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Abstract

This is an english version of the notes written for my lectures on “Tópicos de Sistemas
Dinâmicos” for the “Licenciatura em Matemática” of the University of Minho, during the last
decade (available at my page http://w3.math.uminho.pt/~scosentino/salteaching.html).
Emphasis is on examples presenting in the simplest way some important ideas, and on the
interplay between different areas of mathematics. Some very important parts of the modern
theory of dynamical systems, as hyperbolic theory, Lyapunov exponents, Hamiltonian systems,
thermodynamic formalism, . . . are almost completely missing. Other interesting results or
directions are only sketched.

Classical modern references and sources are the encyclopedic [KH95] and the introductory
[HK03], by Anatole Katok and Boris Hasselblat,. I also recommend the wonderful set of notes
[Kn05] by Oliver Knill. Others references are suggested along the text.

It would be nice to have time and places to do simulations, using some of the software
at our disposal in laboratories: this includes proprietary software like Mathematica R©8 and
Matlab , or open software like Python , Maxima and GeoGebra . Occasionally, we may also
use some c++ code and Java applets. Some applets are in the bestiario in my web page, and
everything about the course may be found in my pages

http://w3.math.uminho.pt/~scosentino/salteaching.html

Black paragraphs form the main text. Blue paragraphs are important or interesting
examples, or computations, most of them even more important than black paragraphs. Red
paragraphs are non-trivial facts and results which may be skipped in a first (and also second)
reading. ex: means “exercise”, to be solved at home or in the classroom. A � indicates the
end of a proof.

Pictures were made with Grapher on my MacBook, or taken from Wikipedia, or produced
with Matlab , Python or Java codes, like the one in the front page.

http://w3.math.uminho.pt/~scosentino/salteaching.html
http://www.wolfram.com/mathematica/
http://www.mathworks.com/products/matlab/index.html
https://www.python.org
http://maxima.sourceforge.net/
http://www.geogebra.org/cms/
http://www.cplusplus.com/
http://java.com/
http://w3.math.uminho.pt/~scosentino/salbestiario.html
http://w3.math.uminho.pt/~scosentino
http://w3.math.uminho.pt/~scosentino/salteaching.html
http://en.wikipedia.org/wiki/Main_Page
http://www.mathworks.com/products/matlab/index.html
https://www.python.org
http://java.com/
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1 Iterations

1.1 Exponential growth/decay

Fibonacci numbers. Consider the following problem, posed by Leonardo Pisano (alias Fi-
bonacci) in his Liber Abaci, 1202:

Quot paria cuniculorum in uno anno ex uno pario germinentur.
Quidam posuit unum par cuniculorum in quodam loco, qui erat undique pariete circun-
datus, ut sciret, quot ex eo paria germinarentur in uno anno: cum natura eorum sit
per singulum mensem aliud par germinare; et in secundo mense ab eorum nativitate
germinant.

Let fn be the number of pairs of rabbits at the n-th month. The offspring one month later,
fn+1 − fn, is equal to the number of “adult” pairs present in the n-th month, which is fn−1.
Therefore, the fn’s satisfy the recursive law

fn+1 = fn + fn−1 , (1.1)

which prescribes the successive values of fn given some initial values f0 and f1. The sequence
grows quite fast, as you can see: if we take, with Fibonacci, the initial values f0 = f1 = 1, we get

1, 1, 2 , 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584 , . . .

First 13 Fibonacci numbers.

These numbers soon become astronomically large. For example, after 10 years we get

f120 ' 8.67× 1024 ,

larger than the Avogadro number! In order to see their growth, we must use a logarithmic scale.

First 121 Fibonacci numbers in logarithmic scale.

An applet which computes the sequence is in my page http://w3.math.uminho.pt/~scosentino/
salbestiario.html. Also useful would be a formula, or at least an asymptotic formula, for the
fn’s, and I’ll show you one later. For example, an asymptotic formula would solve a problem like

ex: Estimate the smallest time n such that fn > 1080.

http://w3.math.uminho.pt/~scosentino/bestiario/fibonacci.html
http://w3.math.uminho.pt/~scosentino/salbestiario.html
http://w3.math.uminho.pt/~scosentino/salbestiario.html
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Duplication of bacteria. Experiments show that a population of bacteria, during a certain
initial period at least, double each characteristic time τ > 0. Thus, an initial population of N0

cells gives origin to N1 = 2N0 after a time τ , to N2 = 4N0 cells after a time 2τ , . . . , and to

Nn = 2nN0

cells after time nτ . For example, a unique cell gives origin to 1024 cells after a time t = nτ such
that 2n = 1024, i.e. nτ = (log2 1024) · τ = 10 · τ .

Sequences as time series. A (real or complex valued) sequence is a collection (xn)n∈N0
of

numbers xn ∈ R or C, indexed (hence ordered) by an non-negative integer n ∈ N0 := {0, 1, 2, 3, . . . }.
We may think of the index n as “time”, an therefore at the n-th term xn as the value of some
“observable” x at time n (as the number of pairs of rabbits or of bacteria). Physicists call them
“time series”.

Clearly, we may as well define sequences with values in an arbitrary set X, for example in the
Euclidean space Rd. Also, we may allow time n to be negative, for example to live in Z. Such
collections (xn)n∈Z are called “two-sided” sequences.

Subsequences are obtained forgetting to observe x at certain times, i.e. are sequences (yi)i∈N0

defined by yi := xni , where i 7→ ni is an increasing function of N0 into itself.
Sequences may be defined as functions are. Indeed, a sequence with values in the set X is

nothing but a function
x : N0 → X ,

disguised by the notation xn := f(n). A second possibility, more interesting for our point of view,
is some recursive law prescribing the value of xn given the (past) values of x0, x1, . . . , xn−1. A
third possibility, is using some property that the successive terms must have.

Engineers also use to look at sequences as “discrete-time signals” x[n] = x(nτ), possibly ob-
tained from an analogic signal x(t), defined for times t in some interval of the real line, sampling
its values at integer multiples of some “sampling time” τ .

Discrete derivative and integrals. Given a sequence x = (xn) with values, for example, in R,
we can “integrate” and get the sequence Sx, defined by (Sx)0 := 0 and

(Sx)n :=

n−1∑
k=0

xk = x0 + x1 + · · ·+ xn−1 for n ≥ 1 .

Also, we may define its “(forward) discrete derivative” taking differences, as the sequence Dx
defined by

(Dx)n := xn+1 − xn .
Its is clear that S and D are discrete versions of the integration and derivation operators, re-

spectively. The “fundamental theorem of calculus” says that DS is the identity operator. More
precisely, one easily checks Newton’s theorem and Leibniz rule

(DSx)n = xn and (SDx)n = xn − x0 .

A law like (Dx)n = bn should be thought as a discrete “differential equation” solvable for the
first derivative, and it is indeed solved by integration, as xn = x0 + (Sb)n.

Euler method and discrete differential equations. Suppose we have a autonomous differ-
ential equation

ẏ = v(y)

defined by a vector field v(y). Following Euler, we may discretize time looking at the variable at
integer multiples t = nτ of some fixed (possibly small but positive) “time-step” τ . The solution
y(nτ) is then approximated with the sequence xn, defined by the recursion

xn+1 − xn ' τ ẏ(nτ) = τ v(y(nτ)) ' τ v(xn)

provided some initial condition x0 = y(0). The above is a discrete differential equation of the
form (Dx)n = F (xn).
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ex: Show that the Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . satisfies (Df)n = fn−1 (where we set
f−1 := 0).

Arithmetic progression. An arithmetic progression xn = a + nb, which may also be defined
using the recursion xn+1 = xn + b, with initial term x0 = a. It is a solution of the “discrete
differential equation” Dx = b (the constant sequence bn = b) with initial condition x0 = a.

The primes sequence. The sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, . . . , whose generic term is the
n-th prime number pn. It is not clear what the recursive law could be.

Limits. We say that the real or complex sequence (xn) converges to some limit a ∈ R or C, and
we write limn→∞ xn = a or simply xn → a (as n → ∞), if for any “precision” ε > 0 there exists
a time n such that |xn − a| < ε for all times n ≥ n. This means that the values xn are within an
arbitrarily small neighborhood of a as long as the time n is sufficiently large.

The basic fact about limits in the real line R is that monotone (non-decreasing or non-increasing,
i.e. satisfying xn+1 ≥ xn or xn+1 ≤ xn, for any n, respectively) bounded (i.e. such that |xn| ≤M
for some M > 0 and all n) sequences of real numbers do admit limit. For example, the limit of a
bounded increasing sequence is simply the supremum of the set of values.

We also use the notation xn → ±∞ to say that given an arbitrarily large K > 0 we can find a
time n such that ±xn > K for all times n ≥ n.

Of course, there exist sequences which do not admit limits in either senses. These are, for
example, oscillating sequences, as xn = (−1)n. We’ll encounter sequences with stranger behaviors.

Fundamental sequences. A sequence (xn) is said fundamental, or Cauchy sequence, if for any
precision ε > 0 there exists a time n such that

|xn − xm| < ε

for all times n,m > n. Fundamental sequences are clearly bounded. It is obvious that a convergent
sequence is fundamental (a triangular argument, since both xn and xm are ε/2-near to the limit for
sufficiently large n and m). A similar triangular argument shows that a fundamental sequence with
a convergent subsequence is itself convergent. Less obvious is that any fundamental sequence in R is
convergent. Indeed, let Xn := {xk with k ≥ n}. It is clear that the Xn are bounded, and therefore
by the supremum axiom there exist the numbers an := inf Xn. But the sequence (an) is bounded
and not decreasing, and therefore there exists a = limn→∞ an (indeed, a = sup {an with n ∈ N}).
It is then easy to construct subsequences of (xn) which converge to a, and this implies that (xn)
itself is convergent to a.

Thus, we may know that a sequence is convergent without knowing its limit! In general,
convergence of all fundamental sequences is taken as a definition of (sequential) completeness of a
metric space.

Geometric progression. The most important sequence is the geometric progression, defined by
the recursion

xn+1 = λxn ,

and an initial term x0 = a (which we may assume 6= 0 to avoid trivialities). Thus, the sequence is

x0 = a x1 = aλ x2 = aλ2 . . . xn = aλn . . .

The parameter λ (which may be real or complex) is called ratio, since it is the ratio xn+1/xn
between successive terms of the sequence.

The geometric sequence clearly converges to zero when |λ| < 1. It is constant, hence trivially
convergent, when λ = 1, while oscillates between ±a when λ = −1 (hence does not converge if
a 6= 0). We may also observe that |λn| → ∞ when |λ| > 1.

ex: Show that the geometric progession xn = aλn is the solution of the discrete autonomous
differential equation Dx = γx (doesn’t it remind the differential equation defining the exponential?)
with initial condition x0 = a, where the parameter is γ = λ − 1. In particular, verify that the
doubling progression xn = 2n satisfies Dx = x with initial condition x0 = 1.
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ex: Show that each term xn = aλn of a geometric progression is equal to the geometric mean√
xn+1xn−1 of its neighbors (provided n > 0, of course).

Computing limits. First, observe that xn → a is equivalent to xn − a → 0. Therefore, we
only need to understand how to “prove” that some sequence converges to zero. One possibility is
to “compare” the sequence (xn) under investigation with a sequence with known behavior, as for
example the geometric progression. Indeed, if |xn| ≤ yn for all n sufficiently large, then yn → 0
implies xn → 0 too.

Subsequences and sequential compactness. A subsequence of a sequence (xn) is a sequence
(xni) obtained selecting only the values xni of the original sequence, where i 7→ ni is an increasing
map N0 → N0.

Sometimes we are only interested in a rough estimate of the growth of a sequence (xn). The
“limsup” is the limit lim supn→∞ xn := limn→∞ an ∈ R ∪ {∞} of the non-increasing sequence
an := sup{xn, xn+1, xn+2, . . . }. The “liminf” is the limit lim infn→∞ xn := limn→∞ bn ∈ R∪{−∞}
of the non-decreasing sequence bn := inf{xn, xn+1, xn+2, . . . }.

The basic fact (that closed and bounded sets of the real line are sequentially compact) is that
any bounded sequence admits a convergent subsequence.

Half-life. Radioactive decay may be characterized by a “half-life”, the time τ after which ap-
proximatly half of the initial nuclei decay, between a sufficiently large sample. If qn denotes the
number of nuclei at time nτ , with n = 0, 1, 2, . . . , then

qn+1 = 1
2 qn .

Thus, the number of nuclei at time nτ is qn = q02−n, while the product of the decayment is
q0 − qn = q0(1− 2−n). Observe that qn → 0 when n→∞.

If solar radiation produces radioactive nuclei at a constant rate α > 0 (i.e. α nuclei each time
interval τ), then the number of radioactive nuclei at time nτ satisfies the recursion

qn+1 = 1
2qn + α . (1.2)

Equilibrium is possible when q0 is equal to q := 2α, since then q1 = α+α = q0, q2 = α+α = q1 = q0,
and so on, qn = q for all n ∈ N.

What happens if q0 6= q ? The recursion says that

q1 = 1
2q0 + α

q2 = 1
4q0 + 1

2α+ α

q3 = 1
8q0 + 1

4α+ 1
2α+ α

...

qn = 1
2n q0 +

(
1

2n−1 + · · ·+ 1
8 + 1

4 + 1
2 + 1

)
α

The first term q0/2
n+1 → 0 when n→∞, which means that “future” is independent on the initial

condition q0. The second term converges to 2α when n→∞, being the sum of a geometric series
(if you forgot about it, see below).

A simpler formula for qn may be obtained using the substitutio xn := qn − q, where q = 2α is
the equiibrium solution. We get

xn+1 = qn+1 − 2α

= 1
2qn + α− 2α (using (1.2))

= 1
2 xn ,

So, the difference between qn and q is a geometric progression with ratio 1/2. Thus xn = x02−n,
and therefore

qn = 2α+ (q0 − 2α) · 2−n .
It is interesting to observe that xn → 0, and therefore qn → q, when n → ∞. So, the amount of
radioactive nuclei converges to the stationary value independently on its initial value.
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ex: After how much time does the radioactive substance decrease to 1
32 -th of its initial value?

ex: Half-life of 14C is estimated to be τ ' 5730 years. Show how to date a fossil, assuming that
we know the proportion of 14C in a living being. 1

Exponential growth. Exponential growth of populations in a illimited environment is modeled
by the recursion

pn+1 = λpn ,

where pn represent the population at time n (measured in units of some fixed time interval τ > 0),
given an initial population p0. The meaning of the parameter λ is the following: at every time
interval τ , the increase pn+1 − pn of the population is equal the “offspring” αpn, where α > 0 is
some “fertility” coefficient, minus the “deaths” βpn, where β > 0 is some “mortality” coefficient.
Thus, λ = α− β. An applet with the simulations is in exponentialgrowth.

ex: Discuss the behaviour of solutions pn for different values of λ.

ex: To a population growing exponentially is added or retired a certain amount β each time
interval τ . Te model is therefore

pn+1 = λpn + β ,

where β is a positive or negative parameter. Find the stationary solution, and then the solution
with arbitrary initial condition p0 (consider the substitution xn = pn−p, where p is the stationary
solution).

ex: For which values of λ and β do the solution pn converge to the stationary solution when
n→∞?

Growth of Fibonacci numbers. How fast do Fibonacci numbers grow? Define the quotients
qn := fn+1/fn between neighbor Fibonacci numbers. From (1.1) one deduce the recursive equation

qn+1 = 1 + 1/qn (1.3)

for the qn’s. We compute:

1 , 2 , 3/2 = 1.5 , 5/3 ' 1.66666 , 8/5 = 1.6 , 13/8 = 1.625 , 21/13 ' 1.61538 , . . .

You may observe the sequence in the following applet. It turns out that the sequence (qn) converge
(try to prove it!), namely, qn → φ as n→∞. Taking the limits in the recursive equation (1.3) we
see that φ = 1 + 1/φ, and therefore φ is the positive root of the quadratic polynomial x2 − x− 1,

φ =
1 +
√

5

2
' 1.6180339887498948482 . . .

Hence, for large values of n we may approximate Fibonacci law as

fn+1 ≈ φfn ,

an exponential growth with rate φ. In particular, we expect fn ∼ φn.
The limit φ is a famous irrational, the Greeks’ “ratio/proportion”. As described by Euclid2:

“A straight line is said to have been cut in extreme and mean ratio when, as the whole
line is to the greater segment, so is the greater to the less.”

If a is the greater part and b the less of a line of lenght a+ b, Euclid’s requirement is

a+ b

a
=
a

b

There follows that the ratio φ = a/b satisfies 1 + 1/φ = φ. This division of an interval is used
in Book IV of the Elements to construct a regular pentagon. Observe that, as follows from the
quadratic equation, φ−1 is equal to φ− 1.

1J.R. Arnold and W.F. Libby, Age determinations by Radiocarbon Content: Checks with Samples of Known
Ages, Sciences 110 (1949), 1127-1151.

2Euclid, Elements, Book VI, Definition 3.

http://w3.math.uminho.pt/~scosentino/bestiario/exponentialgrowth.html
http://w3.math.uminho.pt/~scosentino/bestiario/fibonacci.html
http://en.wikipedia.org/wiki/Golden_ratio
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ex: Show that φ is irrational using its geometric definition (see Euclid’s Elements, or [HW59]
section 4.6.)

The invention of chess. Legend says that Sissa invented chess, and offered the game to the
king of Persia. Asked for a reward, he suggested that he wanted one grain of rice on the first square
of the chessboard, two grains on the second, four grains on the third, and so on. The king didn’t
take it seriously, but a computation shows that the reward amounts to

1 + 2 + 4 + 8 + · · ·+ 263 ' 1.84× 1019

grains of rice. Now, if 1 Kg of rice contains something like 30000 grains, the above number amounts
to roughly 6.13 × 1011 tons of rise (which you may want to compare with People’s Republic of
China’s production in 2017, which has been, according to FAO, about 2.14× 108 tons!).

Series. A series is a formal infinite sum
∑∞
n=0 xn, or

∑
n≥0 xn, where the xn ∈ R are elements

of some given real (or complex) sequence. If the sequence (sn) of partial sums, defined as sn :=∑n
k=0 xk (which are honest numbers) converges to some limit, say limn→∞ sn = s, then we say the

series is convergent (or summable), and that its sum is
∑
n≥0 xn := s.

A series
∑
n xn is absolutely convergent is the series

∑
n |xn|, formed with the absolute values

of its terms, is convergent. Of course, absolute convergence is stronger than mere convergence.
Indeed, convergent but not absolutely convergent series are quite interesting and strange objects3

(see, for example, the last book by Hardy [Har49]).

Harmonic series. The harmonic series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ . . .

diverges. Indeed, its generic term 1/n, for n ≥ 1, is bigger than the integral
∫ n+1

n
dx/x, hence the

partial sums
∑n
k=1 1/k are greater than the logarithm log(n+ 1).

Geometric series. The identity (1 + λ + λ2 + λ3 + ... + λn)(λ − 1) = λn+1 − 1 shows that, if
λ 6= 1, the sum of the first n+ 1 terms of the geometric progression (with a = 1) is

1 + λ+ λ2 + λ3 + ...+ λn =
λn+1 − 1

λ− 1

In particular, when |λ| < 1, the geometric series
∑∞
n=0 λ

n is absolutely convergent, and its sum is

1 + λ+ λ2 + λ3 + ...+ λn + ... =
1

1− λ
.

Dichotomy paradox. Using the above formula for the sum of the geometric series, you may try
to convince Zeno that

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ... = 1 .

Decimal expansions. Also, you may convince yourself that 0.99999 . . . , which by definition is
the sum of the series

9

10
+

9

100
+

9

1000
+

9

10000
+ . . .

is actually equal to 1. Moreover, you may learn how to recognize rational numbers as 0.33333 . . .
or 1.285714285714 . . . from their periodic expansion. Indeed, a real number is rational if and only
if its base 10 (or any other base d ≥ 2) expansion is eventually periodic.

3According to Abel (1828), “divergent series are the invention of the devil, and it is shameful to base on them
any demonstration whatsoever.”

http://faostat.fao.org/site/339/default.aspx
http://en.wikipedia.org/wiki/Zeno's_paradoxes#The_dichotomy_paradox
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ex: Say if the following series are convergent, and, if so, compute their sum.

1 + 1/2 + 1/4 + 1/8 + 1/16 + ... 1 + 10 + 100 + 1000 + ... 1 + 1/10 + 1/100 + 1/1000 + ...

∞∑
n=0

(4/5)n 9/10 + 9/100 + 9/1000 + ... 0.3333...

Convergence tests. Deciding convergence or divergence of a series is not easy. The only tool
at our disposal is comparison with known series, and essentially the only known non-trivial series
is the geometric one. Comparison means the obvious observation that 0 ≤ xn ≤ yn for any
n sufficiently large implies the following two conclusions:

∑
n yn < ∞ ⇒

∑
n xn < ∞, and∑

n xn =∞⇒
∑
n yn =∞.

Now, if |xn| ≤ C λn for some constant C > 0 and any n sufficiently large, then the partial
sums of the series

∑
n xn are bounded by a constant times the partial sums of the geometric series∑

n λ
n, therefore the series

∑
n xn is absolutely convergent whenever |λ| < 1. This happens when

lim supn→∞ |xn|1/n < 1 (root test) or when lim supn→∞ |xn+1/xn| < 1 (ratio test).

1.2 Linear recursions

Fibonacci model is the prototype of

Recursive linear equations. A recursive linear equation (or “finite difference linear equation”)
is a law

apxn+p + ap−1xn+p−1 + · · ·+ a1xn+1 + a0xn = fn (1.4)

which defines a sequence (xn) given a set of “initial conditions” x0, x1, . . . , xp−1 and the known
sequence (external force) fn . Above, a0 6= 0, a1, . . . , ap−1, ap 6= 0 are real or complex parameters.
It is a discrete version of a linear ordinary differential equation of degree p with constant coefficients.
When fn = 0 for all n, we get a homogeneous recursive equation

apxn+p + ap−1xn+p−1 + · · ·+ a1xn+1 + a0xn = 0 . (1.5)

The set of solutions of the homogeneous equation (1.5) is a vector space H of dimension p, and the
set of solutions of (1.4) is an affine space modeled on H, i.e. has the form (zn) +H, where (zn) is
any (particular) solution of (1.4).

Eigenfunctions. The general recipe is: “linear homogeneous equations have exponential solu-
tions”. The conjecture xn = zn solves the recursive equation (1.5) if z is a root of the characteristic
polynomial

P (z) = apz
p + ap−1z

p−1 + · · ·+ a1z + a0

In particular, if P has p distinct roots (in C), say z1, z2, . . . , zp, then the general solution of the
homogeneous equation is a linear combination

xn = c1z
n
1 + c2z

n
2 + · · ·+ cpz

n
p

where the c1, c2, . . . , cp are constants which depend on the initial conditions x0, x1, . . . xp−1.

ex: Find an explicit formula for the Fibonacci numbers fn’s (which is known as Binet’s formula).

ex: Discuss what happens when there are non-simple roots.
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Generating functions. Given a sequence (xn), defined anyway, we may consider the (formal)
power series

F (z) :=
∑
n≥0

xnz
n

If the series has a non-zero radius of convergence (since the radius of convergence R is given by
Hadamard formula 1/R = lim supn→∞

n
√
|xn|, this happens when the xn’s grow at most exponen-

tially, i.e. when |xn| ≤ Cλn for some C > 0 and λ > 0), it defines an analytic function F (z) in some
neighborhood of the origin. Then, the original sequence may be recovered computing derivatives,
since

xn =
F (n)(0)

n!
.

For this reason, F (z) is called generating function of the sequence (xn).
You may find interesting the following characterization of rational functions.

Theorem 1.1. A power series
∑
n≥0 xnz

n, converging in some neighborhood of the origin, repre-
sents a rational function F (z) iff the coefficients xn satisfy a recursive linear homogeneous equation.

Generating function of the Fibonacci numbers. If fn denotes the n-th Fibonacci number,
starting from f0 = f1 = 1, then the power series

∑
n≥0 fnz

n represents the rational function

F (z) =
1

1− z − z2

in a neighborhood of the origin. Observe that it has a pole with smallest absolute value at 1/φ,
and deduce that lim supn→∞ |fn|1/n = φ (so that fn ∼ φn, as we already knew).

ex: Give examples of sequences which do not satisfy any (finite) recursion.

ex: Consider the recursive equaiton

xn+2 = 2xn+1 + xn .

Find the geral solution. Find the solution with x0 = 0 and x1 = 1, and compute explicitely the
first few terms of the sequence. Show that the quotients qn := xn+1/xn converge to 1 +

√
2 when

n→∞, and therefore
xn+1 − xn

xn
→
√

2

Obtain rational approximations of
√

2.

Linear systems. A linear homogeneous recursive system is a law

xn+1 = Axn

for some vector valued sequence xn ∈ Rk, given a square matrix A ∈ Matk×k(R). The solution is

xn = Anx0 ,

where x0 ∈ Rk is the initial condition. The computation of powers An of a square matrix A is
simplified if we can diagonalize it. For example, if the matrix has k distinct and real eigenvalues,
then in the basis formed by the eigenvectors it is a diagonal matrix, say A = diag(λ1, . . . , λk), and
its n-th power is simply the diagonal matrix An = diag(λn1 , . . . , λ

n
k ).

A finite difference equation of order p like

apyn+p + ap−1yn+p−1 + · · ·+ a1yn+1 + a0yn = 0

is equivalent to a recursive linear homogeneous system xn+1 = Axn for the vector values sequence
xn := (yn, yn−1, . . . , yn−p−1).
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ex: Write and solve the system which corresponds to Fibonacci problem.

1.3 Iteration of maps

Iterations of maps. Given some space X (as the real line R, an interval I ⊂ R, an Euclidean
space Rn, and so on . . . ) and a transformation f : X → X, we may form sequences according to

xn+1 = f(xn)

given some initial condition x0. Such sequences are called trajectories of the map f .

Interval maps and cobweb plot. If X is an interval, we can follows trajectories using a
“cobweb plot”: drawing vertical and horizontal lines connecting the points

(x, x) 7→ (x, f(x)) 7→ (f(x), f(x)) 7→ (f(x), f2(x)) 7→ (f2(x), f2(x)) 7→ (f2(x), f3(x)) 7→ . . .

Cobweb plot of the quadratic map f(x) = λx(1− x) when λ = 3.56.

Affine interval maps. As we have already seen, affine maps behave quite predictably. Indeed,
the trajectories of an affine map like

f(x) = λx+ α

with λ 6= 1, are sent, by the change of variable y = x− x, where x = α/(1− λ) is the stationary
solution, into the trajectories of g(y) = λy, and the latter are geometric sequences. If λ = 1,
trajectories are simply arithmetic series.

Nonlinearity. Non-linear recursive systems show much richer dynamics. Here is a short list of
famous examples.

Hardy-Weinberg equilibrium. Consider the transmission of one gene with two alleles, say A
and a. Let x0, y0 e z0 be the frequencies of the genotypes AA, Aa and aa, respectively, within some
initial population. Then the probability to get the allele A or a in the formation of one gamete are

p0 = x0 + 1
2y0 e q0 = 1− p0 = z0 + 1

2y0 ,

respectively (so that p0 + q0 = 1). The offspring will therefore have genotypes AA, Aa or aa with
frequencies

x1 = p2
0 , y1 = 2p0q0 and z1 = q2

0 .
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(observe that x1 + y1 + z1 = p2
0 + 2p0q0 + q2

0 = (p0 + q0)2 = 1). The probabilities to get the allele
A or a in the formation of one gamete in the second generation are

p1 = x1 + 1
2y1 and q1 = z1 + 1

2y1

Then an elementary computation (using only p0 + q0 = 1) shows that the second generation will
have genotypes AA, Aa or aa with same frequencies as in the first generation, since

x2 = p2
1 =

(
x1 + 1

2y1

)2
=
(
p2

0 + p0q0

)2
= p2

0 = x1

y2 = 2p1q1 = 2(x1 + 1
2y1) (z1 + 1

2y1) = 2(p2
0 + p0q0) (q2

0 + p0q0) = 2p0q0 = y1

z2 = q2
1 =

(
z1 + 1

2y1

)2
=
(
q2
0 + p0q0

)2
= q2

0 = z1

Thus, the distribution of the three genotypes attains a stationaty value starting from the first
generation (Hardy4-Weinberg5 equilibrium/principle/law).

Fisher-Wright-Haldane model of natural selection. A simple model of natural selection
was proposed by Fisher6, Wright7 and Haldane8 around 1930. It considers only one gene with two
alleles, A and a. Biological success of the three different genotypes is modeled by certain “fitness
coefficients” φAA, φAa e φaa, which determine the different survival/reproduction rates. Let pn and
qn = 1− pn denote the frequencies of the alleles A and a, respectively, within the n-th generation.
Then the frequency of the allele A at the next generation is

pn+1 =
(1 + α)p2

n + pnqn
(1 + α)p2

n + 2pnqn + (1 + β)q2
n

where we set (1 + α) = φAA/φAa and (1 + β) = φaa/φAa (so that, since the fitness coefficients are
positive by definition, both α and β are greater than −1).

The map pn 7→ pn+1 = f(pn) fully describes the time evolution of the population. It has two
obvious fixed points, which are 0 and 1, and represent two homogeneous populations with only one
allele.

If α and β have opposite signs (i.e. when the mixed genotype Aa has a fitness coefficient lying
between the fitness coefficients of the pure genotypes AA and aa), these are the only fixed points.
Observing at the graphs of f(p) below
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we see that if we start with any 0 < p0 < 1, then the sequence pn converge to pn → 0 when
α < 0 < β and converge to pn → 1 when β < 0 < α. In both cases, the asymptotic population
only contains the fittest allele, while the weakest get extincted.

More interesting things happen when α and β shares the same sign. The map f(p) admits a
third fixed point

p =
|β|

|α|+ |β|
,

4G.H. Hardy, Mendelian proportions in a mixed population, Science 28 (1908), 49-50.
5W. Weinberg, Über den Nachweis der Vererbung beim Menschen, Jahreshefte des Vereins für vaterländische

Neturkunde in Württemberg 64 (1908), 368-382.
6R.A. Fisher, Genetical Theory of Natural Selection, Clarendon 1930.
7 S. Wright, Evolution in Mendelian populations, Genetics 16 (1931), 97-159.
8 J.B.S. Haldane, A Mathematical Theory of Natural and Artificial Selection (1924-1934).
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stricly between 0 and 1, representing a mixed population.
When both α and β are positive (i.e. when both genotypes AA and aa perform better than

Aa), then the equilibrium p is unstable, a small perturbation p0 = p ± ε produces extinction of
one of the two alleles, namely pn → 0 or 1, depedning on ther sign of the perturbation. This
phenomenon is called disruptive selection.

When both α and β are negative (i.e. when the mixed genotype Aa is the fittest), then the
equilibrium p is stable, for any initial condition which is not 0 or 1 we get pn → p. In particular,
both alleles survive in the asymptotic population. This phenomenon is called heterosis.
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Disruptive selection: 0 < α < β . Heterosis: α < β < 0.

The quadratic family. As soon as the interval map is not affine, trajectories are not easily
understood. The simplest interval maps which are not affine are quadratic polynomials. A more
realistic model of population dynamics in a limited environment seems to be

Pn+1 = λPn (1− Pn/M)

where the constantM > 0 is the maximal allowed population (observe that Pn+1 < 0 whenPn > M ,
which means “extinction”). The substitution xn = Pn/M transforms the above law into the
adimensional law

xn+1 = λxn(1− xn) ,

The map
fλ(x) := λx (1− x) (1.6)

is called logistic map/transformation9. The region where the relative population xn makes (phys-
ical) sense is the unit interval [0, 1] (which means real population between 0 ≤ Pn ≤ M), and the
map preserves the unit interval if the parameter ranges in the interval 0 ≤ λ ≤ 4. Thus, we may
think at fλ as a map from the unit interval into itself.
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Graphs of the logistic map when λ = 0.5, 2, 3 and 4.

Stationary solutions are the trivial equilibrium 0 and the point x = (λ−1)/λ (provided λ > 1).
For small λ, the trajectories are previsible. As λ approaches 4, they become quite wild.

When λ > 4, the unit interval is no longer preserved, and the map lose its physical/biological
meaning. Nevertheless, is continues to be interesting for mathematicians.

ex: Write a code to simulate the system.

ex: Discuss what happens to trajectories when 0 < λ ≤ 1.

9Robert M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459-467.
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ex: Discuss twhat happens to trajectories when 1 < λ ≤ 3.

ex: Observe what happens when λ grows between 3 and 4

ex: What happens when λ > 4 ?

ex: Try to understand the dynamics of the following maps, defined in convenient intervals (some
are easy, other are hard, if not impossible).

f(x) = ±x3 f(x) = x1/3 f(x) = x3 ± x

f(x) = x2 + 1/4 f(x) = |1− x| f(x) = x2 − 2 f(x) = sinx f(x) = cosx

f(x) = x(1− x) f(x) = 2x(1− x) f(x) = 3x(1− x) f(x) = 4x(1− x)

Harmonic-arithmetic mean. Given two positive numbers h0 and a0, define recursively

(hn+1, an+1) = T (hn, an) :=

(
2hnan
hn + an

,
hn + an

2

)
It is clear that the area function A(h, a) := ha is preserved, i.e. A(T (h, a)) = A(h, a). This means

that trajectories belongs to hiperbolae ha = c if h0a0 = c. Moreover, one easily sees that each
trajectoriy n 7→ (hn, an) converge to the diagonal, hence to the point (

√
c,
√
c). Thus, this is one

more way to compute square roots (just start with (1, 2) and get (
√

2,
√

2) asymptotically).

Arithmetic-geometric mean. Given two positive numbers x and y, define recursively

an+1 =
1

2
(an + gn) gn+1 =

√
an gn ,

starting with a0 = (x + y)/2 and g0 =
√
x y, the arithmetic and the geometric mean of x and

y, respectively. The arithmetic-geometric mean inequality (the fact that (x + y)2 ≥ 0) says that
gn ≤ an, and therefore

gn+1 =
√
an gn ≥

√
gn gn = gn

Since both sequences an and gn are between the minimum and the maximum of x and y, this
implies that gn converges, to some (positive) limit p. The sequence an also converges, and to the
same limit, since

an = g2
n+1/gn → p

The common limit is called arithmetic-geometric mean of x and y, say p =: AGM(x, y). What is
not trivial is a formula for the limit, and this is due to Gauss: it says that

AGM(x, y) =
π

4

x+ y

K
(
x−y
x+y

)
where

K(k) :=

∫ π/2

0

dθ√
1− k2 sin2 θ

is the “complete elliptic integral of the first kind”.
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Henon map. The Hénon map10 is the map of the plane{
xn+1 = 1 + yn − αx2

n

yn+1 = βxn

Depending on the values of its parameters, its trajectories show regular, “intermittent” or “chaotic”
behavior. If you choose the parameters α ' 1.4 and β ' 0.3, an initial condition like x0 ' 0.3 and
y0 ' 0.3, and draw a sufficiently long orbit, you see the “Hénon attractor”

Hénon attractor.

1.4 Babylonians-Heron method to compute square roots

Consider the problem to find the side ` of a square given the value a > 0 of its area, i.e. to find
the number which we call ` =

√
a.

Babylonian-Heron algorithm. A clever method, descibed by Heron 11, but probably already
used by Babylonians 12 13, is as follows. We start with a rectangle with basis x0 and height y0,
“simple” numbers such that x0y0 = a (for example, if the area is an integer like a = 2, we may
start with x0 = 3/2 and y0 = 4/3). We choose a second rectangle is such a way that its sides are
nearer than the sides of the first rectangle. An obvius way to do it is to take as new basis the
arithmetic mean x1 = (x0 + y0)/2, which forces to take y1 = a/x1 as second height. And so on, if
we are not satisfied yet. The recursion for that basis reads

xn+1 =
1

2

(
xn +

a

xn

)
.

Observe that if both a and the initial conjecture x0 are rationals (the only numbers known to
Babylonians), then all the xn’s are also rationals.

10M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 69-77.
11“Since 720 has not its side rational, we can obtain its side within a very small difference as follows. Since the

next succeeding square number is 729, which has 27 for its side, divide 720 by 27. This gives 26 2/3. Add 27 to
this, making 53 2/3, and take half this or 26 5/6. The side of 720 will therefore be very nearly 26 5/6. In fact,
if we multiply 26 5/6 by itself, the product is 720 1/36, so the difference in the square is 1/36. If we desire to
make the difference smaller still than 1/36, we shall take 720 1/36 instead of 729 (or rather we should take 26 5/6
instead of 27), and by proceeding in the same way we shall find the resulting difference much less than 1/36.”
Heron of Alexandria, Metrica, Book I.

12Carl B. Boyer, A history of mathematics, John Wiley & Sons, 1968.
13O. Neugebauer, The exact sciences in antiquity, Dover, 1969.
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First 6 iterations of the Heron method to find the square root of 2 starting from x(0) = 2.

Good rational approximations of
√

2. The algorithm converges, and quite fast. We could,
as the Babylonians, put an initial guess x0 = 3/2 for

√
2 (quite reasonable, since 12 < 2 < 22), and

find

x1 =
17

12
' 1.41666666666 x2 =

577

408
' 1.41421568627 x3 =

665857

470832
' 1.41421356237

As you see, the sequence stabilizes quite fast.
As a first attempt to explain this miracle, we could start looking at the recursive equations for

the bases and the heights of the rectangles:

xn+1 =
xn + yn

2
1/yn+1 =

1/xn + 1/yn
2

(so, the next height is the “harmonic mean” of the base and height). We see that the xn’s and the
yn’s form decreasing and increasing sequences, respectively (disregarding the first guess, of course),
namely

y2 ≤ y3 ≤ · · · ≤ yn ≤ · · · ≤ xn ≤ · · · ≤ x3 ≤ x2 ,

The real root is somewhere between, namely yn ≤
√
a ≤ xn. Hence, we have an explicit control

of the error. A computation shows that the lenghts of those intervals, the differences εn = xn− yn
satisfy the recursion

εn+1 <
1

2
· εn

So, and initial “error” ε1 ≤ 1 (an easy achievement, since we easily recognize squares of integers)
reduces to at least εn ≤ 2−n after n iterations. The true error is actually much smaller. Indeed,
in our example we may compute

ε1 =
17

12
− 2

12

17
=

1

204
' .005 and ε2 =

577

408
− 2

408

577
=

1

235416
' 0.000004

So that the first improved guess x1 has already one correct decimals, and the second, x2 has already
four correct decimals!

