
Delayed substitutions

José Esṕırito Santo?

Departamento de Matemática
Universidade do Minho

Portugal
jes@math.uminho.pt

Abstract. This paper investigates an approach to substitution alterna-
tive to the implicit treatment of the λ-calculus and the explicit treatment
of explicit substitution calculi. In this approach, substitutions are delayed
(but not executed) explicitly. We implement this idea with two calculi,
one where substitution is a primitive construction of the calculus, the
other where substitutions is represented by a β-redex. For both calculi,
confluence and (preservation of) strong normalisation are proved (the
latter fails for a related system due to Revesz, as we show). Applications
of delayed substitutions are of theoretical nature. The strong normalisa-
tion result implies strong normalisation for other calculi, like the compu-
tational lambda-calculus, lambda-calculi with generalised applications,
or calculi of cut-elimination for sequent calculus. We give an investiga-
tion of the computational interpretation of cut-elimination in terms of
generation, execution, and delaying of substitutions, paying particular
attention to how generalised applications improve such interpretation.

1 Introduction

Explicit substitution calculi were introduced as an improvement of the λ-calculus,
capable of modelling the actual implementation of functional languages and sym-
bolic systems [1]. However, other applications of theoretical nature were soon
recognized, particularly in proof theory, where λ-calculus also fails to give a
computational interpretation to sequent calculus and cut-elimination [4, 5, 14].

The basic idea in explicit substitution calculi is the separation between the
generation and the execution of substitution. But this idea is operative only if
this execution can be delayed. Of course, the mentioned separation gives the
opportunity to do something between the generation and the execution of a
substitution. But there are situations, for instance in a syntax like that of the
λx-calculus [12], where explicit rules for the delaying of substitution are required.

This paper investigates explicit rules for delaying substitution in a syntax
similar to λx. However, a first and immediate observation is that explicit delay-
ing cannot be combined with explicit execution without breaking termination.
The situation is even worse if we try to implement substitutions as β-redexes
(Revesz’s idea [11]). So, the system we study, named λs, separates generation
? The author is supported by FCT via Centro de Matematica, Universidade do Minho.

and execution of substitution, but employs implicit execution. In addition, it has
permutation rules for achieving the delaying of substitution.

The calculus λs enjoys good properties, like confluence and (preservation of)
strong normalisation. The circumstance of employing implicit substitution disal-
lows direct applications of λs to the implementation of computational systems.
However, λs has several theoretical uses. Strong normalisation of λs implies the
same property for several calculi, like the computational lambda-calculus [9] and
lambda-calculi with generalised applications [6]. Certainly, future work should
exploit the use of the calculus for reasoning about programs. In this paper we
emphasize applications to proof theory.

We define a sequent calculus LJ with a simple cut-elimination procedure
consisting of 3 reduction rules. Then, we show that λs gives a computational
interpretation to the 3 cut-elimination rules of LJ , precisely as rules for the gen-
eration, delaying, and execution of substitution. Strong normalisation of λs is
lifted to LJ . We pay particular attention to how generalised applications [6, 15],
when combined with delayed substitutions, improve the mentioned interpreta-
tion of LJ .

Notations: Types (=formulas) are ranged over by A,B, C and generated
from type variables using the “arrow type” (=implication), written A ⊃ B.
Contexts Γ are sets of declarations x : A where each variable is declared at
most once. Barendregt’s variable convention is adopted. In particular, we take
renaming of bound variables for granted. Meta substitution is denoted by [/x] .
By a value we mean a variable or λ-abstraction in the calculus at hand.

2 Delayed substitutions

Motivation: Recall the syntax of the λx-calculus:

M, N, P ::= x |λx.M |MN | 〈N/x〉M
The variable x is bound in M in λx.M and 〈N/x〉M . The scope of λx. and
〈N/x〉 extends to the right as much as possible. There is a reduction rule

(β) (λx.M)N → 〈N/x〉M
that generates substitutions and four rules

(x1) 〈N/x〉x → N (x3) 〈N/x〉MP → (〈N/x〉M)〈N/x〉P
(x2) 〈N/x〉y → y, y 6= x (x4) 〈N/x〉λy.M → λy.〈N/x〉M

for the explicit execution of substitution. By variable convention, x 6= y and
y /∈ N in rule (x4). Let x = ∪4

i=1xi.
Suppose we want to reduce Q0 = (λx.M)NN ′, where M = λy.P . After

a β-step, we obtain Q1 = (〈N/x〉M)N ′. Substitution 〈N/x〉M was generated
but not immediately executed. This allows the delaying of its execution, if we
decide to do something else, e.g. reducing N , M , N ′, or another term in the

program surrounding Q1. However, we may very well be interested in delaying
the execution of 〈N/x〉M in another way, namely by applying immediately M
to N ′. In λx this may be achieved in some sense, if a step of the execution of
〈N/x〉M is performed, yielding Q2 = (λy.P ′)N ′, where P ′ = 〈N/x〉P .

