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Abstract

We consider kernel estimation of the p-dimensional marginal distribution function of

a stationary associated sequence. We restate this setting available results concerning the

asymptotic behaviour of the kernel estimator on the literature for somewhat reduced frame-

work. We present some simulation results concerning the empirical process constructed form

the estimator, illustrating the asymptotic normality recalled here.

1. Introduction and Assumptions

Estimation of distribution functions has been one of the classical problems in statistics.

We will address this estimation using a kernel estimator and based on a stationary sequence

satisfying a positive association assumption, and we will be interested in the p-dimensional

marginal distribution function. The dependence structure of associated sequences is com-

pletely characterized by the covariances between the variables, as described by Theorem 10

1Author partially supported by CMAT and FCT under the program POCI 2010.
2Author partially supported by CMUC and FCT.
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in Newman (1984). It is thus natural to seek sufficient conditions for the convergence of

the estimators imposing some convenient decrease rate on the covariances. Estimation of

distribution functions based on associated samples seems to have attracted attention first:

Roussas (1991) studied the one-dimensional case, Cai and Roussas (1998) considered the

same one-dimensional case but under positive quadrant dependence, a positive dependence

related to association. Motivated by the need to approximate covariance functions appearing

in the study of empirical processes, the two-dimensional case based on associated samples

was addressed in Azevedo and Oliveira (2000) using the kernel estimator and in Henriques

and Oliveira (2003) using the histogram estimator. This note, after rewriting the results in

Azevedo and Oliveira (2000) for the p-dimensional setting, presents some simulation results

concerning the empirical process. These simulations illustrate the convergence of the finite

dimensional distributions of the empirical process, giving some information about the finite

sample behaviour. The simulation model depends on a parameter that may be interpreted

as a measure of how far away the variables can be being still dependent. The influence of the

parameter is also illustrated. It is clear that, for sequences that are close to independence

the asymptotic normality happens with quite fast convergence. We will include only sketches

of proofs, as the adaptation of the two-dimensional results to the p-dimensional is almost

straightforward, referring the reader to Azevedo and Oliveira (2000) for details.

Definition 1 (Esary et al. (1967)) The random variables X1, X2, . . . are said to be asso-

ciated, if for every k ∈ N and any real-valued coordinatewise increasing functions

G, H : Rk −→ R,

Cov
(
G(X1, . . . , Xk), H(X1, . . . , Xk)

)
≥ 0,

whenever this covariance exists.

A sequence of random variables {Xn}n∈N is said to be associated if, for every k ∈ N, the

random variables X1, . . . , Xk are associated.

Given the sequence {Xn}n∈N denote by Fp its p-dimensional marginal distribution func-

tion, Xi,p = (Xi+1, . . . , Xi+p) and x = (x1, . . . , xp). Consider U a given p-variate distribution
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function, and {hn}n∈N, a sequence of positive real numbers such that hn −→ 0. Assuming

the stationarity, the estimator for Fp is defined as

F̂n,p(x) =
1

n− p

n−p∑
i=1

U

(
x−Xi,p

hn

)
. (1)

We will refer to U as the kernel function. This is the natural extension of the kernel estimator

for distribution functions.

For independent samples, Jin and Shao (1999) proved the almost sure consistency and

described the mean square error of F̂n,p, deriving that, for every dimension p, the optimal

bandwidth rate is of order n−1/3. For associated samples, it follows from Cai and Rous-

sas (1998) that, under the assumptions on the covariance structure that imply the consis-

tency of the estimator, the optimal bandwidth rate for the one-dimensional case is of order

n−1. This optimal bandwidth rate is shown to be depend on the decay rate of the covariances.

In particular, in Cai and Roussas (1998), strengthening the assumptions on the covariances,

the authors recover the optimal bandwidth rate n−1/3, as for independent sequences. In

Azevedo and Oliveira (2000), the two-dimensional estimation of the distribution function of

(X1, Xk+1) was considered with results similar to those by Cai and Roussas (1998).

For future reference we list the assumptions that will be used in the sequel. This set of

conditions is basically the same as in Cai and Roussas (1998) and in Jin and Shao (1999).