What Babylonians didn’t suspect is that if you start with a rational guess for
√

2, you get an
infinite sequence of rational approximations, but the process never stops. This is due to

Theorem 1.2 (Pythagoras). The square root of 2 is not rational.

ex: A formula by Heron says that the area of a triangle with sides of lenghts a, b and c, and
semi-perimeter s = (a+ b+ c)/2 , is given by

A =
√
s(s− a)(s− b)(s− c)

Estimate the area of a triangle with sides 7, 8 and 9.

ex: Estimate
√

13 with an error < 0.01 or 0.001.
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ex: Estimate how many iterations are necessary to obtain the first n correct decimals of
√

2 using
Babylonians’ method.

ex: Prove Pythagora’s theorem 1.2 above (take a look at [HW59]).

1.5 From Newton method to Julia and Fatou sets

Finding
√
a means solving the polynomial equation z2 − a = 0. What about finding roots of a

generic polynomial ?

Newton-Raphson iterative scheme. “Newton method” is a method proposed by Joseph
Raphson around 1690 to approximate roots of a polynomial p(x) (Newton used it to solve x3−2x−
5 = 0). It consists in starting with an initial conjecture x0 near to some root, and then improve it
using the linear approximation

p(x) ' p(x0) + p′(x0)(x− x0) .

This idea leads to the recursion

xn+1 = xn −
p(xn)

p′(xn)
.

It is clear that if the sequence converges, i.e. xn → x∞, and if p′(x∞) 6= 0, then the limit x∞
is a root.

Search for a root of x3 − 2x− 5 using Newton iterations.

ex: Use Newton method to solve Newton’s problem, i.e. find the roots of x3 − 2x− 5.

ex: Show that Newton method to solve x2 − a = 0 corresponds to babylonian-Heron iterative
scheme.

ex: Use Newton method to approximate the Greeks’ ratio, the positive root of x2−x− 1. Then,
compare with the babylonian-Heron method (i.e., estimate

√
5, then sum 1 and divide by 2).

ex: Write and implement Newton method to find n-th roots, i.e. to solve xn − a = 0.

Newton’s fractals. In 1879 Cayley observed that the above method could be also used to
approximate complex roots of complex polynomials p(z) ∈ C[z]. It amounts to iterate the rational
function

f(z) = z − p(z)

p′(z)

The problem is therefore to understand when, i.e for which initial values z0, the sequence zn
converges to one of the roots. The “basins of attraction” of the different roots draw beautiful and
unexpected patterns in the complex plane.
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Basins of attraction of the roots of 2z3 − 2z + 2 in C
(from http://en.wikipedia.org/wiki/Newton_fractal).

Iteration of rational functions in the Riemann sphere. The natural generalization is to
take a rational function f(z) ∈ C(z), which is an endomorphism of the Riemann sphere C =
C ∪ {∞}, i.e. try to understand its trajectories, i.e. the iteration zn+1 = f(zn).

Most studied is iteration of the family of quadratic polynomials

f(z) = z2 + c

depending on a parameter c ∈ C. Its beauty was foreseen by Gaston Julia14 and Pierre Fatou15 at
the beginning of the XX century, revealed with the help of the first modern computers by Benôıt
Madelbrot, and then studied by a variety of great mathematicians (like Adrian Douady, Dennis
Sullivan, John Milnor, Misha Lyubich, Jean-Christophe Yoccoz, Curtis McMullen, . . . ) starting
from the 80’s of the last century.

Pictures of the Mandelbrot and Julia sets. Below, you may find a picture of what Julia
and Fatou could only dream about.

Mandelbrot set (left) and Julia set (right) of the polynomial z2 + c with c ' −0.7645− i · 0.1595.

(from http://w3.math.uminho.pt/~scosentino/bestiario/julia.html)

14G. Julia, Mémoire sur l’iteration des fonctions rationnelles, Journal de Mathématiques Pures et Appliquées, 8
(1918), 47-245.

15P. Fatou, Sur les substitutions rationnelles, Comptes Rendus de l’Académie des Sciences de Paris, 164 (1917)
806-808, and 165 (1917), 992-995.

http://en.wikipedia.org/wiki/Newton_fractal
http://w3.math.uminho.pt/~scosentino/bestiario/julia.html
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The red hearts on the left form the Mandelbrot set, the set of those values of the parameter c
such the orbit of critical point z0 = 0 is bounded. The almost invisible grey points on the right
form the filled-in Julia set, the set of initial values z0 with bounded orbits (once fixed a value of
c). Blue colors, which help to to see the Julia set, are chosen depending on the speed with which
other trajectories diverge to ∞.

Much more beautiful pictures, and then movies and so on, may be found in this page by Jos
Leys: http://www.josleys.com

http://www.josleys.com
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2 Differential equations and flows

2.1 Flows

The main way in which dynamical systems enter in physics is through differential equations.

Flows of vector fields. Let X be a differentiable manifold (as, for example, an open region of
Rn), and let v be a vector field on X. If we assume that the autonomous differential equation

ẋ = v(x)

with any given initial condition x (0) = x, has solutions t 7→ x (t) which exist for any time t ∈ R
(as is the case when v is smooth and X is compact), then the flow of the vector field v is the
action Φ : R×X → X given by Φt (x) = x (t). Indeed, it is clear that Φ0 is the identity map, and
that

Φt ◦ Φs = Φt+s

for any t, s ∈ R. Therefore, Φ−t = (Φt)
−1.

Conversely, given a one-parameter group of diffeomorphisms Φt, one defines the phase velocity
according to

v(x) :=
d

dt
Φt(x)

∣∣∣∣
t=0

= lim
t→0

Φt(x)− x
t

The group property then implies that the curve t 7→ x(t) = Φt(x) satisfies

ẋ(t) = lim
s→0

Φt+s(x)− Φt(x)

t
= lim
s→0

Φs(Φt(x))− Φt(x)

t
= v(x(t))

and therefore is a solution of the autonomous differential equation ẋ = v(x) with initial condition
x(0) = x.

Also interesting are semi-flows Φt, which are defined only for non-negative times t ≥ 0.
A flow or semi-flow is called continuous time dynamical system, and indeed our basic definitions

in the previous chapter are adaptations of physicists’ ideas and terminolgy about flows of vector
fields. The map t 7→ Φt(x) is called trajectory of the (initial) point x, and its image O+(x) =
{Φt(x) : t ∈ R+} is called (forward) orbit of x. If it happens, as usual in classical mechanics, that
flows are defined for all times t ∈ R, then the set O(x) = {Φt(x) : t ∈ R} is called orbit of x.

From flows to maps, discretization. Given a flow Φt on X, one could specialize to discrete
time looking at the system at multiples integers nτ of a given time-unit τ > 0, and this amounts
to iterate the transformation f = Φτ .

More interesting is the following construction.

Poincaré maps. Let Φt be the flow of the autonomous differential equation ẋ = v(x) on a
manifold X, and let Y ⊂ X be a submanifold of codimension one which is transversal to the flow
(i.e. the tangent space TxY does not contain the vectors v(x) for any x ∈ Y ).

If x0 ∈ Y is a periodic point, say Φτ (x0) = x0 for some period τ > 0, then nearby points
x ∈ Y also return to Y after some time near to τ . Thus, one could define, in a sufficiently small
neighborhood U ⊂ Y of x0, a first return/Poincaré map f : U → Y , sending a point x ∈ U into
Φτ(x)(x) if τ(x) is the smallest positive time t > 0 such that Φt(x) ∈ Y . This construction is even
possible around a point which is not periodic, provided its orbit returns to Y sufficiently near.

Moreover, it may be also happens that the flow allows a global (Poincaré) section, a codimension
one submanifold Y ⊂ X transversal to the vector field v such that the orbit of any point y ∈ Y
eventually returns to Y after a minimal time

τ(y) := inf{t > 0 s.t. Φt(y) ∈ Y } <∞ ,

called first return time. This allows to consider a globally defined first return/Poincaré map
f : Y → Y , according to

f(y) := Φτ(y)(y) .
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Linear flows on the two-torus and rotations of the circle. A constant vector field v = (a, b)
generates a linear flow

Φt : (x, y) 7→ (x+ at, y + bt)

on the plane. This flow is clearly invariant under translations by integer vectors, and therefore it
defines a flow Φt on the two dimensional torus T2 := R2/Z2. The circle R/Z ' C := {(x+ Z, 0 +
Z)} ⊂ T2 is transversal to the vector field if b 6= 0. The orbit of a point (x, 0) ∈ C goes back to the
section after a time τ = 1/b (if b > 0) to the point Φτ (x, y) = (x + a/b, 0). Thus, the first return
map is f : x+ Z 7→ x+ α+ Z, a rotation of the circle by an “angle” α = a/b.

Suspension flows. Poincaré construction of a first return map out of a flow admits an inverse.
Given a map f : X → X, one can define the mapping torus Xf as the Cartesian product X× [0, 1],
with coordinates (x, t) with x ∈ X and t ∈ [0, 1], modulo the equivalence relation (x, 1) ∼ (f(x), 0).
The flow of the vertical vector field ∂/∂t on Xf (which is a smooth manifold if X is) is called
suspension of f . It is clear that it admits a global Poincaré section X × {0} ' X, and its first
return map is precisely f .

More generally, given a map f : X → X and a roof function τ : X → R+ bounded away from
0, one can consider the space Xf,τ = Y/ ∼ obtained as

Y = {(x, t) : x ∈ X , 0 ≤ t ≤ τ(x)}

modulo the equivalence relation (x, τ(x)) ∼ (f(x), 0). The flow of the vertical vector field ∂/∂t on
Xf is called suspension of f with height τ . Again, it admits a global Poincaré section X×{0} ' X,
and its first return map is f .

2.2 Structure of physical models

Classical mechanics is the natural source of interesting dynamical systems.

Newtonian mechanics. According to greeks, the “velocity” q̇ = d
dtq of a planet, where

q ∈ R3 is its position in our Euclidean space and t is time, was determined by gods or whatever
forced planets to move around circles. Then came Galileo, and showed that gods could at most

determine the “acceleration” q̈ = d2

dt2 q, since the laws of physics should be written in the same
way by an observer in any reference system at uniform rectilinear motion with respect to the fixed
stars. Finally came Newton, who decided that what gods determined was to be called “force”,
and discovered that the trajectories of planets, fulfilling Kepler’s experimental three laws16 , were
solutions of his famous (second order differential) equation

mq̈ = F

where m is the mass of the planet, and where the attractive force F between the planet and the
Sun is proportional to the product of their masses and inverse proportional to the square of their
distance.

Later, somebody noticed that most observed forces were “conservative”, could be written as
F = −∇V , for some real valued function V (q) called “potential energy”. There follows that
Newton equations can be written as mq̈ = −∇V , and that the “total energy”

E =
1

2
m‖q̇‖2 + V (q)

is constant along trajectories. The function 1
2m‖q̇‖

2 is called “kinetic energy” of the system.

16In Astronomia nova, 1609, and Harmonices mundi, 1619, Johannes Kepler published his three laws of planetary
motions:

i) planets moves in ellipses with focus at the Sun,
ii) the radius vector describes equal areas in equal times,
iii) the squares of the periods are to each other as the cubes of the mean distance from the Sun.
It was with the purpose to derive Kepler laws from a second order differential equation mq̈ = F that Isaac Newton

realized that the force of gravitational attraction between the Sun and a planet (hence between any two bodies!)
should be proportional to m/ρ2 (Philosophiae naturalis principia mathematica, 1687).



2 DIFFERENTIAL EQUATIONS AND FLOWS 24

Lagrangian and variational principle. An alternative (and indeed useful) formulation of
Newtonian mechanics is the one developed by Lagrange. He defined (what we now call) the
“Lagrangian” of the system as the difference between the kinetic energy and the potential energy

L (q, q̇) =
1

2
m‖q̇‖2 − V (q)

and observed that Newton equations are equivalent to the (Euler)-Lagrange equations

d

dt

(
∂L

∂q̇

)
=
∂L

∂q

This is important because solutions of the Euler-Lagrange equations are critical points of the action

S[q(t)] =

∫ t1

t0

L(q(t), q̇(t)) dt .

Thus, we may look at trajectories of a physical system as (local) minimizers of a certain variational
problem. This often allows to find the trajectories without even solving the equations of motion.

Hamiltonian mechanics. The product p = mq̇ = ∂L/∂q̇ is called “(linear) momentum”, and,
since p/m is the gradient of the kinetic energy K (p) = ‖p‖2/2m, Hamilton could write Newton’s
second order differential equations as the system of first order differential equations

q̇ =
∂H

∂p
ṗ = −∂H

∂q

where H (q, p) = K (p) + V (q) is the total energy as function of q and p, nowdays called “Hamil-
tonian”. It is a simple check that the energy is a constant of the motion, since

d

dt
H =

∂H

∂q
· q̇ +

∂H

∂p
· ṗ =

∂H

∂q
· ∂H
∂p
− ∂H

∂p
· ∂H
∂q

= 0

The modern abstract formulation of classical mechanics is as follows. Let (X,ω) be a symplectic
manifold, i.e. a differentiable manifold X of even dimension 2n, equipped with a smooth closed
differential two-form ω such that ωn 6= 0. Darboux theorem says that locally one can choose
“canonical” coordinates (q1, ..., qn, p1, .., pn) such that ω =

∑n
k=1 dpk ∧dqk. The standard example

is the cotangent bundle T ∗Rn of the Euclidean vector space Rn, whose coordinates are positions
qk and momenta pk.

Let H : X → R be a smooth function, called “Hamiltonian” and thought as the “energy” of
the system. Typically, it has the form “kinetic energy+potential energy”, where the kinetic energy
is a positive definite quadratic form in the momenta p, and the potential energy is a function
V depending on the positions q and possibly on the momenta p. The Hamiltonian vector field
v is defined by the identity dH = ivω, and the Hamiltonian flow is the flow of v. In canonical
coordinates, the equations of motion read

q̇k =
∂H

∂pk
ṗk = −∂H

∂qk

It happens that the Hamiltonian flow Φt preserves the energy, namely H (Φt (x)) = H (x) for any
x ∈ X and any time t ∈ R, as follows form the fact that £vH = 0.

Also, according to Liouville theorem, it preserves the volume form ωn, defined in canonical
coordinates by the volume element dq1 ∧ . . . dqn ∧ dp1 ∧ · · · ∧ dpn. In particular, if the phase space
if compact, it preserves a probability measure.

Free motion. Free motion in an inertial frame is described by the Lagrangian L = 1
2m‖q̇‖

2.
The equations of motion are

q̈ = 0 .

Solutions are straight lines q(t) = c+ vt, for same initial position q(0) = c and velocity q̇(0) = v.
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Free fall. Free fall near the Earth’s surface is modeled by the Lagrangian L = 1
2m‖q̇‖

2 −mgz,
where g ' 9.8 m/s2 is the gravitational acceleration and z is the height of the particle (assumed
much smaller than the Earth’s diameter), the third coordinates of q = (x, y, z). The equation of
motion for the height is

z̈ = g .

Solution are parabolae z(t) = c + vt − 1
2gt

2, for some initial height c = z(0) and some initial
velocity v = ż(0).

Geodesic flows. The simplest mechanical system, the free motion of a particle, belongs to the
class of geodesic flows. Let (M, g) be a Riemannian manifold, g beeing the Riemannian metric.
Let SM be the unit tangent bundle of M . If M is geodesically complete, to every unit vector
v ∈ SM there corresponds a unique geodesic line (i.e. a local isometry) c : R → M such that
ċ (0) = v. The geodesic flow is the action Φ : R× SM → SM , defined as Φt (v) = ċ (t).

Particularly interesting are geodesic flows over homogeneous spaces. Apart from the rather
trivial exemple of flat spaces, a source of interesting dynamical properties is the geodesic flow
on a manifold with constant negative curvature. The proptotype is as follows. The group G =
PSL (2,R) can be seen as the orientation preserving isometry group of the Poincaré half-plane H,
equipped with the hyperbolic metric of sectional curvature −1. Its action is transitive. Since the
stabilizer of a point in the half-plane is isomorphic to the group of rotations SO (2), we can identify
SD with G. Now, let Γ be a discrete cocompact subgroup of G with no torsion. The quotient
space Σ = D/Γ is a compact Riemann surface, which comes equipped with a Riemannian metric
of sectional curvature −1, and its unit tangent bundle is diffeomorphic to G/Γ. The geodesic flow
on SΣ is then the algebraic flow Φ : R×G/Γ→ G/Γ defined as Φt (gΓ) = etgΓ, where

et =

(
et/2 0
0 e−t/2

)

2.3 Integration of one-dimensional systems

Some techniques to integrate ordinary differential equations (ODEs) like ẋ = v(x, t) when the
phase space is one or two-dimensional.

Integrating simple ODEs. The simplest case occurs when the velocity field v does not depend
on the phase space variable x, hence

ẋ = v(t) ,

where v(t) is some given (piecewise) continuous function of time. This just says that x must be a
primitive of v, and the fundamental theorem of calculus (i.e. Leibniz and/or Newton’s discovery)
tells us how to compute such a primitive:

x(t) = x0 +

∫ t

t0

v(s)ds .

Here you may observe that this class of ODEs have “symmetries”. The line field does not depend
on x, hence slopes of solutions are the same along horizontal lines (t = constant) in the extended
phase space X × R. There follows that any translate ϕ(t) + c of a solution ϕ(t) is still a solution.

Autonomous first order ODEs and their flows. A first order ODE of the form

ẋ = v(x) ,

where the velocity field v does not depend on time, is called autonomous. Most fundamental
equations of physics (those describing closed systems, without external forces) can be written as
autonomous first order ODEs, and this corresponds to time-invariance of physical laws.

Here you may notice symmetries again. The line field v of an autonomous equation is constant
along vertical lines (x = constant) of the extended phase space X×R. Hence any translate ϕ(t+s)
of a solution ϕ(t) is still a solution. This is the manifestation of time-invariance of a law codified
by an autonomous ODE. This also implies that there is no loss of generality in restricting to an
initial time t0 = 0.
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Equilibrium solutions. First, we observe that an autonomous equation may admit constant
solutions. Indeed, if x0 is a singular point of the vector field v, i.e. a point where v(x0) = 0, then
the constant function

x(t) = x0 ∀ t ∈ R

obviously solves the equation. Such solutions, which do not change with time, are called equilibrium,
or stationary, solutions.

Solutions near non-singular points. The trick used to “guess” other solutions, when the
phase space is one-dimensional, i.e. X ⊂ R, is a first instance of the method of “separation of
variables”. Fix a non-singular point of the velocity field, i.e. a point x0 where v(x0) 6= 0. We
want to solve the Cauchy problem with initial condition x(t0) = x0. First, rewrite the equation
dx/dt = v(x) formally as “dx/v(x) = dt” (multiply by dt and divide by v(x), so that all x’s are
on the left and all t’s are on the right). Instead of trying to make sense to this last expression
(which is possible, of course, and here you can appreciate the beauty of Leibniz’ notation dx/dt for
derivatives!), observe that it is suggesting that

∫
dx/v(x) =

∫
dt. Now assume that the velocity

field v is continuous and let J = (x−, x+) be the maximal interval containing x0 where v is different
from zero. Integrating, from x0 to x ∈ J on the left and from t0 to t on the right, we obtain a
differentiable function x 7→ t(x) defined as

t(x) = t0 +

∫ x

x0

dy

v(y)

for any x ∈ J . Now, observe that the derivative dt/dx is equal to 1/v. Since, by continuity, 1/v
does not change its sign in J , our t(x) is a strictly monotone continuously differentiable function.
We can invoke the inverse function theorem and conclude that the function t(x) is invertible. This
prove that the above relation defines actually a continuously differentiable function t 7→ x(t) in
some interval I = t(J) of times around t0. Finally, you may want to check that the function
t 7→ x(t) solves the Cauchy problem: just compute the derivative (using the inverse function
theorem),

ẋ(t) = 1/

(
dt

dx
(x(t))

)
= v(x) ,

and check the initial condition. Observe that the function t(x)− t0 has then the interpretation of
the “time needed to go from x0 to x”.

At the end of the story, if you are lucky enough and know how to invert the function t(x), you’ll
get an explicit solution as

x(t) = F−1 (t− t0 + F (x0)) ,

where F is any primitive of 1/v. Close inspection of the above reasoning shows that the local
solution you’ve found is indeed the unique one. Namely, we have the following

Theorem 2.1. Let v(x) be a continuous velocity field and let x0 be a non-singular point of v.
Then there exist one and only one solution of the Cauchy problem ẋ = v(x) with initial condition
x(t0) = x0 in some sufficiently small interval I around t0. Moreover, the solution x(t) is the
inverse function of

t(x) = t0 +

∫ x

x0

dy

v(y)
,

defined in some small interval J around x0.

Proof. Here we give the pedantic proof. Let J be as above. Define a function H : R× J → R as

H(t, x) = t− t0 −
∫ x

x0

dy

v(y)
.
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If t 7→ ϕ(t) is a solution of the Cauchy problem, then computation shows that d
dtH (t, ϕ(t)) = 0

for any time t. There follows that H is constant along the solutions of the Cauchy problem.
Since H(t0, x0) = 0, we conclude that the graph of any solution belongs to the level set Σ =
{(t, x) ∈ R× J s.t. H(t, x) = 0}. Now observe that H is continuously differentiable and that its
differential dH = dt+ dx/v(x) is never zero. Actually, both partial derivatives ∂H/∂t and ∂H/∂x
are always different from zero. Hence we can apply the implicit function theorem and conclude
that the level set Σ is, in some neighborhood I × J of (t0, x0), the graph of a unique differentiable
function x 7→ t(x), as well as the graph of a unique differentiable function t 7→ x(t), the inverse of
t, which as we have already seen solves the Cauchy problem.

On the failure of uniqueness near singular points. The interval I = t(J) where the
solution is defined need not be the entire real line: solutions may reach the boundary of J , i.e. one
of the singular points x± of the velocity field, in finite time. Since singular points are themselves
equilibrium solutions, this imply that solutions of the Cauchy problem at singular points may not
be unique, under such mild conditions (continuity) for the velocity field. Later we’ll see Picard’s
theorem, which prescribes stronger regularity conditions on the velocity field v under which the
Cauchy problem admits unique solutions for any initial condition in the extended phase space.

Counter-example. Both curves x(t) = 0 and x(t) = t3 solve the equation

ẋ = 3x2/3

with initial condition x(0) = 0. The problem here is that the velocity field v(x) = 3x2/3, although
continuous, is not differentiable and not even Lipschitz at the origin. You may notice that the
solution starting, for example, at x0 = 1 reaches (or better comes from) the singular point x− = 0
in finite time, since

t(x−)− t(x0) =

∫ 0

1

1

3
y−2/3dy = −1 .

One-dimensional Newtonian motion in a time independent force field. The one-
dimensional motion of a particle of mass m subject to a force F (x) that does not depend on time
is described by the Newton equation

mẍ = −U ′(x) ,

where the potential U(x) = −
∫
F (x)dx is some primitive of the force. The total energy

E (x, ẋ) =
1

2
mẋ2 + U(x)

(which of course is defined up to an arbitrary additive constant) of the system is a constant of
the motion, i.e. is constant along solutions of the Newton equation. In particular, once a value E
of the energy is given (depending on the initial conditions), the motion takes place in the region
where U(x) ≤ E, since the kinetic energy 1

2mẋ
2 is non-negative. Conservation of energy allows to

reduce the problem to the first order ODE

ẋ2 =
2

m
(E − U(x)) ,

which has the unpleasant feature to be quadratic in the velocity ẋ. Meanwhile, if we are interested
in a one-way trajectory going from some x0 to x, say with x > x0, we may solve for ẋ and find the
first order autonomous ODE

ẋ =

√
2

m
(E − U(x)) .

There follows that the time needed to go from x0 to x is

t(x) =

∫ x

x0

dy√
2
m (E − U(y))

.

The inverse function of the above t(x) will give the trajectory x(t) with initial position x(0) = x0

and initial positive velocity ẋ(0) =
√

2
m (E − U(x0)), at least for sufficiently small times t.



2 DIFFERENTIAL EQUATIONS AND FLOWS 28

The exponential. The exponential function, according to Walter Rudin “the most important
function in mathematics” ([Ru87], 1st line of page 1), is the unique solution of the autonomous
differential equation

ẋ = x

with initial condition x(0) = 1. If we try a power series like a0 + a1t + a2t
2 + a3t

3 + . . . , the
differential equation gives the recursion nan = an−1 for the coefficients, while the initial condition
yelds a0 = 1. Thus, the solution is x(t) = 1 + t+ t2/2 + t3/6 + . . . .

Actually, it is convenient to complexify time, i.e. take z = t+ iθ ∈ C with t, θ ∈ R, and define
the exponential as the power series

exp(z) := 1 + z +
z2

2
+
z3

6
+
z4

24
+ · · · =

∑
n≥0

zn

n!

Since lim supn→∞(1/n!)1/n = 0, the radius of convergence is ∞, hence the power series defines an
entire function, i.e. a holomorphic function exp : C → C. Deriving each term of the series, we
easily verify that indeed exp′ = exp. The initial condition exp(0) = 1 is obvious. From absolute
convergence of the series and algebraic manipulation we also get the group property

exp(z + w) = exp(z) · exp(w)

for any z, w ∈ C, saying that exp is a homomorphism of the additive group C into the multiplicative
group C× = C\{0}. In particular, exp(−z) = 1/ exp(z), so that the exponential exp(z) is never 0.
This also justifies our notation exp(z) = ez, where

e := exp(1) = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · ' 2.7182818284590452353602874713526624977572 . . .

(another famous irrational, actually a transcendental number!). For real time z = t, we recover
the familiar model of “exponential growth” t 7→ et, a strictly increasing function from the additive
group R onto the multiplicative group R+ =]0,∞[, growing faster than any power tn as t → ∞.
For pure imaginary times, say z = iθ with θ ∈ R, we get the Euler’s formula

eiθ =

(
1− θ2

2!
+
θ4

4!
− . . .

)
+ i

(
θ − θ3

3!
+
θ5

5!
− . . .

)
= cos(θ) + i sin(θ)

(and of course you may take the last identity as the “definition” of the trigonometric functions!).
So, θ 7→ eiθ defines a periodic function with period 2π, sending the real line R onto the unit circle
S = {z ∈ C s.t. |z| = 1}. There follows from the group property that

exp(t+ iθ) = et (cos(θ) + i sin(θ)) .

Finally, the exponential exp is a periodic entire function with period i2π which only omits the
value 0, a holomorphic bijection of the cylinder C/i2πZ onto C\{0}.

Interest rates and the exponential. Let x be the annual interest payed for a deposit (so that
an interest of 0.2% mean x = 0.02). If the interest is payed once each year, an initial deposit of a
euros increases to

a+ xa = a · (1 + x)

after one year. If, however, the interest is “computed” every six months, the same initial deposit
produces

a+
x

2
a+

(
a+

x

2
a
) x

2
= a ·

(
1 +

x

2

)2

after one year. By induction, we see that if the interest is computed every 12/n months, after one
year we get a final capital of

a ·
(

1 +
x

n

)n
The limit of the gain factor as n→∞,

E(x) = lim
n→∞

(
1 +

x

n

)n
is another definition of the exponential function. If the argument lives in the Riemann sphere, you
may think that exp(z) = (1− z/∞)∞ has a zero of order ∞ at the point p =∞ ∈ C.
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Population dynamics. The exponential models the dynamics of a population in a unlimited
environment. The Malthusian/exponential model 17 is

Ṅ = λN

where N(t) is the population at time t, and λ > 0 is some growth constant (the difference α − β
between the natality rate and the mortality rate). The solution is N(t) = N(0)eλt. If we retire
specimen at fixed rate α > 0

Ṅ = λN − α

we have a non-trivial stationary solution N = α/λ, and the difference x(t) = N(t) − N is still
exponential.

This behaviour has to be compared with the super-exponential model

Ṅ = λN2.

which undergoes a catastrophe (infinite population) in finite time! Indeed, the solution with
N(0) = N0 > 0 is N(t) = N0/(1− λt/N0).

A more realistic model of population dynamics in a finite environment is the logistic equation18

Ṅ = λN(1−N/M)

where λ > 0 and the constant M > 0 is a maximal population. Observe that Ṅ ' λN if
N � M , and that Ṅ → 0 when N → M . The relative population x(t) = N(t)/M satisfies the
“adimensional” logistic equation

ẋ = λx(1− x) .

Here we see two equilibria: the trivial equilibrium x(t) = 0 and the maximum allowed polpulation
x(t) = 1. The generic solution with initial condition 0 < x(0) < 1 is

x(t) =
1

1 +
(

1
x0
− 1
)
e−λt

,

Exponential growth, super-exponential growth and logistic model.

2.4 Existence and uniqueness theorems

Solutions of a differential equation. Here we consider a generic first order ODE of the form

ẋ = v(x, t)

where the velocity field v is a (continuous) function defined in some extended phase space X ×R.
The phase space X may be some interval of the real line, an open subset of some Euclidean Rn,
or a differentiable manifold.

The problem we address is the existence and uniqueness of solutions of the initial value (or
Cauchy) problem. A local solution passing through the point (x0, t0) ∈ X×R is a solution t 7→ ϕ(t),

17T.R. Malthus, An Essay on the Principle of Population, London, 1798.
18Pierre François Verhulst, Notice sur la loi que la population pursuit dans son accroissement, Correspondance

mathématique et physique 10 (1838), 113-121.
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defined in some neighborhood I of t0, such that ϕ(t0) = x0. Eventually, we’ll be interested also in
the possibility of extending such local solutions to larger intervals of times.

The basic existence theorem is 19

Theorem 2.2 (Peano). Let v(x, t) be a continuous velocity field in some domain A of the extended
phase space R2. Then for any point (x0, t0) ∈ A passes at least one integral curve of the differential
equation ẋ = v(x, t).

Proof. (Idea) Natural guesses for the solutions are Euler lines starting through (x0, t0). If we
restrict to a sufficiently small neighborhood of (x0, t0), we can assume that the velocity field is
bounded, say |v(x, t)| ≤ K, and that all such Euler lines lies in the “papillon” made of two triangles
touching at (x0, t0) with slopes ±K. Construct a family of Euler lines, graphs of ϕn(t), such that
the maximal step εn of the n-th line goes to 0 as n → ∞. One easily sees that the family (ϕn)
is bounded and equicontinuous. By the Ascoli-Arzelá theorem it admits a (uniformly) convergent
subsequence. Finally, we claim that the sublimit ϕni → ϕ solves the differential equation.

Both existence and uniqueness may fail. The Hamilton-Jacobi equation

(ẋ)
2 − xt+ 1 = 0

cannot have solutions satisfying the initial condition x(0) = 0, for otherwise we would have a

negative “kinetic energy” (ẋ)
2

= −1 at that point!
Some regularity of the functions involved in a differential equation is also needed to ensure the

uniqueness of solutions. For example, both curves t 7→ 0 and t 7→ t3 solve the equation

ẋ = 3x2/3

with initial condition x(0) = 0. The problem here is that the velocity field v(t, x) = 3x2/3, although
continuous, is not differentiable and not even Lipschitz at the origin.

Uniqueness of solutions. A velocity field v(t, x), defined in a domain I × D of the extended
phase space R×Rn, is locally Lipschitz w.r.t. to the variable x if for any (t0, x0) ∈ I ×D there is
a neighborhood J × U 3 (t0, x0) and a constant L ≥ 0 such that

‖v(t, x)− v(t, y)‖ ≤ L · ‖x− y‖ ∀ (t, x), (t, y) ∈ J × U

If v(t, x) has continuous derivative w.r.t. x, i.e. if the Jacobian

Dxv(t, x) =

(
∂vi
∂xj

(t, x)

)
exists and is continuous, then v(t, x) is locally Lipschitz in any compact convex domain I ×K ⊂
R× Rn. The basic uniqueness theorem is the following classical result by Lindelöf 20 and Picard.

Theorem 2.3 (Picard-Lindelöf). Let v(t, x) be a continuous velocity field defined in some domain
D of the extended phase space R×X. If v is locally Lipschitz (for example continuously differen-
tiable) w.r.t. the second variable x, then there exist one and only one local solution of ẋ = v(t, x)
passing through any point (t0, x0) ∈ D.

Geometrically, the uniqueness theorem says that through any point (t0, x0) of the domain D
there pass one and only one solution. Hence solutions, considered as curves in the extended phase
space, cannot intersect each other.

In a domain where Picard’s theorem applies, if two local solutions agree in a common interval
of times then they are indeed restrictions of a unique solution defined in the union of the respective
domains. There follows that solutions are always extendible to a maximum domain. Such solutions
are called maximal solutions.

19G. Peano, Sull’integrabilità delle equazioni differenziali del primo ordine, Atti Accad. Sci. Torino 21 (1886),
677-685. G. Peano, Demonstration de l’intégrabilité des équations différentielles ordinaires, Mathematische Annalen
37 (1890) 182-228.

20M. E. Lindelöf, Sur l’application de la méthode des approximations successives aux équations différentielles
ordinaires du premier ordre, Comptes rendus hebdomadaires des séances de l’Académie des sciences 114 (1894),
454-457. Digitized version online via http://gallica.bnf.fr/ark:/12148/bpt6k3074

http://gallica.bnf.fr/ark:/12148/bpt6k3074
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Strategy of the proof of the Picard’s theorem. The first observation is that a function
ϕ(t) is a solution of the Cauchy problem for ẋ = v(t, x) with initial condition ϕ(t0) = x0 iff

ϕ(t) = x0 +

∫ t

t0

v (s, ϕ(s)) ds

Now, we notice that the above identity is equivalent to the statement that ϕ is a fixed point of the
so called Picard’s map φ 7→ Pφ, sending a function t 7→ φ(t) into the function

(Pφ) (t) = x0 +

∫ t

t0

v (s, φ(s)) ds

At this point, one must chose cleverly the domain of the Picard’s map, which is the space of
functions where we think a solution should be. It will be a certain space C of continuous functions,
defined in an appropriate neighborhood I of t0, equipped with a norm that makes it a complete
metric space (hence a Banach space). The Lipschitz condition, together with continuity, satisfied
by the velocity field will imply that if the interval I is sufficiently small then the Picard’s map
P : C → C is a contraction. The contraction principle (theorem 6.4) finally guarantees the existence
and uniqueness of the fixed point of P in C.

Picard’s iterations. The contraction principle actually says that the fixed point, i.e. the
solution we are looking for, is the limit of any sequence φ, Pφ, ..., Pnφ, ... of iterates of the Picard
map starting with any initial guess φ ∈ C. In other words, the existence part of the theorem is
“constructive”, it gives us a procedure to find out the solution, or at least a sequence of functions
which approximate the solution.

Picard’s iterations for simple ODEs. Consider the simple ODE ẋ = v(t) with initial condition
x(t0) = x0. Picard’s recipe, starting from the initial guess φ(t) = x0 gives, already at the first step,

(Pφ) (t) = x0 +

∫ t

t0

v(s)ds

which is the solution we know.

Picard’s iterations for the exponential. Suppose you want to solve ẋ = x with initial
condition x(0) = 1. You start with the guess φ(t) = 1, and then compute

(Pφ) (t) = 1 + t
(
P2φ

)
(t) = 1 + t+

1

2
t2 ... (Pnφ) (t) = 1 + t+

1

2
t2 + ...+

1

n!
tn

Hence the sequence converges (uniformly on bounded intervals) to the Taylor series of the expo-
nential function

(Pnφ) (t)→ 1 + t+
1

2
t2 + ...+

1

n!
tn + ... = et ,

which is the solution we already knew.

Details of the proof of the Picard’s theorem. Choose a sufficiently small rectangular
neighborhood

I ×B = [t0 − ε, t0 + ε]×Bδ (x0)

around (t0, x0), where B = Bδ (x0) denotes the closed ball with center x0 and radius δ in X. There
follows from continuity of v that there exists K such that

|v(t, x)| ≤ K

for any (t, x) ∈ I × B. There follows from the local Lipschitz condition for v that there exists M
such that

|v(t, x)− v(t, y)| ≤M |x− y|
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for any t ∈ I and any x, y ∈ B. Now restrict, if needed, the (radius of the) interval I in such a
way to get both the inequalities Kε ≤ δ and Mε < 1. Let C be the space of continuous functions
t 7→ φ(t) sending I into B. Equipped with the sup norm

‖φ− ϕ‖ = sup
t∈I
|φ(t)− ϕ(t)|

this is a complete space. One verifies that the Picard’s map sends C into C, since

| (Pφ) (t)− x0| ≤
∫ t

t0

|v (s, φ(s)) |ds ≤ Kε ≤ δ.

Finally, given two functions φ, ϕ ∈ C, one sees that

| (Pφ) (t)− (Pϕ) (t)| ≤
∫ t

t0

|v (s, φ(s))− v (s, ϕ(s)) |ds ≤Mε sup
t∈I
|φ(t)− ϕ(t)|

hence ‖Pφ−Pϕ‖ < Mε‖φ−ϕ‖. Since Mε < 1, this proves that the Picard’s map is a contraction
and the fixed point theorem allows to conclude.

We may not be able to solve them! Last but not least, we must keep in mind that we are
not able to solve all equations. Actually, although we may prove the existence and the uniqueness
for large classes of equations, we are simply not able to explicitly integrate the really interesting
differential equations...