This lack of separation between substitution execution and delaying is unsat-
isfactory. The delaying of 〈N/x〉M in Q1 can be achieved if we adopt a permu-
tation rule that yields 〈N/x〉MN ′, that is Q′2 = 〈N/x〉(λy.P)N ′. However, we
cannot add this permutation to the set of x-rules without breaking termination.
Suppose we want to reduce 〈N/x〉M1M2, where M2 is a pure term (i.e. a term
without substitutions) and x /∈ M2. Then a cycle is easily generated:

〈N/x〉M1M2 →x (〈N/x〉M1)〈N/x〉M2 (by x3)
→∗

x (〈N/x〉M1)[N/x]M2 (because M2 is pure)
= (〈N/x〉M1)M2 (because x /∈ M2)
→ 〈N/x〉M1M2 (by permutation)

(Here [N/x]M2 denotes meta-substitution.) This is why the calculus of delayed
substitutions we introduce next does not have x-rules for explicit, stepwise exe-
cution of substitution, but instead a single σ-rule for its implicit execution.

The λs-calculus: The terms of λs are given by:

M, N, P, Q ::= x |λx.M |MN | 〈N/x〉M
This set of terms is equipped with the following reduction rules:

(β) (λx.M)N → 〈N/x〉M (π1) (〈N/x〉M)P → 〈N/x〉MP
(σ) 〈N/x〉M → [N/x]M (π2) 〈〈N/x〉P/y〉M → 〈N/x〉〈P/y〉M

where meta-substitution [N/x]M is defined as expected. In particular

[N/x]〈P/y〉M = 〈[N/x]P/y〉[N/x]M . (1)

By variable convention, x 6= y in π2 and (1). For the same reason, y /∈ N in (1).
Let π = π1 ∪ π2. The choice of permutations π1 and π2 is pragmatic. These

are the permutations appropriate for the applications of the calculus to be shown
in this paper. It is natural that, if the applications of the calculus are different,
other rules for pulling out substitutions in other contexts are useful and needed.

By a typable term M ∈ λ or M ∈ λs we mean a term that has a simple type
A, given a context Γ assigning types to the free variable of M . This relation is
written Γ ` M : A and generated by the set of usual rules for assigning simple
types to variables, abstraction and application (which we omit), plus the typing
rule of substitution:

Γ ` N : A Γ, x : A ` M : B

Γ ` 〈N/x〉M : B

Natural relationship with the λ-calculus: The study of the natural inter-
pretation of λs in λ yields easily a proof of confluence for λs. First, λs simulates
β-reduction.

Proposition 1. If M →β N in λ then M →β P →σ N in λs, for some P .

Conversely, let ()\ : λs→ λ be defined as follows: x\ = x, (MN)\ = M \N \,
(λx.M)\ = λx.M \, and (〈N/x〉M)\ = [N \/x]M \.

Proposition 2. (1) If M →β N in λs then M \ →∗
β N \ in λ. (2) If M →πσ N

in λs then M \ = N \. (3) In λs, M →∗
σ M \.

Proposition 3 (Confluence). Let R ∈ {π1, π2, π}. Then →βσR is confluent
in λs.

Proof: By confluence of β-reduction in λ and Propositions 1 and 2. ¥

We will prove strong normalisation of λs as a corollary to strong normali-
sation of another calculus of delayed substitutions. The terms of the latter are
the ordinary λ-terms, where β-redexes are regarded as substitutions. The first
author to develop this idea was G. Revesz, see for instance [11].

Revesz’s system: G. Revesz proposed to replace in the λ-calculus the or-
dinary β-rule and the related calls to meta-substitution by a set of local trans-
formation rules. These local rules correspond to the explicit, stepwise execution
of substitution.

(β1) (λx.x)N → N (β3) (λx.λy.M)N → λy.(λx.M)N
(β2) (λx.y)N → y, y 6= x (β4) (λx.MP)N → (λx.M)N((λx.P)N)

Let R = ∪4
i=1βi. By variable convention, x 6= y and y /∈ N in β3. A basic property

of Revesz’s system is that

(λx.M)N →∗
R [N/x]M . (2)

Now, we have seen that in a syntax with a primitive substitution construction,
we cannot combine explicit substitution execution and delaying without breaking
termination. When substitution is represented by β-redexes, the situation is even
worse, as substitution execution alone breaks termination.

Theorem 1. There is a typed λ-term Q such that Q is not R− SN .

Proof: Let Q = (λx.(λy.M)N)P . We underline the successive redexes.

Q = (λx.(λy.M)N)P
→β4 (λx.λy.M)P ((λx.N)P) = Q′

→β3 (λy.(λx.M)P)((λx.N)P)
→β4 (λy.λx.M)((λx.N)P)((λy.P)((λx.N)P))
→∗

R (λy.λx.M)((λx.N)P)[(λx.N)P/y]P (by (2))
= (λy.λx.M)((λx.N)P)P (as y /∈ P)
→β3 (λx.(λy.M)((λx.N)P))P
→β4 (λx.λy.M)P ((λx.((λx.N)P))P)
→∗

R (λx.λy.M)P [P/x]((λx.N)P) (by (2))
= (λx.λy.M)P ((λx.N)P) (as x /∈ ((λx.N)P))
= Q′ ¥

So, one has to give up the idea of explicitly executing substitution within the
syntax of the λ-calculus. But we can do explicit delaying.

Delaying of substitution in the λ-calculus: In the λ-calculus, define
π = π1 ∪ π2, where:

(π1) (λx.M)NP → (λx.MP)N
(π2) M((λx.P)N) → (λx.MP)N

In both redexes, M “wants” to be applied to P , but something forbids this
application, namely the fact that one of M or P is inside a β-redex (or “sub-
stitution”). The rules rearrange the term so that the “substitution” is delayed.
We denote the calculus consisting of β and π as λ[βπ]. Notice that π1 is one of
Regnier’s σ-rules [10].