Assumptions

(A1) {Xn}n∈N is a strictly stationary sequence of associated random variables with bounded

density function f ;

(A2) The distribution function Fp of the random vector X = (X1, . . . , Xp) has bounded and

continuous partial derivatives of first and second orders;

(A3) For each j ∈ N, the distribution function Fp,j of the 2p-dimensional random vector

(X1,p,Xj,p) has bounded and continuous partial derivatives of first and second orders;
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(A4) The kernel function U is p times differentiable and u = ∂pU
∂x1...∂xp

satisfies

(i)

∫
Rp

u(x) dx = 1; (ii)

∫
Rp

xu(x) dx = 0; (iii)

∫
Rp

xxT u(x) dx < ∞;

(A5) nh2
n −→ 0;

(A∗
5) nh4

n −→ 0;

(A6)
∞∑

n=1

n Cov 1/3(X1, Xn) < ∞;

(A∗
6) There exists τ ∈ (0, 1) such that

∞∑
j=1

(
Cov(X1, Xj+1)

) 1−τ
3

< ∞;

(A7) The function V = ∂pU2

∂x1...∂xp
, satisfies

∫
Rp

xxT V(x) dx < ∞.

Remark 2 Assumptions (A1) and (A6) have already been used in Cai and Roussas (1998)

for the treatment of the univariate case. They state the regularity of the one-dimensional

distribution function and a convenient decrease rate on the covariances. This assumption

enables the control of pairs of random variables.

Remark 3 The strengthened assumptions (A∗
5) and (A∗

6) have also been used in Cai and

Roussas (1998) in the one-dimensional case to obtain an optimal bandwidth characterization

with the same rate as for independent sequences.

Finally, denoting x = (x1, . . . , xp) and t = (t1, . . . , tp), we define the auxiliar real valued

functions V1, V2, V3 and V4 on Rp:

• V1(x) =

p∑
i=1

∂2Fp

∂x2
i

(x)

∫
Rp

t2i u(t) dt + 2

p−1∑
j=1

p∑
i=j+1

∂2Fp

∂xj∂xi

(x)

∫
Rp

titju(t) dt;

• V2(x) =

p∑
i=1

∂Fp

∂xi

(x)

∫
Rp

tiV(t) dt;

• V3(x) =

p∑
i=1

∂2Fp

∂x2
i

(x)

∫
Rp

t2i V(t) dt + 2

p−1∑
i=1

p∑
j=i+1

∂2Fp

∂xj∂xi

(x)

∫
Rp

titjV(t) dt;
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• V4(x) =

2p∑
i=1

∂2Fp,j

∂x2
i

(x,x)

∫
R2p

t2i u(t) dt + 2

2p−1∑
i=1

2p∑
j=i+1

∂2Fp,j

∂xj∂xi

(x,x)

∫
R2p

titju(t) dt.

2. Consistency of the Estimator

In this section we look at the almost sure consistency of the estimator F̂n,p. This is be

accomplished by applying a strong law of large numbers to the sequence of random variables

U
(

x−Xi,p

hn

)
, i = 1, . . . , n − p, that appear in the definition of F̂n,p. To achieve this step we

shall to characterize the asymptotic behavior of each entry of the covariance matrix of the

random vector whose entries are the preceding variables. The almost sure consistency will

then follow from the asymptotic unbiasedness of F̂n,p.

Theorem 4 Suppose {Xn}n∈N satisfies (A1). Then, for each x ∈ Rp,

(i) IE
(
F̂n,p(x)

)
−→ Fp(x);

(ii) if further (A2) and (A4) are satisfied, IE
(
F̂n,p(x)

)
= Fp(x) + V1(x)

2
h2

n + o(h2
n).

Proof: (i) follows from an application of the Dominated Convergence Theorem. As for (ii),

rewrite F̂n,p as

F̂n,p(x) =

∫
Rp

U

(
x− s

hn

)
dφ̂n(s), (2)

where φ̂n(x) = 1
n−p

∑n−p
i=1 1I(−∞,x1]×···×(−∞,xp](Xi,p), and 1IA is the characteristic function of

the set A. It is easily verified that IE
(
φ̂n(x)

)
= Fp(x), so the result follows from (2), applying

Fubini’s Theorem, making a standard change of variable and using a Taylor expansion taking

into account (A2) and (A4). �

In order to prove the strong law of large numbers that we seek we need the following

auxiliary result.