Ultimately we must recur to numerical methods to find approximate solutions and to qualitative
analysis

Dependence on initial data and parameters Consider a family of ODEs

ẋ = v(t, x, λ)

where λ is a real parameter. We want to understand how solutions depend on the parameter λ. A
basic instrument is the21

Theorem 2.4 (Grönwall’s lemma). Let φ(t) and ψ(t) be two non-negative real valued functions
defined in interval [a, b] such that

φ(t) ≤ K +

∫ t

a

ψ(s)φ(s)ds

for any a ≤ t ≤ b and some constant K ≥ 0. Then

φ(t) ≤ Ke
∫ t
a
ψ(s)ds .

Proof. First, assume K > 0. Define

Φ(t) = K +

∫ t

a

ψ(s)φ(s)ds

and observe that Φ(a) = K > 0, hence Φ(t) > 0 for all a ≤ t ≤ b. The logarithmic derivative is

d

dt
log Φ(t) =

ψ(t)φ(t)

Φ(t)
≤ ψ(t)

where we used the hypothesis φ(t) ≤ Φ(t). Integrating the inequality we get, for a ≤ t ≤ b,

log Φ(t) ≤ Φ(a) +

∫ t

a

ψ(s)ds .

21T. H. Gronwall, Note on the derivative with respect to a parameter of the solutions of a system of differential
equations, Ann. of Math 20 (1919), 292-296.
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Exponentiation gives the result, since

φ(t) ≤ Φ(t) ≤ K · e
∫ t
a
ψ(s)ds

The case K = 0 follows taking the limit of the above inequalities for a sequence of Kn > 0
decreasing to zero.

Continuous dependence on initial conditions. If x(t) and y(t) are two solutions of the same
differential equation

ẋ = v(t, x)

then

x(t)− y(t) = x(0)− y(0) +

∫ t

t0

(v(s, x(s))− v(s, y(s))) ds

If L(s) denotes the Lipschitz constant of v(s, ·), we get

‖x(t)− y(t)‖ ≤ ‖x(0)− y(0)‖+

∫ t

t0

L(s)‖x(s)− y(s)‖ds

The Gronwall’s lemma 2.4 gives the estimate

‖x(t)− y(t)‖ ≤ e
∫ t
t0
L(s)ds‖x(0)− y(0)‖

Observe that the above control also gives an alternative proof of uniqueness of solutions given
a Lipschitz condition on the vector field.

Theorem 2.5 (smooth dependence on parameters). Let v(t, x, λ) be a family of vector fields defined
on some domain of the extended phase space D ⊂ R × X depending on a parameter λ ∈ Λ ⊂ R.
If v is of class Ck with k ≥ 1, then in some neighborhood of any (t0, x0, λ0) ∈ D × Λ the local
solutions of

ẋ = v(t, x, λ)

with initial condition x(t0) = x0 are differentiable (indeed Ck) functions of (t, x, λ).

A proof may be found in [BN05].

Warning. Continuous dependence does not exclude sensitive dependence on both initial con-
ditions and parameters, even in the linear case! For example, the distance between solutions of
ẋ = µx with different x(0) and/or µ may diverge for large time . . .

2.5 Oscillations and cycles

The first remarkable natural phenomena are, of course, periodic motions.

Harmonic oscillator. The harmonic oscillator is the (phenomenon modeled by the) Newton
equation

q̈ = −ω2q .

This is a quite universal equation, since it describes small oscillations around a “generic” stable
equilibrium of any one-dimensional Newtonian system22 (indeed, take a Newton equation mẍ =

22 “The harmonic oscillator, which we are about to study, has close analogs in many other fields; although we start
with a mechanical example of a weight on a spring, or a pendulum with a small swing, or certain other mechanical
devices, we are really studying a certain differential equation. This equation appears again and again in physics and
other sciences, and in fact is a part of so many phenomena that its close study is well worth our while. Some of the
phenomena involving this equation are the oscillations of a mass on a spring; the oscillations of charge flowing back
and forth in an electrical circuit; the vibrations of a tuning fork which is generating sound waves; the analogous
vibrations of the electrons in an atom, which generate light waves; the equations for the operation of a servosystem,
such as a thermostat trying to adjust a temperature; complicated interactions in chemical reactions; the growth of
a colony of bacteria in interaction with the food supply and the poison the bacteria produce; foxes eating rabbits
eating grass, and so on; ...”

Richard P. Feynman [Fe63]
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−dU ′(x) of a particle in a potential field U . An equilibrium position is a zero of the force, i.e. a
point x0 where U ′(x0) = 0. It is “stable” if x0 is a local minimum of the potential, so that the Taylor
expansion of the potential around x0 in powers of q = x− x0 starts with U(x) = α+ 1

2βq
2 + . . . ,

for some positive second derivative U ′′(x0) = β. If we are only interested in small displacements
of x around x0, we can safely disregard high order terms and approximate the Newton equation
as mq̈ ' −βq, which is an harmonic oscillator with resonant frequency ω =

√
β/m).

Call p = q̇ the momentum. The Newton equation q̈ = −ω2q is equivalent to Hamilton’s first
order equations

q̇ = p
ṗ = −ω2q .

If we define the complex variable z = ωq+ iq̇, Newton equation then takes the form of a first order
linear equation in the complex line, namely ż = −iωz, whose solution is z (t) = e−iωtz (0).

In terms of the original (physical) variables, the solutions read

q (t) = q0 cos (ωt) +
v0

ω
sin (ωt) = A sin(ωt+ φ)

where the amplitude A and the initial phase φ depend on the initial conditions q(0) = q0 and
q̇(0) = v0. So, all trajectories are periodic with common period 2π/ω, and orbits are ellipses in
the q-q̇ plane, determined by the conserved energy

E =
1

2

(
q̇2 + ω2q2

)
= ω2A2 .

Harmonic oscillator, orbit and time series.

Dumped oscillations. Adding friction to an harmonic oscillator we get

q̈ = −2αq̇ − ω2q ,

where α > 0 is some friction coefficient. The guess q(t) = e−αty(t) gives ÿ = δy where the
“discriminant” is δ = ω2 − α. Find the general solution, draw pictures and discuss the cases
α2 < ω2 (under-critical damping), α2 = ω2 (critical damping), and α2 > ω2 (overcritical damping).
Show that the energy

E(q, q̇) =
1

2
q̇2 +

1

2
ω2q2

decreases with time outside equilibrium points.
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Underdamped armonic oscillator, orbit and time series.

Mathematical pendulum. The Newton equation

Iθ̈ = −mg` sin θ

models the motion of an idealized pendulum (meaning a point mass attached to a wire of negligible
weight, under a constant gravitational force) with mass m and length `, where I = m`2 is the
moment of inertia, g is the gravitational acceleration (near the Earth’s surface), and θ is the angle
of the wire with the origin θ = 0 located at the stable equilibrium point. The energy

E =
1

2
θ̇2 −mg` cos θ

is a constant of the motion. We can define the resonant frequency ω =
√
mg`/I =

√
g/` and write

the equation as
θ̈ = −ω2 sin θ

Observe that in the limit of small oscillations we could replace sin θ ' θ and we are back to the
harmonic oscillator θ̈ = −ω2θ. To simplify thinks, let’s take ω = 1. Solving the energy for θ̇2 the
we see that the motion with energy E is given implicitly by the “elliptic integral”

t =

∫
dθ√

2(E − cos(θ))

What does a mathematician/physicist do when he/she face an integral and doesn’t see how to
solve in terms of known functions? He/she gives a name to it.

Define k =
√

E+1
2 and then x = 1

k sin(θ/2). The conservation of energy reads

ẋ =
√

(1− x2)(1− k2x2)

There follows that time is given by the so called Jacobi’s elliptic integral of the first kind

t =

∫
dx√

(1− x2)(1− k2x2)

The solution, actually the inverse function x = sn(t, k) as a function of t and the parameter k, is
“named” Jacobi elliptic function.

This is the beginning of a long and interesting story. You may want to know that sn, as well
its relatives, is a quotient of products of Jacobi’s theta functions, hence, we are at the intersection
between complex analysis, algebraic geometry, number theory, . . .
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Kepler problem. Kepler problem deals with the motion of two point-like bodies (planets
and/or stars) under mutual gravitational interaction. Let m1,m2 > 0 be their masses, and q1, q2 ∈
R3 their positions, respectively. Gravitational interaction is described by the conservative force
−∇V with potential energy

V (q1, q2) = G
m1m2

|q1 − q2|
where G is the gravitational constant. This force verifies the ”third law of dynamics”, hence the
total linear and angular momentum

P = m1q̇1 +m2q̇
and

2 M = m1q1 ∧ q̇1 +m2q2 ∧ q̇2

are conserved. This implies that the center of mass moves at uniform rectilinear speed and that
the motion of the two bodies takes place in a plane orthogonal to the angular momentum M . If
we choose a Galileian reference system where P = 0 and M is parallel to the z-axis (in particular
M is supposed different from the zero vector, a case which leads to a collision ...) , the full system
is described by the single vector q2 − q1 in the x-y plane, which we write in polar coordinates
as ρei2πθ. It turns out that the two-body problem is equivalent to the motion of a single point
mass m = m1m2

m1+m2
moving on a plane under the influence of a potential energy V (ρ) = −Gm

ρ , the

(conserved) energy beeing

E =
1

2
m
(
ρ̇2 + ρ2θ̇2

)
+ V (ρ)

Observe that if one of the bodies is much bigger than the other (like the Sun and the Earth), say
m1 � m2, then the center of mass nearly coincides with the position q1 of the bigger body, while
the reduced mass m is essentially the mass m2 of the smaller one (hence it looks like the Earth
moving around the Sun, as Galileo had suggested).

Central forces. Consider the Newton equation

mr̈ = F (|r|) r̂

describing the motion of a particle (planet) of mass m in a central force field F . Conservation
of angular momentum implies that the motion is planar, hence we may take r ∈ R2. In polar
coordinates r = ρeiθ, the equations reed

ρ̈− ρθ̇2 = F (ρ)/m

ρθ̈ + 2ρ̇θ̇ = 0 .

The second equation says that the “areal velocity” ` = ρ2θ̇ is a constant of the motion (Kepler’s
second law).

Taking Newton’s gravitational force F (ρ) = −GmMρ2 (where M is the mass of the Sun and G is

the gravitational constant), the first equation may be written as

mρ̈ = − ∂

∂ρ
V` (ρ) ,

where we defined the ”effective potential energy” as V` (ρ) = 1
2m

`2

ρ2 −G
mM
ρ . The conserved energy

is

E =
1

2
mρ̇2 +

1

2
m
`2

ρ2
−GmM

ρ
.

Now we set ρ = 1/x and look for a differential equation for x as a function of θ. Computation
shows that dx/dθ = −ρ̇/`, and, using conservation of `, that d2x/dθ2 = −ρ2ρ̈/`2. There follows
that the first Newton equation reads

d2x

dθ2
+ x = − 1

`2x2m
F (1/x) .

we get
d2x

dθ2
+ x = −GM

`2
.
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The general solution of this second order linear differential equation is

x (θ) =
GM

`2
(1 + e cos (θ − θ0)) ,

for some constants e and θ0. Back to the original radial variable we get the solution

ρ (θ) =
`2/GM

1 + e cos (θ − θ0)
,

Hence, orbits are conic sections with eccentricity e and focus at the origin: an ellipse for 0 ≤ e < 1
(corresponding to negative energy, hence to planets, and this is Kepler’s first law), a parabola for
e = 1 (corresponding to zero energy), an hyperbola for e > 1 (corresponding to positive energy).

2.6 Phenomenological models

A number of phenomenological models (i.e. models which are not fundamental laws of nature),
like the ones below, are also a source of interesting dynamical behaviour.

Lotka-Volterra system. The Lotka-Volterra system is the first-order non-linear differential
equation

ẋ = ax− bxy
ẏ = −cy + dxy

It has been proposed by Vito Volterra23 to model competition between x preys and y predators,
and by Alfred J. Lotka24 to model the cyclic behavior of certain chemical reactions, like the abstract
sceme

A+X → 2X X + Y → 2Y Y → B

Preys increase exponentially at rate a and are killed at rate proportional to the probability of
beeing captured by a predator, while predators decrease exponentially at rate c and increase at
rate proportional to the probability of capturing preys.

The function
H(x, y) = dx+ by − c log x− a log y

is a constant of the motion, i.e. d
dtH(x(t), y(t)) = 0. There follows that orbits are contained (and

actually are) in the level curves of H.

Phase portrait of the Lotka-Volterra system.

ex: Discuss the possible dynamics depending on the values of the parameters.

23Vito Volterra, Variazioni e fluttuazioni del numero d’individui in specie di animali conviventi, Mem. Acad.
Lincei 2 (1926), 31-113. Vito Volterra, Leçons sur la Théorie Mathématique de la Lutte pour la Vie, Paris 1931.

24Alfred J. Lotka, J. Amer. Chem. Soc 27 (1920), 1595. Alfred J. Lotka, Elements of physical biology, Williams
& Wilkins Co. 1925.
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Van der Pols oscillator. The van der Pol oscillator25 is the second-order non-linear differential
equation

q̈ − µ(1− q2)q̇ + q = 0

which models current in a circuit with a non-liner element.

Phase portrait and time series of the Van der Pols oscillator.

Brusselator. The Brusselator is an auto-cathalytic model proposed by Ilya Prigogine and col-
laborator 26 which models the abstract reaction

A→ X B +X → Y + C 2X + Y → 3X X → D

and reads
ẋ = α− (β + 1)x+ x2y
ẏ = βx− x2y

ex: Observe what happens to the concentrations X e Y , namely x and y, when the concentrations
[A] ∼ α and [B] ∼ β are kept constant.

ex: Simulate the system
ẋ = α− (b+ 1)x+ x2y
ẏ = bx− x2y

ḃ = −bx+ δ

for the concentrations of X, Y and B, obtained when the concentration [A] ∼ α is mantained
constant and B in injected with constant velocity v ∼ δ.

Phase portrait of the Brussellator.

25B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review 1 (1920), 701-710
and 754-762. B. van der Pol and J. van der Mark, Frequency demultiplication, Nature 120 (1927), 363-364.

26I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems, J. Chem. Phys. 48 (1968),
1655-1700. P. Glansdorff and I. Prigogine, Thermodynamic theory of structure, stability and fluctuations, Wiley,
New York 1971. G. Nicolis and I. Prigogine, Self-organization in non-equilibrium chemical systems, Wiley, New
York 1977.
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Goodwin oscillator. A system modeling the interaction protein-mRNA was poposed by Good-
win27

Ṁ = 1
1+P − α

Ṗ = M − β

where M nd P denote the relative concentrations of mRNA and protein, respectively.

Phase portrait of the Goodwin oscillator.

Lorenz attractor. Finally, we mention the Lorenz system 28

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz

For values of the parameters like σ ' 10, ρ ' 28 and β ' 8/3, one observe trajectories which
diverge from one another, and yet oscillate all along the figure-eight above.

Some orbits of the Lorenz attractor.

This strange phenomenon motivated an important part of the modern theory of dynamical
systems.

27B.C. Goodwin, Temporal organization in cells, Academic Press, London/New York 1963. B.C. Goodwin,
Oscillatory behaviour in enzymatic control processes, Adv. Enzyme Regul. 3 (1965), 425-438.

28E.N. Lorenz, Deterministic nonperiodic flow, J. Atmspheric Science 20 (1963), 130-141.
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3 Topological dynamical systems, basic definitions

3.1 Transformations

Transformations. In these notes, we’ll be mainly interested in discrete time dynamical systems,
i.e. actions of N0 or Z on some space X, generated by a transformation/map

f : X → X .

Apart from some special cases, X will be a topological space (or even a metric space). The
transformation will be continuous, or at least piecewise continuous. In such cases we speak of
topological dynamical system.

The “(forward) iterates” of a transformation f are the transformations fn : X → X, with
n ∈ N0, defined inductively according to

f0 = id and fn+1 = f ◦ fn if n ≥ 0

(warning! with this notation f2 (x) is not the square of f (x), but f (f (x)) . . . ).
In general, if n ∈ N and A ⊂ X, then f−n(A) denotes the set

f−n(A) = {x ∈ X s.t. fn(x) ∈ A} .

If f is invertible (e.g. is an homeomorphism), we can also define the backward iterates, and
therefore the transformations fn : X → X for all n ∈ Z.

We have therefore an action Φ : N0 ×X → X, or Φ : Z×X → X if f is invertible, defined by
Φn (x) = fn (x).

Phase/states space. In the following, (X, d) will be a metric space equipped with its natural
topology τ , locally compact (any point admits a compact neighborhood) and separable (admits a
countable dense subset, and therefore, being a metric space, a countable basis for the topology).
For example, regions of Rn, intervals of the line, the circle R/Z, the torus Rn/Zn, the complex
plane C, the Riemann sphere C = C ∪ {∞}, Cantor sets, and Cartesian products of finite spaces.
Also, in order to avoid trivialities, we’ll always assume tacitly that X is not a finite set.

Translations in homogeneous spaces. The simplest, tautological, way to build actions is
algebraic. Let G be a topological group (a group equipped with a Hausdorff topology such that
the group operations (g, g′) 7→ gg′ and g 7→ g−1 are continuous). Given a closed subgroup Γ ⊂ G,
one can consider the homogeneous space X = G/Γ = {gΓ ; g ∈ G}, equipped with the quotient
topology (the finest topology in G/Γ such that the projection π : G→ G/Γ is continuous). If Γ is
not too large or wild, for example if Γ is discrete, X is a sufficiently large and interesting space.

Every subgroup S ⊂ G acts on the homogeneous space X = G/Γ, the action S ×G/Γ→ G/Γ
being (s, gΓ) 7→ sgΓ. The space of orbits is the quotient S\G/Γ.

In particular, a cyclic subgroup S = {sn}n∈Z generates an action Φ : Z ×X → X defined by
Φn (gΓ) = sngΓ, which consists in iterating the left translations gΓ 7→ sgΓ of a generator.

Translations of the torus. The n-dimensional torus is the quotient space Tn := Rn/Zn of
the additive Abelian group Rn modulo the discrete subgroup Zn of integer vectors. Observe that
the torus is itself an Abelian group. The one-dimensional case T1 = R/Z is also called circle,
because it is isomorphic to the unit circle of the complex plane, the multiplicative Abelian group
S1 = {z ∈ C , |z| = 1}, under the eponential map x 7→ e2πix.

Any α ∈ Rn defines a translation Tα : Rn → Rn, according to Tα(x) = x + α. As explained
above, the translation defines a rotation Rα : Tn → Tn, according to Rα(x+ Zn) := x+ α+ Zn.

Generic properties. We will often want to talk about “most trajectories”, or “almost all
trajectories”.

Being X a topological space, one could consider (probability or infinite) measures on the Borel
σ-algebra of X. Given such a measure µ, one says that a properties is satisfied fo µ-almost all
points if the subset N ⊂ X of those points which do not have the property has measure µ(N) = 0.
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The topological couterpart of the dichotomy “zero-one probability” is possible when X is a
Baire space, i.e. a Hausdorff (any two distinct points have dosjoint neighborhoods) topological
space where a countable intersection of dense open sets is dense. Baire theorem says that examples
of Baire spaces are complete metric spaces. A subset R ⊂ X is said residual if it contains a
countable intersection of dense open sets. A subset M ⊂ X is said meager if it is a countable
union of “nowhere dense” subsets (subsets such that the closure has empty inteiror), i.e. if its
complementar X\M is residual. A property is said generic if the subset P ⊂ X of those points
with this property is residual.

3.2 Trajectories and orbits

Trajectories. Given a transformation f : X → X, we are mainly interested in the asympthotic
behavior of the “history” of a point x ∈ X, the sequence of points

x 7→ f(x) 7→ f2(x) 7→ f3(x) 7→ ...

obtained recursively applying f to the point x. If X is the space state of a physical system, and if
the system is (prepared) in the state x at time t = 0, then it will be in the state f (x) at time 1,
in the state f2 (x) = f (f (x)) at time 2, and so on.

The trajectory of x ∈ X is the sequence (xn)n∈N0
, the function that, given the “initial condition”

x0 = x, produces the states xn = fn (x) of the system at each time n ≥ 0. Thus, the trajectory of
x is the solution of the recurrence

xn+1 = f (xn)

with initial condition x0 = x.

Orbits. The forward/positive orbit of x ∈ X is the image of its trajectory, i.e. the set

O+
f (x) := {fn(x)}n∈N0

(we put the supscript “+” to remind that we are only allowed to go forward in time, since in
general f will not be invertible). It is the “future” of a point.

A point x may have more than one pre-image, and therefore its “past” is not unique. The full
orbit of a point x ∈ X is the set

Of (x) := {x′ ∈ X : ∃ n,m ≥ 0 : fn(x′) = fm(x)}

i.e the set of points which have eventually the same future of x.
If f is invertible, the full orbit coincides with the complete orbit of a point x, defined as

Of (x) := {fn(x)}n∈Z

the past and future of a point.
Observe that “being in the same full-orbit” is an equivalence relation, and therefore X is a

disjoint union of equialence classes, i.e. orbits. It must be said that the quotient space, the
space of orbits X/f , may be messy if trajectories are not regular (and this is when things get
interesting!). For example, if there exists a dense orbit, then the quotient topology in X/f is
the trivial topology. Thus, the space of orbits, as a topological space, does not contain much
informations on the dynamics of the system.

3.3 Periodic orbits and basin of attraction

Fixed points. The simplest orbits are (composed of) fixed points of f , those states p ∈ X such
that

f(p) = p .

Geometrically, fixed points are the intersections of the graph of f with the “diagonal” ∆ ⊂ X×X.
If X is a linear space, fixed points are roots of the equation f(x)− x = 0.

The set of fixed points of f is denoted by Fix(f) ⊂ X. Since f is continuous, it is a closed
subset of X



3 TOPOLOGICAL DYNAMICAL SYSTEMS, BASIC DEFINITIONS 42

Periodic orbits. A point p ∈ X is said periodic if it is a fixed point of some iterate fk, i.e. if
it belongs to some Fix(fk). A periodic point p is periodic with period n ≥ 1 if fn(p) = p and n
is the smallest of those times k ≥ 1 such that fk(p) = p. Thus, the forward orbit of the periodic
point p is a cycle, a finite set

π = O+(p) =
{
p, f (p) , f2 (p) , ..., fn−1 (p)

}
of points which are permuted by the transformation f . The cardinality |π| = n of the periodic
orbit π is the common period of its points.

A point x may have a finite orbit without being periodic: this happens when there exists a
time k ≥ 1 such that fk (x) is a periodic point. Such points are called pre-periodic.

It is convenient to denote Pern(f) := Fix(fn) the set of fixed points of the transformation fn,
called “n-periodic points”, that is the set of those periodic points of f whose period divides n.
Then

Per(f) =
⋃
n≥1

Pern(f)

denotes the set of periodic points of the map f . Observe that any of the sets Pern(f) is closed,
because fn is continuous, but their union Per(f) may not be closed.

It will be interesting later to compute or estimate the cardinalites Pn(f) := card(Pern(f)),
provided they are finite. Also interesting will be the cardinalities Πn(f) of periodic orbits π of
lenght |π| = n. Clearly, Pn(f) =

∑
m|nmΠm(f).

Convergent trajectories. If a trajectory is convergent, then its limit is a fixed point of f .
Indeed, if fn(x)→ p, the continuity of f implies that

f (p) = f
(

lim
n→∞

fn (x)
)

= lim
n→∞

fn+1 (x) = p .

Basin of attraction. Let p be a fixed point of f : X → X. The basin of attraction, or stable
set, of p is the set of those points x ∈ X whose trajectories converge to p, i.e.

W s(p) :=
{
x ∈ X s.t. lim

n→∞
fn(x) = p

}
Uniqueness of limits of convergent sequences in a metric space implies that stable sets of different
fixed points are disjoint.

Endomorphisms of linear spaces. The simplest dynamical systems are endomorphisms of a
linear space. For example, endomorphisms of Rn are defined, in the canonical basis, by matrices
A ∈ Matn×n(R), according to f(x) = Ax (vectors are column vectors, and the product is the usual
product between matrices). The origin is a fixed point, by linearity. Other fixed points are the
eigenvectors with eigenvalue λ = 1, non-trivial solutions of the homogeneous equation Ax = x.
Periodic points with period n are eigenvectors with eigenvalue λ such that λn = 1.

Collatz/Kakutani/Syracuse problem. Consider the Collatz map f : N→ N, defined as

f(n) =

{
n/2 if n is even
3n+ 1 if n is odd

It is clear that 4 7→ 2 7→ 1 is a cycle. Collatz conjecture (“. . . an extraordinarily difficult problem,
completely out of reach of present day mathematics”, according to Lagarias) affirms that this is
the only cycle and that any initial condition will eventually fall in this cycle.

Dynamics on finite state spaces. Study the dynamics, i.e. the structure of orbits, of an
arbitrary transformation of a finite set X = {1, 2, . . . , n}. Observe that the study of the dynamics of
invertible transformations consists essentially in the study of the symmetric group Sn, permutations
of X.
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ex: (Affine maps) Draw some orbits of the transformations of the complex plane f : C → C
defined by

f(z) = z + α or f(z) = λz

for different values of the parameters α, λ ∈ C. Explain for which values of those parameters there
exists periodic orbits.

ex: Find, when possible, periodic orbits (of small period) of the transformations of the interval

f(x) = ±x3 f(x) = x1/3 f(x) = x3 ± x

f(x) = x2 + 1/4 f(x) = |1− x| f(x) = x2 − 2 f(x) = sinx f(x) = cosx

f(x) = x(1− x) f(x) = 2x(1− x) f(x) = 3x(1− x) f(x) = 4x(1− x)

ex: Find the basins of attraction of the fixed points of f(x) = x2 and f(x) = x3, considered as
transformations of the real line R.

ex: Let f : R → R be the linear homogeneous transformation of the line defined by f(x) = λx.
Study the basin of attraction of p = 0 depending on the “multiplier” λ.

ex: Do the same for f(z) = λz defined in the complex line C.

ex: Find the basin of attraction of the origin for the linear maps f : R2 → R2 defined, in the
canonical basis, by the following 2× 2 real matrices:(

2 0
0 3

) (
2 0
0 1/3

) (
1/2 0
0 1/3

) (
2 1
1 1

) (
1 1
0 1

)
(

cos θ − sin θ
sin θ cos θ

)
1

5

(
cos θ − sin θ
sin θ cos θ

)
2

(
0 1
1 0

)
North-South map. The map z 7→ z/2 of the compex plane extends to an automorphism
f : C → C of the Riemann sphere C := C ∪ {∞}, declaring that f(∞) = ∞. It is clear that the
basin of attraction of 0 is all of C = C\{∞}.

The stereographic projection π : S2\{N} → C extends to a bijection between the two-sphere
S2 = {x2 + y2 + z2 = 1} ⊂ R3 and the Riemann sphere C, sending the North-pole N = (0, 0, 1)
to π(N) = ∞ and the South-pole S = (0, 0,−1) to π(S) = 0. The composition g := π−1 ◦ f ◦ π :
S2 → S2 is called North-South map. It fixes the North-pole and the South-pole, and the orbit of
any other point converges (along meridians) to the South-pole. Thus, the basin of attraction of
the South-pole is W s(S) = S2\{N}.

Sometimes, also the restricion of g to a meridian (for example, the meridian corresponding to
the real line under stereographic projection), which is a self-map of the circle, is called North-South
map.

Squaring complex numbers. Consider the transformation f : C → C of the complex plane
defined by “squaring”, i.e.

f(z) = z2 .

The basin of attraction of the fixed point 0 is the unit disk D = {|z| < 1}. Indeed, if |z| = λ < 1,
then |fn(z)| = λ2n → 0 as n → ∞. We may also extend f to an endomorphism of the Riemann
sphere C = C ∪ {∞}, and then, by the same reasoning, we see that the basin of attraction of ∞
is the exterior of the disk, the set D− = {|z| > 1}. Meanwhile, it is not obvious to describe the
basin of attraction of the fixed point p = 1. It is clear that its basin belongs to the unit circle
S = {|z| = 1}, and that it contains ±1, its square roots ±i, the square roots of these points, and
so on . . . a countable and dense subset of the unit circle.
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3.4 Observables

Observables. Observables are functions ϕ : X → R or C. If the system is initially in the state
x, and therefore is observed the value ϕ (x) of the observable ϕ, after a time n observation of ϕ
will give the value ϕ (fn (x)).

Invariant functions. Particularly interesting are observables which do not change with time,
that physicists call first integrals. The function/observable ϕ : X → R is invariant sif

ϕ ◦ f = ϕ

oi.e. if it is constant in each orbit. Oserve thaif ϕ is invariant, I ⊂ R and A = ϕ−1(I), then
f−1(A) = A. The existence of an invariant function contains the following information: if we know
that ϕ (x) = a, then future and past of X belong to the level set Σa = {x ∈ X t.q. ϕ (x) = a}, i.e.
Of (x) ⊂ Σa. Invariant functions, therefore, reduce the allowed phase space of trajectories.

Lyapunov functions. Also useful are monotone observable, which increase or decrease along
trajectories, known in physics as Lyapunov functions. For example, if we know that ϕ ◦ f ≤ ϕ,
and ϕ (x) = a, then the future of x doeas not leave the sub-level set Σ≤a = {x ∈ X s.t. ϕ (x) ≤ a},
and the past of x comes from x Σ≥a = {x ∈ X s.t. ϕ (x) ≥ a}.

Energy. The energy E(q, p) = p2/2 + q2/2, which is a constant of the motion for the harmonic
oscillator q̈ = −q (here p = q̇), is a Lyapunov function for the dumped oscillator q̈ = −αq̇ − q,
since its time derivative is d

dtE = −αp2 ≤ 0.

ex: Show that, if ϕ : X → R is invariant, I ⊂ R and A = ϕ−1(I), then f−1(A) = A.

ex: Show that the characteristic function of a set A ⊂ X is invariant iff f−1(A) = A.

Time means. The time mean (or Birkhoff mean) of the observable ϕ up to time n ≥ 0 is the
observable ϕn defined by

ϕn (x) :=
1

n+ 1

n∑
k=0

ϕ
(
fk (x)

)
i.e. the value of ϕn at the point x is the arithmetic mean of the values of ϕ along the “n-orbit of
x”, the set

{
x, f (x) , f2 (x) , ..., fn (x)

}
. If the limit

ϕ (x) = lim
n→∞

ϕn (x)

exists, it has the meaning of “asympthotic mean value” of ϕ along the orbit of x. Also observe
that ϕ (x) = (ϕ ◦ f) (x) at points where the limit exists.

If, in particular, 1A denotes the characteristic function of a subset A ⊂ X, then the limit

1A (x) = lim
n→∞

1

n+ 1
card

{
0 ≤ k ≤ n s.t. fk (x) ∈ A

}
if it exists, represents the “asympthotic fraction of time that the trajectory of x spend inside A”,
i.e. the asymptotic “frequency” with which the trajectory of x visit the subset A.

3.5 Invariant sets

Invariant sets. The characteristic function of a subset A ⊂ X is invariant iff f−1(A) = A. This
motivates the folowing definition: a subset A ⊂ X is invariant if

f−1(A) = A

This condition implies that f (A) ⊂ A, and therefore a point inside an invariant set has all its
history, past and future, inside the invariant set.
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Observe that Of (x) is the smaller invariant set which contains x, and therefore a subset is
invariant iff it a union of big orbits. If f is invertible, Of (x) is the smaller invariant set which
contains x, so that a subset is invariant iff it is a union o complete orbits, i.e. if A = ∪x∈AOf (x).

We also say that a subset A ⊂ X is +invariant (positively invariant) if f(A) ⊂ A, and
−invariant (negatively invariant) if f−1(A) ⊂ A. In particular, if A is +invariantt, it is possible
to define the restriction of f to A, i.e. dynamical system f |A : A→ A.

ex: Discover the possible implications between the conditions

f−1(A) = A , f(A) ⊂ A , f−1(A) ⊂ A ,

f(A) = A , e f−1(A) = A = f(A)

for a generic transformation, or a transfomation which is injective, surjective, or one-to-one.

ex: Consider a set C equal to Of (x) or O+
f (x) for some x ∈ X, and determine the invariance

properties of C, C, ∂C and C ′.

ex: Let A ⊂ X. Show that
⋃
n≥0 f

n (A) is +invariant, indeed the smallest +invariant set which
contains A.

If f is invertible, show that
⋃
n∈Z f

n (A) is invariant, indeed the smallest invariant set which
contains A.

ex: Let ϕ : X → R be an observable, and A ⊂ X be the set of those points x ∈ X such that the
limit ϕ (x) = limn→∞ ϕn (x) exists. Shows that A is invariant, and that the observable ϕ : A→ R
is also invariant w.r.t. the restriction f |A : A→ A.

3.6 Conjugations

Conjugations. The topological dynamical systems f : X → X and g : Y → Y are (topologically)
conjugated if there exists a homeomorphism h : X → Y , called conjugation, such that

h ◦ f = g ◦ h

This means that arrows in the following diagram commute:

X
f−−−−→ Xyh yh

Y
g−−−−→ Y

This condition may be also written f = h−1 ◦ g ◦ h, and is clearly an equivalence relation. By
induction, we see that fn = h−1 ◦ gn ◦ h for all times n ≥ 0. In particular, a conjugation sends
orbits of f into orbits of g, and vice-versa. The idea is that two conjugated transformations are
indistinguishable from the topological point of view (we are just changing the names of the points).

e.g. Linear conjugations. Let f : x 7→ Ax be the linear map of Rn defined by the square
matrix A. An automorphism h : x 7→ y = Ux, defined by the invertible matrix U , defines a linear
conjugation between f and the linear map g : y 7→ UAU−1y.

Spirals. Consider the map z 7→ λz of the Riemann sphere, where λ = ρeiϕ is a complex number
with modulus |λ| = ρ < 1. The orbits of all points different from ∞ converge to the origin along
logarithmic spirals (if the phase ϕ is not a multiple of 2π). As a map of the two-sphere, it is a
variation of the North-South map sending z 7→ ρz. Indeed, the two are conjugated by the rotation
z 7→ eiϕz.
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Semi-conjugations. A continuous and onto function h : X → Y is a semi-conjugation beween
the dynamical systems f : X → X and g : Y → Y if h ◦ f = g ◦ h. In this case, g is called factor
of f . The h-image of an orbit of f is an orbit of g, but each orbit of g may have more than one
pre-image. Informally, the dynamics of f is richer than the dynamics of g. Meanwhile, when the
set where h fails to be bijective is small, the two dynamics are still nearby.
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4 Linear systems

The simplest higher-dimensional systems are described by linear differential equations. They
provide models for the local behaviour of more general systems.

4.1 Exponential of a linear operator

Linearity & exponentials. The exponential x(t) = eλt is the unique solution of the differential
equation ẋ = λx with initial condition x(0) = 1. Moreover, it satisfies the functional equation
x(t + s) = x(t)x(s), which says that exp : R → R× defines a homomorphism from the additive
group R into the multiplicative group C×. If we try to solve a system of linear homogeneous
differential equations like

ẋ = Ax ,

with x ∈ Rn and A ∈ Matn×n(R), we are tempted to look for a solution as

x(t) = etAx(0) .

In the following, we recall how to give a meaning to such an expression, and prove that it solves
the problem. The functional equation will say that etA is a one-parameter subgroup of the general
linear group GLn(R). The practical computation of the exponential of a matrix will make use
of diagonalization, commutativity, and related considerations. More important, some qualitative
aspects of solutions will derive simply from considerations on the spectrum of A, the eigenvalues
of its complexification.

Exponential of a linear operator. The exponential of the square matrixA = (aij) ∈ Matn×n(C)
is the square matrix eA, or exp(A), defined by the power series

eA :=

∞∑
k=0

1

k!
Ak

= I +A+
1

2
A2 +

1

6
A3 + . . .

(4.1)

This definition makes sense because each entry of r.h.s. above is the sum of an absolutely conver-
gent series. To see this, observe that the operator norm ‖A‖ := supv∈Cn, ‖v‖=1 ‖Av‖ is multiplica-
tive, i.e. satisfies ‖AB‖ ≤ ‖A‖ ‖B‖. This implies the bound

‖Ak/k!‖ ≤ ‖A‖k/k!

There follows, since all norms in a finite dimensional vector space are equivalent, that the abso-
lute value of each entry of the series (4.1) is bounded by a constant times the convergent series∑∞
k=0 ‖A‖k/k! = e‖A‖. Bytheway, this also implies the bound∥∥eA∥∥ ≤ e‖A‖ .
It is clear that if the matrix A is real, then also its exponential eA is real.
If A and B are similar matrices, i.e. A = U−1BU for some U ∈ GLn(C), then also their

exponentials are similar, since powers of A are An = U−1BnU for all n ≥ 0, and therefore one
easily justifies the following computation

eA = I + U−1BU + 1
2U
−1B2U + . . .

= U−1
(
I +B + 1

2B
2 + . . .

)
U

= U−1 eB U .

(4.2)

Therefore, if L is a linear operator defined in a finite-dimensional vector space isomorphic to Cn
or Rn, represented in some fixed basis by the matrix A, then the formula (4.1) defines a linear
operator

eL = I + L+
1

2
L2 +

1

6
L3 + . . .

According to formula (4.2), this definition does not depend on the chosen basis.
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Exponential of diagonalizable matrices. If A is a diagonal matrix with eigenvalues λk’s, i.e.

Λ = diag(λ1, . . . , λn) :=


λ1

λ2

. . .

λn


(missing entries are zero) then a straightforward computation shows that its exponential is also
diagonal, and indeed

eΛ = diag
(
eλ1 , . . . , eλn

)
=


eλ1

eλ2

. . .

eλn

 .