Proposition 4. In λ, →βπ is confluent, but →π is not.

Proof: Notice that (λx.M)NP =β (λx.MP)N and M((λy.P)N) =β (λy.MP)N .
So, confluence of →βπ follows from confluence of →β . On the other hand,
(λx.M)N((λy.P)Q) π-reduces to both (λx.(λy.MP)Q)N and (λy.(λx.MP)N)Q,
which can easily be two π-nfs. ¥

Define |M |, the size of λ-term M , as follows: |x| = 1; |λx.M | = 1 + |M |;
|MN | = 1 + |M |+ |N |.
Proposition 5. In λ, →π is terminating.

Proof: The termination of →π1 is in [10]. As to the remaining cases, define
w(M), the weight of a λ-term M , as follows: w(x) = 0; w(λx.M) = w(M);
w(MN) = |N |+w(M)+w(N). It holds that, if M →π1 N , then w(M) = w(N);
and that, if M →π2 N , then w(M) > w(N). The proposition now follows. ¥

Let M be a λ-term such that M is β-SN. Define ||M ||β to be the maximal
length of β-reduction sequences starting from M .

Proposition 6. Let M →π N . If M is β-SN, then so is N and ||M ||β ≥ ||N ||β.

Proof: For π1, [10] proves ||M ||β = ||N ||β . For π2, the argument is a slight
generalisation of an argument in [7], and uses the fact that, for M , N λ-terms,

x ∈ FV (M) ⇒ ||(λx.M)N ||β ≤ ||[N/x]M ||β + 1 (3)
x /∈ FV (M) ⇒ ||(λx.M)N ||β ≤ ||M ||β + ||N ||β + 1 . (4)

This is the so called “fundamental lemma of perpetuality”1. Let Q0 = M((λx.P)N)
and Q1 = (λx.MP)N . If x ∈ P , then ||Q||β ≥ 1 + ||M([N/x]P)||β ≥ ||Q1||β .

1 One immediate consequence of this fact is that if (i) (λx.M)N /∈ β − SN and (ii)
N ∈ β − SN when x /∈ FM(M), then [N/x]M /∈ β − SN . It is this latter fact that
is called “fundamental lemma of perpetuality” in [13].

The first inequality is by Q0 →β M([N/x]P) and the second by (3). If x /∈ P ,
then ||Q||β ≥ 1 + ||N ||β + ||MP ||β ≥ ||Q1||β . The first inequality is by Q0 →k

β

M((λx.P)N ′) →β MP (where k = ||N ||β) and the second by (4). ¥

Theorem 2 (SN and PSN). If M ∈ λ is β-SN (in particular, if M is typable)
then M is βπ-SN.

Proof: From Propositions 5 and 6. ¥

Sharper relationship with the λ-calculus: Let ()] : λs → λ[βπ] be
defined as follows: x] = x, MN] = M]N], (λx.M)] = λx.M], and (〈N/x〉M)] =
(λx.M])N]. Hence, mapping ()] “raises” substitutions to β-redexes.

Proposition 7. (1) If M →β N in λs then M] = N]. (2) If M →πi
N in λs

then M] →πi
N] in λ[βπ] (i = 1, 2). (3) If M →σ N in λs then M] →β N] in

λ[βπ].

Proposition 8. In λs, →βπ is terminating.

Proof: From termination of →β in λs, parts 1. and 2. of Proposition 7 and
Proposition 5. ¥

Proposition 9. Let M ∈ λs and suppose M] is β-SN. Then M is βπσ-SN.

Proof: From Propositions 7, 8 and 6. ¥

Theorem 3 (SN and PSN).

1. If M ∈ λs is typable then M is βπσ-SN.
2. If M ∈ λ is β-SN then, in λs, M is βπσ-SN.

Proof: 1. Suppose M ∈ λs is typable. Then M] is typable, because ()] preserves
typability. Hence M] is β-SN, by strong normalisation of the simply typed λ-
calculus. By Proposition 9, M is βπσ-SN.

2. If M ∈ λ, then M] = M . Now apply Proposition 9. ¥

3 Related calculi

Substitution is a natural interpretation for let-expressions and generalised appli-
cations. These interpretations allow strong normalisation of λs to be transferred
to the computational λ-calculus λC [8] and to the ΛJ-calculus [6].

Computational λ-calculus: Its terms are given by:

M, N, P ::= x |λx.M |MN | letx = N in M .

It was proved in [9] that strong normalisation for Moggi’s original reduction rules
is a consequence of strong normalisation for the following restricted set of rules
(where V stands for a value):

(C1) (λx.M)V → [V/x]M
(C2) let x = V in M → [V/x]M
(C3) let x = M inx → M
(C4) let y = letx = P inM in N → letx = P in let y = M in N
(ηv) λx.V x → V, x /∈ V

Let C = ∪4
i=1Ci. Checking [9] again one sees that strong normalisation of →C

(ηv dropped) is sufficient for strong normalisation of λC with ηv omitted.
Now, instead of mapping the restricted calculus to the linear λ-calculus (as

in [9]), we simply interpret into λs, reading letx = N inM as 〈N/x〉M . With
this interpretation, C2 and C3 are particular cases of σ, C4 is π2, and C1 is β
followed by σ. Thus strong normalisation of λs implies strong normalisation of
→C , and, therefore, of λC with ηv omitted.