Lemma 5 (Lebowitz (1972)) Let A, B ⊂ {1, . . . , n} and, for each i ∈ A ∪ B, let xi ∈ R.

Define HA,B = P (Xi > xi, i ∈ A∪B)−P (Xj > xj, j ∈ A)P (Xk > xk, k ∈ B). If the random

variables X1, . . . , Xn are associated then, 0 ≤ HA,B ≤
∑

i∈A, j∈B H{i},{j}.
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As mentioned before, the assumptions that we need to verify for the strong law of large

numbers require a convenient control on the covariances of the terms that are summed in

(1). For this purpose, define

Inj(x) = Cov

(
U

(
x−X1,p

hn

)
,U

(
x−Xj,p

hn

))
and

Ij(x) = Cov
(
1I(−∞,x](X1,p), 1I(−∞,x](Xj,p)

)
.

Lemma 6 Suppose that the sequence {Xn}n∈N satisfies (A1), (A2), (A3) and (A4). Then,

for each x ∈ Rp,

(i) Inj(x) = Ij(x) + O(h2
n) = Fp,j(x,x)− F2

p(x) + O(h2
n), for each j ∈ N;

(ii) there exists a constant M > 0, independent from x, such that, for each j > p− 1,

Ij(x) ≤ M

p∑
k=1

(p− k + 1)Cov 1/3(X1, Xj+k) + M

p−1∑
k=1

(p− k)Cov 1/3(X1, Xj−k+1).

Proof: To prove assertion (i) write

Inj =

∫
R2p

U

(
x− s

hn

)
U

(
x− t

hn

)
dFp,j(s, t)−

(∫
Rp

U

(
x− s

hn

)
dFp(s)

)2

.

We only need to take care of the first integral. As U is an integral, we may use Fubini’s

Theorem followed by a standard change of variable, as before. Next, expand Fp,j to the

second order, use (A3) to make the linear terms equal to zero and (A4) to control the terms

that multiply h2
n, to find the term Fpj(x,x)+O(h2

n). This together with the characterization

of the behavior of IE
(
F̂n,p(x)

)
, as given in Theorem 4, completes the proof of (i).

To prove (ii), first use Lemma 5 to find

Cov
(
1I(−∞,x](X1,p), 1I(−∞,x](Xj,p)

)
≤

p∑
k=1

p∑
i=1

Cov
(
1I(−∞,xk](Xk), 1I(−∞,xj+i](Xj+i)

)
. (3)

From (A1) and Lemma 2.6 of Roussas (1995), there exits a constant M > 0 such that,

Cov
(
1I(−∞,xk](Xk), 1I(−∞,xj+i](Xj+i)

)
≤ M Cov 1/3(Xk, Xj+i). (4)
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Inserting this into (3) and taking into account the stationarity of the random variables the

conclusion follows. �

Remark 7 Note that if we assume, as was done in Cai and Roussas (1998), that the co-

variance sequence {Cov(X1, Xj+1)}j∈N is decreasing, then, under the same assumptions as

in the previous lemma, the following upper bound holds Ij(x) ≤ p2Cov 1/3(X1, Xj+1).

We may finally conclude the almost sure consistency of the estimator F̂n,p.

Theorem 8 Suppose the variables {Xn}n∈N satisfy (A1), (A2), (A3), (A4) and (A6). Then,

for each x ∈ Rp, F̂n,p(x) −→ Fp(x) almost surely.