In particular, if A is diagonalizable, i.e. A = U−1ΛU with Λ diagonal and U ∈ GLn(C), then its
exponential is similar to the diagonal matrix eΛ, namely eA = U−1eΛU . Thus, exponentials of
diagonalizable matrices are easy to compute, provided we know the change of coordinates U that
diagonalizes the matrix.

An important consequence is a relation between the exponential and the principal invariants
of a square matrix, the determinant and the trace. It says that

det
(
eA
)

= etrA (4.3)

This formula is obvious if A is diagonalizable, and follows by continuity in the general case, because
the set of diagonalizable matrices is dense in the space Matn×n(C) of complex square matrices (a
generic degree n complex polynomial has n distinct roots).

ex: Show that if v is an eigenvector of the linear operator L with eigenvalue λ, then v is also an
eigenvector of eL, with eigenvalue eλ.

One-parameter groups of matrices. Given a matrix A ∈ Matn×n(C), we may consider the
family of matrices

G(t) := etA ,

parametrized by a “time” t ∈ R. It is clear that G(0) = I. The series of functions t 7→ (etA)ij
which define the entries of etA converge uniformly in any bounded interval of the real line, as well
the series of their derivatives. In particular, the time derivatives may be computed term-wise. The
result is that

d

dt
G(t) =

∞∑
k=0

tk

k!
Ak+1 = AG(t) = G(t)A (4.4)

In particular, A commutes with G(t).
The derivative of F (t) := etAe−tA is equal, by the Leibniz rule applied to every entry of the

product, to F ′(t) = AF (t) − F (t)A = 0, because A commutes with G(t). By the mean value
theorem, F (t) = F (0) = I. Therefore, G(t) = etA is invertible, and its inverse is (etA)−1 = e−tA.
Thus, the exponential sends exp : Matn×n(C)→ GLn(C).

Theorem 4.1. Let A ∈ Matn×n(C). The unique solution of the linear differential equation

Ẋ = AX or Ẋ = XA ,

with initial condition X(0) = X0 ∈ GL(n,C), is

X(t) = etAX0 or X(t) = X0 e
tA ,

respectively.
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Proof. It is clear, by the above computation, that etAX0 or X0e
tA are solutions of the two

problems. In order to prove uniqueness, we may observe that if X(t) is a solution, then the matrix
X(t) e−tA (or e−tAX(t) in the second case) does not depend on time, since its derivative is zero,
and therefore is constant and equal to its initial value X0.

Observe that the two differential equations in the above theorem are not the same, the product
between matrices does not commute, in general. Indeed, if A and B do not commute, the three
exponentials eA+B and eAeB and eBeA may all be different from each other. What is true is the
following.

Theorem 4.2. If A and B commute, i.e. if AB = BA, then

eA+B = eAeB = eBeA .

Proof. If A commutes with B, the all its powers Ak also commute with all the powers Bj , and
therefore with the exponentials etB and etA, and viceversa. There follows that the derivative of

H(t) = et(A+B) − etAetB

is, using formulas 4.4,

H ′(t) = (A+B) et(A+B) −AetAetB − etAetB B = (A+B)H(t)

By the uniqueness theorem 4.1, H(t) = et(A+B)H(0). But H(0) = 0, therefore H(t) = 0 for all
times t, and in particular for t = 1.

In particular, since all multiples tA of A commute, the family of the G(t) = etA, with t ∈ R, is
a one-parameter subgroup of the general linear group GLn(C), i.e. satisfies

e0A = I and etAesA = e(t+s)A .

In other words, the correspondence t 7→ etA is an homomorphism of the additive group R into
GLn(C). Its image is a curve in the linear group, which passes through the identity for t = 0,
and solves the differential equation Ġ = AG. The matrix A is called generator of the subgroup
{G(t)}t∈R, and may be obtained as the derivative

A = Ġ(0) = lim
t→0

G(t)− I
t

.

Thus, A is the velocity of the curve G(t) at time t = 0.

4.2 Linear flows

Linear systems. A homogeneous linear system with constant coefficients is an autonomous
differential equation

ẋ = L(x) (4.5)

for x(t) ∈ Rn, defined by a linear vector field L ∈ End(Rn). The origin is an equilibrium solution,
since L(0) = 0 by linearity. Fixed a basis of Rn, e.g. the canonical basis, the system may be
written in matrix notation as

ẋ = Ax ,

where x(t) = (x1(t), x2(t), . . . , xn(t))> ∈ Rn is a column vector, A = (aij) ∈ Matn×n(R) is
the matrix which represents the linear vector field L in the chosen basis, and Ax denotes the
usual product between matrices. By the proof of theorem 4.1, the solution with initial condition
x(0) = x0 ∈ Rn is given by

x(t) = etAx0 .

The flow of the linear vector field L is the one-parameter group of linear maps Φt = etL, given, in
the chosen basis, by Φt(x) := etAx.

Thus, if we want to understand solutions of a linear system, we must compute the exponential
of the linear vector field, in some convenient basis.
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Diagonalizable linear systems. Assume that A is diagonalizable, and has n real eigenvalues
λ1, λ2, . . . , λn (not necessarily distinct) with linearly independent eigenvectors v1, v2, . . . , vn, re-
spectively, so that Avk = λkvk and the vk’s form a basis of Rn. Then the solution of (4.5) with
initial conditions x(0) =

∑
k akvkis a superposition

x(t) =

n∑
k=1

etλkakvk

The qualitative asymptotic behavoiur of solutions is therefore decided by the signs of the eigen-
values.

For example, if all the eigenvalues are negative, i.e. λk < 0 for all k = 1, . . . , n, then all solutions
decay, exponentially fast to the origin, i.e.

‖x(t)‖ ≤ e−αt‖x(0)‖

for some α = mink |λk| > 0. The origin is then an “asymptotically stable” equilibrium, or a
“sink”.

If, on the other side, all the eigenvalues are positive, i.e. λk > 0 for all k = 1, . . . , n, then all
solutions different from the equilibrium solution diverge exponentially fast, i.e.

‖x(t)‖ ≥ eβt‖x(0)‖

for some β = mink λk > 0. The origin is an “asymptotically unstable equilibrium”, or a “source”.
More interesting is the mixed situation of a saddle, with some stable directions and some

unstable directions. The case with some zero eigenvalue, i.e. some indifferent directions, is clearly
non generic, although physically interesting (the harmonic oscillator is such a case!).

On the other side, generic real matrices are not diagonalizable. To understand their exponen-
tials, we must complexify and use the Jordan normal form.

Complexification. The complexification of the real vector space Rn is the complex vector space
Cn := R⊕ iR, i.e. the set of vectors z = x⊕ iy ≈ x+ iy, with x, y ∈ Rn, equipped with the natural
sum and multiplication by complex scalars.

The complexification of the linear map x 7→ L(x) defined, in the canonical basis of Rn, by a
matrix A ∈ Matn×n(R) according to x 7→ Ax, is the linear operator z 7→ LC(z) defined by the
same matrix, i.e. according to z = x+ iy 7→ Az = Ax+ iAy.

The spectrum of the linear operator L (in a finite dimensional linear space) is the set σ(L) ⊂ C
of the eigenvalues of its complexification LC, i.e. complex roots of the characteristic polynomial
PA(t) := det(t−A). By Gauss’ fundamental theorem of arithmetic, the characteristic polynomial
factorizes as a product

PA(t) =
∏

λ∈σ(L)

(t− λ)mλ .

The integer exponent mλ is called (algebraic) multiplicity of the eigenvalue λ. It is clearl that∑
λ∈σ(A)mλ = n.

Complexification in dimension two. The relevant example, for our purposes, is the following.
Let x 7→ L(x) be the linear operator defined, in the canonical basis e1 = (1, 0) and e2 = (0, 1) of
R2, by the real matrix

A =

(
α ω
−ω α

)
Thus, L(e1) = αe1 − ωe2 and L(e2) = ωe1 + αe2. Then the complexified operator z 7→ LC(z) is

defined, in the basis v+ = e1 + ie2 and v− = e1 − ie2 of C2, by the diagonal matrix

Λ =

(
λ 0

0 λ

)
where λ = α + iω. Indeed, a computation shows that A(e1 + ie2) = (α + iω) (e1 + ie2) and
A(e1 − ie2) = (α− iω) (e1 − ie2).
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Vice-versa, let LC be the complexification of a real operator defined by the real two-by-two
matrix A, and let v+ be an eigenvector of LC with eigenvalue λ = α+ iω, so that, in the canonical
basis, Av+ = λv+. Then v− := v+ is an eigenvector of LC with eigenvalue λ = α−iω. Indeed, since
the entries of A are real, the roots of the characteristic polynomial comes in pairs of conjugated
complex numbers, and one check that Av− = Av+ = Av+ = λ v+ = λ v−. There follows that, in
the real basis e+ = (v+ + v−)/2 and e− = (v+− v−)2i, which is therefore a basis of the real vector
space R2 ⊂ C2, the real operator L is represented by the matrix A as above.

So, a diagonalizable complexified real linear operator in the plane with a couple of complex
conjugate eigenvaules λ± = α± iω “corresponds” to a two-by-two real matrix which is the sum of
a multiple of the identity αI and an anti-symmetric matrix Ω as below

αI + Ω := α

(
1 0
0 1

)
+

(
0 ω
−ω 0

)
.

Since any matrix commute with any multiples of the identity, by theorem 4.2 we may compute
separately the exponentials of tρI and tΩ, and then multiply the results. The flow of the diagonal
part is simply etαI = eαtI. A computation (using the power series of the trigonometric functions
sin t and cos(t)) shows that the flow defined by the antisymmetric matrix Ω above is

etΩ =

(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
i.e. it is a clockwise rotation Rtω by an angle tω. Multiplying, we finally get

etA = et(αI+Ω) = eαt
(

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
So, the flow of A is a rotation with angular frequency ω (or frequency ν = ω/2π) together with
stretching/contraction with exponential rate α. Orbits are logarithmic spirals entering or coming
from the origin, depending on the sign of α.

The case α = 0 corresponds to pure rotations (this is the case of the harmonic oscillator
ẍ = −ω2x).

4.3 Linear systems in the plane

Linear systems in the plane. We have now all the tools to understand the general linear
system of differential equations

ẋ = ax+ by
ẏ = cx+ dy

in the plane R2, defined by a real 2× 2 matrix

A =

(
a b
c d

)
.

Let λ+ and λ− be the eigenvalues of the complexification of A, i.e. the complex roots (possibly
equal) of the characteristic polynomial det(tI − A). The product λ+λ− of the eigenvalues is
q = det(A) = ad− bc, and the sum λ+ + λ− of the eigenvalues is p = tr(A) = a+ d. Eigenvalues
are therefore

λ± =
p±
√

∆

2
,

where the “discriminant” is ∆ = p2 − 4q.

Two independent eigenvectors. If the matrix A is diagonalizable over the reals, i.e. admits
two linearly independent eigenvectors with real eigenvalues λ± ∈ R (possibly equal), then the
system is linearly equivalent to (

ẋ
ẏ

)
=

(
λ+ 0
0 λ−

)(
x
y

)
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Solutions are (
x(t)
y(t)

)
=

(
eλ+t 0

0 eλ−t

)(
x0

y0

)
The origin is called stable node if λ± < 0, unstable node if λ± > 0, or saddle if λ− < 0 < λ+.

Stable node, unstable node and saddle.

Only one eigenvector. Assume that the matrix A admits just one eigenvector v (or better,
a one-dimensional space of eigenvectors)), with eigenvalue λ ∈ R. Then the matrix representing
the operator in a basis v, w (where w is any other linearly independent vector) is upper triangular,
with both diagonal entries equal to λ (for otherwise a different second diagonal entry would be
another eigenvalue and would therefore yelds a second independent eigenvector) and a non-zero
upper right entry (for otherwise w would be a second, linearly independent eigenvector, and the
operator diagonalizable). Therefore, the operator sends v 7→ λv and w 7→ av+ λw for some a 6= 0.
Thus, in the basis formed by v and w/a, the operator is defined by the upper triangular matrix(

λ 1
0 λ

)
(4.6)

This shows that the system is linearly equivalent to(
ẋ
ẏ

)
=

(
λ 1
0 λ

)(
x
y

)
Since (4.6) is a sum of the diagonal matrix ρI and the nilpotent matrix N = ( 0 1

0 0 ), which indeed
satisfies N2 = 0, the power series defining its exponential is actually a polynomial os first degree,
and solutions are (

x(t)
y(t)

)
= eλt

(
1 t
0 1

)(
x0

y0

)
The origin is called degenerate node, stable or unstable, depending on the sign of ρ.

Degenerate unstable node.

ex: A more conceptual proof of the above observation introduces to the so called “Jordan chains”,
the building blocks of the Jordan normal form of a matrix. Let L be an operator on R2, and assume
that it admits only one-dimensional eigenspace, say generated by the eigenvector v1 with eigenvalue
λ. This means that the kernel of the operator N = L − λ is one-dimensional. For dimensional
reasons, also the range of N is one-dimensional. Their intersection cannot be trivial, for otherwise
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the whole space would be a direct sum R2 = ran(N)⊕ kernel(N) of two one-dimensional invariant
subspaces, and therefore the operator L would be diagonalizable. Thus, there exists e non-zero
vector v0 such that Nv0 = v1. The vectors v0 and v1 are independent. Indeed, let av0 + bv1 = 0.
Applying N , we get av1 = 0, since Nv1 = 0 and Nv0 = v1, and therefore a = 0. But then bv1 = 0
implies that also b = 0 (the vectors v0 and v1 = Nv0 form a so called “Jordan chain”). Finally, one
just observes that, in the basis formed by v1 and v0, the operator L is represented by the matrix
(4.6), since Lv1 = λv1 and Lv0 = v1 + λv0.

Complex eigenvalues. If the matrix A has no real eigenvalue, then its complexification admits
two complex conjugate eigenvalues λ and λ. If the eigenvaues are purely imaginary, say λ± = ±iω,
with ω > 0, then, by the previous discussion, the system is linearly equivalent to(

ẋ
ẏ

)
=

(
0 ω
−ω 0

)(
x
y

)
This is an harmonic oscillator ẍ = −ω2x with angular frequency ω. Solutions are(

x(t)
y(t)

)
=

(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)(
x0

y0

)
Orbits are ellipsis, and the origin is called (indiffeent) focus. Trajectories which start near the
origin stay near the origin for all times, still not being asymptotic to the origin.

The generic case is a complexified matrix with complex eigenvalues λ± = ρ± iω, with real part
ρ 6= 0. The system is linearly equivalent to(

ẋ
ẏ

)
=

(
ρ ω
−ω ρ

)(
x
y

)
Solutions are (

x(t)
y(t)

)
= eρt

(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)(
x0

y0

)
orbits are logarithmic spirals that comes or enter into the origin, depending on the sign of ρ. The
origin is called unstable focus if ρ > 0, or stable focus if ρ < 0.

Stable, indifferent and unstable focus.

Global picture. It is clear that the stability or unstability of nodes or foci is preserved under
small perturbations of the parameters (the entries of the matrix A). Here is a famous picture of
the different phase portraits, depending on the trace and determinant of the matrix.
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By Maschen, from Wikimedia Commons.

ex: Discuss the degenerate cases when one of the eigenvalues is zero (so that the matrix A is not
invertible).

ex: Consider the “inverted oscillator”
q̇ = p
ṗ = q

Find the nature of the equilibrium, and determine the generic solution.

ex: Sketch the phase portrait (i.e. some orbits near the equilibrium in the phase space) of the
following linear systems.{

ẋ = x− y
ẏ = x+ y

{
ẋ = 2x+ y
ẏ = x+ y

{
ẋ = 4x
ẏ = 2x− y{

ẋ = 6x+ 5y
ẏ = x+ 2y

{
ẋ = −x+ 2y
ẏ = 3y

{
ẋ = −7x+ y
ẏ = −4x− 3y{

ẋ = y
ẏ = −4x

{
ẋ = −x+ 5y
ẏ = −5x− y

{
ẋ = x+ 5y
ẏ = −5x+ y

ex: The current I(t) in a LRC circuit is a solution of the homogeneous differential equation

LÏ +Rİ +
1

C
I = 0

Write the corresponding linar system for x(t) = I(t) and y(t) = ˙I(t), and sketch the possible
phase portraits, depending on the relative values of the positive parameters L, R and C.

4.4 Jordan normal form

In the higher-dimensional case, the useful normal form to understand exponentials is the Jordan
normal form.

https://commons.wikimedia.org/wiki/File:Phase_plane_nodes.svg
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Generalized eigenspaces. Let L : Cn → Cn linear operator defined in a complex linear space
Cn. Given a scalar λ, let Lλ denotes the operator L− λ. If the kernel of Lλ is not trivial, then λ
is an eigenvalue of L, and Vλ = kernel(Lλ) is its associated proper space, made of eigenvectors v
such that Lv = λv.

A non-zero vector v ∈ Cn is said generalized eigenvector if it is in the kernel of some power of
Lλ, i.e. if there exists λ ∈ C and some minimal integer m ≥ 1 such that Lmλ v = 0. The non-zero
integer m is called period of v, and the vector v itself is also called Lλ-cyclic (meaning that the
orbit of v by the map Lλ is formed by m distinct non-zero vector).

If the period is p = 1, then v in an eigenvector of L. In general, the m vectors

v1 = Lm−1
λ v v2 = Lm−2

λ v . . . vm = v (4.7)

are all generalized eigenvectors, since , Lkλvk = Lkλl
m−k
λ v = Lmλ v = 0, and the first one, v1, is an

eigenvector of L with eigenvalue λ.

Theorem 4.3. If v is a Lλ-cyclic vector of period m, then the m vectors (4.7) are linearly inde-
pendent and generate a L-invariant subspace of generalized eigenvectors.

Proof. If a1v1 + a2v2 + · · ·+ amvm = 0 for some non-zero vector (a1, a2, . . . , am), then p(Lλ)v = 0
where p(t) is the non-zero polynomial

p(t) = a1t
m−1 + a2t

m−2 + · · ·+ am−1t+ am

But also q(Lλ)v = 0, where q(t) = tm, because v is Lλ-cyclic with period m. If h(t) denotes the
maximum common divisor between the polynomials p(t) and q(t), then there exist polynomials
f(t) and g(t) such that h(t) = f(t) p(t) +g(t) q(t). Therefore, also h(Lλ)v = 0. But h(t) is a power
of t (since it divides tm) of degree deg(h) = k ≤ m − 1 (since it divides p(t)). Thus, h(t) = tk,
and therefore Lkλv = 0. This contradicts the fact that m is the period of v. Thus, the vectors are
linearly independent.

The vk’s are all generalized eigenvectors, because Lkλvk = Lkλl
m−k
λ v = Lnλv = 0. Finally, the

subspace generated by the vk’s is L-invariant, because

Lvk = L(Lm−kλ v) = Lm−k+1
λ v + λLm−kλ v = vk−1 + λvk

where, clearly, we set v0 = (L− λI)nv = 0.

The kernels kernel(Lkλ) are called generalized eigenspaces of order k, and one easily sees that
kernel(Lλ) ⊂ kernel(L2

λ) ⊂ · · · ⊂ kernel(Lnλ). Moreover, if λ is en eigenvalue of L, then the space
of generalized eigenvectors associated to the eigenvalue λ is equal to kernel(Lnλ) (which, of course,
may coincide with kernel(Lkλ) for some smaller k ≤ n).

Jordan blocks. If it happens that the vectors (4.7) span the whole space Cn, i.e. if m = n,
then the entire space is said cyclic. The computation in the proof above shows that

Lv1 = λv1 and Lvk = λvk + vk−1 for 2 ≤ k ≤ n .

Therefore, the matrix which represents the linear operator L in this basis v1, v2, . . . , vn is

Jλ =


λ 1

λ 1
. . .

. . .

λ 1
λ

 (4.8)

In particular, v1 is the unique eigenvector, with eigenvalue λ, the proper space Vλ = kernel(Lλ)
being the line Cv1. Thus, the geometric multiplicity of λ is equal to 1. The matrix (4.8) is called
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Jordan block of dimension n, and the basis (4.7) is called Jordan basis, or Jordan chain of lenght
n. The vector vn is called generator, or lead vector of the Jordan chain.

Observe that a Jordan block of dimesion n has the form

Jλ = λI +N

where N is the nilpotent (upper triangular) matrix

N =


0 1

0 1
. . .

. . .

0 1
0

 (4.9)

which satisfies Nek = ek−1, if the ek’s denote the column vectors of the canonical basis of Cn, and
Nn = 0.

The characteristic polynomial of a Jordan block J of lenght n is PJ(z) = (z−λ)n, and therefore
the algebraic multiplicity of the eigenvalue λ is n. The minimal polynomial (the monic polynomial
of minimal degree such that f(J) = 0) is also MJ(z) = (z−λ)n (to be compared with the minimal
polynomial of the diagonalizable matrix Λ = λI of order n, which is only MΛ(z) = (z − λ)).

e.g. Derivative and quasi-polynomials. The paradigmatic example is the derivative op-
erator ∂, defined by (∂f)(t) := f ′(t) on complex-values functions f(t) of a real variable t. Its
eigenfunctions are the exponentials eλt, since ∂(eλt) = λ eλt. On the other side, it is nilpotent on
the space of polynomials p(t) of fixed degree, say deg(p) < n, where ∂n = 0. Exponentials and
polynomials combine to form the spaces Qλ,n ≈ Cn of quasi-polynomials f(t) = p(t)eλt, where λ
is a fixed complex exponent and the p(t)’s are polynomials of deg(p) < n. These are cyclic spaces
for the derivative, since (∂ − λ)n = 0, and a generating vector is tn−1eλt. The eigenvector of ∂ is,
of course, f(t) = eλt, and has eigenvalue λ. A Jordan basis is

eλt t eλt 1
2 t

2 eλt . . . 1
(n−1)! t

n−1 eλt

In this basis, the operator ∂ is represented by the matrix (4.8).

Flow of a Jordan block. The exponential of t times a Jordan block Jλ of dimension n, which
defines the flow of the linear differential equation

v̇ = Jλ v

defined in a cyclic space, is easily computed. Indeed, since N commute with λI, we may compute
separately the two exponentials and then multiply. But since N is nilpotent, namely Nn = 0, the
series defining the exponential terminates, and indeed

etN = I + tN +
t

2
N2 + · · ·+ tn−1

(n− 1)!
Nn−1 .

So, the exponential of tJλ is simply

etJλ = etλ
(
I + tN +

t

2
N2 + · · ·+ tn−1

(n− 1)!
Nn−1

)
.

It is clear, since polynomials corrections are negligible compared with exponential growth or
decay, that the asymptotic behaviour of solutions of the linear system v̇ = Jλv only depends on
the sign of the real part of λ, provided it is not zero.

Theorem 4.4. If <(λ) < 0, then for all 0 < α < |<(λ)| there exists a constant C such that

‖etJλv‖ ≤ C e−αt ‖v‖ for t ≥ 0 .
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Proof. If we write a generic vector as a superposition v =
∑
k akvk of the vectors vk’s of the Jordan

basis, we see that

etJλv = eλt

(∑
i

ai pik(t)

)
vk

where the pik(t)’s are certain polynomials of degree < n, which only depend on the dimension n
of the Jordan block. Assume that <(λ) = −ρ < 0. Take any 0 < α < ρ, and set ε = ρ−α > 0. We
may define a norm on the cyclic space according to ‖v‖λ := maxk |ak|. Then, if M = maxi,kMik

denotes the maximal value of the Mik = supt≥0 |e−tεpik(t)|, we clearly have

‖etJλv‖λ ≤M e−αt ‖v‖λ

for all t ≥ 0. Since all norms in a finite dimensional vector space are equivalent, this finally implies
that claimed inequality, for some other constant C, holds for the standard or any other norm in
the cyclic space.

Thus, if <(λ) < 0, all vectors are exponentially contracted by the flow of Jλ, and decay to zero
exponentially fast as t→∞.

Reversing the arrow of time, one shows that if <(λ) = ρ > 0 and ρ > β > 0, then there exists
a constant C such that

‖e−tJλv‖ ≤ C e−βt ‖v‖ ∀ t ≥ 0

Thus, if <(λ) > 0, all vectors are exponentially stretched by the flow of Jλ, and decay to zero
exponentially fast as t→ −∞.

Jordan normal form. It happens that any linear operator in a finite dimensional complex
vector space is a direct sum of Jordan blocks.

Theorem 4.5 (Jordan normal form). Let L be a linear operator in a finite-dimensional complex
vector space Cn. The total space splits as a direct sum Cn = Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ Eλd of cyclic
L-invariant subspaces.

Therefore, if we chose a Jordan basis in any invariant cyclic subspace Eλk , the matrix that
represents the linear operator L in the resulting basis is block diagonal as

J =


Jλ1 0 . . . 0
0 Jλ2 . . . 0
...

...
. . .

...
0 0 . . . Jλd

 (4.10)

where each Jλk = λkI + Nk is a Jordan block as (4.8). The λk’s are the eigenvalues of L,
the roots of the characteristic polynomial PA(z) = det(zI − A), where A is the matrix that
represents L in the canonical basis. Indeed, the characteristic polynomial factorizes as a product
PA(z) =

∏
λ∈σ(A) (z − λ)mλ , where mλ is the (algebraic) muliplicity of the eigenvalue λ, which

is equal to the sum of the dimensions of the Jordan blocks with λk = λ, i.e. to the dimension
of the generalized eigenspace kernel(Lnλ). The geometric multiplicity of the eigenvalue λ is the
dimension of the proper space kernel(Lλ), which is equal to the cardinality of those Jordan blocks
with λk = λ. The minimal polynomial of A is a product MA(z) =

∏
λ∈σ(A)(z − λ)µλ , where µλ is

the dimension of the largest Jordan block with λk = λ.
If A is the matrix that represents the linear operator L in the canonical basis (or in any other

basis), then there exists an invertible matrix G ∈ GLn(C) (whose columns are the vectors of the
Jordan bases) such that G−1AG = J . The canonical form J is unique modulo permutations of
the blocks. In particular, the matrix A may be represented as a sum

A = Λ +N

of a semi-simple, i.e. diagonalizable, matrix Λ = G (λ1I ⊕ λ2I ⊕ . . . )G−1 and a nilpotent matrix
N = G (N1 ⊕N2 ⊕ . . . )G−1 which commute, i.e. such that ΛN = NΛ.

Clear proofs of the Jordan normal form theorem 4.5 can be found in the classical [HS74], or in
any good reference on linear algebra, as for example [La87, Ax97].
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Normal form of real operators. We now consider a linear operator L : Rn → Rn, defined,
in the canonical basis, by a matrix A ∈ Matn×n(R). We may think at A as a complex matrix,
representing the complexified operator LC : Cn → Cn, and as such conjugated to a block diagonal
matrix as (4.10) above. Eigenvalues are real, or come in couples of complex conjugated pairs
λ± = α± iω, since the characteristic polynomial has real coefficients.

Theorem 4.6 (Jordan normal form for real operators). Let L be a linear operator on the real
vector space Rn. The total space splits as a direct sum of invariant subspaces Eλ or Eλ,λ , namely

Rn =

(⊕
λ∈R

Eλ

)
⊕

 ⊕
λ∈C\R

Eλ,λ

 ,

where the operator is represented by a matrix of the form (4.8), for some real eigenvalue λ, or by
a matrix of the form

Jλ,λ =


Rλ,λ I

Rλ,λ I

. . .
. . .

Rλ,λ I

Rλ,λ

 (4.11)

with

Rλ,λ = αI + Ω =

(
α ω
−ω α

)
and I =

(
1 0
0 1

)
,

for some couple of complex conjugated eigenvalues λ = α+ iω and λ = α− iω, respectively.

Proof. According to the Jordan normal form theorem 4.5, there exists a basis of Cn such that the
complexified operator LC is represened by a block diagonal Jordan matrix.

Consider a Jordan block with real eigenvalue λ. If z = x+ iy is a Lλ-cyclic vector, then either
x or y is a real Lλ-cyclic vector. This real cyclic vector generates, therefore, a real Jordan chain
of the same real dimension as the complex dimension of original block.

We now consider a Jordan block with complex eigenvalue λ = α+ iω. If λ is not real, then the
complexified operator also admts an eigenvalue λ = α − iω, and a corresponding Jordan block of
equal dimension. Indeed, if v is Lλ-cyclic, then v is Lλ-cyclic. Proceeding as in the two dimensional
case, one easily sees that this couple of complex Jordan blocks give origin to a real Jordan block
of the form (4.11).

The invariant subspaces Eλ or Eλ,λ of theorem 4.6 are also referred to as root spaces, using a
terminology borrowed from the theory of Lie algebras.

4.5 Hyperbolic linear flows

Stable and unstable spaces. Given a linear vector field L on Rn, defined in the canonical basis
by a real matrix A, we are interested in its flow Φt = etL, which solves the linear system

ẋ = Ax .

We already saw that the asymptotic behavior of the flow etL in each root space depends on the
sign of the real part of the corresponding eigenvalue.

One can write the total space as a direct sum of three invariant subspaces

Rn = E− ⊕ E0 ⊕ E+

where the stable space E− is the direct sum of those root spaces with <(λ) < 0, the unstable space
E+ is the direct sum of those root spaces with <(λ) > 0, and finally the neutral space E0 is the
direct sum of those root spaces with <(λ) = 0.
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Sinks and sources. The linear system, or better its equilibrium point 0, is calld a sink if all
the eigenvalues have negative real part, i.e. <(λ) < 0, so that that Rn = E−. It is called a source
if all the eigenvalues have positive real part, so that Rn = E+. It is clear that reversing the arrow
of time transfoms a sink to a source, and vice-versa, since (etL)−1 = e−tL.

Theorem 4.7. The linear system ẋ = L(x) is a sink iff it satisfies one of the following equivalent
conditions:

i) all the eigenvalues of L have negative real part,
ii) all solutions decay etLv → 0 when t→∞,
iii) there exist a positive α > 0 and a constant C such that for all v ∈ Rn∥∥etLv∥∥ ≤ C e−αt ‖v‖ for times t ≥ 0 . (4.12)

Proof. It is obvious that iii) ⇒ ii). It is also clear that ii) ⇒ i), because if some eigenvalue has
<(λ) ≥ 0, then one easily find, in the corresponding Jordan chain, a solution which does not decay
to zero. Finally, to see that i) ⇒ iii), we note that this holds in each Jordan block according to
theorem 4.4. But if we have norms in each subspace of a direct sum decomposition (as for example
the restrictions of the Euclidean norm), we can define a norm on the total by space taking their
maximum (or their sum, or the square root of the sum of theirs squares). With respect to this
norm, we then have the inequality (4.12) for some α > 0 strictly smaller than all the |<(λ)|’s and
some maximal constant C. Again, by the equivalence of all norms, the same inequaity holds w.r.t.
to the any norm in Rn, for some possibly different constant C.

Thus, all trajectories of a sink decay exponentially fast to the origin. Conversely, all trajectories
of a source are exponentially stretched, i.e. satisfy an inequality like∥∥etLv∥∥ ≥ C eβt ‖v‖
for some β > 0 and all t ≥ 0, and therefore diverge exponentially fast as t → ∞, provided the

initial condition is not the equilibrium, i.e. v 6= 0. If the linear field has non-real eigenvalues,
trajectories may decay or diverge along logarithmic spirals.

Hyperbolic linear flows. A linear vector field L is called hyperbolic if the spectrum of its
complexification is disjoint from the imaginary axis, i.e. if all the eigenvalues λ, real or complex,
have non-zero real part <(λ) 6= 0. The total space of a hyperbolic vector field therefore splits as a
direct sum

Rn = E− ⊕ E+

of a stable and an unstable invariant subspace.
Of course, sinks and sources are hyperbolic, but the most interesting case is when both the

stable and the unstable subspaces are not-empty. Reasoning as in the proof of theorem 4.7, one
shows that

Theorem 4.8. Let L be a hyperbolic linear field. The phase space is a direct sum of two invariant
subspaces Rn = E− ⊕ E+, the stable and the unsable subspaces, and there exist positive constants
α, β > 0 and a constant C such that

‖etLv‖ ≤ C e−αt ‖v‖ if v ∈ E− and t ≥ 0

and
‖e−tLv‖ ≤ C e−βt ‖v‖ if v ∈ E+ and t ≥ 0

Thus, the flow of a hyperbolic linear vector field contracts vectors in the stable space and
stretch vectors in the unstable space. Indeed, the stable and the unstable subspaces E± may be
characterized/defined as the sets of those vectors satisfying e±tLv → 0 for t→∞, respectively. If
both spaces are not empty, generic trajectories, not starting in E− ∪ E+, diverge for t→ ±∞.

It turns out that the hyperbolic vector fields are precisely the structurally stable linear vector
fields. This is the starting point of a large area of the modern theory of dynamical systems, called
hyperbolic theory. Classical references are [HS74, PM78].



5 NUMBERS AND DYNAMICS 60

5 Numbers and dynamics

Another important source of interesting dynamics is, quite surprisingly, elementary number theory.

5.1 Decimal expansion and multiplication by ten

Decimal expansion. When children we learn to represent numbers as decimals, like

3.14159265358979323846264338327950288419716939937510 . . .

Of course, there is nothing special with the number 10, it is but the number of fingers in our hands.
Any other integer d ≥ 2 would work. Representing a non-negative (for simplicity) real number
x ∈ R+ in base 10 means writing x as the sum of a convergent series

x = “Xm . . . X2X1X0.x1x2x3 . . . ”

:= Xm · 10m + · · ·+X2 · 102 +X1 · 10 +X0 +
x1

10
+

x2

102
+

x3

103
+ . . .

=

m∑
n=0

Xn · 10n +

∞∑
n=1

xn · 10−n

where Xn, xn ∈ {0, 1, 2, . . . , 9} and m ≥ 0 (the series above is absolutely convergent because it is
bounded by 9 times the geometric series

∑∞
n=1(1/10)n).

The finite sum

[x] :=

m∑
n=0

Xn · 10n ∈ Z

is the integral part of x, the largest of those integers n such that n ≤ x. The possibly infinite sum

{x} := 0.x1x2x3 · · · =
∞∑
n=1

xn · 10−n ∈ [0, 1)

is the fractional part of x, the difference {x} = x− [x]. Consequently, [x] + {x} = x.
Some representations terminate, i.e. have xn = 0 starting from some n ≥ N , and some others

are recurring (or eventually periodic), i.e. of the form

[x] + 0.x1x2 . . . xka1a2 . . . an := [x] + 0.x1x2 . . . xka1a2 . . . ana1a2 . . . ana1a2 . . . an . . .

for some finite recurring word a1a2 . . . an (and of course a terminating decimal is a recurring one
with recurring word 0).

The representation is unique, hence defines a bijection between R and the space of infinite
words Xm . . . X2x1X0.x1x2x3 . . . as above, if we do not admit recurrent 9’s, i.e. if we substitute
. . . xk−19 with . . . (xk−1 + 1)0 (where we assume xk−1 6= 9).

Division algorithm. The iterative scheme to obtain the decimal representation of a rational
number is the “division algorithm” that we also learn when children. Consider a positive rational
number x = p/q with p, q ∈ N:

p

q
= x0.x1x2x3 . . . .

The integer [x] = x0 is “the number of times q is contained in p”, i.e. the unique integer such that

p = x0 · q + r0

for some rest r0 which is an integer 0 ≤ r0 < q. Hence, p/q = x0 + r0/q and 0 ≤ r0/q < 1. The
“geometric” meaning of x1 is that the point r0/q lies between 0.x1 and 0.x1 + 0.1. Multiplying by
10 and then by q this means that

x1 · q ≤ 10 · r0 < x1 · q + q
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or, equivalently, that x1 is the unique integer between 0 and 9 such that

10 · r0 = x1 · q + r1

where, again, the rest r1 is a non-negative integer 0 ≤ r1 < q. And so on. Hence, the digits of the
decimal expansion of p/q are iteratively determined by

10 · rn−1 = xn · q + rn where 0 ≤ rn < q

Since the possibilities for the rests are finite, they necessarily recurr. On the other side, a simple
computation shows that a recurring decimal is a (series converging to a) rational number.

Theorem 5.1. The rational numbers are precisely those real numbers whose representation in base
10 (or any other base d ≥ 2) is (eventually) repeating/recurring.

Meanwhile, there exist irrational numbers. For example,

0.101001000100001 · · · = 1

10
+

1

103
+

1

106
+

1

1010
+

1

1015
+ . . .

is irrational, since it is not recurring.
Indeed, almost all numbers are irrational, in a precise probabilistic sense, since rationals are

countable.

The weight of the rationals. Consider the unit interval I = [0, 1], and and imagine to cut
out all its rational points. What is left is a set, I\Q, whose lenght is equal to the lenght of the
interval! Indeed, the rationals are countable, for example those inside I may be ordered according
to

0 1 1/2 1/3 2/3 1/4 3/4 1/5 2/5 3/5 4/5 . . .

say I ∩ Q = {r1, r2, r3, . . . }. Given an (arbitrarily small) ε > 0, we may even cut out a whole
interval Jn = (rn − `n/2, rn + `n/2) of finite diameter `n = ε/2n around each rn. The measure of
what is left of the unit interval is

lenght (I\ (∪∞n=1Jn)) ≥ 1−
∞∑
n=1

ε/2n = 1− ε

In other words, the rationals inside the unit interval have neighborhoods of arbitrarily small lenght!
Mathematicians say that

Theorem 5.2. Rationals form a set of Lebesgue measure zero inside the real line.