λ-calculus with generalised application: The system ΛJ of [6] is renamed
here as λg. Terms of λg are given by

M, N,P ::= x |λx.M |M(N, x.P) .

The typing rule for generalized application is

Γ ` M : A ⊃ B Γ ` N : A Γ, x : B ` P : C

Γ ` M(N, x.P) : C
gElim

The λg-calculus has two reduction rules:

(β) (λx.M)(N, y.P) → [[N/x]M/y]P
(π) M(N, x.P)(N ′, y.P ′) → M(N,x.P (N ′, y.P ′)) .

The natural mapping ()∗ : λg → λs is given by x∗ = x, (λx.M)∗ = λx.M∗,
and (M(N, x.P))∗ = 〈M∗N∗/x〉P ∗. This mapping gives a strict simulation (one
step mapped to one or more steps). Here is the simulation of π.

(M0(N1, x.P1)(N2, y.P2))∗ = 〈(〈M∗
0 N∗

1 /x〉P ∗1)N∗
2 /y〉P ∗2

→π1 〈〈M∗
0 N∗

1 /x〉P ∗1 N∗
2 /y〉P ∗2

→π2 〈M∗
0 N∗

1 /x〉〈P ∗1 N∗
2 /y〉P ∗2

= (M0(N1, x.P1(N2, y.P2)))∗ .

So, strong normalisation of λs implies strong normalisation of λg.

4 Applications to proof theory

Summary of the section: The λ-calculus is the computational interpretation
of natural deduction (in the setting of intuitionistic implicational logic). A λ-
term is assigned to each natural deduction by the Curry-Howard correspondence,

so that the interpretation of normalisation is β-reduction. There is a traditional
assignment ()[of λ-terms to sequent calculus derivations, but this assignment
fails to give a computational interpretation to the process of cut-elimination.
We try an obvious assignment ()O of λs-terms, but only an optimization ()H of
the latter gives a computational interpretation in terms of generation, execution
and delaying of substitution. As a by product, we lift strong normalisation of
λs to sequent calculus. The need for the mentioned optimization is caused by
a problem of “imperfect substitution” in sequent calculus, which does not show
up when translating sequent calculus with ()[. A tool that we use in analyzing,
and in some sense overcoming, this problem is the calculus λgs, a calculus with
generalised application and a primitive substitution construction. Figure 1 shows
the systems and mappings studied in this section.

LJ
.B, .I -¾

.¦
λgs

LJ

wwwwwwwwww
.O, .H - λs

.∗

?

LJ

wwwwwwwwww
.[- λ

.\

?

Fig. 1. Sequent calculus and delayed substitution

The calculus LJ : Sequent calculus derivations are represented by:

L ::= Axiom(x) | Left(y, L, (x)L) |Right((x)L)|Cut(L, (y)L)

Typing rules are as follows:

Γ, x : A ` Axiom(x) : A
Axiom

Γ ` L1 : A Γ, x : A ` L2 : C

Γ ` Cut(L1, (x)L2) : C
Cut

Γ ` L1 : A Γ, x : B ` L2 : C

Γ, y : A ⊃ B ` Left(y, L1, (x)L2) : C
Left

Γ, x : A ` L : B

Γ ` Right((x)L) : A ⊃ B
Right

where x /∈ Γ in Left, Right and Cut.
Cut elimination in LJ follows the t-protocol of [2]. If a cut is right-permutable,

perform its complete, upward, right permutation. This is the first structural step
(S1). If a cut is not right-permutable, but is left-permutable, perform its com-
plete, upward, left permutation. This is the second structural step (S2). If a cut

is neither right-permutable, nor left-permutable, then it is a logical cut (both
cut formulas main in the premisses). In that case, apply the logical step of cut-
elimination (Log), generating cuts with simpler cut-formula.

Let the predicate mll(x, L) (read “x is main in a linear left introduction L”)
be defined by: mll(x, L) iff there are L1, y, L2 such that L = Left(x, L1, (y)L2)
and x /∈ L1, L2. The reduction rules of LJ are as follows (where Axiom, Left,
Right and Cut are abbreviated by A, L, R and C, respectively):

(S1) C(L1, (x)L2) → S1(L1, x, L2)
(S20) C(A(y), (x)L(x, L′1, (y

′)L′2)) → L(y, L′1, (y
′)L′2)

(S21) C(L(z, L1, y, L2), (x)L(x, L′1, (y
′)L′2)) → L(z, L1, y, S2(L2, x, L′1, y

′, L′2))
(S22) C(C(L1, (y)L2), (x)L(x, L′1(y

′)L′2)) → C(L1, y, S2(L2, x, L′1, y
′, L′2))

(Log) C(R((y)L1), (x)L(x, L′1, (y
′)L′2)) → C(C(L′1, (y)L1), (y′)L′2))

Provisos: in S1, not mll(x, L2); in the remaining rules, x /∈ L′1, L
′
2. We let S2 =

∪2
i=0S2i. The meta-operations S1 and S2 are given by:

S1(L, x, Axiom(x)) = L
S1(L, x, Axiom(y)) = Axiom(y), y 6= x

S1(L, x, Left(x, L′, (z)L′′)) = Cut(L, (x)Left(x, S1(L, x, L′), (z)S1(L, x, L′′))
S1(L, x, Left(y, L′, (z)L′′)) = Left(y, S1(L, x, L′), (z)S1(L, x, L′′)), y 6= x