Proof: As proved in Theorem 4, IE
(
F̂n,p(x)

)
−→ Fp(x), so it is enough to verify that the

variables U
(

x−Xm,p

hn

)
, m ≥ 1, satisfy a strong law of large numbers. The stationarity of the

variables is obvious. Further, as U is a distribution function, it is coordinatewise increasing,

so these variables are also associated. Then, according to Newman (1980), the condition

lim
n→∞

1

n− p

n−p∑
j=1

In,j(x) = 0, (5)

implies the strong law of large numbers. Now, it follows from Lemma 6 that

In,j(x) ≤ M

p∑
k=1

(p− k + 1)Cov 1/3(X1, Xj+k) + M

p−1∑
k=1

(p− k)Cov 1/3(X1, Xj−k+1) + O(h2
n),

so (5) is a consequence of (A6) and the association of the variables. �

3. The Behavior of the Mean Square Error

In this section we study the asymptotics and convergence rate of the mean square error

(MSE) of F̂n,p. From the characterization obtained the optimal rate of the bandwidth is of

order n−1, thus a different convergence rate than the one for the independent case, as was

already noticed for the one-dimensional case in Cai and Roussas (1998). The optimal rate

for the bandwidth, when dealing with independent variables, is, for every dimension, of order

n−1/3, as shown in Jin and Shao (1999). Again, strengthening the assumptions on the decay
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rate of the covariances as done in Cai and Roussas (1998), we find a different description of

the MSE, which gives, for associated variables, the n−1/3 rate for the bandwidth.

As usual write MSE
(
F̂n,p(x)

)
= Var

(
F̂n,p(x)

)
+
(
IE
(
F̂n,p(x)

)
− Fp(x)

)2

. The behavior

of IE
(
F̂n,p(x)

)
being known (cf. Theorem 4), we need to describe the asymptotics and

convergence rate for the variance term.

Lemma 9 Suppose the sequence {Xn}n∈N satisfies (A1), (A2), (A3), (A4) and (A7). Then,

for each x ∈ Rp,

(i) IE

(
U2

(
x−Xi,p

hn

))
= Fp(x)− hnV2(x) +

h2
n

2
V3(x) + o(h2

n);

(ii)

∣∣∣∣Var

(
U

(
x−Xi,p

hn

))
− Fp(x)(1− Fp(x)) + hnV2(x)

∣∣∣∣
= h2

n

(
V3(x)− Fp(x)V1(x)

)
+ o(h2

n).

Proof: In what concerns (i), we have, recalling the definition of V,

IE

(
U2

(
x−Xi,p

hn

))
=

∫
Rp

(∫
(−∞,x−s

hn
]

V(a) da

)
dFp(s) =

∫
Rp

V(a)Fp(x− ahn) da,

using Fubini’s Theorem. Expand now Fp(x−ahn) to the second order, recall the definitions

of the auxiliary functions V2 and V3, and take into account (A4) to find the o(h2
n) term.

In order to verify (ii) decompose the variance in the standard way and apply (i) together

with Theorem 4 to conclude the proof. �

For a more convenient characterization of the mean square error of the estimator, let us

introduce the following notation:

• σ2(x) = Fp(x)− F2
p(x) + 2

∞∑
j=2

(
Fp,j(x,x)− F2

p(x)
)
, x ∈ Rp;

• cn(x) = 2
∞∑

j=n−p+1

(
Fp,j(x,x)− F2

p(x)
)
+

2

n− p

n−p∑
j=2

(j−1)
(
Fp,j(x,x)− F2

p(x)
)
, x ∈ Rp.

Theorem 10 Suppose the sequence {Xn}n∈N satisfies (A1), (A2), (A3), (A4), (A5), (A6)

and (A7). Then, for each x ∈ Rp,

(n−p)Var
(
F̂n,p(x)

)
= σ2(x)−hnV2(x)+(n−p−1)h2

n (V4(x)− Fp(x)V1(x))+O(h2
n)−cn(x).
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Proof: Use the stationarity of the random variables and Lemmas 6 and 9 to write

(n− p)Var
(
F̂n,p(x)

)
= Fp(x)− F2

p(x)−V2(x)hn + (V3(x)− Fp(x)V1(x)) h2
n

+2

n−p∑
j=2

(
Fp,j(x,x)− F2

p(x)
)

+ (n− p− 1)h2
n (V4(x)− Fp(x)V1(x))

− 2

n− p

n−p∑
j=2

(j − 1)
(
Fp,j(x,x)− F2

p(x)
)

+ O(h2
n).

Summing and subtracting terms of the form
(
Fp,j(x,x)− F2

p(x)
)
, the result follows. �

We may now summarize the above to describe the behavior of the mean square error.