Therefore, almost all numbers are irrationals. In other words, if we “choose” a random number
in the interval [0, 1], with respect to the uniform distribution giving probability |b − a| to any
interval [a, b] ⊂ [0, 1], it will be irrational “with probability one”. Despite this fact, showing that
a “given” real number, like π, e, . . . is irrational may be a hard problem.

ex: Show that the decimal representation of a (reduced) rational p/q terminates iff the denomi-
nator is of the form q = 2α5β for some non-negative integers α and β.

ex: Write 1/3 in base 2, and 2/3 in base 3 and 7.

ex: Show that the decimal (or any other base) representation of a rational number is repeating
(observe that the possibilities for the rests rn are finite). Then show the converse: a repeating
decimal represents a rational number (compute the sum of the series).

ex: Give examples of non-repeating decimal expansions (see [HW59], section 9.4).
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ex: Prove that Euler’s number

e :=

∞∑
n=0

1

n!

is irrational (Fourier’s idea: assume that e = p/q for some positive integers p and q, and deduce
that x = q! (e−

∑q
n=0 1/n!) is then an integer. Estimate the series x =

∑∞
n=q+1 q!/n! and prove

that 0 < x < 1).

Multiplication by an integer. The representation of real number in base 10 is strictly related
to the dynamics of a particular transformation acting on the circle.

Let N ≥ 2 be an integer. The transformation FN : R → R sending each number x to its
multiple FN (x) = Nx has a trivial dynamics, since all trajectories diverge, apart from the fixed
point 0. Things get interesting if we do not allow trajectories to escape, i.e. if we force them to
a bounded domain. One way to do it is considering the quotient circle T = R/Z, and define the
transformation EN : R/Z→ R/Z as

x+ Z 7→ Nx+ Z

Let π : R → R/Z denotes the projection of the real line over the circle, sending π(x) = x + Z.
Then π ◦ FN = EN ◦ π, i.e., FN is a lift of EN .

Alternatively, we could have defined a transformation of the unit interval [0, 1] into itself sending
x 7→ {Nx} = Nx− [Nx], thus avoiding the identification 0 ∼ 1.

A “fundamental domain” for the action of Z on the real line is the interval [0, 1). This means
that any class x+ Z ∈ R/Z admits one and only one representative x ∈ [0, 1). If x = 0.x1x2x3 . . .
is the representation of x ∈ R/Z ' [0, 1) in base N , then EN sends

0.x1x2x3 . . . 7→ 0.x2x3x4 . . .

The simplest case is that of the doubling map, E2(x+ Z) = 2x+ Z.

Graph of the doubling map, and its first two iterates.

ex: Find the cardinality of the inverse image by EN of a generic point in R/Z.

ex: Find periodic and pre-periodic points of EN , show that they are dense in the circle.

ex: Show that the identification h : R/Z→ S1, given by

x+ Z 7→ e2πix ,

is a topologcal conjugation between the doubling map E2 and the restriction of the squaring map
z 7→ z2 to the unit circle S ⊂ C. State the corresponding result for the multiplication by an
arbitrary integer N ≥ 2.

5.2 Bernoulli shifts

The abstract version of multiplication by N on the circle is the shift on the space of Bernoulli
trials, a map which is basic in probability.
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Infinite words. Let A ≈ {1, 2, ..., N} be an “alphabet” made of N ≥ 2 words, i.e. a finite set
equipped with the discrete topology, and let Σ+ := AN be the topological product of infinite copies
of A. Points of Σ+ are actually sequences (xn)n∈N with values in A, but are more conveniently
denoted as

x = x1x2x3 . . . xn . . .

with xn ∈ A, and interpreted as “infinite words” in the letters of the alphabet A. In probability
theory, the xk’s represents the outcomes of a sequence of trials of some experience with N possible
outcomes (a dice with N faces).

The product topology is the weakest topology on AN such that all the projections πn : Σ+ → A,
sending x 7→ xn, are continuous. A basis for this topology is the family C of centered cylinders. A
centered cylinder is a subset

Cα :=
{
x ∈ Σ+ s.t. x1 = α1, x2 = α2, . . . , xk = αk

}
where α = α1α2 . . . αk ∈ Ak is a finite word of lenght k ∈ N. More colloquially, Cα is the set of
those infinite words x starting with the finite word α, i.e. of the form x = α∗, with an obvious
meaning of the symbol “* ” (as in the UNIX language). Thus, a basis C of the product topology
is the countable family of Cα, when α ranges in the set

⋃
kAk of all finite words in the letters

of A. By definition, an open set of the topological product Σ+ is a union A = ∪αCα of centered
cylinders.

Observe that the family of centered cylinders is a basis of a topology because it is covering,
since obviously Σ+ = C1∪C2∪ ...∪CN , and because the intersection of two cylinders is the empty
set or one of the two cylinders. Indeed, two cylinders Cα and Cβ have non-empty intersection iff
one of the two words, say α = α1α2 . . . αk, is the initial string of the other word, in the sense that
β = α1α2 . . . αkβk+1 . . . βk+i, and in this case Cα ∩ Cβ = Cβ . The idea is that the longer is the
word α the smaller is the cylinder Cα.

Ultrametrics. The product topology is metrizable. This means that there exist metrics on Σ+

which induce the product topology. One possibility is the metric

dλ (x, y) =

∞∑
n=1

λ−n · |xn − yn|

for some λ > 1 (for example λ = N). Another possibility, simpler to deal with, is to define
ord(x, y) := min{n ∈ N : xn 6= yn}, the smallest place where the two words x and y differ, and
then a distance as

d∞(x, y) = λ−ord(x,y)

if x 6= y, and zero otherwise. It is clear that centered cylinders Cα are both closed and open balls
for this metric, as strange as it may seem. It turns out that this is indeed an ultrametric, triangular
inequality being a consequence of the stronger ultrametric inequality

d∞(x, y) ≤ max{d∞(x, z), d∞(z, y)}

Between the paradoxical properties of ultrametric spaces, one verifies that any point of a ball is
its center. The space Σ+ is the abstract example of a Cantor set: a compact, perfect and totally
disconnected metric space.

ex: Show that d∞ is an ultrametric.

ex: Show that any point of a ball in a ultrametric space is its center, and that balls are both
open and closed.

Bernoulli shift. The Bernoulli shift is the transformation σ : Σ+ → Σ+ which “forgets the first
letter” of the infinite word, sending

x1x2x3 · · · 7→ σ(x1x2x3) := x2x3x4 . . .
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It is continuous, because the inverse image of any centered cylinder is a union of centered cylinders,
hence an open set. It is not invertible, and indeed the inverse image of any point is made of N
different points (the choices for the first letter of the infinite word).

In probability, letters of the alphabet A repesents the possible outcomes of an experience,
as tossing a coin or drowing a dice. An infinite word x1x2x3 . . . xn . . . therefore represents the
sucessive results of a countable set of experiences, ordered, for example, by time n. Iteration of σ
means forgetting the oucomes of the first experiences.

ex: Describe periodic and pre-preriodic points of σ. Show that they are dense in Σ+.

ex: Consider the alphabet A = {0, 1, 2, . . . , 9}. Define a map h : AN → [0, 1] as

x1x2x3 · · · 7→ 0.x1x2x3 . . . .

Show that h is a semi-conjugation between the shift σ and the multiplication E10 on the circle.

5.3 Rotations of the torus

Rotations of the circle. The circle, or one-dimensional torus, is the quotient T := R/Z of the
commutative group R modulo its subgroup Z, equipped with the quotient topology. We denote
by π : R → T the projection x 7→ π(x) := x + Z. The euclidean metric on the real line induces a
metric on the circle, defined by

d (x+ Z, y + Z) = min
x′∈x+Z ,y′∈y+Z

|x′ − y′|

= min
n∈Z
|x− y + n|

Thus, the distances between the classes of x and y is the minimal distance between the subsets
x+Z and y+Z of the real line. Observe that the diameter of the circle, i.e. the maximal distance
between two points, is 1/2.

Rotations of the circle are the transformations Rα : R/Z→ R/Z defined by

x+ Z 7→ x+ α+ Z

where α ∈ R. Observe that R/Z is a commutative group, and the Rα are its translations, since
only the class α + Z of α matters. Also, rotations are the isometries of the circle which preserve
the orientation. If we identify the circle with the unit circle S1 := {z ∈ C t.q. |z| = 1} ⊂ C in the
complex plane, by means of the homeomorphism x+Z 7→ e2πix, rotations are the transformations
z 7→ ei2παz.

It is interesting to observe that trajectories of a circle rotations are the sucessive points where
a billard ball hits the boundary circle if thrown inside a circular billard.

Orbits of a circular billard, with rational and irrational angle.
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Theorem 5.3. A rotation Rα has periodic points iff α is rational.

Proof. If α is rational, and equal to the reduced fraction p/q, then all points are periodic with
period q, since x+ qα+ Z = x+ Z for any x. On the other side, if α is irrational, there exists no
natural n ≥ 1 such that x+ Z = x+ nα+ Z, independently on x.

Indeed, what we showed is that all orbits of a rational rotation are periodic, hence finite. On
the other side, all orbits of an irrational rotation are infinite, and this will be the interesting case.

ex: Observe that any point x+Z of the circle R/Z has a unique representative {x} in the interval
[0, 1), the fractional part of x, and show that the distance between two points of the circle is given
by the explicit formula

d(x+ Z, y + Z) = min{|{x} − {y}| , 1− |{x} − {y}|}

Rotations of a torus. The n-dimensional torus is the quotient Tn := Rn/Zn, equipped with
the quotient metric. Rotations are the homeomorphisms Rα : Rn/Zn → Rn/Zn defined by

x+ Zn 7→ x+ α+ Zn

where now α ∈ Rn.

ex: Try to understand possible orbits of a torus rotation.

5.4 Dyadic adding machine

p-adic number fields and integers. The field R of real numbers may be considered (actually
constructed) as the completion of the rational number field Q with respect to the Euclidean norm
|x|∞ := max{±x}. This means that real numbers are equivalence classes of fundamental sequences
of rationals, two fundamental sequences (xn) and (yn) being in the same class, i.e. representing
the same real ‘x := limn→∞ xn”, if |xn − yn|∞ → 0.

It happens that there exist other “norms” (positive and homogeneous functionals x 7→ |x| ∈ Q
satisfying the triangular inequality) on Q which respect the multiplicative structure, i.e. such that
|xy| = |x| |y|. Such norms are called valuations.

Let p = 2, 3, 5, 7, . . . be a rational prime, also called place in this context. The order of a
non-zero rational x ∈ Q× := Q\{0} at the place p is the unique integer ordp(x) = n such that
x = pna/b for some a, b ∈ Z which are not divided by p. The p-adic valuation/place is the absolute
value on Q defined as

|x|p := p−ord(x) if x 6= 0

and |0|p = 0. Clearly ordp(xy) = ordp(x) + ordp(y) (just like the degree of polynomials), and this
gives homogeneity of | · |p. Triangular inequality follows from the observation that

ordp(x+ y) ≥ min{ordp(x), ordp(y)}

One can show that those, together with the euclidean norm, are the only valuations on Q, modulo
trivial equivalences. The p-adic (topological) number field Qp is the completion of Q with respect
to | · |p (uniqueness is trivial, and existence may be proved as usual considering equivalence classes
of fundamental sequences, the only annoying issue being keeping track of the field operations).
The p-adic valuation, naturally extended to Qp, is “non-Archimedean” (i.e. does not satisfy the
“Archimedean property” that for all ε > 0 and all N there exists an integer n such that nε > N)
since triangular inequality is enhanced by the stronger “ultra-metric” inequality

|x+ y|p ≤ max{|x|p, |y|p} .
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This causes many paradoxical properties. For example, closed balls are open as well (hence called
“clopen”), and any point of a ball is its center. The ultrametric inequality also implies that

|b1 + b2 + . . . bn|p ≤ max
1≤k≤n

|bk|p .

Consequently, a series
∑∞
n=0 bn converges (for the p-adic metric, of course!) iff the norm of its

terms |bn|p → 0 as n → ∞ (there is no room for divergent series like the harmonic series in the
p-adic world!).

The ring of p-adic integers Zp is the closure of Z in Qp. One can describe the p-adic integers
as the inductive limit Zp = lim

←
(Z/pnZ), and represent a p-adic integer as a series

z = . . . zn . . . z2z1z0 :=

∞∑
n=0

znp
n (5.1)

with zn ∈ Ap := {0, 1, 2, . . . , p − 1} ≈ Z/pZ, which converges in Qp because the norm of the
generic term znp

n is bounded by |znpn|p = p−n → 0 as n → ∞. Thus, as a topological space
(not as a ring!), Zp is isomorphic to the topological poduct Σ+ = AN, the space of infinite words
(written backwards!) . . . zn . . . z3z2z1 in the letters of the alphabet Ap. Observe that Zp = {x ∈
Qp s.t. |x|p ≤ 1}, i.e. the ring of p-adic integers is the clopen ball of radius one around 0 in Qp.

Any p-adic number x ∈ Qp can be represented uniquely as x = z + r where z = [x]p =∑
n≥0 xnp

n ∈ Zp is the “p-adic integer part” and r = {x}p =
∑N
n=1 xnp

−n ∈ Z[1/p] is the “p-adic
fractional part”. In symbols,

x = . . . xn . . . x2x1x0x−1 . . . x−N =

∞∑
n=−N

xnp
n

The quotient Qp/Zp = Z[1/p]/Z is a discrete (additive) group where the norm | · |p takes values
pn with n ∈ N. Multiplication by p is a uniform contraction x 7→ px of Qp with Lipschitz constant
p−1, and its inverse x 7→ xp−1 uniformly expands distances by a factor p. Thus, Zp is the disjoint

union ∪p−1
ai=0(ai + pZp) of p clopen balls of radius p−1 (and so on, iterating the contraction). Also,

one can represent the field of p-adic numbers as a union Qp =
⋃
n∈N p

−nZp.

ex: Compute the following sums in Z2.

. . . 011 + . . . 001 . . . 0101 + . . . 1010 . . . 111 + . . . 001

Find the additive opposite of 1 = . . . 001 in Z2.

Adding machine. Consider the ring Z2 of dyadic integers, thought as an additive topological
group. The dyadic adding machine (or “Kakutani-von Neumann odometer”) is the translation
f : Z2 → Z2, defined by

z 7→ z + 1

Observe that f changes the first (starting from the right) digit of x = . . . x2x1x0, and consequently
its n-th iterate changes the n-th digit of x. Thus, we have one more example of a translation in a
compact topological group without periodic points.

ex: Show that z 7→ z + 1 is a homeomorphism of Z2, and find its inverse.

5.5 Continued fractions and Gauss map

Continued fractions. Any real number x ∈ R can be represented (uniquely for irrationals, and
with only a minor ambiguity for rationals) as a continued fraction

x ∼ [a0; a1, a2, a3, . . . ] := a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .
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with a0 ∈ Z and “partial quotients” an ∈ N if n ≥ 1. This means that x is equal to the limit of
the convergents, the finite continued fractions defined as

pn/qn = [a0; a1, a2, . . . , an] := a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

as n→∞. Observe that finite continued fractions are rationals, and obey the recursion

[a0; a1, a2, . . . , an, an+1] = [a0; a1, a2, . . . , an + 1/an+1] (5.2)

Continued fractions constitute the fundamental tool to investigate rational approximations to
real numbers, because they provide base-free, hence intrinsic, rational approximations. Thus,
while Earthlings with ten fingers write π = 3.1415 . . . and Martians with three fingers write
π = 10.0102 . . . , they all agree to write π = [3; 7, 15, 1, 292, . . . ]). Moreover, they provide the best
rational approximations, in a certain precise sense [HW59, Kh35].

Construction and Gauss map. The continued fraction converging to a given number x ∈ R
is given essentially by Euclid’s algorithm to find the m.c.d. of two integers. One starts with
a0 = bxc ∈ Z (here the “floor” function bxc returns the smallest integer n such that n ≤ x < n+1),
and write x = a0 + x0 for some x0 = {x} ∈ [0, 1). Then define the Gauss map G : (0, 1]→ [0, 1] as

G(x) := 1/x− b1/xc , (5.3)

(thus, G(x) is the fractional part of the inverse of x) and inductively define the partial quotients
an ∈ N and the “rests” xn ∈ [0, 1) as

an+1 = b1/xnc xn+1 = G(xn) ,

provided all the x0, x1, . . . , xn 6= 0. Then,

x = a0 + x0 = a0 +
1

a1 + x1
= a0 +

1

a1 +
1

a2 + x2

= · · · = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an + xn

If some xn = 0, the iteration stops and x is equal to a finite continued fraction as above. Conversely,
if x = p/q is rational, all the xn’s are positive rationals, and have strictly decreasing denominators
(for if xn = a/b, then 1/xn+1 = xn − an = (a− anb)/b = c/b, and c < b because xn − an < 1). So,
there must be some first xn which is an integer, and the algorithm stops. Thus, finite continued
fractions correspond to rationals (and are unique if we demand the the last non-zero partial quotient
be an > 1).

Convergence of the convergents. We must therefore understand the case of infinite continued
fractions, which, as we already know, correspond to irrationals. The key observation is that the
convergents pn/qn = [a0; a1, a2, . . . , an] of a continued fraction [a0, a1, a2, a3, . . . ] are determined
by the partial quotients an’s according to the following recursive equation.

Theorem 5.4. The convergents pn/qn = [a0; a1, a2, . . . , an] are obtained from the coefficients ak’s
by the recursions

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

(5.4)

given the initial conditions p0 = a0, q0 = 1, and p−1 = 1 , q−1 = 0 (or p−2 = 0 and q−2 = 1) .
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Proof. The proof is by induction. The first two values are easily verified. Assume the results holds
until n, and compute

pn+1

qn+1
= [a0; a1, a2, . . . , an, an+1]

= [a0; a1, a2, . . . , an + 1/an+1]

=
(an + 1/an+1)pn−1 + pn−2

(an + 1/an+1)qn−1 + qn−2

=
an+1(anpn−1 + pn−2) + pn−1

an+1(anqn−1 + qn−2) + qn−1

=
an+1pn + pn−1

an+1qn + qn−1

It is important to write the recursion (5.4) in matrix notation as(
pn pn−1

qn qn−1

)
=

(
pn−1 pn−2

qn−1 qn−2

) (
an 1
1 0

)
,

whose solution, taking care of the initial conditions, is the backward product(
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
. . .

(
an 1
1 0

)
(5.5)

of n+ 1 integer matrices with determinant −1. In particular,

pnqn−1 − pn−1qn = (−1)n+1 ,

which says that the matrix with columns pn, qn and pn−1, qn−1 is unimodular, i.e. belongs to
the group GL2(Z) of (invertible) integer matrices with determninant ±1 (two by two matrices
whose rows and columns are relatively prime integers, a group which contains much arithmetical
information!). This shows that the fractions pn/qn obtained using the recurrence in theorem 5.4
are reduced.

There also follows that
pn+1

qn+1
− pn
qn

=
(−1)n

qn+1qn
Also, one can easily show that convergents with n even form an increasing sequence, and conver-
gents with n odd form a decreasing sequence. Another consequence of the recursion (5.4) is that
the denominators qn of an infinite continued fraction (i.e. such that an ≥ 1 for all n ≥ 1) satisfy

qn+2 ≥ qn+1 + qn ≥ 2qn ,

and therefore grow exponentially fast:

qn+1 ≥ 2n/2 .

(indeed, they grow at least like the Fibonacci sequence starting with f0 = 1 and f1 = 1, hence like
qn ≥ cφn, where φ = (1 +

√
2)/2 is the “ratio” and c is some positive constant). This implies that∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣ =
1

qn+1qn
≤ 2

2n

and therefore the sequence of the convergents pn/qn is fundamental. Its limit limn→∞ pn/qn = x
is called “value” of the continued fraction, and denoted by

x = [a0; a1, a2, a3, . . . ] := lim
n→∞

[a0; a1, a2, . . . , an] .

It is also possible to find a lower bound to the difference between an irrational x and its convergents,
and the two-sided estimate reads as follows:

1

qn(qn+1 + qn)
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qn+1qn
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ex: Use the quadratic equation φ2 − φ − 1 = 0 to show that the “ratio” φ has the simplest
continued fraction, namely

1 +
√

5

2
= [1; 1, 1, 1, 1, 1, . . . ]

(observe that φ−1 = φ − 1 is a root of x2 + x − 1 = 0, hence x = 1/(1 + 1/x), and so on). Its
convergents are 1 , 2 , 3/2 , 5/3 , 8/5 , 13/8 , 21/13 , 34/21 , . . . , ratios between successive
Fibonacci numbers. It is also the (irrational) number with worse rational approximations, namely
|φ− p/q| > (1/

√
5)/q2 for any rational p/q.

ex: Also, the most famous irrational has a simple continued fraction. Show that
√

2 = [1; 2, 2, 2, 2, 2, . . . ]

(observe that 1 +
√

2 is the positive root of x2 − 2x − 1. Hence x = 2 + 1/x, and so on). Its
convergents are 1 , 3/2 , 7/5 , 17/12 , 41/29 , 99/70 , 239/169 , 577/408 , . . . .

Continued fractions and Bernoulli shift. The continued fraction development, the map

x 7→ [a0; a1, a2, . . . ]

realizes a conjugation between the restriction of the Gauss map (5.3) to the irrationals, the
transformation G : (0, 1]\Q → (0, 1]\Q, and the shift σ : NN → NN over an alphabeth A = N of
infinite letters. Indeed,

G : [0; a1, a2, a3, . . . ] 7→ [0; a2, a3, a4, . . . ] .

Graph of the Gauss map.

ex: Find the (largest two or three) fixed points of the Gauss map, and compute their values.

Periodic continued fractions and quadratic irrationals. Quadratic irrationals (or quadratic
surds) are irrational roots of quadratic polynomials with integer coefficients

f(x) = ax2 + bx+ c

(with a, b, c ∈ Z), i.e. numbers like

x =
α+
√
β

δ
where α, β, δ ∈ Z, δ 6= 0 and β > 0 which is not a square.

Theorem 5.5 (Lagrange). The continued fraction of an irrational number x ∈ R\Q is periodic
iff x is a quadratic irrational.

See [Kh35, HW59].
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5.6 Exponential sums

Arithmetic progressions . The dynamics of an arithmetic progression

a a+ α a+ 2α a+ 3α . . . a+ nα . . . ,

obtained from the initial condition x0 = a using the recursion xn+1 = xn + α, is quite trivial. All
trajectories xn = a+ nα diverge, provided α 6= 0.

Something interesting happens if we compute time averages of the basic character of the real
line, the observable e : R→ S ⊂ C given by

e(x) := e2πix .

Apart from a constant factor e2πia and the normalization 1/N , the Birkhoff averages of an arith-
metic progression are

SN (α) =

N−1∑
n=0

e2πiαn .

ex: Show that the sum of the first n terms of an arithmetic progression xk = a+ kα is

n−1∑
k=0

xk =
n

2
(x0 + xn−1) = na+

n(n− 1)

2
α

Exponential sums. Sums as

E(N) =

N∑
n=1

e2πixk

are called exponential sums, and contain “spectral information” about the distribution of the
sequence of numbers (xn) modulo 1. Triangular inequality gives the trivial bound |E(N)| ≤ N , i.e.
E(N) = O(N). If the different exponentials e2πixn were “uncorrelated”, as successive positions of
a random walk in the plane, we should expect E(N) = O(

√
N). This, of course, does not happen

with “deterministic” generic sequences. The best we can hope is some bound as E(N) = o(N)
(which, in our case, would mean that the Birkhoff averages ϕn → 0).

ex: Observe that, for integer q ≥ 1, the complex number z = e2πi/q is a non-trivial q-th root of
unity. Hence,

1 + z + z2 + · · ·+ zq−1 = 0 .

Deduce that if α = p/q ∈ Q with p ∈ Z, then

q−1∑
n=0

e2πi(p/q)n = 1

so that the exponential sum Sn(p/q) is periodic, and in particular is O(1).

Gauss sums. Much more interesting are exponential sums defined by a “quadratic progression”
xn = αn2. These are

GN (α) =

N−1∑
n=0

e2πiαn2

.

When α = p/q is a rational, they are called (quadratic) Gauss sums, and they are extremely
interesting objects in number theory, as well as in the Fourier analysis on finite fields. These
sums are also obviously related to the Jacobi theta function, defined for complex z ∈ C and
τ ∈ H := {x+ iy ∈ C : y > 0} (the Poincaré upper half-space, a model for the hyperbolic plane)
by the series

θ(z, τ) :=

∞∑
n=0

eπiτn
2+2πiz

If you plot the sums for a large number of values of N , given an irrational α or a rational with
large denominator, you see “curlicues” as in the following pictures:
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Theta sums with α ' π, and N = 10000, 100000 and 1000000.

Observe the axis: the sums are of the order of
√
N , as typical trajectories of a random walk!

ex: You may also explore what happens with other exponents, such as
√
n, and get interesting

patterns or phenomena.
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6 Simple orbits and perturbations

6.1 Topological fixed point theorems

To find periodic points of a transformation f : X → X, namely fixed points of its iterates fn, may
be difficult. For example, when f(x) is a polynomial of degree d > 1, its iterates are polynomials
of exponentially growing degree.

Fixed point theorems in intervals. In real dimension one, connected and convex sets coincide,
and are called intervals. This “miracle” is responsable for two very simple criteria to prove the
existence of fixed points of continuous interval transformations. They say that if a compact interval
is squeezed or stretched, at least one of its points remains fixed.

Theorem 6.1 (fixed point theorem for intervals). Let f : I → R be a continuous transformation
defined in an interval I ⊂ R.

i) If J ⊂ I is a compact interval such that f (J) ⊂ J , then f has a fixed point in J .
ii) If J ⊂ I is a compact interval such that J ⊂ f(J), then f has a fixed point in J .

The proof is an elementary application of Bolzano theorem to the continuous function f(x)−x.
A more abstract proof, which can be generalized to higher dimension (with the help of some
non-trivial algebraic topology), is as follows. Suppose thatf has no fixed points in J . Then the
function

g(x) =
f (x)− x
|f (x)− x|

(which makes sense if the denominator does not vanish) would define a continuous map of an
interval (J itself in case i) or some sub-interval of J in case ii)), which is a connected space, onto
the disconnected space {−1, 1}.

ex: Prove theorem 6.1.

ex: Find examples of continuous functions f : I → I and non-compact intervals J such that
f(J) ⊂ J or J ⊂ f(J) which do not contain fixed points of f .

Other topological fixed point theorems. In higher, but finite, dimension, part i) of theorem
6.1 generalizes as

Theorem 6.2 (Brouwer). A continuous map of the closed unit disk D ⊂ Rn into itself has a fixed
point.

The idea is that if a continous map f : D → D had no fixed point, the same formula as above
(associating to each point x of the disk the intersection between the ray passing through x and
f(x) and the boundary sphere) would define a continuous map g : D → ∂D from the disk onto the
unit sphere ∂D. That such a map cannot exist is quite clear intuitively, but needs some non-trivial
algebraic topology to rigorously prove it.

In infinite dimension, one has the

Theorem 6.3 (Shauder-Tychonov). A continuous transformation f : K → K of a compact and
convex subset K ⊂ X of a Banach space X (or of a locally convex topological vector space) has a
fixed point.

6.2 Dynamics of contractions

The simplest dynamical systems are contractions.
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Contractions. Let (X, d) be a metric space. A map f : X → X is called contraction (or λ-
contraction if one wants to keep track of the constant λ) is it is Lipschitz and has Lipschitz constant
λ < 1, i.e. if there exists a 0 ≤ λ < 1 such that for all x, x′ ∈ X

d(f(x), f(x′)) ≤ λ · d(x, x′) (6.1)

Clearly, a constant transformation, sending any x ∈ X into f(x) = p, is trivially a contraction.
A linear homogeneous transformation f(z) = λz of the complex plane C or of the real line R is
a contracton provided |λ| < 1. Observe that a contraction, as any Lipschitz map, is continuous
(take δ = ε/λ in the ε-δ definition).

e.g. Smooth contractions. By the mean value theorem, a continuously differentiable trans-
formation f : Rn → Rn (or of a convex subset X ⊂ Rn) is a contraction provided there exists a
positive λ < 1 such that |f ′(x)| ≤ λ for any x ∈ Rn.

ex: Show that a contraction of a compact metric space X cannot be invertible, provided the
space contains more than one point (compare the diameters X and f (X))

ex: Give non-trivial (i.e. non constant) examples of contractions of

[0, 1] [0, 1]× [0, 1] Br (x) = {y ∈ Rn t.q. d (x, y) < r} S1 = {z ∈ C t.q. |z| = 1}

Contraction principle. The dynamics of a contraction is described by the following funda-
mental theorem, which we state with all details.

Theorem 6.4 (Contraction principle/Banach fixed point theorem). All trajectories of a contrac-
tion f : X → X of a metric space (X, d) are fundamental sequences, and the distance between any
two trajectories tends to zero exponentially fast. If X is complete, then f admits one and only one
fixed point p. The trajectory of any initial point x0 ∈ X converges exponentially fast to the fixed
point, i.e.

d(fn(x), p) ≤ C λn ,
where C > 0 is a positive constant and 0 ≤ λ < 1 is the Lipschitz constant of f .

Proof. Let f : X → X be a λ-contraction. Let x0 ∈ X be any initial point, and let (xn) be its
trajectory, defined by the recursion xn+1 = f(xn). Iterating (6.1), one sees that

d (xk+1, xk) ≤ d(x1, x0) · λk

Using k times the triangular inequality and then the convergence of the geometric series of ratio
λ < 1, we get

d(xn+k, xn) ≤
k−1∑
j=0

d(xn+j+1, xn+j) ≤ d(x1, x0) ·
k−1∑
j=0

λn+j

≤ d(x1, x0) · λn ·
∞∑
j=0

λj ≤ λn

1− λ
· d(x1, x0).

This implies that (xn) is fundamental, since we can make λn · d(x1, x0)/ (1− λ) smaller that any
ε > 0 choosing a sufficiently large n = n (ε). Continuity of f implies that the limit p = limn→∞ xn,
which exists if X is complete, is a fixed point of f . Uniqueness is clear, for if p and p′ were
two different fixed points, then by (6.1) their distance δ = d(p, p′) > 0 would be ≤ λδ, which is
impossible if λ < 1. Again by (6.1) and finite induction, the distance between any two trajectories
xn = fn(x0) and x′n = fn(x′0) decay as d(xn, x

′
n) ≤ λn · d(x0, y0). In particular, the distance

between an arbitrary trajectory and the fixed point p is bounded by d(xn, p) ≤ λn · d(x0, p),
proving our last assertion with C = d(x0, p).
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ex: Show that a transformation f : X → X of a complete metric space (X, d) such that

d(f(x), f(x′)) < d(x, x′)

for all distinct x, x′ ∈ X may fail to have fixed points (think at a decreasing sequence forming a
divergent series).

ex: Let a > 0 and x0 > 0. Show that the sequence (xn) defined by

xn+1 =
1

2

(
xn +

a

xn

)
converges to

√
a. This is Babylonians-Heron method to approximate square roots (the sequence is

a trajectory of the transformation f(x) = (x+ a/x) /2, which is a contraction once restricted to
the closed interval [

√
a,∞) = f(R+) . . . )

Stability of contractions. A contraction f : X → X of a complete metric space X may be
thought as a “machine” that computes the fixed point p = limn→∞ fn (x) starting with any initial
guess x ∈ X.

We pose the question whether contractions are stable, in some sense to be specified. We want
to decide whether a small perturbation of a contraction f , say g : X → X, produces a fixed
point p′ near to p. The point is to decide what “small” means. If we only require something like
d∞ (f, g) := supx∈X d(f(x), g(y)) < δ, the transformation g needs not be a contraction, no matter
haw small δ is chosen (to see this, try to visualize a δ-neighborhood of the graph of a contraction
of an interval, and fit there the graph of a transformation g with arbitrarily large derivative). It is
clear that we also needs some control on the derivatives. One possibility is to assume that X has
a linear and differentiable structure, e.g. is a subset of some Euclidean X ⊂ Rn, and look for f
and g smooth. The condition

‖f − g‖C1 := sup
x∈X
‖f(x)− g(x)‖+ sup

x∈X
‖f ′(x)− g′(x)‖ < δ

clearly implies that, if f is a λ-contratraction and δ < 1− λ, then also g is a contraction and has
Lipschitz constant ≤ λ+ δ. Simpler, however, is to formulate a stability result inside the class of
contractions.

Theorem 6.5. Let f : X → X be a λ-contraction of the complete metric space (X, d), and let
p ∈ X be its fixed point. For every ε > 0 there exists some 0 < δ < 1− λ such that if g : X → X
is a (λ+ δ)-contraction at distance d∞(f, g) < δ from f , and if p′ is the fixed point of g, then

d(p, p′) < ε

Proof. If p′ is the fixed point of g, we know that gn (p)→ p′ when n→∞. By triangle inequality
we see that

d (p, p′) ≤
∞∑
n=0

d
(
gn+1 (p) , gn (p)

)
≤ d (g (p) , p) ·

∞∑
n=0

(λ+ δ)n

≤ δ ·
∞∑
n=0

(λ+ δ)n =
δ

1− (λ+ δ)

and this quantity is < ε provided that δ is sufficiently small.
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Equivalence classes of linear contractions. Contraction of the real line also provide a simple
example of how to use the dynamics to built a conjugation between two transformations.

Let f : x 7→ αx and g : x 7→ βx be two linear contractions of R, with 0 < α, β < 1. The origin
is the common fixed point. The set A = [−1,−α)∪ (α, 1] is a “fundamental domain” for the action
of f on the punctured real line R× := R\ {0}, in the sense that for any x ∈ R\ {0} there exists a
unique time n (x) ∈ Z such that fn(x) (x) ∈ A. Similarly, a fundamental domain for the action of
g on R× is B = [−1,−β)∪ (β, 1]. Let H : A→ B be any homeomorphism such that H(−1) = −1,
H(−α) = −β, H(α) = β and H(1) = 1 (for example, an affine homeomorphism). It is easy to
check that the recipe

h(x) =

{
0 se x = 0
g−n(x)(H(fn(x)(x))) if x 6= 0

defines a homeomorphism h : R→ R. Since n (x) = n (f (x)) + 1 (why?), we see that

(h ◦ f) (x) = g−n(f(x))
(
H
(
fn(f(x))f (x)

))
= g−n(x)+1

(
H
(
fn(x)−1 (f (x))

))
= g

(
g−n(x)

(
H
(
fn(x)(x)

)))
= (g ◦ h) (x)

and therefore h is a topological conjugation between f and g.
The case when −1 < α, β < 0 is analogous. On the other side, it is not difficult to see that

the contractions x 7→ αx and x 7→ −αx, with α 6= 0, having opposed orientations, cannot be
conjugated. The result is that non-trivial linear contractions of the real line fit into two classes of
topological conjugated transformations,

It is important to observe that a conugation h between f : x 7→ αx and g : x 7→ βx cannot be
diffeentiable, unless α = β. Indeed, if f = h−1 ◦ g ◦ h and if h is differentiable, then the chain rule
implies that f ′ (0) = g′ (0), hence that α = β.

ex: Show that the linear conractions x 7→ αx and x 7→ −αx, with α 6= 0, cannot be conjugated
(observe that a conjugation is a homemorphism of the line, in particular monotone).

6.3 Linear maps

Linear systems are the only dynamical systems we can explicitely solve. They serve as models of
the local behavior of generic systems near a fixed point.

Linear maps. A linear transformation of the Euclidean vector space Rn (which we may think
equipped with the standard Eucidean structure) is an endomorphism f : Rn → Rn, defined, in the
canonial basis, by a square matrix A = (aij) ∈ Matn×n(R), according to

f(x) = Ax

Here, we think at x = (x1, x2, . . . , xn)> as a column vector, and therefore at Ax as the usual raws-
by-columns product between matrices. Thus, the map is defined, in coordinates, by xi 7→

∑
j aijxj .

A linear change of coordinates h : x 7→ y = Ux, with U ∈ GLn(R) an invertible square matrix,
defines a linear (and therefore topological) conjugation between f and the linear transformation
g : y 7→ By, defined by the matrix B = UAU−1. Thus, we are free to change coordinates.

Observe that the origin is a fixed point of f , i.e. f(0) = 0, and it is the unique fixed point iff
the matrix A− I is invertible, i.e. if 1 is not an eigenvalue of A.

If x is an eigenvector of A with eigenvalue λ, i.e. a non-trivial solution of the homogeneous
equation Ax = λx, then iterations are simple. Indeed, fn(x) = λnx, and therefore the asymptotic
behaviour of the trajectory of the eigenvector x depends on the absolute value of its eigenvalue.
Trajectories converge to the origin when |λ| < 1, and diverge when |λ| > 1. In the exceptional
cases with λ = ±1, we have a fixed point or a periodic point with period 2.

In order to understand the possible global pictures, we start with the smallest non-trivial case.
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Linear maps in the plane. The simplest non-trivial case is that of a linear map endomorphism
of the plane R2, defined, in the canonial basis, by a two-by-two real square matrix A. The qualitia-
tive behavior of trajectories depends on the eigenvalues of A, and on their geometric multiplicity.
Remember that the eigenvalues λ± are the roots of the characterstic polynomial

det(λI −A) = λ2 − (trA)λ+ detA ,

which is a degree two polynomial with real coefficients, and therefore they are a couple of real
numbers λ± = α±β, possibly overlapping, or a couple of complex conjugate numbers λ± = α± iω.

If the matrix A is diagonalizable (as a real matrix in a real vector space), i.e. admits two
eigenvalues λ± (possibly equal) and two linearly independent eigenvectors v±, then the system is
linearly conjugated to a diagonal system

f(x, y) = (λ+x, λ−y) .

If both eigenvalues have absolute values |λ±| < 1, then f is a contraction and the orbit of any
point converges (exponentially fast) to fn(x, y)→ 0. Trajectories move along curves

y = Cxα ,

for some constant C and some exponent α = log |λ−|/ log |λ+| > 0. The basin of attraction of the
origin is the whole plane, and the origin, which is an attractng fixed point, is called a stable node,
or sink.

If both eigenvalues have absolute values |λ±| > 1, then the inverse f−1 is a contraction, all
backward trajectories converge to f−n(x, y)→ 0 as n→∞, and all forward tarjectories of points
different from the origin diverge, i.e. |fn(x, y)| → ∞ as n → ∞. The basin of attraction of the
origin is {0} itself, and the origin is called a unstable node, or source.