S1(L, x, Right((y)L′)) = Right((y)S1(L, x, L′))
S1(L, x, Cut(L′, (y)L′′)) = Cut(S1(L, x, L′), (y)S1(L, x, L′′))

S2(Axiom(y), x, L′1, y
′, L′2) = Left(y, L′1, y

′, L′2)
S2(Left(y, L1, (z)L2), x, L′1, y

′, L′2) = Left(y, L1, (z)S2(L2, x, L′1, y
′, L′2))

S2(Right((y)L′), x, L′1, y
′, L′2) = Cut(Right((y)L′), (x)Left(x, L′1, y

′, L′2))
S2(Cut(L1, (y)L2), x, L′1, y

′, L′2) = Cut(L1, (y)S2(L2, x, L′1, y
′, L′2))

Traditional assignment: The mapping ()[: LJ → λ is defined by

Axiom(x)[= x Right((x)L)[= λx.L[

Left(y, L1, (x)L2)[= [yL[
1/x]L[

2 Cut(L1, (x)L2)[= [L[
1/x]L[

2

Under this mapping, some parts of cut-elimination are translated as β-reduction,
but others receive no interpretation.

Proposition 10. Let R = Log (resp. R ∈ {S1, S2}). If L1 →R L2 in LJ , then
L[

1 →β L[
2 in λ (resp. L[

1 = L[
2).

A first attempt to overcome this situation is to consider the assignment ()O :
LJ → λs, which generates substitutions where ()[calls meta-substitution:

Axiom(x)O = x Right((x)L)O = λx.LO

Left(y, L1, (x)L2)O = 〈yLO
1 /x〉LO

2 Cut(L1, (x)L2)O = 〈LO
1 /x〉LO

2

This mapping reveals a problem that was concealed by ()[.
“Imperfect substitution” in LJ : Let L0 = Cut(L1, (x)Left(x, L2, (y)L3))

and L4 = S1(L1, x, Left(x, L2, (y)L3)) = Cut(L1, x, Left(x, L′2, (y)L′3)), where
L′i = S1(L1, x, Li), i = 2, 3, and x is a free variable of L2 or L3. Then L0 →S1 L4.
For i = 2, 3, let Pi = [L[

1/x]L[
i . Then L[

0 = [L[
1/x][xL[

2/y]L[
3 = [L[

1P2/y]P3 = L[
4,

the latter equality following by Pi = L′i
[, i = 2, 3.

Now consider ()O instead. Let Ni = [LO
1 /x]LO

i , i = 2, 3. On the one hand
LO

0 = 〈LO
1 /x〉〈xLO

2 /y〉LO
3 →σ [LO

1 /x]〈xLO
2 /y〉LO

3 = 〈LO
1 N2/y〉N3 = M , say. On

the other hand LO
4 = 〈LO

1 /x〉〈xL′O2 /y〉L′O3 . We would have liked LO
4 = M , but LO

4

is at least a σ-step behind: LO
4 → 〈LO

1 L′O2 /y〉L′O3 . Unfortunately, these missing
σ-steps propagate recursively, and we can expect L′Oi →+

σ Ni.
Why is LO

4 a σ-step behind? Because, going back to L4, S1 is an imperfect
substitution operator, which did not replace the free, head occurrence of x in
Left(x, L2, (y)L3) by L1. Instead, a cut is generated which ()O translates as the
substitution 〈LO

1 /x〉 . On the other hand, in [LO
1 /x]〈xLO

2 /y〉LO
3 the free, head

occurrence of x in 〈xLO
2 /y〉LO

3 is indeed replaced by LO
1 . These mismatches are

not visible if meta-substitution is employed everywhere.
One way out is to extend LJ to a calculus where any term can enter the

head position of Left(, L2, (y)L3) (see λgs later on). For now, we optimize ()O

by performing the missing σ-steps at “compile time”.
Normalisation in λs versus cut-elimination in LJ: We introduce map-

ping ()H : LJ → λs, which is defined exactly as ()O, except for the clause for
cuts, which now reads:

Cut(L1, (x)Left(x, L2, (y)L3))H = 〈LH
1 LH

2 /y〉LH
3 , if x /∈ L2, L3

Cut(L1, (x)L2)H = 〈LH
1 /x〉LH

2 , if ¬mll(x, L2)

Mapping ()H has better properties than mapping ()O as to preservation
of reduction, but it introduces a typical identification. Suppose x /∈ L2, L3 and
let L0 = Cut(z, (x)Left(x, L2, (y)L3)) and L4 = Left(z, L2, (y)L3). Notice that
L0 →S20 L4, and that LH

0 and LH
1 are the same λs-term of the form 〈zN2/y〉N3.

We now obtain for λs a result that improves Proposition 10. In order to
achieve a good correspondence, we need to introduce in λs an “eager” version
of π, since the structural steps of cut-elimination in LJ perform complete per-
mutations of cuts. First, we define certain contexts:

S ::= 〈N/x〉[] | 〈N/x〉S
Each S is a λs-term with a hole []. S[P] denotes the result of filling P in the
hole of S. Next, “eager” π is defined by

(π′) 〈S[V]N/x〉P → S[〈V N/x〉P] ,

where V is a value. It is easy to show that each π′-step corresponds to a sequence
of one or more π-steps.