Theorem 11 Suppose the sequence {Xn}n∈N satisfies (A1), (A2), (A3), (A4), (A5), (A6)

and (A7). Then, for each x ∈ Rp,

(n− p)MSE
(
F̂n,p(x)

)
= σ2(x)− hn V2(x) + O(nh2

n) + o(hn + nh2
n)− cn(x).

Note that, with assumptions made, cn −→ 0 and is independent of the bandwidth choice.

So, to find the optimal bandwidth rate it is enough to minimize the o(·) term, which is

achieved by choosing hn = O(n−1), for each dimension p. Tracing the coefficients of the

above approximations, it is possible to check that we should choose

hn(x) =
V2(x)

2(n− p− 1) (V4(x)− Fp(x)V1(x))
.

We now strengthen the assumptions on the covariance decrease rate, assuming instead

(A∗
5), (A∗

6), and show that this reflects on the optimal bandwidth rate, recovering the same

rate as in the independent case.

Theorem 12 Suppose the covariances Cov(X1, Xj+1) decrease as j increases and the se-

quence {Xn}n∈N satisfies (A1), (A2), (A3), (A4), (A∗
5), (A∗

6) and (A7). Then, for each x ∈ Rp,

(n− p)MSE
(
F̂n,p(x)

)
= σ2(x)− hn V2(x) + O(nh4

n) + o(hn + nh4
n)− cn(x).
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Proof: Recall that, as shown in Lemma 6, Inj(x)−Ij(x) = O(h2
n), and, as noted in Remark 7,

when the covariances are decreasing, we have Ij(x) ≤ p2Cov 1/3(X1, Xj+1), and the same

inequality holds for Inj(x). It follows then that, there exists a constant c > 0 such that,

|Inj(x)− Ij(x)| = |Inj(x)− Ij(x)|τ |Inj(x)− Ij(x)|1−τ ≤ c̃ h2τ
n

∣∣∣∣(Cov 1/3(X1, Xj+1)
)1−τ

∣∣∣∣
where c̃ = cτ p2(1−τ). Let us now write the variance of the estimator as

(n− p)Var
(
F̂n,p(x)

)
= Var

(
U

(
x−X1,p

hn

))
+

2

n− p

n−p∑
j=2

(n−p−j+1) (Inj(x)−Ij(x)) +

n−p∑
j=2

(n−p−j+1)Ij(x).

Using (A∗
6), we have that,

1

n− p

n−p∑
j=2

(n− p− j + 1) |Inj(x)− Ij(x)|

≤
n−p∑
j=2

|Inj(x)− Ij(x)| ≤ c̃h2τ
n

∞∑
j=2

(
Cov 1/3(X1, Xj+1)

)1−τ
= O(h2τ

n ),

The result now follows readily repeating the arguments as in the proof of Theorem 10. �

An optimization of this mean square error leads now to the choice of a bandwidth of

order n−1/3, the optimal rate for the estimator when dealing with an independent sequence

of random variables.

4. Finite Dimensional Distributions

We now look at the asymptotic behavior of the finite dimensional distributions of the

estimator F̂n,p. The method of proof is based on a decomposition of the sum that defines

the estimator into the sum of several blocks. These blocks will afterwards be coupled with

independent variables with the same distributions as the original blocks, followed by an ap-

plication of the Lindeberg Central Limit Theorem to these independent copies. The distance

between the original blocks and the coupling variables is controlled via Newman’s inequality,

cf. Newman (1984).

In order to state our result in a more tractable way let us define, for every x,y ∈ Rp,

αn(x) =
√

n− p
(
F̂n,p(x)− IE

(
F̂n,p(x)

))
,
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α̃n(x) =
√

n− p
(
F̂n,p(x)− Fp(x)

)
= αn(x) +

√
n− p

(
IE
(
F̂n,p(x)

)
− Fp(x)

)
.

The last term converges to zero using Theorem 4, so we need to concentrate our attention

on αn(x). Define further

ς2(x,y) = Fp(x ∧ y)− Fp(x)Fp(y) + 2
∞∑

j=2

(Fp,j(x,y)− Fp(x)Fp(y)) ,

where x ∧ y represents the vector (min{x1, y1}, . . . min{xp, yp}). Notice that the definition

of ς2(x,y) is symmetric in x and y.