If one of eigenvalue has |λ−| < 1 and the other |λ+| > 1, what happens is the following:
trajectories starting at the “stable line” E− = Rv− ≈ {(0, y)}, the eigenspace of the eigenvalue
λ−, converge to the origin, while trajectories starting at the “unstable line” E+ = Rv+ ≈ {(x, 0)},
the eigenspace of the eigenvalue λ+, diverge. A generic trajectory, starting at a point which does
not belong to E−∪E+, i.e. (x, y) with both x 6= 0 6= y, also diverge (since the y coordinate decays
but the x coordinate explodes), moving along curves

y = Cxβ ,

for some constant C and some exponent β = log |λ−|/ log |λ+| < 0. The origin is then called a
saddle, and the linear map hyperbolic.

The next case is when A has only one eigenvalue λ, with geometric multiplicity one (i.e. ad-
mits just a one-dimensional family of eigenvectors). It can be shown that the system is linearly
conjugated with

f(x, y) = (λx+ y, λy) .

(any eigenvector is proportional to (1, 0)). One easily check that iterations of this map are

fn(x, y) = λn−1(λx+ ny, λy) .

Therefore, if |λ| < 1 all trajectories converge to the origin, which is then called a degeneate stable
node. If |λ| > 1, then all trajectories of points different from the origin diverge. The origin is then
called degenerate source. It is clear, however, that this is not a generic situation. A small (generic)
perturbation of the matrix leads to one of the preceeding or the following case.

Finally, it may happen that the characteristic polynomial has no real roots, but a couple of
complex conjugated roots λ± = ρe±iθ, for some ρ = |λ±| > 0 and θ /∈ πZ. This means that the
complexification of A, the linear operator AC : C2 → C2 defined in the canonical basis by the same
matrix as A, admits two linearly independent eigenvectors v±, corresponding to the two complex
eigenvalues λ±. Moreover, since A = A, we may take v− = v+. But then, in the basis of R2 ⊂ C2

defined by e1 = (v+ + v−)/2 and e2 = (v+ − v−)/2i, the map f : R2 → R2 is induced/defined by
the matrix

B = ρ

(
cos θ − sin θ
sin θ cos θ

)
.
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This means that f is a (counter-clockwise) rotation by an angle θ followed by a homothety/scaling
with ratio ρ. Iterations of B are simply

Bn = ρn
(

cos(nθ) − sin(nθ)
sin(nθ) cos(nθ)

)
To understand trajectories, it is easier to identify the plane with the complex line R2 ≈ C, and use
polar coordinates (x, y) ≈ x+ iy = reiϕ. Then fn(reiϕ) = rρnei(ϕ+nθ), and therefore trajectories
move along logarithmic spirals

r = Ceγϕ ,

for some constant C and some exponent γ = (log ρ)/θ, which may be positive or negative, or
along circles r = C, if it happens that ρ = 1. In particular, if |λ±| = ρ < 1, then all trajectories
converge to the origin fn(x, y)→ 0 as n→∞, which is then called a stable focus. If |λ±| = ρ > 1,
then the trajectories of all points different from the origin diverge, and the origin is then called an
unstable focus.

ex: Describe what happens in the exceptional situation when f(x, y) = (x + y, y), i.e. the only
eigenvalue is 1 and it has geometric multiplicity one.

General linear maps, Jordan normal form. Let f(x) = Ax be a linear system defined by
a real n × n matrix A, and consider its complexification, i.e. the linear operator A : Cn → Cn,
acting on Cn = Rn ⊕ iRn according to A(x + iy) := Ax + iAy. According to the Jordan normal
form theorem, the complexified linear space is a direct sum Cn =

⊕
Eλ of generalized eigenspaces,

or root spaces, Eλ, which are invariant under A and where the action of A is

λI +N

where λ is the eigenvalue, and N is a nilpotent operator. More precisely, the matrix which repre-
sents the restriction of A on Eλ ⊂ Cn is a Jordan block

J =


λ 1

λ 1
. . .

. . .

λ 1
λ

 (6.2)

(empty entries are all zero). Moreover, generalized eigenspaces with non-real eigenvalues come in
pairs of generalized eigenspaces Eλ and Eλ, whose vectors are related by a complex conjugation.
As in the two-dimensional situation, one can then contruct an invariant subspace Eλ,λ ⊂ Rn where
the acion of A is given by the Jordan block

ρRθ I
ρRθ I

. . .
. . .

ρRθ I
ρRθ

 (6.3)

where

ρRθ = ρ

(
cos θ − sin θ
sin θ cos θ

)
=

(
α −β
β α

)
and I =

(
1 0
0 1

)
,

and λ = α+ iβ = ρeiθ.
The conclusion if that the phase space Rn of the real linear system f(x) = Ax splits as a direct

sum of invariant subspaces, Eλ or Eλ,λ, where A acts as (6.2) or as (6.3), respectively.
It is clear that the asymptotic behavior of iterations of A on each root space depends on the

absolute value |λ| of the corresponding eigenvalue. Indeed, one can write the total space as a direct
sum of three invariant subspaces

Rn = E− ⊕ E0 ⊕ E+
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where the stable space E− is the direct sum of those root spaces with |λ| < 1, the unstable space
E+ is the direct sum of those root spaces with |λ| > 1, and finally the neutral space E0 is the
direct sum of those root spaces with |λ| = 1.

One can then show that the restriction of f to E− is eventually contracting (i.e. some power is
contracting), and therefore fn(x)→ 0 as n→∞ if x ∈ E−. This happens because the exponential
contraction dominates the nilpotent part of each Jordan block for sufficienly large n, and therefore
‖Anv‖ ≤ Cµn‖v‖ for some constants C and µ < 1 and every v ∈ E−. Similarly, one shows that
the inverse of the restriction of f to E+ is eventually contracting.

A linear map is called hyperbolic if all the eigenvalues have |λ| 6= 1, i.e. if the spectrum of the
complexification is disjoint from the unit circle of the complex plane. This means that the phase
space splits as a direct sum

Rn = E− ⊕ E+

of a stable and an unstable subspace. If an hyperbolic map has eigenvaules with absolute values
both |λ| < 1 and |λ| > 1, then the origin is called a saddle.

6.4 Order of the line and trajectories

The order of the real line cause restrictions of possible trajectories of monotone transformations.

Increasing maps of the interval. Let f : I → I be a continuous increasing map if the
interval I ⊂ R. Any trajectory (xn)n∈N0

is monotone, increasing or decreasing (depending whether
f(x) > x or f(x) < x, respectively). The monotone trajectory may converge, i.e. xn → p to some
fixed point, if bounded, or may diverge xn → ±∞, is unbounded. In particular, if the interval I
is compact, the second possibility is excluded, and all trajectories converge to some fixed point.
In this case, there exists a not-empty compact set F ⊂ I made of fixed points, and any x in each
connected component Ak of I\F =

⋃
k Ak has a trajectory contained in Ak which converge some

point x∞ ∈ ∂Ak.

ex: Show that a homeomorphism f : I → I of an interval I ⊂ R cannot have periodic points of
period larger than 2. When does it have periodic points of period 2 ?

ex: Let I ⊂ R be compact interval and f : I → I a continuous and increasing function. Show
that any trajectory converges to a fixed point. Discuss the dynamics of f

ex: Discuss the dynamics of a continuous and decreasing map f : I → I of a compact interval o
I ⊂ R (observe that if f is decreasing then f2 is increasing).

ex: (difficult!) Let I ⊂ R be an interval and f : I → I and g : I → I be two homeomprphisms of
I without fixed points. Show that hey are topologically conjugated.

Sharkovskii order. The order of the real line also implies restrictions on the possible periods
of a map. A striking result by Alexander N. Sharkovskii29 says that there exists an order ≺ on the
naturals, which looks like

1 ≺ 2 ≺ 22 ≺ 23 ≺ · · · ≺ 2m ≺ · · · ≺ 2k · (2n− 1) ≺ . . .
. . . ≺ 2k · 3 ≺ · · · ≺ 2 · 3 ≺ ... ≺ 2n− 1 ≺ · · · ≺ 9 ≺ 7 ≺ 5 ≺ 3

such that if a continuous transformation f : R → R has an orbit of period k and if j ≺ k then
it also has an orbit of period j. In particular, the existence of an orbit of period 3 implies the
existence of orbits of all periods!

ex: Try to figure a transformation of the real line with an orbit of period 3.

29A.N. Sharkovskii, Co-existence of cycles of a continuous mapping of the line into itself, Ukrainian Math. J. 16
(1964), 61-71.
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6.5 Local analysis: attracting and repelling fixed points

Differentiability of a transformation and the contraction principle helps to understand the trajec-
tories of points which are near to the fixed or periodic points.

Attracting and repelling fixed points. Let f : X → X be a transformation of class C1

defined in some open subset X ⊂ Rn, and let p ∈ X be a fixed point of f .
We say that the fixed point p is attracting if its basin of attraction W s(p) is a neighborhood of

p, i.e. if p its admits a neighborhood B such that fn (x)→ p for all x ∈ B. The following criterium
is a simple consequence of the contraction principle.

Theorem 6.6. If |f ′(p)| < 1, then p is attractiong.

Proof. By continuity of f ′, there exist λ < 1 and a ball B = Bε(p) around p such that |f ′(x)| < λ
for all x ∈ B. By the mean value theorem, f

(
B
)
⊂ B, since if d (x, p) ≤ ε then

d (f (x) , p) ≤ λ · d (x, p) < ε

Moreover, the mean value theorem also implies that d (f (x) , f (x′)) ≤ λ · d (x, x′) if x, x′ ∈ B.
Thus, f |B : B → B is a contraction, and the contraction principle says that trajectories of all
points x ∈ B converge exponentially to p.

We say the fixed point p is repelling if it admits a neighborhood B such that the trajectory of
any x ∈ B, different from p, leaves B in finite time, i.e. fn(x) /∈ B for some n ≥ 1. The following
criterium use the orde of the real line.

Theorem 6.7. Let f : X → X be a transformation of class C1 defined in some open interval
X ⊂ R. If |f ′(p)| > 1, then p is repelling.

Proof. By continuity of f ′, there exist λ > 1 and an interval B = [p− ε, p+ ε] around p sach that
|f ′(x)| > λ for all x ∈ B. Also observe that f is strictly increasing or decreasing, depending on the
sign of f ′(p), and therefore sends bijectively intervals onto intervals. take a point x ∈ B different
from p, and suppose that fk (x) ∈ B for all times 0 ≤ k ≤ n. The chain rule implies that the
derivative of fn at points c between p and x grow exponentially, since∣∣(fn)

′
(c)
∣∣ =

∣∣f ′ (fn−1 (c)
)∣∣ · ∣∣f ′ (fn−2 (c)

)∣∣ . . . |f ′(c)| > λn

The mean value theorem implies that n cannot be arbitrarily large, since

d (p, fn (x)) ≥ λn · d (p, x) and d (p, fn (x)) ≤ ε

are not compatible for large n. Thus, there exists a time n ≥ 1 duch that fn(x) /∈ B.

It must be said that this result is local, it does not say anything about the basin of attraction of
p. Also, the condition |f ′(p)| > 1 is not sufficient to estabilish a similar result in higher dimension
(there may be directions where f dilates distances, and directions where it contracts distances . . . )

ex: Show by examples that the basin of attraction of a repelling fixed point p can be larger than
{p}.

ex: Find a good definition of attractiong peiodic orbit (observe that the derivative of fn is constant
along a periodic orbit of period n, then consider iterations of fn . . . )
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ex: Consider the family of quadratic maps

x 7→ λx2

depending on the parameter λ. Find the basin of attraction of the fixed point p = 0, and describe
the speed of convergence of convergent trajectories.

ex: If p is a fixed point of f : R→ R such that f ′(p) = 1, then everything can happen! The basin
of attraction of p can be a neighborhood of p, or just {x}, or may contain an half-neighborhood
like [p, p± ε) . . .

Consider the examples
x 7→ x± x3 e x 7→ x± x2

and find others.

The quadratic family. The quadratic family is the family of transformations of the unit
interval fλ : [0, 1]→ [0, 1], defined according to

fλ(x) = λx(1− x)

Here the parameter λ takes values in the interval [0, 4]. It is also called logistic (from the French
“logement”), since it is a model of population growth in a limited environment, x being the relative
population, the quotient of the actual population over the maximal allowed population.

Fixed points are 0, which is attracting for 0 ≤ λ < 1, and pλ = λ−1
λ , which appears when

λ > 1 (remeber that our phase space is only the unit interval and not the whole real line) and is
attracting when 1 < λ < 3.

If λ ∈ [0, 1) then all trajectories converge to 0. Indeed, trajectories are bounded and decreasing
sequences, and 0 is the unique fixed point.

If λ ∈ (1, 3] then all trajectories converge to pλ. This is not so obvious.
What is really interesting is to observe what happens for increasing values of λ > 3. You may

take a look at my applet in http://w3.math.uminho.pt/~scosentino/salbestiario.html.

Cobweb plot of the logistic map, for λ ' 3.56.

Convergence for Newton method. Let F ∈ R[x] be a polynomial with real coefficients.
Newton method to find the roots of F , i.e. to solve the equation F (x) = 0, consists in choosing a
first approximation x0, and then iterate

xn+1 = xn −
F (xn)

F ′(xn)
.

This means that we try to refine our bet xn using the linear approximation (first order Taylor)

F (x) ' F (xn) + F ′(xn) · (x− xn)

http://w3.math.uminho.pt/~scosentino/salbestiario.html
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Clearly, we may iterate provided the derivative stays away from zero in a neighborhood of the
root we want to approximate.

It is clear that if the sequence (xn) converges to some p, and if F ′(p) 6= 0, then the limit
p = limn→∞ xn is a root of the polynomial F . Conversely, if p is a root of F , and if F ′(p) 6= 0 (so
that it is also different from zero in a neighborhood of p), then p is a fixed point of the map

x 7→ f(x) := x− F (x)

F ′(x)

The derivative of f at p is

f ′(p) = 1− (F ′(p))2 − F (p)F ′′(p)

(F ′(p))2
= 0

Therefore, p is an attracting fixed point of f : the trajectory of any initial guess x0 sufficiently close
to p converges to p.

Indeed, since the derivative is f ′(p) = 0, any root of F is a super-attracting fixed point of f ,
and the convergence is much better than exponential.

Theorem 6.8. Let p be a non-critical root of the polynomial F ∈ R[x], i.e. a root where F ′(p) 6= 0.
Then Newton’s iterations starting from any x0 sufficiently near the root p converge to this root,
and the convergence is “quadratic”, i.e. the error εn = |xn − p| decreases as

εn+1 ≤ K · ε2
n

for some K > 0.

Proof. We may assume, without loss of generality, that the root we are looking for is the origin,
so that F (0) = 0. Now, suppose we are at xn after n iterations. Taylor’s formula with Lagrange
estimate of the error around xn says that

F (x) = F (xn) + F ′(xn) · (x− xn) +
1

2
F ′′(y) · (x− xn)2

for some y between x and xn. Taking x = 0 (the root!) and dividing by F ′(xn) we get

0 = F (0) = F (xn)− F ′(xn)− xn +
1

2
F ′′(y) · x2

n

and therefore

xn −
F (xn)

F ′(xn)
=

1

2

F ′′(y)

F ′(xn)
x2
n

But the l.h.s. is xn+1, so that

xn+1 =
1

2

F ′′(y)

F ′(xn)
x2
n

Since F ′(0) 6= 0 (and polynomials have continuous derivatives), there is an interval I =] − ε, ε[
around the root 0 where M = supx∈I |F ′′(x)| < ∞ and δ = infx∈I |F ′(x)| > 0. Let K = M/2δ.
There follows that the distance εn = |xn − 0| between the n-th iterate and the root satisfies the
iterative bound

|εn+1| ≤ K · |εn|2

ex: Check that Newton’s method applied to the quadratic polynomial z2 − a, with a > 0,
corresponds to Heron’s algorithm.

ex: Estimate
√

17.
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ex: Write down Newton’s repice to solve zn − a = 0, with a > 0 and n ≥ 2.

ex: Use Newton’s method to estimate the roots of

z2 + 1 + z z3 − z − 1 z5 + z + 1 z3 − 2z − 5

Linearization in the complex plane. Let f : C → C be a rational function defined in the
Riemann sphere C = C ∪ {∞}. Any fixed point p has its basin of attraction Bp. Looking for fast
methods to compute the iterates, in 1871 E. Schrœder had the idea to look for local conformal
conjugations of f with simpler rational functions, like affine functions g : z 7→ λz. The method
amount to solve the functional equation

h ◦ f
∣∣
Bp = g ◦ h ,

where h : Bp → B is an holomorphic function. E. Schrœder, G. Kœnig and J.H. Poincaré solved
the problem with |λ| 6= 1, and then Carl S. Siegel solved the case |λ| = 1 around 1940.

Theorem 6.9 (Kœnigs). Let z0 be a fixed point of f with multiplier f ′(z0) = λ such that |λ| 6= 0, 1.
Then there exists a conformal map φ, unique up to a non-zero factor, from a neighborhood of z0

onto a neighborhood of 0 such that φ ◦ f = λ · φ.

Proof. We assume that z0 is attracting, i.e. |λ| < 1, since the repelling case follows considering
the local inverse of f . Also, after conjugation, we can assume that z0 = 0, hence the map has the
form

f(z) = λz + a2z
2 + . . . .

Now define φn(z) = fn(z)/λn. There exists a δ > 0 and a constant c < |λ| < 1 such that, for
|z| < δ,

|φn+1(z)− φn(z)| ≤ k · (c/|λ|)n

for some k > 0. Hence the sequence of holomorphic functions φn converges uniformly in a small
ball around 0. The functional equation φ ◦ f = λ · φ follows immediatly from its definition.

Comparing coefficients it is easy to see that any conjugation of z 7→ λz to itself is a constant
multiple of the identity, as long as |λ| 6= 0, 1. Uniqueness follows.

Theorem 6.10 (Böttcher). Let z0 be a superattracting fixed point of f , where

f(z) = z0 + ap(z − z0)p + . . .

with ap 6= 0 and p ≥ 2. Then there exists a conformal map φ, unique up to multiplication by a
(p− 1)-root of unity, from a neighborhood of z0 onto a neighborhood of 0 such that φ ◦ f = φp.

Proof. (scketch) We can assume that z0 = 0 and that ap = 1. As in Koenigs proof, we look for the
conjugation as a limit af the functions

φn(z) = fn(z)p
−n
.

It can be shown that the φn converge uniformly in some sufficiently small ball around 0, and the
functional equation follows from the definition. Uniqueness, up to a (p − 1)-root of unity, can be
checked comparing power series.
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6.6 Transversality and bifurcations

Transversality. Let f : I → R be a transformation o fclass C1 defined in some interval I ⊂ R,
and let p be a fixed point of f . If f ′(p) 6= 1, then this fixed point is “isolated”, i.e. it is the unique
fixed point of f in some neighborhood of p. Indeed, a fixed point is a solution of

F (x) = f (x)− x = 0

Now, if f ′(p) 6= 1 then F ′ (p) 6= 0. The inverse function theorem then says that F is invertible in a
neighborhood B of p, and this implies that p is the unique zero of F in B, so that p is the unique
fixed point of f in B.

Fixed points satisfying the condition f ′(p) 6= 1 are called transversal, because the tangent to
the graph of f at p is transversal to the (tangent to the) graph of the identity function.

Persistence. The condition f ′(p) 6= 1 is an open condition, and this suggests that it may stable
under small perturbations of f .

Theorem 6.11. Let f : I → R be a transformation of class C1, and p be a transversal fixed point
of f . Then all transformations g : I → R sufficiently C1-near to f have one, and only one, fixed
point in some neigborhood of p, which is also transversal.

Proof. Let g = f − h be a perturbation of f , with ‖h‖C1 = ‖h‖∞ + ‖h′‖∞ < δ. A fixed point of g
is a solution of g (x)− x = 0, i.e. of

F (x) = h (x)

if we define F (x) = f (x) − x. We know that F in some neighborhood B′ of p, hence a fixed
point of g inside B is a solution of x =

(
F−1 ◦ h

)
(x), which means a fixed point of F−1 ◦ h. The

strategy, now, it to show that F−1 ◦ h is a contraction in some neighborhood of p. If the closed
neighborhhod B = Br (p) is sufficiently small, then the inverse of F has bounded derivative, say∣∣∣(F−1

)′
(x)
∣∣∣ < M in F (B). If δ is sufficiently small, then the derivative

∣∣∣(F−1 ◦ h
)′

(x)
∣∣∣ < M · δ

is uniformly ≤ λ := Mδ < 1 in B, and therefore F−1 ◦ h has good chances to be a contraction.
We must show that the image

(
F−1 ◦ h

)
(B) is contained in B. Now, given x ∈ B, triangular

inequality, the mean value theorem and the chain rule, imply o

d
((
F−1 ◦ h

)
(x) , p

)
≤ d

(
F−1 (h (x)) , F−1h (p)

)
+ d

(
F−1 (h (p)) , p

)
≤ d

(
F−1 (h (x)) , F−1h (p)

)
+ d

(
F−1 (h (p)) , F−1 (0)

)
≤ M · δ · r +M · δ

(whre we used the fact tha p is a fixed point of f) and this quantity is < r whenever δ is sufficiently
small. The contraction principle then says that a fixed point p′ ∈ B of g exists and is unique. The
derivative of g at this point is δ-near the derivative of f in p, and therefore this fixed point is also
transversal.

ex: Let f : R → R be a transformation of class C1, and let p a periodic point of period n such
that (fn)

′
(p) 6= 1. Show that all transformations sufficiently C1-near to f have a periodic point of

period n near p. (consider the iterate fn and apply the above theorem)

ex: Let f : V → Rn be a transformation of class C1 defined in some open set V ⊂ Rn, and let p
be a fixed point of f . Transversality of p now means that the derivative (Jacobian) operator f ′(p)
does not have 1 has an eigenvalue. State and prove the analogous of theorem 6.11in this case.

Bifurcations. Non-transversal fixed points need not be persistent, and may disappear or
change thei nature under generic perturbations. This phenomenon is called bifurcation. The idea
of bifurcation theory is to treat families fλ of transformations, defined in some neigborhood of
a fixed or periodic point of f = f0, and describe possible changes in the dynamics when the
parameter λ varies.



6 SIMPLE ORBITS AND PERTURBATIONS 84

Consider, for example, the family

fλ (x) = x+ x2 − λ

defined in the real line. The origin is a non-transversal fixed point of f0, where f ′0(0) = 1. If λ 6= 0
is small, then fλ has two fixed points ±

√
λ, one repelling and the other attracting, if λ > 0, or

none if λ < 0.

Graphs of f(x) = x+ x2 − λ, for λ = −0.2, 0 and 0.2 (different kinds of blue), compared with the diagonal (red).

The family
fλ (x) = x+ x3 + λx

shows a different behavior. The problem is to decide which phenomena are “generic”, and possibly
“stable”, in some sense to be specified.

If we admit the existence of a sufficent number of derivatives, an arbitrary family of transfor-
mations with a non-transversal fixed point at the origin when λ = 0 is

fλ (x) = aλ + bλx+ cλx
2 + ...

=
(
a′λ+ a′′λ2 + ...

)
+
(
1 + b′λ+ b′′λ2 + ...

)
x+

(
c+ c′λ+ c′′λ2 + ...

)
x2 + ...

The generic case is when c 6= 0 (i.e. f0 = x+ cx2 + ...) and a generic perturbation has a′ 6= 0 (i.e.
the constant term of fλ is different from zero when λ 6= 0). It is then not diffult to convince onself
that this family behaves qualitatively like the simpler family fλ(x) = x + x2 − λ above. A small
perturbation of f0 may destroy the fixed point, in one direction, or create two new fixed points, in
the other direction.

ex: State and prove the above result (observe that looking for roots of fλ (x) = x, as function of
λ, amount to to define look for functions λ 7→ x (λ) which satisfy G (λ, x) = fλ (x) − x = 0, and
this problem is treated by the implicit function theorem).

Period-doubling and Feigenbaum universality. Also interesting is the case of a family inter-
val transformations fλ such that f0 has a fixed point at the origin with multiplies f ′0(0) = −1. Such

a fixed point is transversal, hence persistent. Meanwhile, (−1)
2

= 1, and therefore the derivative

of f2
0 at 0 is

(
f2

0

)′
(0) = 1. This says that the origin is not tranversal as a fixed point of the second

iterate f2. A small peturbation may produce periodic points of period 2 in a neighborhood of the
persistend fixed point 0.

This kind of bifurcation is called “period-doubling”. An example is that of the family

fλ (x) = −x+ x2 + λx

Another example occurrs in the quadratic family fλ(x) = λx(1−x), when we pass the value λ = 3
of the parameter. You may check this with my applet http://w3.math.uminho.pt/~scosentino/
bestiario/logistic.html.

http://w3.math.uminho.pt/~scosentino/bestiario/logistic.html
http://w3.math.uminho.pt/~scosentino/bestiario/logistic.html
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Doing simulations with a computer, Mitchell J. Feigenbaum discovered, in the ‘70 of the last
century, that certai families of transformations produce a “cascade” of period-doublings, i.e. there
is a sequence of values λ1 < λ2 < ... < λn < λn+1... of the parameter such that, when passing
through λn+1 orbits of period 2n+1 are created in a neighborhood of orbits of period 2n, created by
the previous value λn. This phenomenon is easily observed, and indeed seems to be “universal”:
it happens for almost all families, provided we find the region where it takes place. The following
picture is obtained if we plot the parameter λ, within some interval, versus a typical orbit of fλ,
say {x100, x101, . . . , x200} starting from a random initial point x0. Here is what you get.

Bifurcation diagram for the logistic family.

(from https://en.wikipedia.org/wiki/Period-doubling_bifurcation)

Even more misterious is that, as already observed by Feigenbaum, the limit λ∞ = limn→∞ λn
seems to exist, it is achieved exponencially, i.e. |λ∞ − λn| 'const×δ−n where

δ = lim
n→∞

λn − λn−1

λn+1 − λn
' 4.669201609102990671853 . . .

seem to be independent from the family! This mistery was explained later by Lanford, Epstein,
Sullivan, . . .

https://en.wikipedia.org/wiki/Period-doubling_bifurcation
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7 Statistical description of orbits

Together with the topological point of view, a source of informations about dynamical systems is
their statistical description. The idea is to measure the relative size of those points whose orbits
have certain definite properties. This is done looking for invariant probability measures, and the
main result is the Birkhoff-Khinchin ergodic theorem. To state and prove the Birkhoff-Khinchin
ergodic theorem, we need to recall many standard facts and results of integration theory. You can
find most of them in the classical [Ru87] or [Ha74].

7.1 Probability measures

Probability spaces. A measurable space is a pair (X, E), a non-empty set X together with a σ-
algebra of subsets E . Recall that a (Boolean) algebra is a nonempty family A of subsets of X which
contains X, which contains the complement of any of its elements, and which is closed under finite
unions and intersections. A σ-algebra is an algebra which is also closed under countable unions
and intersections. Given any family C of subsets of X, there exists a minimal σ-algebra σ (C) which
contains all the elements of C, which is called the σ-algebra generated by C.

If (X, τ) is a topological space, the Borel σ-algebra is σ (τ), the smallest σ-algebra which
contains all open sets.

A measure on the measurable space (X, E) is a σ-additive function µ : E → [0,∞] such that
µ (∅) = 0. Here σ-additivity means that, if (Sn) is a countable family of pairwise disjoint elements
of E , then

µ (∪nSn) =
∑
n

µ (Sn)

The triple (Ω, E , µ) is said a measure space, or probability space if it happens that µ (X) = 1. Given
a probability space, measurable sets A ∈ E are commonly called ”events”, and the number µ (A)
is called ”probability of the event A”. Basic properties of probability measures are the following:
probability measures are monotone, i.e. µ(S) ≤ µ(T ) if S ⊂ T , and σ-subadditive, i.e. if (Sn) is
a countable family of elements of E then

µ (∪nSn) ≤
∑
n

µ (Sn)

Probability measures are continuous from below and from above, in the following sense: if Sn ↑ S
then µ (Sn) ↑ µ (S), and if Sn ↓ S then µ (Sn) ↓ µ (S). Both continuity properties are equivalent,
and indeed a simple argument shows that they are equivalent to continuity from above at ∅: if
Sn ↓ ∅ then µ (Sn) ↓ 0. Moreover, continuity is equivalent to σ-aditivity if the set function µ is
only assumed (finitely) additive.

A subset E ⊂ X has zero measure if it is contained in a measurable set S ∈ E with µ (S) = 0.
If any set with zero measure belongs to E , then the measure space (X, E , µ) is said complete. Any
measure space can be canonically completed, extending the measure to the σ-algebra E made of
E and of subsets of zero measure. A property (like continuity of a function, or convergence of a
sequence of functions) holds µ-a.e. (“almost everywhere” with respect to the measure µ) if the set
of points of X where it does not hold has zero measure.

Construction of probability measures. Measures are never ”explicitely” given as functions
on a σ-algebra. A set function µ : P(X) → [0,∞] is an exterior measure if it is monotone,
σ-subadditive, and if µ (∅) = 0. It happens that, given an exterior measure µ, the family of
µ-measurable sets, defined as

E = {E ⊂ X such that µ(S) = µ(S ∩ E) + µ(S ∩ Ec) for any S ⊂ X}

is a σ-algebra, and that µ is a complete measure if restricted on E (the proof is quite long and
delicate, but the only idea it uses is the following: in order to check that E ∈ E it is indeed sufficient,
by virtue of monotonicity and subadditivity of µ, to check that µ(S) ≥ µ(S ∩ E) + µ(S ∩ Ec) for
any S ⊂ X). A strategy to construct interesting measures on uncountable spaces is: start with an
exterior measure (it is very easy to produce exterior measures, for example by means of variational
principles) and then check that the σ-algebra of measurable sets is sufficiently big for our purpose.
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The idea of Carathéodory is the following. A probability measure on an algebra A of subsets
of X is an additive function m : A → [0, 1] such that m (∅) = 0, m (X) = 1, and such that An ↓ ∅
implies m (An) ↓ 0. Given a probability measure m on a algebra A , the recipe

µ (S) = inf
{∑

m(An) with S ⊂ ∪nAn e An ∈ A
}

defines an exterior measure on P(X), hence the above construction produces a measure µ on the
σ-algebra of µ-measurable sets, which contains A and so contains σ (A). One then checks that
µ (A) = m (A) for any A ∈ A, so that µ is an “extension” of the measure m. Carathéodory’s
extension theorem is then stated in the following form:

Theorem 7.1 (Carathéodory’s extension theorem). Given a probability measure m on a algebra
A of subsets of X, there exists a unique measure µ on σ (A) which extends m.

The following corollary of Carathéodory’s theorem is also useful, for example when trying to
prove that some event has a definite probability.

Theorem 7.2 (Approximation theorem). Let (X, E , µ) be a probability space, and let A be an
algebra of subsets of Xsuch that σ (A) = E. Then, for any A ∈ E and any ε > 0, we can find a
Aε ∈ A such that

µ (A∆Aε) < ε.

Indeed, one easily sees that the family C = {A ∈ E s.t. ∀ε > 0 ∃Aε ∈ A s.t. µ (A∆Aε) < ε} is
a σ-algebra. Since A is obviously contained in C, this implies that E =σ (A) ⊂ C ⊂ E .

Lebesgue measure. The collection I of intervals of the real line is a semi-algebra, i.e. the
intersection of two elements of I is in I and the complement of an element of I is a union of
elements of I. The function m : I → [0,∞], defined as m ([a, b]) = |b− a| if a e b are finite, and
∞ if the interval is unbounded, is monotone and gives value zero to the empty set. Postulating
additivity, the function m extends to a measure on the algebra A made of disjoint unions of
elements of I (this is not trivial!, the proof uses the Heine-Borel theorem about compact subsets
of the real line). The function µ : P(R)→ [0,∞], defined as

µ (E) = inf
{∑

m(Cn) with E ⊂ ∪nCn e Cn ∈ A
}

is then an exterior measure on the real line. The σ-algebra L of µ-measurable sets, called Lebesgue
σ-algebra, contains the Borel sets, because it contains the intervals. The restriction ` = µ |L , as
well as µ

∣∣B(R) , is called Lebesgue measure.
Observe that Lebesgue measure on the real line is not a probability measure, having infi-

nite mass. Nevertheless, one can easily define probability measures on bounded intervals taking
normalized restrictions of Lebesgue measure. For example, take X = [0, 1], and E = B (X) =
{X ∩B with B ∈ B (R)}, the Borel subsets of the interval. The restriction of ` to E is a probabil-
ity measure, called Lebesgue measure on the unit interval.

The very same construction works in Rn, starting with the semi-algebra of “rectangles” mea-
sured by the “euclidean volume”, and produces a measure ` on B (Rn), also called Lebesgue mea-
sure. Lebesgue measure is the unique measure over the Borel sets of the euclidean space which is
invariant under traslations, i.e. ` (λ+B) = ` (B) for any λ ∈ Rn and any Borel set B, and which
is normalized to give measure one to the unit square, i.e. ` ([0, 1]

n
) = 1.

The axiom of choice allows one to “give examples” of subsets wich are not Lebesgue-measurable
(for example, the set made of one point for each orbit of an irrational rotation of the circle).

The following result is useful (see [Mat95] for a proof). Below, Bε(x) = {y ∈ Rn s.t. ‖x −
y‖2 < ε} denotes the open ball of radius ε > 0 and center x ∈ Rn w.r.t. the Euclidean distance
‖x− y‖22 =

∑n
i=1 |xi − yi|2.

Theorem 7.3 (Lebesgue density theorem). Let A ⊂ Rn be a Lebesgue-measurable set. For
`-almost any x ∈ A there exists the limit

lim
ε→0

`(A ∩Bε(x))

`(Bε(x))
= 1
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Kolmogorov extension. Let X be a finite space, equipped with the discrete topology, and
let Σ+ be the topological product XN = {x : N→ X}, its point indentified with sequences x =
(x1, x2 ..., xn, ...) with xn ∈ X. Let C be the collection of cylinders of X, the subsets of the form

CB =
{
x ∈ Σ+ s.t. (x1, x2 ..., xn) ∈ B

}
with B an open subset of Xn. Cylinders form a basis of the product topology of Σ+, which
makes Σ+ a compact metrizable space. In particular, the Borel σ-álgebra of Σ+ is B = σ (C).
Let µ1, µ2, µ3, . . . , µn, . . . be probability measures defined on the Borel sets of X,X2, . . . , Xn, . . . ,
respectively. The sequence (µn) is said consistent if

µn+1 (B ×X) = µn (B)

for any n and any Borel subset B ⊂ Xn. The (most elementary version of) Kolmogorov extension
theorem says that

Theorem 7.4 (Kolmogorov extension theorem). Given a consistent family of probability measures
as above, there exists a unique probability measure µ, defined on the Borel σ-algebra of Σ+, such
that

µ (CB) = µn (B)

for any cylinder CB.

Proof. The proof consists in the following two steps. First, observe that cylinders form an algebra,
and use consistency of the µn’s to verify that the formula above does define a function µ : C → [0, 1]
on cylinders (i.e. it does not depend on the different ways the same cylinder may be presented)
which is additive and properly normalized. Then, use compactness of X to check that µ is con-
tinuous at ∅, in order to apply Carathéodory theorem. Indeed, let (An) be a sequence of cylinders
such that An ↓ ∅, and assume by contradiction that µ (An) > δ > 0 for any n. This implies that
An 6= ∅ for any n, but, since the An are compact, then the Cantor intersection theorem says that
∩nAn 6= ∅, contrary to the hypothesis.

Kolmogorov theorem is the key tool in probability theory, since it allows one to construct mea-
sures which describe an infinite sequence of trials starting with some rule which gives information
about the n-th trial given the knowledge of the first n−1. It actually works with much more general
spaces and in a more general setting. Also, one can easily adapt the construction to

∏
n∈NXn, the

topological product of a countable family of finite spaces. In some precise sense, this is a universal
model of a dynamical system.

Bernoulli trials. If X = {0, 1}, then Σ+ = XN is the state space of infinite Bernoulli trials with
two possible outcomes: success and failure. Let µ1 : P (X)→ [0, 1] be a any probability measure,
defined by µ1 ({1}) = p. Kolmogorov construction can be applied postulating the independence of
different trials, i.e. declaring that the family formed by the cylinders {xn = 1} is an independent
family, and giving measure p to each {xn = 1}. The resulting probability space (Σ+,B, µ) describes
the infinite independent Bernoulli trials. Of course, the very same construction can be made when
X is a finite space with any finite numer z of elements.

7.2 Transformations and invariant measures

Measurable transformations. A transformation f : X → X of the measurable space (X, E)
is said measurable if f−1 (A) ∈ E for any A ∈ E . A measurable transformation f is said an
endomorphism of the measurable space, or an automorphism if it is invertible and its inverse is
measurable too.

Observe that an endomorphism f of a measurable space (X, E) acts naturally on the space of
measures on E by ”push forward”: if µ is a measure, then f∗µ, defined by (f∗µ) (A) = µ

(
f−1 (A)

)
for any A ∈ E , is also a measure.
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Let f be an endomorphism of the measurable space (X, E). A probability measure µ on E is
invariant (w.r.t. the transformation f) if f∗µ = µ, namely if

µ
(
f−1 (A)

)
= µ (A)

for any A ∈ E . If this happens, we also say that f is an endomrphism (resp. an automorphism) of
the probability space (X, E , µ). The meaning of this definition is that ”mean values” of integrable
observables ϕ : X → R with respect to invariant probability measures do not change with time, in
the sense that

∫
X
ϕdµ =

∫
X

(ϕ ◦ f) dµ.
Given an endomorphism f of the probability space (X, E , µ), one says that an event A ∈ E is

invariant mod 0 if µ
(
A

a
f−1 (A)

)
= 0. The set of invariant mod 0 events form a sub-σ-algebra

of E , denoted by Ef .