Theorem 4 (Computational interpretation of cut-elimination). Let R ∈
{S1, S21, S22, Log}. If L1 →R L2 (resp. L1 →S20 L2) in LJ , then LH

1 →+
βπσ LH

2

in λs (resp. LH
1 = LH

2). In addition, ()H maps a reduction sequence ρ in LJ
from L1 to L2 to a reduction sequence ρH in λs from LH

1 to LH
2 in a, so to say,

structure-preserving way. To each R-step in ρ, there is a corresponding R′-steps
in ρH, where R′ is given according to the following table

R R′ computational interpretation
S1 σ execution of substitution

S21 ∪ S22 π′ delaying of substitution
Log β generation of substituion

Moreover these R′-steps in ρH may be interleaved with trivial σ-steps of the form

〈N1/x〉〈xN2/y〉N3 →σ 〈N1N2/y〉N3 (x /∈ N2, N3) . (5)

The proof is postponed. It is useful to introduce here a new calculus λgs. By
studying λgs, we will obtain a proof and two improvements of this theorem.

The λgs-calculus: The λgs-calculus is simultaneously an extension of λg
with a primitive substitution constructor, written 〈N/x〉M , and an extension of
λs where application is generalised. Reduction rules are as follows:

(β) (λx.M)(N, y.P) → 〈〈N/x〉M/y〉P
(σ) 〈N/x〉M → [N/x]M

(π1) (〈M/x〉N)(N ′, y.P ′) → 〈M/x〉(N(N ′, y.P ′))
(π2) 〈〈M/x〉N/y〉P → 〈M/x〉〈N/y〉P
(π3) M(N,x.P)(N ′, y.P ′) → M(N, x.P (N ′, y.P ′))
(π4) 〈M(N,x.P)/y〉P ′ → M(N, x.〈P/y〉P ′) .

Meta-substitution in λgs is defined as expected. In particular, equation (1) holds
again. Let π = ∪4

i=0πi. A λgs-term is in βπσ-normal form iff it is in βπ3σ-normal
form iff it is a λg-term in βπ-normal form iff it has no occurrences of substitution
and every occurrence of generalised application in it is of the form x(N, y, P).

Mappings between λgs and LJ : There is an obvious injection of LJ into
λgs. Formally, we define the mapping ()B : LJ → λgs as follows:

Axiom(x)B = x Right((x)L)B = λx.LB

Left(y, L1, (x)L2)B = y(LB
1 , x.LB

2) Cut(L1, (x)L2)B = 〈LB
1 /x〉LB

2

Hence, we may regard λgs as an extension of LJ , where the particular case
y(N, x.P) of the generalised application construction plays the role of left intro-
duction. Conversely, M(N,x.P) may be regarded, when mapping back to LJ ,
as a primitive construction for a particular case of cut (except in the case of M
being a variable). The mapping ()¦ : λgs→ LJ embodies this idea:

x¦ = Axiom(x) (λx.M)¦ = Right((x)M¦)
(y(N,x.P))¦ = Left(y, N¦, (x)P ¦) (〈N/x〉M)¦ = Cut(N¦, (x)M¦)

(M(N,x.P))¦ = Cut(M¦, (z)Left(z, N¦, (x)P ¦)), if M is not a variable

with z /∈ N,P in the last equation.

Lemma 1. (1) For all L ∈ LJ : (i) LB¦ = L. (ii) If L is cut-free, then LB is
βπσ-normal. (2) For all M ∈ λgs, if M is βπσ-normal, then M¦ is cut-free and
M¦B = M .

Corollary 1. ()B and ()¦ are mutually inverse bijections between the sets of
cut-free terms of LJ and the βπσ-normal λgs-terms.2

If cuts are allowed, we cannot expect a bijective correspondence. Suppose
x /∈ N2, N3 and N1 is not a variable. Let M1 = 〈N1/x〉(x(N2, y.N3)) and
M2 = N1(N2, y.N3). Then, M¦

1 and M¦
2 are the same term L, a cut of the

form Cut(L1, (x)Left(x, L2, (y)L3)). Notice that M1 →σ M2, by a sigma-step of
the restricted form

〈N1/x〉(x(N2, y.N3)) →σ N1(N2, y.N3) (x /∈ N2, N3). (6)

Now, when mapping cut L back to λgs, there is, so to say, the M1 option
and the M2 option. Mapping ()B corresponds to the first option, whereas the
second option corresponds to a refinement of ()B named ()I. This last mapping
is defined exactly as ()B, except for the case of cuts, which now reads

Cut(L1, (x)Left(x, L2, (y)L3))I = LI
1 (LI

2 , y.LI
3), if x /∈ L2, L3

Cut(L1, (x)L2)I = 〈LI
1 /x〉LI

2 , if ¬mll(x, L2)

In particular, mappings ()B and ()I coincide on cut-free terms.
Mapping ()I has better properties than mapping ()B as to preservation of

reduction, but it introduces a typical identification. Suppose x /∈ L2, L3 and let
L0 = Cut(z, (x)Left(x, L2, (y)L3)) and L4 = Left(z, L2, (y)L3). Then LI

0 and LI
1

are the same λgs-term of the form z(N2, y.N3). By the way, L0 →S20 L4.
Normalisation in λgs versus cut-elimination in LJ : We now investigate

how mappings ()¦ and ()I relate normalisation in λgs and cut-elimination in
LJ . To this end, we only need π1 and π3 among the π-rules of λgs. In addition,
“eager” versions rules of π1 and π3 are required:

(π′1) (〈M/x〉N)(N ′, y.P ′) → 〈M/x〉(N@(N ′, y, P ′))
(π′3) M(N,x.P)(N ′, y.P ′) → M(N, x.P@(N ′, y, P ′)) ,

where M@(N ′, y, P ′) is defined by recursion on M as follows: x@(N ′, y, P ′) =
x(N ′, y.P ′); (λx.M)@(N ′, y, P ′) = (λx.M)(N ′, y.P ′); (M(N, x.P))@(N ′, y, P ′) =
M(N, x.P@(N ′, y, P ′)); and (〈M/x〉N)@(N ′, y, P ′) = 〈M/x〉(N@(N ′, y, P ′)).