Theorem 13 Suppose {Xn}n∈N satisfies (A1), (A2), (A3), (A4), (A5), (A6) and (A7). Then,

given s ∈ N, x1, . . . ,xs ∈ Rp, the random vector (α̃n(x1), . . . , α̃n(xs)) converges in distribu-

tion to a Gaussian centered random vector with covariance matrix

Σ =


ς2(x1,x1) ς2(x1,x2) · · · ς2(x1,xs)

ς2(x2,x1) ς2(x2,x2) · · · ς2(x2,xs)

· · · · · · · · · · · ·

ς2(xs,x1) ς2(xs,x2) · · · ς2(xs,xs)


We start by describing the asymptotics of the covariances of the αn at different points.

Lemma 14 Suppose the assumptions of Theorem 13 are satisfied. Then, for every x,y ∈ Rp,

Cov (αn(x), αn(y)) −→ ς2(x,y).

Proof: Use the stationarity and argue as in Lemma 6. �

Define now the block decomposition variables. Given an integer r ≤ n− p, let m be the

largest integer less or equal to (n− p)/r. Denote

Tn,i(x) = U

(
x−Xi,p

hn

)
− IE

(
U

(
x−Xi,p

hn

))
,

Y r
j (x) =

1√
r

jr∑
i=(j−1)r+1

Tn,i(x), W r
j =

s∑
q=1

cqY
r
j (xq),

and

Zn,i =
s∑

q=1

cqTn,i(xq), Zn =
1√

n− p

s∑
q=1

cq

n−p∑
i=1

Tn,i(xq).

11



The random variable Zn is the linear combination of the coordinates of (αn(x1), . . . , αn(xs))

required for the application of the Cramer-Wold Theorem. Define further

Z∗
mr =

1√
m

s∑
q=1

cq

r∑
j=1

Y r
j (xq) =

1√
m

m∑
j=1

W r
j =

1√
mr

mr∑
j=1

Zn,i,

which replaces the sum up to n − p by a sum with a multiple of r numbers of terms. Note

also that, as follows from Lemma 14,

Var (Z∗
mr) −→ ς2 :=

s∑
q=1

c2
qς

2(xq,xq) + 2
s−1∑
q=1

s∑
l=q+1

cqclς
2(xq,xl). (6)

Further, for each r fixed, it follows from Lemma 6 (i) that

Var (Y r
1 (x)) =

1

r

r∑
i,i′=1

(
Fp,|i′−i+1|(x,x)− F2

p(x)
)

+ O(rh2
n), (7)

and

Var
(
W r

j

)
=

s∑
q,q′=1

cqcq′
1

r

r∑
i,i′=1

(
Fp,|i′−i+1|(xq,xq′)− Fp(xq)Fp(xq′)

)
+ O(rh2

n). (8)

We now proceed directly to the proof of Theorem 13. First we show that we may replace

the sum of n− p terms defined by Zn by the sum Z∗
mr, to get only a sum of the blocks W r

j .

Lemma 15 Suppose the assumptions of Theorem 13 are satisfied and let r be fixed. Then∣∣IE (eitZn
)
− IE

(
eitZ∗

mr
)∣∣ −→ 0.

Proof: Use Hölder’s inequality, the boundedness of Zn,i, (6) and mr/(n− p) −→ 1. �

We may now replace the sum Zn by the sum Z∗
mr as what convergence in distribution

is regarded. The variable Z∗
mr is a sum of m blocks, so we are trying to prove a Central

Limit Theorem for the sum of the dependent variables W r
j , j ≥ 1. Each of these variables

is a linear combination of the Y r
j which are decreasing functions of the original variables

Xn, n ≥ 1. So the Y r
j are associated and we may apply a convenient variation of Newman’s

inequality, Newman (1984), to the variables W r
j , j ≥ 1 as proved in Lemma 4.1 from Jacob

and Oliveira (1999), when coupling these variables with independent ones with the same

distribution as each of the W r
j .
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Lemma 16 Suppose the assumptions of Theorem 13 are satisfied and let r be fixed. Then∣∣∣∣∣IE
(

eitZ∗
mr −

m∏
j=1

IE
(
e

it√
m

W r
j

))∣∣∣∣∣ ≤ 2t2

[
Var

(
1√
mr

mr∑
j=1

Tn,i

)
− Var(Y r

1 )

]
s∑

q,q′=1

cqcq′ .