How to prove that a measure is invariant. The very definition of invariance does not help
too much if we want to prove that a certain measure µ on the σ-algebra E is invariant w.r.t. the
measurable transformation f : X → X. The trick is the following. Suppose that we can prove that
µ
(
f−1 (C)

)
= µ (C) for any C ∈ C, where C is some subset of E . Caratheodory theorem implies

that f∗µ and µ are the same measure on the σ-algebra σ (C) generated by C. On the other side,
the family of those A ∈ E such that µ

(
f−1 (A)

)
= µ (A) is easily seen to be a σ-algebra. Hence,

if it happens that σ (C) = E , then µ is actually invariant. In other words, in order to prove that
µ is invariant it is sufficient to check that µ

(
f−1 (C)

)
= µ (C) for any C belonging to a family of

subsets of X which generate the σ-algebra E .

Observables as random variables. When dealing with a endomorphism f : X → X of the
probability space (X, E , µ), one should consider measurable observables ϕ : X → R (or C), those
functions such that ϕ−1 (A) ∈ E for any Borel set A ⊂ R. In the context of probability theory
they are called ”random variables”, and the sequence of observables ϕ ◦ fn may be interpreted as
a ”random process”. If ϕ is integrable, the Lebesgue integral

∫
X
ϕdµ is interpreted as the ”mean

value” of ϕ. Of course, invariance of a measurable observable must be intended modulo sets of zero
measure. Then, one can consider the Banach spaces Lp (µ) of (equivalence classes of ) observables
equipped with the Lp-norm

‖ϕ‖p =

(∫
|ϕ|p dµ

)1/p

and use the full power of integration theory to get informations about the dynamical system. In
particular, L2 (µ) is a Hilbert space if equipped with the inner product

〈ϕ,ψ〉 =

∫
X

ϕψdµ

Conditional mean. Recall that, given a measurable space (X, E), a measure ν is said absolutely
continuous w.r.t. the measure µ if ν (A) = 0 whenever µ (A) = 0. The following technical result
(which may be proved using Hilbert space techniques) is particularly useful:

Theorem 7.5 (Radon-Nikodym). Let (X, E , µ) be a probability space, and let ν be a finite measure
over E which is absolutely continuous with respect to µ. Then there exists a nonnegative integrable
random variable ρ (called the Radon Nikodym derivative of ν w.r.t. µ and denoted by dν/dµ) such
that

ν (A) =

∫
A

ρdµ

for any A ∈ E.

A particularly important tool, taken from the theory of probability, is the conditional mean.
Let (X, E , µ) be a probability space, and let F be a sub-σ-algebra of E . Given an integrable random
variable ϕ, there exists a unique random variable ϕF , called the conditional mean of ϕ w.r.t. F ,
which is F-measurable (i.e. the inverse image of any Borel set belongs to F) and such that∫

A

ϕFdµ =

∫
A

ϕdµ
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for any A ∈ F . Indeed, if ϕ ≥ 0, then one can define ϕF as equal to the Radon-Nikodym derivative
of the measure A 7→

∫
A
ϕdµ, defined on F , with respect to the restriction µ |F . The general case is

treated by linearity, writing ϕ as a difference of two non-negative random variables. Uniqueness is
intended µ-a.e., i.e. modulo sets of zero probability. The conditional mean is monotone, namely if
ϕ ≥ 0 then ϕF ≥ 0, and preserves the mean value, since

∫
X
ϕFdµ =

∫
X
ϕdµ. It can be considered

as a ”projection” of ϕ onto the space of F-measurable random variable, preserving the mean value.
In particular, if N is the trivial σ-algebra made of events of measure 0 or 1, then ϕN is constant
a.e. and equal to

∫
X
ϕdµ.

Topological dynamical systems and Borel measures. If we are interested in the dynamics
of a continuous transformation f : X → X of a topological space X, it is natural to consider
the Borel σ-algebra B, the smallest σ-algebra of subsets of X which contain all open sets. The
map f is then an endomorphism of (X,B). Probability measures on B are said Borel probability
measures. If, moreover, X is a compact metric space, one can consider the space C0 (X,R) of
bounded continuous real valued functions of X (observe that, since X is compact, any continuous
function is automatically bounded), equipped with the sup norm

‖ϕ− ψ‖∞ = sup
x∈X
|ϕ (x)− ψ (x)|

These observables are clearly integrable w.r.t. to any Borel probability measure µ, and the mean
value map

ϕ 7→
∫
X

ϕdµ

is a bounded, positive definite (in the sense that
∫
X
ϕdµ ≥ 0 for any ϕ ≥ 0) linear functional on

C0 (X,R). The basic fact about Borel measures is the converse of that, namely

Theorem 7.6 (Riesz-Markov representation theorem). Let X be a compact metric space. Given
any bounded and positive definite linear functional L on C0 (X,R) such that L (1) = 1, there exists
a unique Borel probability measures µ such that

L (ϕ) =

∫
X

ϕdµ

for any ϕ ∈ C0 (X,R)

The space of invariant probability measures. The space Prob of probability measures on
a measurable space (X, E) has a natural convex structure: convex combinations of probability
measures are also probability measures. An arbitrary measurable transformation f : X → X of a
measurable space may not admit any invariant probability measure. On the other side, if µ0 and
µ1 are invariant probability measures, so are their convex combinations µt = (1− t)µ0 + tµ1 for
any t ∈ [0, 1]. This means that the set Probf of invariant probabilty measures on E is a convex
set: if it contains two points, it contains the whole segment between them.

Now, let (X, d) be a compact metric space and let B its Borel σ-algebra. The space Prob of
probability measures on B can be equipped with a natural topology, called the weak∗ topology,
which says essentially that two measures are near if they give nearby mean values to some well
behaved observables. Formally, one says that a sequence of measures (µn) converge weakly* to a
measure µ, which we denote simply as µn → µ, if∫

X

ϕdµn →
∫
X

ϕdµ

for any (bounded) continuous function ϕ : X → R. The space C0 (X,R) of bounded continuous real
valued functions on X, equipped with the sup norm, is a separable Banach space. In particular,
it admits a countable set of points {ϕn}n∈N which is dense in its unit sphere. Given that, one
defines, for any couple of Borel probability measures µ and ν, a distance

d (µ, ν) =

∞∑
n=1

2−n ·
∣∣∣∣∫
X

ϕndµ−
∫
X

ϕndν

∣∣∣∣
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It turns out that d is indeed a metric, and that it induces the weak∗ topology on Prob. The
important fact (somewhere called ”Helly’s theorem”), which follows from the Ascoli-Arzela theorem
together with the above Riesz-Markov representation theorem, is that Prob, equipped with the
weak∗ topology, is a compact space: any sequence (µn) of Borel probability measures admits a
weakly∗ convergent subsequence µni → µ.

Now, we are in position to prove the existence of invariant probability measures for certain well
behaved dynamical systems.

Theorem 7.7 (Krylov-Bogolyubov). A continuous transformation f : X → X of a metrizable
compact space X admits at least one Borel invariant probability measure.

Proof. Take any Borel probability measure µ0 on X, and inductively define a family of probability
measures µn by µn+1 = f∗µn. Consider the family of Cesaro means

µn =
1

n+ 1

n∑
k=0

µk

Since the space of Borel probability measures on a compact metrizable space is compact w.r.t.
weak∗ convergence, there exist a weakly∗ convergent subsequence µni → µ. One then easily sees
that ∫

X

(ϕ ◦ f) dµ = lim
i→∞

1

ni + 1

ni∑
k=0

∫
X

(ϕ ◦ f) dµk

= lim
i→∞

1

ni + 1

ni∑
k=0

∫
X

ϕdµk+1

= lim
i→∞

1

ni + 1

ni∑
k=0

∫
X

ϕdµk +
1

ni + 1

(∫
X

ϕdµni+1 −
∫
X

ϕdµ0

)
=

∫
X

ϕdµ

for any bounded continuous observable ϕ, hence that µ is an invariant measure.

7.3 Invariant measures and time averages

The relevance of invariant measures when studying the dynamics of continuous transformations is
due to the following crucial observations.

Invariant measures and time averages. Assume that, for a given point x ∈ X, the time
averages

ϕ (x) = lim
n→∞

1

n+ 1

n∑
k=0

ϕ
(
fk (x)

)
do exist for any bounded continuos observable ϕ. One easily shows that the functional C0

b (X,R)→
R defined by ϕ 7→ ϕ (x) is linear, bounded and positive definite. There follows from the Riesz-
Markov representation theorem that there exists a unique Borel probability measure µx on X such
that

ϕ (x) =

∫
X

ϕdµx

for any ϕ ∈ C0
b (X,R). The invariance property ϕ (x) = (ϕ ◦ f) (x) for time averages then implies

that
∫
X

(ϕ ◦ f) dµx =
∫
X
ϕdµx for any ϕ, hence that µx is an invariant probability measure. In

the language of physicists, this says that “time averages” along the orbit of x are equal to “space
averages” with respect to the measure µx.

One is thus lead to consider the following questions. Do there exist points x for which time
averages exists? Given an invariant measure µ, do there exist, and how many, points x such that
µ = µx?
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Periodic orbits. Here is a trivial but important example. Let p be a periodic point with period
n. The time average ϕ (p) of any observable ϕ exists, and is equal to the arithmetic mean of ϕ
along the orbit, namely

ϕ (p) =
1

n

n−1∑
k=0

ϕ (fn (p))

If µp denotes the normalized sum 1
n

∑n−1
k=0 δfn(p) of Dirac masses placed on the orbit of p, this

amount to say that ϕ (p) =
∫
X
ϕdµp.

Let p be a fixed point, and ϕ : X → R be an observable which is continuous at p. If x ∈W s(p),
then the time average ϕ (x) exists and is equal to ϕ (p), i.e. time averages of points in the basin of
attraction of p are described by the Dirac measure µp = δp.

The Birkhoff-Khinchin ergodic theorem. Ergodic theorems are the milestones of ergodic
theory, and deal with various type of convergence of the time means ϕn for certain classes of
observables ϕ. In particular, the Birkhoff-Khinchin ergodic theorem must be thougth as the gen-
eralization of the Kolmogorov strong law of large numbers, as it says that time means of certain
well-behaved observables exist almost everywhere. The Birkhoff-Khinchin ergodic theorem was
actually preceeded by the von Neumann’s ”statistic” ergodic theorem.

If f : X → X is an endomorphism of the probability space (X, E , µ), one can consider the
“shift” operator Uf : L2 (µ)→ L2 (µ), defined by (Ufϕ) (x) := ϕ (f (x)). It is clearly an isometry,
and if f is a homeomorphism it is unitary. The fixed point set of Uf is the space of invariant
L2-observable. The von Neumann theorem then asserts convergence of time means ϕn → ϕ in the
Hilbert space L2 (µ).

Theorem 7.8 (von Neumann “statistic” ergodic theorem). Let U be a unitary operator on a
Hilbert space H, let HU = {v ∈ H s.t. Uϕ = ϕ} denote the closed subspace of those vectors which
are fixed by U , and PU : H → HU denote the orthogonal projection onto HU . Then, for any vector
ϕ ∈ H we have

lim
n→∞

∥∥∥∥∥ 1

n+ 1

n∑
k=0

Ukϕ− PUϕ

∥∥∥∥∥
H

= 0

Here, we prove the stronger

Theorem 7.9 (Birkhoff-Khinchin “individual” ergodic theorem). Let f : X → X be an endo-
morphism of the probability space (X, E , µ), and let ϕ ∈ L1 (µ) be an integrable observable. Then
the limit

ϕ(x) = lim
n→∞

1

n+ 1

n∑
k=0

ϕ
(
fk(x)

)
exists for µ-almost any x ∈ X. Moreover, the observable ϕ is in L1 (µ), is invariant, and satisfies∫

ϕdµ =

∫
ϕdµ

Proof. (by A. Garsia, as explained in [KH95]) Let Ef be the invariant σ-algebra. For any ψ ∈ L1,

set ψn = maxk≤n
∑n−1
k=0 ϕ ◦ fk and observe that Eψ = {x ∈ X s.t. ψn(x)→∞} ∈ Ef . One easily

sees that the sequence ψn+1 − ψn ◦ f is decreasing, and converges to ψ at the points of Eψ. The
monotone convergence theorem and the invariance of µ imply that

0 ≤
∫
Eψ

(ψn+1 − ψn) dµ =

∫
Eψ

(ψn+1 − ψn ◦ f) dµ→
∫
Eψ

ψdµ =

∫
Eψ

ψEf dµ
∣∣Ef

In particular, if ψEf < −ε < 0 then µ (Eψ) = 0. On the other side,

lim sup
1

n

n−1∑
k=0

ψ ◦ fk(x) ≤ lim sup
1

n
ψn ≤ 0
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on X\Eψ. Applying twice these observations to the observables ϕ − ϕEf − ε and −ϕ + ϕEf − ε,
with ε > 0, we find

lim sup
1

n

n−1∑
k=0

ϕ ◦ fk(x)− ϕEf − ε ≤ 0 lim inf
1

n

n−1∑
k=0

ϕ ◦ fk(x)− ϕEf + ε ≥ 0

µ-almost everywhere. Since ε was arbitrary, the limit ϕ(x) exists and is equal to ϕEf (x) for µ-
almost every x. The rest of the theorem then follows easily from the properties of the conditional
mean.

7.4 Examples of invariant measures

Haar measures. Any locally compact topological group G admits a Haar measure, a measure
µ on its Borel sets which is left-invariant, i.e. satisfies Lgµ = µ for any g ∈ G. Moreover, the Haar
measure is unique up to a constant factor. It is an exercise that µ is a finite measure, hence can
be renormalized to give a probability measure, iff G is compact. There follows that translations
on compact topological groups admits invariant probability measures.

On the other side, for some groups G, called unimodular, the Haar measure µ is both left and
right invariant. If Γ ⊂ G is a lattice, i.e. a subgroup such that µ (G/Γ) <∞, then the normalized
Haar measure on the homogeneous space G/Γ is an invariant probability measure for any left
translation gΓ 7→ sgΓ.

Rotations of the circle. Lebesgue probability measure ` on the circle is invariant for the
rotations Rα : x+ Z 7→ x+ α + Z, with α ∈ R. Indeed, rotations of the circle are isometries, and
the Lebesgue measure ` (I) of an interval is its ”lenght”.

Coverings of the circle. Lebesgue probability measure ` on the circle is invariant for the
maps EN : x + Z 7→ Nx + Z, with N ∈ Z\ {0}. This comes from the fact that the inverse image
of a sufficiently small interval I with lenght ` (I) is the disjoint union of |N | intervals with lenght
` (I) / |λ|.

Bernoulli shifts. Consider the Bernoulli shift σ : Σ+ → Σ+ over the alphabetX = {1, 2, ..., N}.
Let p be a ‘probability on X”, i.e. a finite set of nonegative numbers p1, p2, ..., pN such that
p1 + p2 + ... + pN = 1. Given a centered cylinder Cα, we define µ (Cα) as equal to the product
pα1

pα2
...pαn . This function µ extends in a unique way as a finitely additive function on the algebra

A generated by the centered cylinders, the algebra which contains all finite unions of centered
cylinders as well as the empty set and Σ+. One then show that µ is σ-additive on A (for example,
showing that if a decreasing sequence A1 ⊃ A2 ⊃ ... has empty intersection then µ (An) → 0).
Since centered cylinders generates the topology of Σ+, Carathéodory theorem implies that there
exists a unique extension, which we still call µ, of this measure on the Borel σ-algebra of Σ+. This
measure is called the Bernoulli measure defined by p.

As for the ”physical” meaning of this measure, you may imagine that X represents the possible
outcomes when tossing a coin with z sides, and pk is the probability of obtaining the k-th side.
Then points in Σ+ represent the outcomes of an infinite sequence of tossings, and the very definition
of µ says that each trial is described by the probability p, and each trial is ”independent” from
any finite collection of different trials.

It is not surprising that µ is indeed an invariant probability measure. This comes from the fact
that the inverse image σ−1 (A) of any A ∈ A is the disjoint union of N elements B1, B2, ..., BN of
the algebra (obtained from A chosing the first letter in z different ways) with measures µ (Bk) =
pk · µ (A), so that

µ
(
σ−1 (A)

)
=

N∑
k=1

pk · µ (A) = µ (A)
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Absolutely continuous invariant measures for maps and flows. Let U be a domain in
some euclidean Rn, and let ` denote the Lebesgue measure on U , given locally as

d` = dx = dx1dx2...dxn .

Thus, the volume of an open set A ⊂ U is `(A) =
∫
A
dx. A local diffeomorphism f : U → U of

class C1 preserves the measure vol iff ∑
x∈f−1{x′}

1

|det f ′ (x)|
= 1

for any point x′ ∈ U , as one can check using the change of coordinates formula. Also interesting is to
see wheather f preserves an absolutely continuous measure dµ = ρd`, definied by µ(A) =

∫
A
ρ dx.

This happens iff the ”density” ρ satisfies the equation∑
x∈f−1{x′}

ρ (x)

|det f ′ (x)|
= ρ (x′)

for any point x′ ∈ U .
Now, let Φt be the flow of a vector field v =

∑n
k=1 vk

∂
∂xk

on U . The above obviously applies,
considering the Jacobian of the diffeomorphisms Φt. Since

det Φ′t =

∫ t

0

divv ◦ Φs ds

we get the result that Lebesgue measure ` is invariant under the flow of v iff

divv =

n∑
k=1

∂vk
∂xk

= 0

In general, the absolutely continuous measure dµ = ρd` is invariant under the flow of v iff its
density satisfies div (ρv) = 0.

Hamiltonian flows. Consider a symplectic manifold (X,ω). Liouville measure dµ = ωn is
invariant under the Hamiltonian flow of any Hamiltonian function H. If X has finite volume, it
can be normalized to give an invariant probability measure.

Geodesic flows. Consider a geodesic flow on the unit tangent bundle π : SM → M of the
Riemannian manifold (M, g). Let dµ =

√
g dx denote the Riemannian volume form on M , and

let dσm denotes the Lebesgue probability measure on the sphere SmM = π−1 {m}. The Liouville
measure `, defined locally as dµ (m)× dσm, is invariant under the geodesic flow.

Gauss map. Any irrational real number x ∈ (0, 1] has a unique continued fraction representa-
tion of the form

x = [0; a1, a2, a3, . . . ] =
1

a1 +
1

a2 +
1

a3 +
1

. . .

where the an are nonnegative integers. The equality sign and the “infinite fraction” above mean
that the sequence of finite continued fractions

pn/qn = [0; a1, a2, . . . , an] =
1

a1 +
1

a2 +
1

. . . +
1

an
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which are called “convergents”, do converge to x as n→∞. The sequence of partial quotients an
is inductively constructed as follows. First, observe that if a1 = [1/x] and x1 = 1/x − a1 we may
write

x =
1

a1 + x1

with x1 ∈ [0, 1]. Then, since x1 6= 0, for otherwise x would be rational, we may define a2 = [1/x1]
and x2 = 1/x1 − a2 to get

x =
1

a1 +
1

a2 + x2

Inductively, we see that

x =
1

a1 +
1

a2 +
1

...+
1

an + xn

where xn = 1/xn−1 − an and an = [1/xn−1]. This amounts to say that the sequence (xn) is the
trajectory of x under the Gauss map G : ]0, 1]→ ]0, 1], defined as

x 7→ 1/x− [1/x]

Observe that G is not defined at the origin, hence to iterate G we need to avoid all the preimages
of 0, which are the rationals. This is not a problem if we want to study the statistical properties
of G with respect to Lebesgue measure, since rationals form a subset of zero measure. The Gauss
map admits an absolutely continuous invariant measure µ = ρdx, defined as

µ (A) =
1

log 2
·
∫
A

1

1 + x
dx

for any Borel subset A ⊂ ]0, 1]. The denominator log 2 is there to normalize the measure, so we
just have to check the invariance criterium for the density ρ (x) = 1/ (1 + x). Since any x′ ∈ ]0, 1]
has one preimage xk = 1/ (x′ + k) in each interval ]1/ (k + 1) , 1/k], we compute

∑
x∈G−1{x′}

ρ (x)

|G′ (x)|
=

∑
k≥1

x2
k

1 + xk

=
∑
k≥1

(
1

x′ + k
− 1

x′ + k + 1

)
=

1

1 + x′
= ρ (x′)

and we are done.
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8 Recurrences

8.1 Limit sets and recurrent points

Omega and alpha limit sets. Let f : X → X be a continuous transformation of a topological
aspace X. The simplest thing that an infinite (i.e. not periodic) orbit can do is to be (the image
of a) convergent (trajectory). In this case, as we already know, the limit must be a fixed point of
the transformation.

Trajectories, even when not convergent, may have at least convergent subsequences. The ω-limit
set of a point x ∈ X is the set

ωf (x) :=

∞⋂
n=0

⋃
k≥n

{fk(x)}

that is, the set of those points x′ ∈ X such that there exists a sequence of times ni →∞ (i.e. an
increasing map i 7→ ni) such that fni(x)→ x′ when i→∞. Observe that, if the orbit of x is not
finite (i.e. if x is not periodic), then the ω-limit set of x is the derived set of its forward orbit, i.e.
ωf (x) = O+

f (x)′. It is clear that ωf (x) is a closed (possibly empty) and +invariant subset of X.
Lim(f) = ∪x∈Xωf (x) denotes the set of ω-limit points of all the x ∈ X. If x is periodic, then

ωf (x) coincides with its orbit. There follows that

Per(f) ⊂ Lim(f) .

If f is invertible, we may also define the α-limit set of x ∈ X as αf (x) := ωf−1(x), i.e. the set
of points x′ ∈ X such that there exists a sequence of times ni →∞ such that f−ni(x)→ x′ when
i → ∞. In this case, both ωf (x) and αf (x) are closed and invariant subsets of X. Lim(f−1) =
∪x∈Xαf (x) denotes the set of all α-limit points of an invertible transformation f .

Limit sets in compact spaces. Both the ω and the α-limit sets of a generic point can be
empty. For example, all the limit points for the translation f(x) = x+ 1 of the real line are empty.

This may happens, of course, only if the phase space X is not compact. Indeed, if X is compact,
then the trajectory of any point admits convergent subsequences (by sequencial compactness, which
holds for compact metric spaces), and therefore ωf (x) 6= ∅ for all x ∈ X. For the same reason, if
f is a homeomorphism of a compact metic space, αf (x) 6= ∅ for all points x ∈ X. In particular,
the sets Lim(f±1) are not empty.

ex: Show that ωf (x) is closed and +invariant. Show that if f is a homeomorfism, then ωf (x)
and αf (x) are closed and invariant.

ex: Give examples such that ωf (x) and αf (x) are empty.

ex: Show that Per(f) ⊂ Lim(f).

Recurrent points. Let f : X → X be a topological dynamical system. The point x ∈ X is
recurrent if x ∈ ωf (x). It is clear that this is equivalent to asking that given any neighborhood
B of x there exists a time n ≥ 1 such that fn (x) ∈ B. Indeed, chosing smaller neighborhoods (if
fn(x) 6= x, so that x is not already periodic with period n), this also implies that the trajectory of
x passes infinitely often in a any such neighborood, i.e. fn(x) ∈ B for infinitely many times n ≥ 1.

Rec(f) denotes the set of recurrent points for f . A periodic point is obviously recurrent,
therefore

Per(f) ⊂ Rec(f) .

If f is a homeomorphism, it also makes sense to consider the set Recf−1 , the set of those points
x ∈ X such that x ∈ αf (x).

ex: Define a partial order in X as follows: x ≺ x′ if for any neighborhood U of x and V of x′

there exists a time n ≥ 1 such that fn (U) ∩ V 6= ∅. Show that x is recurrent iff x ≺ x.
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ex: Show that Per(f) ⊂ Rec(f).

ex: Give examples which show that both Rec(f) and Rec(f−1) may be empty.

Non-wandering set. The point x is wandering30 if it admits a neighborood which is disjoint
from all its iterates, i.e. if there exists an open set U containing x such that U ∩ fn(U) = ∅ for all
times n ≥ 1. Conversely, the point x is not wandering is for any neighborhood U of x there exists
a time n ≥ 1 such that fn(U) ∩ U 6= ∅.

The non-wandering set NW(f) is the set of those points x which are not wandering. This is the
set where the interesting dynamics takes place, since other points are “forgotten” as time passes.

The non-wandering set is closed (the set of wandering points is open by definition, since any
point in a sufficiently small open neighborhood of a wandering point is itself wandering) and
+invariant. It contains the ω-limit points of all points in X, as well as the recurring points. Thus,
the inclusions are

Per(f) ⊂ Lim(f) ⊂ NW(f) and Per(f) ⊂ Rec(f) ⊂ NW(f)

If f is an homeomorphism, NW(f), which is equal to NW(f−1), is also invariant, and contains
the ω- and α-limits of all points of X.

If X is compact, then NW(f) 6= ∅, since any point x ∈ X have ωf (x) 6= ∅ and Lim(f) ⊂ NW(f).

ex: Show that the non-wandering set of a homeomorphism is closed, invariant, and contains the
ω and α-limit sets.

ex: Show that if f is a homeomorphism, then NW(f) = NW(f−1).

ex: Give examples that show that NW(f) may be empty.

ex: Show that Per(f) ⊂ Recf ⊂ NW(f). Give exemple that show that these inclusions may be
strict.

ex: Show that Per(f) ⊂ Rec(f) ⊂ NW(f) and therefore Per(f) ⊂ Rec(f) ⊂ NW(f). More
difficult is to find example showing that these inclusion may be stricd.

ex: Find the non-wandering sets of linear maps of the plane.

8.2 Dirichlet theorem on Diophantine approximation

Rotations of the circle and Dirichlet theorem on Diophantine approximation. Consider
a rotation Rα : x + Z 7→ x + α + Z of the circle T = R/Z. If α is rational, all points are trivially
recurrent, being periodic. When α is irrational, recurrence of a point x + Z means that for any
ε > 0 there exist an infinity of times q ∈ N such that that

d(x+ Z, x+ qα+ Z) < ε

or, equivalently, that for any ε > 0 there exist an infinity of rationals p/q such that

|qα− p| < ε i.e.

∣∣∣∣α− p

q

∣∣∣∣ < ε

q

Indeed, much more is true, and is a consequence of the following classical result by Dirichlet
on Diophantine approximation (see [HW59]).

30The greek word for “wandering” was πλανητης, i.e. planet.
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Theorem 8.1 (Dirichlet, 1842). For any number θ and any positive integer Q ∈ N there exist
p ∈ Z and q ∈ Z\{0} such that

|qθ − p| < 1/Q and |q| ≤ Q . (8.1)

and, a fortiori,
|θ − p/q| < 1/q2 . (8.2)

Proof. Divide the unit interval [0, 1) into the Q subintervals

[0, 1/Q) , [1/Q, 2/Q) , [2/Q, 3/Q) , . . . , [(Q− 1)/Q, 1)

of equal length 1/Q, and consider the Q+ 1 points31

{0} , {θ} , {2θ} , . . . , {Qθ}

inside [0, 1). By the box principle (which Dirichlet stated to prove this theorem!), at least two of
those points, say {kθ} and {k′θ} with k > k′, belong to the same subinterval. Therefore, there
exist integers a, a′ such that |kθ − a − (k′θ − a′)| < 1/Q. The theorem follows taking q = k − k′
and p = a− a′, and observing that q ≤ Q.

For rational θ, there are only finitely many integers q and p satisfying the above inequalities
(8.1). Indeed, if θ = a/b and p/q 6= a/b (we may assume that both are reduced fractions), then

|qθ − p| = |qa− pb|
|b|

≥ 1

|b|

(because the numerator is the absolute value of a non-zero integer) and therefore no fraction
different from a/b may satisfy the inequalities (8.1) if Q is larger that |b|.

On the other hand, if θ is irrational and p1/q1, p2/q2, . . . , pn/qn are any finite number of
fractions satisfying (8.2), we may consider an integer Q larger than the inverse of

ε = min
1≤k≤n

|qkθ − pk| > 0

and produce, by theorem 8.1, one more fraction p/q satisfying (8.2). Thus,

Theorem 8.2 (Dirichlet, 1842). For any irrational number θ there exist infinitely many reduced
fractions p/q such that

|θ − p/q| < 1/q2 .

In particular, any point x+ Z is recurrent for an irrational rotation of the circle.

8.3 Poincaré recurrence theorem

If f satisfies a condition (natural in physics) like “preserving a probability measure”, then there
are a lot of recurrent points, actually almost any point is recurrent. If, moreover, the probability
measure is diffuse, i.e. any non-empty open set has positive measure, then the set of recurrent
points is also dense. These results, discovered by Henri Poincaré around 1890, motivated the
modern theory of dynamical systems. They show how weak informations on the transformation
(or the flow of a differential equation) may yeld significative qualitative information about “almost
all” orbits of the system. Here follow the precise statements, together with all the necessary
technical details. If you don’t know the meaning of some words, like “measurable” or “Borel set”,
don’t worry, just try to understand what’s going on. Poincaré himself didn’t know, yet!

You may look at this wonderful lecture on Poincaré recurrence theorem by Etienne Ghys in
YouTube: https://www.youtube.com/watch?v=21fHNMccrY8#t=1741

31As usual, {x} denotes the “fractional part” of x, so that any real number may be written as a sum x = [x]+{x}
for some unique [x] ∈ Z and {x} ∈ [0, 1).

https://www.youtube.com/watch?v=21fHNMccrY8#t=1741
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Theorem 8.3 (Poincaré recurrence theorem). Let f : X → X be an endomorphism of a probability
space (X, E , µ), and let A ∈ E. Then the set

Arec = {x ∈ A t.q. fn(x) ∈i.o. A}

of those points of A whose orbit passes through A infinitely often has total probability, namely
µ (Arec) = µ (A)

Proof. For k ≥ 1, let
Bk = {x ∈ A s.t. fn(x) /∈ A ∀ n ≥ k}

be the set of those points of A which never return in A after n ≥ k iterates. Observe that
Bk = A ∩ (∩n≥kf−n (X\A)) and that Arec = A\ (∪k≥1Bk). In particular, this shows that Arec is
measurable. It is clear that f−nk(Bk)∩Bk = ∅ for any n ≥ 1, since a point in the intersection would
be a point x ∈ Bk ⊂ A such that fkn (x) ∈ A, and kn ≥ k, contradicting the definition of Bk. For
the same reason, f−nk(Bk)∩ f−mk(Bk) = ∅ for any n > m ≥ 0. Therefore, the sets f−nk(Bk), for
n ∈ N, are pairwise disjoint. They also have all the same measure µ

(
f−nk(Bk)

)
= µ (Bk), because

µ is invariant. This implies that µ (Bk) = 0, because∑
n≥1

µ (Bk) =
∑
n≥1

µ
(
f−nk(Bk)

)
= µ

(
∪n≥1f

−nk(Bk)
)
≤ µ (X) = 1 .

There follows that µ (Arec) = µ (A).

Now, let f : X → X be a continuous transformation of a metrizable topological space X,
and let µ be an invariant Borel probability measure. Assume that (the topology of) X admits a
countable basis (Ui)i∈N. We can apply the above theorem 8.3 to every open set Ui, and this easily
implies that the set of recurrent points has full measure, i.e.

µ (Rec(f)) = 1 .

In particular, since any set of full measure is dense in the support of a Borel measure, we get the
following general result.

Theorem 8.4 (topological Poincaré recurrence theorem). Let f : X → X be a continuous transfor-
mation of a separable metrizable topological space X. The support of any invariant Borel probability
measure µ is contained in the closure of the set of recurrent points, namely

supp (µ) ⊂ Rec(f).

In particular, if f admits an invariant measure µ which is diffuse (i.e. gives positive measure to
any nonempty open set) then the set of recurrent points is dense in X, namely

Rec(f) = X .

Observe that if f is a homeomorphism, then the same applies to Rec(f−1), and the support of
any invariant Borel probability measure is contained in the closure of Rec(f) ∩ Rec(f−1).

If you don’t like the above proof, here is another, perhaps more elementary, of the last statement.

Proof. (of the last statement of theorem 8.4) Assume that the continuous map f : X → X preserves
a diffuse Borel probability measure µ. For each n ≥ 1, let

Rn :=
{
x ∈ X s.t. ∃ k ≥ 1 s.t. d(fk(x), x) < 1/n

}
be the set of “1/n-recurrent” points. It is plain that Rec(f) = ∩∞n=1Rn. The sets Rn are clearly
open. To show that Recf is dense we must therefore show that each Rn is dense, since then the
Baire theorem implies that also their countable intersection is dense. So, take any nonempty ball
B = Br(p) with diameter 2r < 1/n. Its inverse images f−1(B), f−2(B), f−3(B), . . . have all the
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same measure by invariance, which is positive, i.e. µ(B) > 0 (because the measure µ is diffuse).
Since µ(X) = 1, the f−n(B), for n = 0, 1, 2, 3, . . . , cannot be pairwise disjoint. There follows
that there exist k > 0 and n ≥ 0 such that f−(n+k)(B) ∩ f−n(B) 6= 0, and this implies that
B contains a 1/n-recurrent point (for a point x in the intersection has both images fn (x) and
fn+k (x) = fk (fn (x)) in B, hence at distance < 1/n). Since B was arbitrary, this proves that
each Rn is dense, and Baire theorem implies that Rec(f) is dense too.

8.4 Transitivity and minimality

Transitive transformations. Let X be a complete and separable metric space. A continuous
transformation f : X → X is (topologically) +transitive if it satisfies one of the following equivalent
conditions:

i) for any two not-empty open sets U, V ⊂ X there exist a time n ≥ 0 such that fn(U)∩ V 6= ∅
ii) there exists a point x ∈ X such that ωf (x) = X
iii) there exists a residual subset R ⊂ X of points x such that ωf (x) = X

Proof. (of the equivalence) The implications iii) ⇒ ii) ⇒ i) are obvious, since, if ωf (x) = X, then
the trajectory of x visits infinitely often all non-empty open subsets of X. To show that i) ⇒
iii), the fist observation is that condition i) amounts to say that, for all not-empty open set V ,
its orbit

⋃
n≥0 f

−n (V ) is dense, and, moreover, its orbits
⋃
n≥k f

−n (V ) =
⋃
n≥0 f

−n (f−k (V )
)

are also dense for all k ≥ 0. Let (Ui)i∈N be a countable basis for the toplogy f X. The family of⋃
n≥k f

−n (Ui), with k ≥ 0 eand i ≥ 1, is a family of open and dense subsets of X. Its countable

intersection R =
⋂
i∈N
⋂
k≥0

⋃
n≥k f

−n (Ui) is a residual set, and a point x ∈ R has a trajectory
which visits infinitely often all the open sets Ui, i.e. ωf (x) = X.

Also clear is that i) implies that X does not have isolated points (unless it has finite cardinality,
trivial case in which X is a single orbit). This, in turns, implies that O+

f (x)′ = X if x ∈ R.

ex: Prove the implications iii) ⇒ ii) ⇒ i) above.

ex: If f : X → X is +transitive, then NW(f) = X, since the non-wandering set contains the
ω-limit sets of points x ∈ X.

ex: If f : X → X is +transitive, then Rec(f) is a residual set (observe that if ωf (x) = X then
x ∈ ωf (x)).

Transitive homomorphisms. There exists a weaker notion, only meaningful for invertible
transformations. A homeomorphism f : X → X is (topologically) transitive if it satisfies one of the
following three conditions:

i) for any two not-empty open sets U, V ⊂ X there exists a time n ∈ Z such that fn(U)∩V 6= ∅
ii) there exists a point x ∈ X with dense orbit, i.e. such that Of (x) = X

iii) there exists a residual set of points x ∈ X with dense orbits, i.e. such that Of (x) = X

Proof. (of the equivalence) The implications iii) ⇒ ii) ⇒ i) are obvious, since if the full orbit
Of (x) of x is dense, it visits at least once each not-empty open subset of X. To show that i)
⇒ iii), we first observe that condition i) is equivalent to say that the orbit

⋃
n∈Z f

n (V ) of any
not-empty open set V is dense in X. Let (Ui)i∈N be a countable basis for the topology of X . The
family U±i =

⋃
n∈Z f

n (Ui) is therefore a family of dense and open sets. Its countable intersection

R =
⋂
i∈N U

±
i is a residual set, and the complete orbit of any point x ∈ R visits at first once any

of the open sets Ui. Therefore, if x ∈ R then Of (x) = X.
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Observe that f : X → X is a transitive homeomorphism iff f−1 is a transitive homeomorphism.
A transitive homeomorphsms need not be also +transitive. Indeed, it may have no recurrent points
and an empty non-wandering set, provided X is not compact!

It is interesting to observe that transitivity is a kind of “dynamical connectedness”, in the
following precise sense.

Theorem 8.5. A homeomorphism f : X → X is transitive iff X does not contain the disjoit union
of two open invariant not-empty sets.

Proof. The implication⇒ is obvious. To show the reverse implication⇐ , observe that, if U, V ⊂ X
ore two not-empty open setsthen U± =

⋃
n∈Z f

n(U) and V ± =
⋃
n∈Z f

n(V ) are open, not-empty
invariant sets. If U± ∩ V ± 6= ∅, there exist times n,m ∈ Z such that fn(U) ∩ fm(V ) 6= ∅, which
implies fn−m(U) ∩ V 6= ∅.

A consequence is the following useful criterium to decide when a homeomorphism cannot be
transitive.

Theorem 8.6. If f : X → X is a transitive homeomorphism, then all continuous invariant
observable ϕ : X → R is constant.