Let π′ = π′1 ∪ π′2. It is easy to see that one π′i-step (i = 1, 3) corresponds to
one or more R-steps, where R = π1 ∪ π3.
2 It is well-known that cut-free LJ-terms are not in bijective correspondence with β-

normal λ-terms; therefore, they are not in bijective correspondence with βπσ-normal
λs-terms. In the particular case of ()H, terms of the form Left(y, L1, x.L2) are always
mapped to a substitution (which is a σ-redex).

Proposition 11. Let R ∈ {β, π′, σ}. If M →R N in λgs, then M¦ →+
S1,S2,Log

N¦ in LJ , except for some cases of R = σ, of the trivial form (6), for which one
has M¦ = N¦.

Proof: By induction on M →R N , using the fact that, for all M,N, P ∈ λgs:
(i) S1(M¦, x,N¦) →∗

S20 [M/x]N)¦; (ii) if x /∈ N, P then S2(M¦, x, N¦, y, P ¦) =
(M@(N, y, P))¦. ¥

An inspection of the proof shows that ()¦ maps a reduction sequence ρ in
λgs from M1 to M2 to a reduction sequence ρ¦ in LJ from M¦

1 to M¦
2 in a, so

to say, structure-preserving way. Let R ∈ {β, π, σ}. To each R-step in ρ, there is
a corresponding R′-step in ρ¦, where R′ is given by the left table below:

R R′

σ S1 ∪ S20
π′1 S21 ∪ S22
π′3 S22
β Log

R R′

S1 σ
S21 π′3
S22 π′

Log β

(7)

In addition, these R′-steps in ρ¦ may be interleaved with S20-reduction steps.

Proposition 12. Let R ∈ {S1, S21, S22, Log}. If L1 →R L2 (resp. L1 →S20

L2) in LJ , then LI
1 →+

βπσ LI
2 in λgs (resp. LI

1 = LI
2). Moreover, a reduction

sequence ρ in LJ from L1 to L2 to a reduction sequence ρI in λgs from LI
1

to LI
2 in a, so to say, structure-preserving way. To each R-step in ρ, there is

a corresponding R′-step in ρI, where R′ is given according to the right table in
(7). In addition, these R′-steps in ρI may be interleaved with trivial σ-steps of
the form (6).

Proof: By induction on L1 →R L2 or L1 →S20 L2. The proof uses the fact
that, for all L1, L2, L3 ∈ LJ : (i) either 〈LI

1 /x〉LI
2 →σ Cut(L1, (x)L2)I or

〈LI
1 /x〉LI

2 = Cut(L1, (x)L2)I; (ii) S1(L1, x, L2)I = [LI
1 /x]LI

2 ; (iii) if x /∈ L2, L3

then S2(L1, x, L2, y, L3)I = LI
1 @(LI

2 , y, LI
3). An inspection of this inductive

proof shows the statement regarding reduction sequences. ¥

LJ versus λgs: Let us extract some lessons from the comparison between LJ
and λgs (where the latter is equipped with π′ instead of π). The two systems are
close. Cut-free terms and βπσ-nfs are in bijective correspondence. Up to trivial
reduction steps of the form S20 or (6), reduction sequences are similar, and obey
a correspondence between reduction steps of the forms S1, S2, Log and σ, π′, β,
respectively. However, λgs is a preferable syntax for three reason: (1) it avoids
the “imperfect substitution” problem; (2) it has a lighter notation; (3) reduction
rules do not have side conditions. Side conditions in the reduction rules of LJ
guarantee that a cut undergoes a S2 reduction only when it is not a S1-redex.
This sequencing is built in the syntax of λgs: a π-redex is never a σ-redex.

Mapping λgs into λs: There is a bridge via λgs between LJ and λs.
We now close the bridge by studying mapping ()∗ : λgs → λs. This mapping

extends the one between λg and λs, introduced in Section 3, with the clause
(〈N/x〉M)∗ = 〈N∗/x〉M∗. As before with λg, mapping ()∗ produces a strict
simulation of reduction in λgs by reduction in λs (for the moment, π is taken
in its “lazy” form both in λgs and λs). So, the following is immediate.

Theorem 5 (SN). If M ∈ λgs is typable, then M is βπσ-SN.

Indeed, the simulation is perfect (one step in the source mapped to exactly
one step in the target) for β and σ, and it is so for π if π is taken in the “eager”
form. We introduce in λgs an equivalent3 definition of rules π′1 and π′3:

(π′1) (〈M/x〉C[V])(N, y.P) → 〈M/x〉C[V (N, y, P)]
(π′3) M(N,x.C[V])(N, y.P) → M(N, x.C[V (N, y, P)]) ,

where V is a value and C is a context belonging to the class

C ::= [] |M(N,x.C) | 〈N/x〉C
Proposition 13. Let R ∈ {β, σ, π′}. If M →R N in λgs, M∗ →R N∗ in λs.

