Wellesley, Massachusetts, 1996.
15. S. Negri and J. von Plato. Structural Proof Theory. Cambridge, 2001.
16. M. Parigot. λµ-calculus: an algorithmic interpretation of classic natural deduction.

In Int. Conf. Logic Prog. Automated Reasoning, volume 624 of Lecture Notes in

Computer Science. Springer Verlag, 1992.
17. G. Pottinger. Normalization as a homomorphic image of cut-elimination. Annals

of Mathematical Logic, 12:323–357, 1977.
18. D. Prawitz. Natural Deduction. A Proof-Theoretical Study. Almquist and Wiksell,

Stockholm, 1965.
19. H. Schwichtenberg. Termination of permutative conversions in intuitionistic

gentzen calculi. Theoretical Computer Science, 212, 1999.
20. J. von Plato. Natural deduction with general elimination rules. Annals of Mathe-

matical Logic, 40(7):541–567, 2001.
21. P. Wadler. A Curry-Howard isomorphism for sequent calculus, 1993. Manuscript.
22. J. Zucker. The correspondence between cut-elimination and normalization. Annals

of Mathematical Logic, 7:1–112, 1974.

15