The next step is a Central Limit Theorem for the coupling variables. In order to keep

the notation simpler, we will denote these variables also by W r
j . To describe the variances

appearing on the next lemma let us define

ς2
r =

s∑
q,q′=1

cqcq′
1

r

r∑
i,i′=1

(
Fp,|i′−i+1|(xq,xq′)− Fp(xq)Fp(xq′)

)
.

Lemma 17 Suppose the assumptions of Theorem 13 are satisfied and let r be fixed. Then∣∣∣∣∣
m∏

j=1

IE
(
e

it√
m

W r
j

)
− e−

t2ς2r
2

∣∣∣∣∣ −→ 0.

Proof: Apply the Lindeberg condition to the variables
1√
m

W r
j , j = 1, . . . ,m. As these

variables are sums, use Lema 4 in Utev (1990) to separate the variables and the boundedness

of the Tn,i’s to conclude the proof. �

Proof: (of Theorem 13) Let us define a =
∑s

q,q′=1 cqcq′ς
2(xq,xq′). We have

∣∣∣IE (eitZn
)
− e−

t2a
2

∣∣∣ ≤ ∣∣IE (eitZn
)
− IE

(
eitZ∗

mr
)∣∣+ ∣∣∣∣∣IE (eitZ∗

mr
)
−

m∏
j=1

IE
(
e

it√
m

W r
j

)∣∣∣∣∣
+

∣∣∣∣IE(e it√
m

W r
j

)
− e−

t2ς2r
2

∣∣∣∣+ ∣∣∣∣e− t2ς2r
2 − e−

t2a
2

∣∣∣∣ .
Supposing, for the moment, that r is fixed, it follows from the previous lemmas that

lim sup
m→+∞

∣∣∣IE (eitZn
)
− e−

t2a
2

∣∣∣ ≤ 2t2

[
Var

(
1√
mr

mr∑
j=1

Tn,i

)
−Var(Y r

1 )

]
s∑

q,q′=1

cqcq′+

∣∣∣∣e− t2ς2r
2 − e−

t2a
2

∣∣∣∣ .
Now, if we let r −→ +∞, it follows that this upper bound converges to zero on account of

(7) and the stationarity of the variables Xn, n ≥ 1, thus proving the theorem. �
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5. Simulation Results

We now show some simulation results describing the behaviour of the empirical process

for finite values of n. In order to obtain associated variables we fix an integer m ∈ N and

simulate Y1, . . . , Yn+m with a suitable distribution and construct Xi = min(Yi, . . . , Yn+m−1).

The distribution of the Y variables is easily chosen so that the Xi’s are uniformly distributed

in [0, 1]. Note that m may be interpreted as a measure of how far the variables are dependent.

For each n and each m we simulated 1 000 paths for the empirical process and approximate,

based on these paths, the density of α̃n(ti) for a fixed set of points t1, . . . , tL ∈ [0, 1], using a

kernel estimator. Note that Theorem 13 only proves the convergence of the finite dimensional

distributions and not the functional convergence of the empirical process itself. Below we

graph the approximations obtained for n = 50, 100, 150, 250, 500 and 1 000, and for m = 5:

These graphs show a nice behaviour, close to gaussianity, but the base variables are ”almost

independent“, so this is not very susprising.

14



We now show the graphs, for the same values of n, increasing the degree of dependence

between the variables, by considering m = 10. The convergence to a gaussian distribution

is slower, as expected, but the approximations seem quite good for larger values of n:

For a fixed number of values the effect of the degree of dependence is dramatic. We illustrate

this for n = 150 and allowing m to take the values, 5, 10, shown above, and also 20, 50, 100.

15



These three graphs do not show much similarity with a gaussian distribution. Finally, we

include the graphs for the same values of m as before, but with n = 1 000.

These confirm the impression from the previous case, although with a better behaviour for

the smaller values of m. It is clear that, even with a very large number of points, the influence

of m, measuring the degree of dependence, is by no means negligible.
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