Proof: Only π′ remains to be checked. It is useful to define, for M ∈ λs, S =
〈M/x〉C∗ by recursion on C as follows: 〈M/x〉[]∗ = 〈M/x〉[]; 〈M/x〉(P (N, y.C))∗ =
〈M/x〉(〈P ∗N∗/y〉C∗); 〈M/x〉(〈N/y〉C)∗ = 〈M/x〉(〈N∗/y〉C∗). By induction on C
one proves that, for all M,N,P ∈ λgs, (〈M/x〉C[P])∗ = (〈M∗/x〉C∗)[P ∗] and
M(N, x.C[P])∗ = (〈M∗N∗/x〉C∗)[P ∗]. Next we do an induction on M →π′ N . ¥

We can finally give a proof of Theorem 4. It follows from Propositions 12
and 13, and the fact that ()H = ()∗ ◦ ()I and that ()∗ maps reduction steps
of the form (6) to reduction steps of the form (5).

We finish by obtaining strong cut-elimination4 for LJ as a corollary to strong
normalisation for λs. Indeed, all we need is Theorem 4, together with the fact
that →S20 is terminating and that ()H preserves typability.

Theorem 6 (Strong cut-elimination). Let R = S1 ∪ S2 ∪ Log. For all L ∈
LJ , if L is typable, then L is R-SN.

Improving the computational interpretation: Theorem 4 is an improve-
ment of Proposition 10 as to the interpretation of cut-elimination. Depending
on the role we attribute to λgs, we can see Propositions 12 and 13 as improve-
ments over Theorem 4 w.r.t. the same goal. On the one hand, if we regard λgs
as an adaptation of λs particularly suited for the comparison with LJ , then
Proposition 12 improves Theorem 4, because it includes a bijection between cut-
free terms and βσπ-normal forms. On the other hand, if we regard λgs as and
3 The equivalence follows from two facts: (1) for all V, N, P ∈ λgs, C[V]@(N, y, P) =
C[V (N, y.P)]; (2) every M ∈ λgs can be written as C[V], with V value.

4 A (weak) cut-elimination result is obtained as follows. Let L ∈ LJ . From M = LB,
one gets a βπσ-nf N . Proposition 11 guarantees that L = LB¦ →∗ N¦ in LJ . Since
N is a βπσ-nf, N¦ is cut-free.

adaptation of LJ which avoids the problem of “imperfect substitution”, then
Proposition 13 improves Theorem 4, because it states a perfect correspondence
that avoids the little perturbations of having S20-steps in the source reduction
sequence that are not simulated, or extra σ-steps interleaved in the target re-
duction sequence.

However, in Proposition 13 the mismatch between βσπ-normal forms in λgs
and in λs remains, and in Proposition 12 the little perturbations related to
S20-steps and extra σ-steps survive (Theorem 4 shared both defects). For an
isomorphism between sequent calculus and natural deduction, see [3].

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal
of Functional Programming, 1(4):375–416, 1991.

2. V. Danos, J-B. Joinet, and H. Schellinx. A new deconstructive logic: linear logic.
The Journal of Symbolic Logic, 62(2):755–807, 1997.

3. J. Esṕırito Santo. Completing Herbelin’s programme. In Proceedings of TLCA’07,
Lecture Notes in Computer Science. Springer-Verlag, 2007.

4. J. Gallier. Constructive logics. Part I: A tutorial on proof systems and typed
λ-calculi. Theoretical Computer Science, 110:248–339, 1993.

5. H. Herbelin. A λ-calculus structure isomorphic to a Gentzen-style sequent calculus
structure. In L. Pacholski and J. Tiuryn, editors, Proceedings of CSL’94, volume
933 of Lecture Notes in Computer Science, pages 61–75. Springer-Verlag, 1995.

6. F. Joachimski and R. Matthes. Short proofs of normalization for the simply-typed
lambda-calculus, permutative conversions and Gödel’s T. Archive for Mathematical
Logic, 42:59–87, 2003.

7. Felix Joachimski. On Zucker’s isomorphism for LJ and its extension to pure type
systems (submitted).

8. E. Moggi. Computational lambda-calculus and monads. Technical Report ECS-
LFCS-88-86, University of Edinburgh, 1988.

9. Y. Ohta and M. Hasegawa. A terminating and confluent linear lambda calculus.
In F. Pfenning, editor, Proc. of 17th Int. Conference RTA 2006, volume 4098 of
Lecture Notes in Computer Science, pages 166–180. Springer-Verlag, 2006.

10. Laurent Regnier. Une équivalence sur les lambda-termes. Theoretical Computer
Science, 126(2):281–292.

11. G. Revesz. Lambda-Calculus, Combinators, and Functional Programming, volume 4
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
1988.

12. K. Rose. Explicit substitutions: Tutorial & survey. Technical Report LS-96-3,
BRICS, 1996.

13. F. van Raamsdonk, P. Severi, M. Sorensen, and H. Xi. Perpectual reductions in
λ-calculus. Information and Computation, 149(2):173–225, 1999.

14. R. Vestergaard and J. Wells. Cut rules and explicit substitutions. In Second
International Workshop on Explicit Substitutions, 1999.

15. J. von Plato. Natural deduction with general elimination rules. Annals of Mathe-
matical Logic, 40(7):541–567, 2001.