Proof. Indeed, if ϕ is not constant, then it takes at least two values, say a < b. But the, if
c = (a+ b) /2, both U = {ϕ < c} and V = {ϕ > c} are invariant open disjoint and not-empty
sets.

ex: Give examples of homeomorphisms f : X → X which are transitive but not +transitive.

ex: Show that a homeomorphism f : X → X is +transitive iff is transitive and its non-wandering
set is the whole X (the implication ⇐ is obvious).

ex: It may happen that a transformation f : X → X is +transitive but some iterate fn, with
n > 1, is not. A trivial example is a permutation of a finite set, since some iterate is the identity
transformation. In general, if X is compact, what happens is the following. There exist some
finite covering X = X1 ∪X2 ∪ ... ∪Xk, where k divides n and the ’s a compact sets with nohere
dense intersections Xi ∩ Xj if i 6= j, suah that f (Xi) = Xi+1 mod k and the restrictions fn |Xi
are +transitive. The idea is to chose a point x ∈ X such that ωf (x) = X, and then define
Xi = ωfn

(
f i (x)

)
. . .

Minimal sets. Let f : X → X be a continuous transformation. A closed not-empty K ⊂ X is
minimal if it is +invariant and if it does not contain proper closed +invariant subsets.

The orbit of a periodic point is an example of a minimal set.

If K is minimal, then the orbit of any x ∈ K is dense in K, for otherwise its closure O+
f (x)

would be a proper +invariant closed subset of K. This implies that x ∈ ωf (x), and therefore that
all points of a minimal set are recurrent. If Min(f) denotes the union of all minimal subsets of X,
the inclusions are

Per(f) ⊂ Min(f) ⊂ Rec(f)

Of course, an arbitrary transformation f : X → X may not admit any minimal subsets. This
is the case of a non-trivial traslation x 7→ x+ a of the real line.

If X is compact, we may consider the family C of those subsets C ⊂ X which are closed,
not-empty and +invariant, equipped with the natural partial order given by inclusion “⊂”. The
family is not empty, since it contains X itself. By Zorn lemma, C contains a minimal element K,
which is clearly a minimal set. More generally, we proved the following result.

Theorem 8.7. If a continuous transformation f : X → X admits a compact C ⊂ X such that
f (C) ⊂ C, then it admits at least a minimal subset K ⊂ C.

A consequence is that a continuous transformation f : X → X defined in a compact space X
admits at least one recurrent point (which may be unique), since Min(f) ⊂ Rec(f).
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Minimal transformations. A continuous transformation f : X → X is minimal if it satisfies
one of the following equivalent conditions:

i) all forward orbits O+
f (x) are dense in X

ii) X does not contain a proper close and +invariant subset, and therefore is a minimal set.
Clearly, a minimal transformation if +transitive. If X is a discrete space, minimality implies

that X is made of a single orbit, which may be finite. If X is not dicrete, a minimal transformation
cannot have periodic points.

Minimal homeomorfisms. A homeomorphism f : X → X is minimal if it satisfies one of the
following equivalent conditions:

i) all orbits Of (x) are dense in X
ii) X does not contain a proper close and invariant subset.
Minimal homeomorphisms are transitive. The discussion we made above about minimal sets

may be repeated in this context. In particular, a homeomorphism f : X → X defined in a compact
space X admits at least a minimal set K ⊂ X, which in this case is a closed not-empty invariant
set which does not contain any proper closed invariant subsets.

For translations on a topological group, minimality coincides with topological transitivity.

Theorem 8.8. A topological transitive translation on a topological group is minimal.

Proof. Let G be a topological group, and consider the left translation Lh : g 7→ hg by an element
h ∈ G. For any two elements g, g′ ∈ G and any time n ∈ Z we have hng′ = hng (g−1g′). Therefore,
the orbit of g′ is a right translation of the orbit of g, i.e. OLh(g′) = OLh(g) g−1g′. In particular,
one orbit is dense iff all other orbits are dense.

ex: Give examples of transformations f : X → X such that Min(f) = ∅.

ex: Prove the implications i) ⇔ ii) above in the definition of “minimal transformation”.

ex: Prove the implications i) ⇔ ii) above in the definition of “minimal homeomorphism”.

8.5 Kronecker theorem on irrational rotations

Irrational rotations of the circle. A non-homogeneous version of Dirichlet’s theorem 8.1 was
discovered by Kronecker. In its original formulation32, it says that, given an irrational α, for any
integer Q > 0 and any y ∈ R there exist integers p and q > Q such that

|qα− p− y| < 3/q (8.3)

Let Rα(x + Z) = x + α + Z denotes the rotation of the circle T = R/Z by the irrational angle
α /∈ Q. If we don’t mind about the exact bound 3/q for the error, it says that for all x + Z and
x′ + Z in T (the y above is x′ − x) and any precision ε > 0 there exists a time q > 0 such that
d(Rqα(x+ Z), x′ + Z) < ε. In our language,

Theorem 8.9 (Kronecker, 1884). An irrational rotation of the circle is minimal (i.e. all its orbit
are dense in the circle).

Different proofs are presented in [HW59] (XXIII, Theorems 438, 439 and 440). Here we give
just two.

Proof. Let F ⊂ T be the closure of an orbit of an irrational rotation of the circle. If F is not
the whole circle, then its complementar I = T\K, which is a not-empty open set, is a countable
union of open intervals (arcs of the circle). Let J be (one of) the intervals of I of maximal lenght
(why does it exist?), say |J | > 0. We claim that its images fn(J), with n ∈ Z, are pairwise
disjoint. Indeed, two such intervals fn(J) and fm(J), with n 6= m, cannot coincide, for otherwise

32L. Kronecker, Die Periodensysteme von Funktionen Reeller Variablen, Berliner Sitzungsberichte (1884), 1071-
1080.
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the boundary points would be periodic points of the rotation (which is irrational), and also cannot
have not-empty intersection, for otherwise their union would be an interval of I of bigger lenght.
Since the rotation preserves the lenghts, all fn(J) have the same positive lenght |J |, and this is
impossible because the circle has finite (unit) lenght.

A less abstract proof (with a worse constant than in Kronecker’s statement), along the ideas
of Dirichlet theorem, is as follows.

Proof. Given ε > 0, chose a positive integer Q such that 1/Q < ε. Divide the circle into Q intervals
of lenght 1/Q. By the box principle, at least two of the Q+ 1 points

x+ Z, Rα(x+ Z), . . . , Rqα(x+ Z)

belong to the same interval, say Riα(x + Z) and Rjα(x + Z) with 0 ≤ i < j ≤ Q. Since rotations
are isomeries,

d(Riα(x+ Z), Rj(x+ Z)) = d(Rkα(x+ Z), x+ Z) < 1/Q < ε ,

with 1 ≤ k = j−i ≤ Q. Thus, the rotation Rkα displaces points a (positive) distance < ε. It is clear
then that the images Rnkα (x+Z), with n ≥ 0, pass infinitely often in a ε-neighborhood of each point
x′+Z of the circle. Thus, there exist integers q = nk > Q and p such that |qα− p− y| < 1/Q < ε,
where y = x′ − x.

As explained in [HW59], Kronecker theorem has a nice physical interpretation. It implies that
orbits in a square billard are either periodic, if the angle of incidence of the first hit to the boundary
is a rational multiple of π, or dense in the square, otherwise. This is just the starting point of
modern theory of billards, a major area in dynamical systems.

The theorem has also an “algebraic” side. Observe that the orbit of 0 + Z, the identity of the
abelian group R/Z, is the cyclic subgroup generated by α+ Z. Therefore Kronecker theorem says
that the closed and proper subgroups of R/Z are the finite subgroups.

Orbits of a rotation by an angle α ' π up to time 100 and 10000.

Example of a non-measurable set. If you believe the axiom of choice, you may consider a
set B made of one (exactly one!) point for any orbit of an irrational rotation Rα of the circle.
The images Bn = Rnα(B), for n ∈ Z, are pairwise disjoint and cover the circle. If B, hence all its
images, were Lebesgue-measurable, then∑

n∈Z
|B| =

∑
n∈Z
|Bn| = |∪n∈ZBn| = |R/Z| = 1

since rotations preserve Lebesgue measure, so that |Bn| = |B|. But there exists no size b = |B| ≥ 0
such that

∑
n∈Z b = 1.

ex: Also instructive is to see why rational rotations are not transitive, using theorem 8.6, since
this extends to the higher dimensional torus. If α = p/q is rational, then the function ϕ(x+ Z) =
sin(2πqx) is well defined in the circle R/Z, continuous, non-constant, and clearly invariant under
the rotation Rα.
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Rotations of the torus. Kronecker’s theorem is actually much more general [Kr84]. We say
that the frequencies/numbers ω1, ω2, . . . , ωk are linearly independent over the rationals if the only
rational solution of the equation

n1ω1 + n2ω2 + · · ·+ nkωk = 0

is the trivial solution n1 = n2 = · · · = nk = 0. An important example: the logarithms ωk =
log pk of different primes pk are linearly independent, as follows from the uniqueness of prime
decomposition.

Theorem 8.10 (Kronecker, 1884). Let θ = (θ1, θ2, . . . , θn) ∈ Rn. If θ1, θ2, . . . , θn, 1 are linearly
independent over the rationals, then any orbit

x+ Z θ + Zn

is dense in the torus Rn/Zn.

This means that for any x = (x1, x2, . . . , xn) ∈ [0, 1)n ≈ Tn := Rn/Zn and any precision ε > 0
we can find integers p1, p2, . . . , pn and q ∈ Z such that |qθk − pk − xk| < ε for all k = 1, 2, . . . , n.
Chapter XXIII of [HW59] contains some different proofs.

8.6 Circle homeomorfisms

While studying vector fields on the 2-dimensional torus R2/Z2, Henri Poincaré 33 was led to the
necessity to classify possible dynamics of circle homeomorphisms. A model is that of rotations,
where the dichotomy between closed or dense orbits reflects the rationality of the “rotation angle”.
He discovered an invariant which plays a similar role for generic homeomorphisms.

Homeomorphisms of the circle. A homeomorphism F : R→ R such that F (x+1) = F (x)+1
defines a orientation preserving homeomorphism f : R/Z→ R/Z, according to f(x+Z) := F (x)+Z.
Conversely, a bijection f : R/Z → R/Z is an orientation preserving homeomorfismof the circle if
there exists a homeomorpfism F : R → R such that F (x + 1) = F (x) + 1 (observe that this
condition implies that F is strictly increasing) and f(x + Z) = F (x) + Z. Such F is called lift of
f . Clearly, the lift is not unique, but any two lifts F and G of f differs by an integer constant, i.e.
F (x) = G(x) + n for some n ∈ Z.

For example, a lift of the rotation Rα(x) = x + α + Z is the translation F (x) = x + α. It is
clear that if ε is sufficiently small, then Fε(x) = x + α + ε sin(2πx) induces a homeomorphism of
the circle fε(x+Z) = x+α+ ε sin(2πx) +Z, that may be considered a small variation of the rigid
rotation f0 = Rα.

Rotation number. Let f : R/Z → R/Z be a orientation preserving homeomorphism if the
circle, and let F : R→ R be one of its lifts.

The rotation number of f is the “angle”

ρ (f) := τ (F ) + Z ∈ R/Z (8.4)

where τ (F ) is the translation number of F , defined by

τ (F ) := lim
n→∞

Fn (x)− x
n

(8.5)

where x is an arbitrary point of the line. This makes sense once we prove that the limit exists
and does not depend on the initial point x, and that its class in the circle does not depend on the
particular lift.

For example, the translation number of the translation F (x) = x + α is α, and therefore the
rotation number of the rotation Rα is α+ Z.

The main ingredient of the existence proof is the following fact, of independent importance,
about subaditive sequences.

33H. Poincaré, Sur les courbes définies par les équations différentialles, J. Math. Pures App. Série IV 1 (1885),
167-244.
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Theorem 8.11 (subadditive sequence lemma). Let (an)n∈N be a quasi-subadditive real sequence,
i.e. a sequence such that

an+m ≤ an + am + c

for any n,m ∈ N and some c ≥ 0. Then there exists the limit

lim
n→∞

an
n
∈ R ∪ {−∞} .

Proof. It is clear that existence of the limit limn→∞ an/n is equivalent to existence of the limit
limn→∞ bn/n for the sequence bn = an + c. The sequence (bn) is now subadditive, i.e.

bn+m ≤ bn + bm .

Subadditivity implies bn ≤ nb1. Thus the sequence (bn/n) is bounded above, hence there eixsts
λ = lim infn→∞ bn/n < ∞. Given ε > 0, there exists a natural m such that bm/m < λ + ε.
A generic positive integer as n = km + r, with k a non-negative integer and 0 ≤ r < m. Let
iB = max1≤i<m bi. Subadditivity also implies

bn/n ≤ (bkm + br) /n ≤ (kbm + br) /n

≤ bm/m+ br/n ≤ λ+ ε+B/n

By the arbitrarity of ε, the inequality above implies that lim supn→∞ bn/n ≤ λ. Thus, the limit
limn→∞ bn/n exists and is equal to λ.

Theorem 8.12. The limit τ (F ) in (8.5) exists.

Proof. The lift F and its iterates Fn are increasing homeomorphisms of the real line satisfying
Fn(x+ 1) = Fn(x) + 1 for all x ∈ R. In particular, Fn(x)−x are periodic functions of period one.
This implies that

max
x,x′
|(Fn (x)− x)− (Fn (x′)− x′)| ≤ 1

since, by periodicity, we may compute the maximum inside the unit interval [0, 1], and we know that
Fn is increasing and that the image Fn ([0, 1]) is an interval of unit lenght. Let an = Fn (x)− x.
The above inequality implies that the sequence (an) is quasi-subadditive, i.e.

an+m ≤ an + am + c

for all n,m ≥ 0 and some constant c. Indeed,

Fn+m (x)− x = Fn (Fm (x))− Fm (x) + Fm (x)− x
= Fn (x)− x− Fn (x) + x+ Fn (Fm (x))− Fm (x) + Fm (x)− x
≤ Fn (x)− x+ Fm (x)− x+ 1

so that we may chose c = 1. The theorem follows from theorem 8.11.

Theorem 8.13. The limit τ (F ) in (8.5) does not depend on x.

Proof. We already saw that |(Fn (x)− x)− (Fn (x′)− x′)| ≤ 1. Therefore,∣∣∣∣Fn (x)− x
n

− Fn (x′) + x

n

∣∣∣∣ ≤ 1/n

for all x, x′ and all n. This implies that τ (F ) is independent on the chosen point x.
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Theorem 8.14. The class ρ (f) = τ(F ) + Z does not depend on the lift F of f .

Proof. Two different lifts , say F and G, differ by an integer, i.e. G (x) = F (x)+k for some k ∈ Z.
This implies that Gn (x)− x = Fn (x)− x+ nk and therefore that τ (F ) = τ (G) + k.

Finally,

Theorem 8.15. The rotation number ρ(f) is invariant under topological conjugations.

Proof. Let h : R/Z→ R/Z be a connjugation between the homeomorphisms f and g. If H is a lift of
H and F is a lift of F , then H ◦F ◦H−1 is a lift of g. But the difference

(
H ◦ F ◦H−1

)n
(x)−Fn(x)

is bounded, independently of x and n. Indeed, we may observe that

|
(
H ◦ F ◦H−1

)n | = |H ◦ Fn ◦H−1| , |H (x)− x| and
∣∣H−1 (x)− x

∣∣
are bounded by a constant which does not depend on x, and use triangular inequality. This implies
that τ (F ) = τ

(
H ◦ F ◦H−1

)
, and therefore that ρ (f) = ρ (g).

Of course, the rotation number of a rotation Rα(x+ Z) = x+ α+ Z is α itself.

ex: Show that ρ (fq) = q · ρ (f) + Z (observe that, if F is a lift of f , then Fn is a lift of fn).

Poincaré classification theorem The rotation number contains the following information
about the dynamics of an homeomorphism.

Theorem 8.16 (Poincaré). The rotation number ρ (f) is rational iff the homeomorphism f admits
periodic points.

Proof. (⇐) If F q(x) = x + p with integers q ≥ 1 and p, then Fnq (x) − x = np for all n, and
therefore τ (F ) = p/q.

(⇒) Observing that ρ (fq) = q · ρ (f) mod Z, it is sufficient to prove that ρ (f) = 0 implies that
f has a fixed point. Now, if f does not have fixed points and F is a lift of f , then the function
F (x)− x has values in R\Z. But the image of the real line by a continuous function is an interval.
Therefore, there exists a lift F such that F (x) − x takes values in the open unit interval (0, 1).
Since F − id is periodic with period one, its maximum and minimum are both different from 0 and
1. Thus, there exists ε > 0 such that ε < F (x) < 1 − ε for all x ∈ [0, 1]. IIterating, this implies
nε < Fn(0) < n (1− ε) and therefore that τ (F ) is not integer.

Indeed, one can also prove tha if ρ (f) is rational then all periodic points share the same period.
Thus, in order to understand the structure of orbits of a homeomorphism with rational rotation
mumber is sufficient to study the case of zero rotation number, i.e. homeomorphisms with a fixed
point. If C = Fix (f) is the set of fixed points (which may be any compact subset of the circle),
then f induces hoemomorphism in any connected component I of the open set R/Z\C. Images
fn (x) of points x ∈ I ⊂ (R/Z) \C converge to points in ∂I ⊂ C when n→ ±∞.

The dynamics of homeomorhisms with irrational rotation number is described by the following
result.

Theorem 8.17 (Poincaré). Let f : R/Z→ R/Z be a orientation preserving homeomorphism with
irrational rotation number. Then

i) either f is minimal, i.e. the orbit of all points are dense in the circle,
ii) or there exist en invariant compact subset K ⊂ R/Z, perfect and with empty interior (i.e.

a Cantor set) such that the ω-limitset of all points of the circle is equal to K.
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Proof. By Zorn lemma, the family of not-empty compact invariant sets of the circle, equipped
with the natural partial order given by inclusion, admits a minimal set K. By minimality, the orbit
of any point of K is dense in K. The boundary ∂K and the derived set K ′ are also compact and
invariant, so they must be empty or coincide with K itself. Since f has no fixed oints, K cannot
be finite. By the Bolzano-Weierstrass theorem K ′ 6= ∅, hence K ′ = K, i.e. K is perfect.

Now, if ∂K = ∅, then K = R/Z and therefore f is minimal. If, otherwise, ∂K = K, then
K has empty interior. Let x ∈ (R/Z) \K let I be the connected compontnet of (R/Z) \K which
contains X. The images fn (I) are pairwise disjoint (beacause F has no fixed points), and therefore
diam (fn (I))→ 0 when n→∞. If x′ ∈ ∂I ⊂ K, then ωf (x′) = K, and the previous observation
implies that also ωf (x) = K, because d (fn(x), fn(x′)) ≤ diam (fn (I)) → 0 when n → ∞. In
particular, this shows that the minimal set K is unique.

More interesting is the following result, also due to Poincaré.

Theorem 8.18 (Poincaré classification theorem). Let f : R/Z→ R/Z be a orientation preserving
homeomorphism with irrational rotation number ρ.

i) If f is minimal, then it is topologically conjugated to the rotation Rρ.
ii) If f is not minimal, then the rotation Rρ os a factor of f .

Indeed, if f is minimal we may construct a conjugation H between one orbit of f and one orbit
of Rρ, and then define the full conjugation h by continuity, using the fact that orbits are dense.
This is possible because orbits of f have the “same order” han orbits of a rotation. If f is not
minimal, it is possible o construct a semiconjugation h : R/Z → R/Z such that R/Z is the image
h (K) of the minimal set of f . Somehow, the semiconjugation “forgets” (R/Z) \K, the wandering
set of f .

This was a starting point of a beautiful story, starting with Denjoy in the 30’s of the last century,
and due to mathematicians like Michaël Hermann, Adrien Douady, Jean-Christophe Yoccoz, . . . See
[MS93].
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9 Chaos

9.1 Sensitive dependence and mixing

Regular points and loss of memory. Iterations of a continuous transformation f : X → X
of a metric space divide in a natural manner the phase space into two classes of points, depending
whether orbits are stable or unstable under small perturbations.

The point x ∈ X is regular if the family {fn}n≥0 is equicontinuous at x, i.e. if for all ε > 0
there is a neighborhood B of x such that for all x′ ∈ B and all times n ≥ 0

d (fn (x) , fn (x′)) < ε

So, one orbit for each ε-ball contain informations on orbits of all regular points. In particular, if X
is compact and all point is regular, we only need a finite number of orbits to describe the dynamics
up to an error ε.

The point x ∈ X is not regular if there exists δ > 0 such that in any neighborhood B of x there
are points existem x′ ∈ B such that

d (fn (x) , fn (x′)) > δ

for some time n ≥ 1. This means that f has “sensitive dependence on initial conditions” near x.
In some sense, trajectories of points nearby x “lose their memory” of x. If the set of non-regular
points is compact, the δ above may be chose uniformly for all of the points. This suggest the
following definition.

Equicontinuous homeomrphisms. Let f : X → X be a equicontinuous homeomorphism of a
compact metric space (X, d), so that for all ε > 0 there exists a δ > 0 such that d(x, y) < δ implies
d(fn(x), fn(y)) < ε for all times n ∈ Z. Define

d∞(x, y) := sup
n∈Z

d(fn(x), fn(y)) .

It is cleatr that d∞ is a metric on X, and that f is an isometry of (X, d∞). Thus, equicontinuous
homeomorphisms of compact metric spaces behave as isometries.

Sensitive dependence on initial conditions. The continuous transformation f : X → X
has sensitive dependence on initial conditions if all points are uniformly not-regular, i.e. if there
exists δ > 0 such that for all x ∈ X and all neighborhoods B of x, there exist x′ ∈ B and a time
n ≥ 1 such that

d (fn (x′) , fn (x)) > δ

In other words, no matter how small our sensibility ε is, in a ε-neighborhood of any point x there
is another point x′ such that the futures of x and x′ is uncorrelated, being at macroscopic (relative
to ε) distance δ after some time n. Thus, a small change in the initial conditions may produce a
large change at later times, a phenomenon popularized as “butterfly effect” by Edward Lorenz.

Of course this phenomenon is unexpected when the phase space is compact, for otherwise there
is plenty of space for orbits to diverge from each other. Observe also that sensitive dependence is
not compatible with preserving distances, hence isometries (like rotations of a torus) cannot have
such a property. Thus, in order to display this kind of chaotic behaviour, a map must somehow
“stretch” and “fold”, as our examples below will show.

Chaos. The combination of sensitive dependence on initial condition and a dense set of periodic
points is usually referred as chaos 34.

34The Greek word χαoς, which we may translate as “abysm”, contains the same root χα- (and probably comes
from) of the verbs χαινειν and χασχειν, whch mean “open-itself”, “open the mouth” or “yawn” (cfr. χασµα, i.e.
“chasm”). It has been used in some greek cosmogonies to mean “the desordered mixture of elements preceeding the
formation of the χoσµoσ, the ordered universe”.
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Julia and Fatou sets. The above dichotmy is particularly meaningful for endomorphisms of
the Riemann sphere C = C ∪ {∞}, rational transformations f : C→C

z 7→ f(z) =
p(z)

q(z)

where q and q are polynomials. A point z ∈ C is regular if it admits a neighborhood U such that
{fn |U }n≥1 is a “normal family” (i.e. every sequence of elements of the family admits a locally
uniformly convergent subsequence).

The set F ⊂ C of regular points, which is an open subset of the Riemann sphere, is called Fatou
set. The complementar set, the compact J = C\F , is called Julia set. The Julia set is where the
interesting, i.e. desordered, dynamics takes place.

For example, if f(z) = zn, then the Julia set is the unit circle S. For perturbations, like
for example f(z) = z2 + c, the Julia set becomes a very irregular curve, typically of Hausdorff
dimension > 1, or a “dust” like a Cantor set.

The investigation on the dynamics of rational mapst starded at the beginning of the last
century (1918-19) with Gaston Julia e Pierre Fatou. The contemporary theory, due essentially
to sophisticated ideas in complex analysis, is one of the greatest successes of the modern theory of
dynamical systems. A great introduction is in a famous lectures notes by John Milnor [Mi91].

Topological mixing. A continuous map f : X → X is topologically mixing if for any two
not-empty open sets U, V ⊂ X there exists a time n ≥ 0 such that for al times k ≥ n

fk(U) ∩ V 6= ∅

This definition captures the idea that the future fk (U), with k ≥ n, of any open set is “asympthot-
ically independent” on its present, since it intersets stably all other not-empty open set V .

It is clear that a topologically mixing map is also + transitive. In particular, if f is topologically
mixing then NWf = X and ωf (x) = X is a generic property.

Theorem 9.1. A topologically mixing map of a non trivial metric space has sensitive dependence
on initial conditions.

Proof. Indeed, let U and V be two disjoint open sets at distance at least 2δ > 0 (which exist if X
contains at leat two distinct points). Given x ∈ X, the orbit of any neighborhood B os x intersects
any not-empty open set starting from some time n ≥ 0. This easily implies, by the triangular
inequality, that there exists a point x′ ∈ B such that d (fn (x′) , fn (x)) > δ.

In particular, an isometry (as a torus rotation) cannot be topologically mixing.

ex: Does there exist a minimal (hence topologically transitive) homeomorphism which is not
topologically mixing?

ex: Does there exist a topologically transitive map which is nor minimal neither topologically
mixig?

ex: (difficult) A continuous map f : X → X is weakly mixing if the product map f×f : X×X →
X ×X, defined by

(x, x′) 7→ (f (x) , f (x′))

is topologically mixing. Show that a weakly mixing map of a non-trivial space X (i.e. which
contains at least two points) has sensitive dependence on initial conditions. Show that all iterates
fn of a weakly mixing map of a compact space are +transitive. Show that

mixing ⇒ weak mixing ⇒ + transitive

and give examples which show that the reverse implications are false.
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Tent map. One of the paradigms of chaotic maps is the tent map T : [0, 1]→ [0, 1], defined by

T (x) =

{
2x if x < 1/2
2− 2x if x ≥ 1/2

Cobweb diagram of the tent map.

Iterations of the tent map are simple, since T is piecewise affine, and compositions of affine
maps are affine maps. Indeed, it is clear (and not difficult to prove by induction) that in any
dydadic interval as Ik,n =

[
k
2n ,

k+1
2n

]
, with k = 0, 1, 2, ..., 2n − 1, the iterate Tn is given by

Tn (x) =

{
2nx+ k if k is even
−2nx+ k + 1 if k is odd

In particular, Tn is a strictly increasing or decreasing bijection of Ik,n onto [0, 1]. The fixed
point theorem then implies that Tn has exactly one fixed point in each of these intervals Ik,n
(which is repelling since the modulus of the derivative of Tn is 2n > 1, and only coincides with
one of the boundary points when k = 0), and therefore the cardinality of n-periodic points is
Pn(T ) = card(Pern(T )) = 2n.

Moreover, since any not-empty open interval U ⊂ [0, 1] contains one of the dyadic intervals
Ik,n, if n is sufficiently large, this says that periodic points are dense in the interval.

Finally, the tent map is topologically mixing. Indeed, since any not-empty open set U ⊂ [0, 1]
contains one of the Ik,n, its image under Tn is Tn (U) = [0, 1], and, a fortiori, T k (U) = [0, 1] for
all times k ≥ n because T is onto. This impies that T k (U) ∩ V 6= ∅ for all times k ≥ n and
any other not-empty open set V ⊂ [0, 1]. Thus, there exists a residual set of points x such that
ωf (x) = [0, 1], i.e. with essentially unpredictably trajectory.

ex: Show that h : x 7→ sin2 (πx/2) is a topological conjugation between the tent map T and the
transformation f4 : [0, 1] → [0, 1] of the quadratic family, defined by f4 (x) = 4x (1− x). This
show that f4 has the same properties than T , e.g. it is topologically mixing and has a dense set
of periodic points. Moreover, and this is surprising, this also provides explicit formulae for the
trajectories of f4. Indeed, if the initial condition is x0 = sin2(πθ), then xn = fn4 (x0) is given by
xn = sin2(2nπθ).
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ex: Discuss also the dynamics of the map S : [0, 1]→ [0, 1] defined by

S(x) =

{
2x if x < 1/2
2x− 1 if x ≥ 1/2

Observe that S is not continuous, but it is not much different from the tent map.

9.2 Expanding maps of the circle

The obvious way to force sensitive dependence on initial conditions is “stretching”, for example
dilating distances at least along some directions, and “folding”, for example, taking quotients.

Expanding maps. A continuous transformation f : X → X of a metric space is expanding if
there exist λ > 1 and ε > 0 such that for all x, x′ ∈ X at distance d(x, x′) < ε we have

d(f(x), f(x′)) ≥ λ · d(x, x′)

This condition, which looks like an opposite of a contraction, is a local condition, since otherwise
compact spaces would not admit expanding maps with large ε. On the other side, it is precisely
in compact phase spaces X that stretching induces chaotic orbits, since there is not enough space
to escape, and divergent trajectories are forced to come back, eventually.

The mere existence of expanding maps also implies strong topological restrictions on the pos-
sible phase spaces. If X is a manifold, then its universal cover must be Rn, and even then, its
fundamental group cannot be arbitrary. For example, between all the orientable compact surfaces,
only the torus R2/Z2 admits expanding transformations!

ex: Give examples of expanding transformations of R, of R/Z and of R2/Z2.

ex: Can an expanding map of a compact space be an homeomorphism? The answer is yes if the
space is finite, and an example is not so difficult. On the other side, one can show (but it is not
easy!) that an infinite compact space does not admits expanding homeomorphisms.

Decimal expansion. The most famous expanding map is of course “multiplication by 10”, the
circle map E10 : R/Z→ R/Z defined by

E10 (x+ Z) = 10 · x+ Z

If x = 0.x1x2x3 . . . , with xn ∈ {0, 1, 2, ..., 9} is the representation of x ∈ [0, 1) in base 10, then

E10(0.x1x2x3 · · ·+ Z) = 0.x2x3x4 · · ·+ Z

Periodic and pre-periodic points, which correspond to rationals, are dense.
If the circle T = R/Z is equipped with the standard metric, it is clear that if 0 < d(x, x′) < 1/20

then d(E10(x), E10(x′)) = 10 · d(x, x′). Therefore, E10 is expanding.
Sensitive dependence on initial conditions can also easly recognized. Indeed, if 0 < d(x, x′) <

1/2 · 10−n, then d(En10(x), En10(x′)) = 10n · d(x, x′) . Therefore, for all ε > 0 and all x ∈ R/Z, there
exist another point x′ ∈ R/Z and a time n ≥ 0 such that

d(x, x′) < ε e d(En10(x), En10(x′)) > 1/4 .

It is also clear that for any not-empty interval I ⊂ R/Z, there exists a time n ≥ 0 such
that Ek10(I) = R/Z for all times k ≥ n (it is sufficient to observe that I contains some interval
J = [k/102, (k+1)/10n] for n sufficiently large, and that fn(J) = R/Z). Thus, E10 is topologically
mixing.

Le α = α1α2 . . . αn be a finite word in the letters of the alphabet {0, 1, 2, ..., 9}. There esists a
residual set of points x ∈ R/Z ≈ [0, 1) such that their base 10 representation contains the word α
infinitely often (in the sense that, if x = 0.x1x2x3 . . . , there exist an infinity of times k ≥ 0 such
that xk+1xk+2 . . . xk+n = α1α2 . . . αn). Moreover, since finite words are countable, there exists a
residual set of points x ∈ R/Z ≈ [0, 1) such that their base 10 representation contains all finite
words in the alphabet {0, 1, 2, ..., 9} infinitely often. This means that a “generic” infinite book
contains all the possible finte books infinitely often! More is true, as showed by Émile Borel (see
the paragraph on normal numbers below).
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ex: Give example of points in the residual sets described above.

Linear expanding maps of the circle. There is, of course, nothing special with the number
10 used above, the number of fingers in our hands. A standard expanding map of the interval is a
map EN : R/Z→ R/Z, defined by

x+ Z 7→ Nx+ Z
where N ∈ Z an integer such that |N | > 1. It is expanding, topologically mixing and has sensitive
dependence on initial conditions, and have dense and countable set of periodic points. Proofs are
just a rewriting of the above proofs that we gave for N = 10.

The map f is a factor of the Bernoulli shift over an alphabet made of N letters, and the set
where the semi-conjugation fails to be one-to-one is small (it is made of rationals).

Together with periodic orbits and dense infinite orbits, such maps also admit more complicated
orbit closures. For example, the expanding map with N = 3 clearly preserves the Cantor set
K, thought as a subset of the circle (i.e. with the points 0 and 1 identified), i.e. EN (K) ⊂ K,
and the restriction f |K : K → K is clearly topologically mixing. Thus, there exist orbits of
EN : R/Z→ R/Z which are dense in K.

Non-linear expanding maps of the circle. We now consider a generic, not necessarily linear,
expanding map g : R/Z→ R/Z of class C1, i.e. such that any of its lifts G : R→ R is continuously
differentiable. Being G′ periodic with period 1, there exists λ > 1 such that |G′(x)| > λ for all
x ∈ R, and G′ does not change sign. In particular, the degree of g has absolute value strictly bigger
than one, since

|deg(g)| = |G(1)−G(0)| =
∣∣∣∣∫ 1

0

G′(x) dx

∣∣∣∣ =

∫ 1

0

|G′(x)| dx >
∫ 1

0

λ dx > 1.

Theorem 9.2. Any expanding map g : R/Z → R/Z of class C1 and degree deg(f) = N is
topologically conjugated to the standard expanding map EN : x+ Z 7→ Nx+ Z.

Proof. For simplicity, we assume that G is increasing, i.e. that N > 1. The idea is to first define a
conjugation between the pre-images of a fixed point, and then extend it to the whole circle using
the facts that such pre-images are dense.

Let xik = i/λk, with i = 0, 1, ..., λk − 1. Then EN (xik) = xi
′

k−1, where i′ is the unique integer

between 0 and Nk−1 − 1 such that i = i′ mod Nk−1. Let p be the fixed point of G, a lift of g.
Since G is strictly increasing and G(p+ 1) = p+N , there exist p = y0

1 < y1
1 < ... < yN−1

1 < p+ 1
such that g(yi1) = p + i. Inductively (in k) we define the points yik, with i = 0, 1, ..., Nk − 1 such
that

yik−1 = yNik < yNi+1
k < ...yNi+N−1

k < yNi+Nk = yi+1
k−1

and G(yik) = yi
′

k−1, where i′ is the unique integer between 0 and Nk−1 − 1 such that i = i′ mod

Nk−1. For any interval Iik = π
([
yik, y

i+1
k

])
we have gk(Iik) = R/Z (remeber that π : R → R/Z is

the projection of the line onto the circle). Since g is expanding, i.e. there exists λ > 1 such that
|G′ (x)| > λ for all x, any of these intervals has lenght

∣∣Iik∣∣ < λ−k, and therefore the family of

points
{
yik
}
k∈N, i=0,1,...,Nk−1

is dense in [p, p+ 1]. The function

H :
{
yik
}
k∈N, i=0,1,...,Nk−1

→
{
xik
}
k∈N, i=0,1,...,Nk−1

defined by H(yik) = xik is strictly monotone. The density of the points
{
yik
}

and
{
xik
}

allows to
extend H as a homeomorphism H : [p, p+ 1] → [0, 1], which in turn defines a homeomorphism
h : R/Z→ R/Z. Finally, one easily see that EN ◦ h = h ◦ g.

In particular, given an expanding map of the circle g : R/Z → R/Z of class C1, all maps
sufficiently near to g in the C1 topology is topologically conjugated to EN . This follows from the
fact that expansiveness is an open condition, and that the degree is locally constant. Therefore,

Theorem 9.3. Continuously differentiable expanding maps of the circle are C1-structurally stable.
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9.3 Symbolic dynamics

Bernoulli shift. The abstract archetypal mixing map is the (one-sided) Bernoulli shift

σ : Σ+ → Σ+

over a finite alphabet A ≈ {1, 2, ..., N} made of N > 1 letters, where Σ+ = AN.
Any open not-empty set U ⊂ Σ+ contains some centered cylinder Cα ⊂ U , and, if |α| denotes

the lenght of the finite word w, it is clear that σn (Cw) = Σ+ for all times n ≥ |α|. A fortiori,
σn (U) intersect any other not-empty open set for such large times n. Thus, σ is topoligically
mixing. Being mixing, it is +transitive, and therefore a generic point has a dense orbit.

Indeed, in this case it is quite simple to exhibit points with dense orbits. Since the set of
finite words in the alphabet is countable, we may enumerate finite words as α1, α2, α3, . . . , and
then observe that the trajectory of the point x = α1α2α3 . . . passes through all centered cylinders,
hence through all not-empty open sets.

Less obvious is to give example of points x such that ωσ (x) = Σ+, which is also a generic
property. An example is

x = α1α1α2α1α2α3α1α2α3α4α1α2α3α4α5 . . .

whose trajectory visits all centered cylinders infinitely often
As we already saw, the Bernoulli shift also have dense periodic points, since any cylinder Cα

contains the periodic point ααα . . . . In particular, the Bernoulli shift is chaotic. Also, the fixed
points of σn have cardinality Pn(σ) = card(Pern(σ)) = Nn.

As for expanding maps, there are points whose orbit is dense in a proper subset of Σ+. For
example, the restriction of the shift on (A\{k})N ⊂ Σ+, formed by infinite words which do no use
the letter k ∈ A (or any other letter), is topologically mixing (we may just repeat the discussion

above). Therefore, a generic point x ∈ (A\{k})N has an orbit which is dense inside (A\{k})N.
More examples are given by “subshifts”, defined below.

ex: Give examples of points x ∈ Σ+ such that ωσ (x) = Σ+.

ex: Give example of not pre-periodic points x ∈ Σ+ tais such that the closure of the orbit O+
σ (x)

is a proper subset of Σ+.

ex: Give example of points x ∈ Σ+ which are not recurrent.

Full shift. Let Σ = AZ be the space of bi-infinite words x = . . . x−2x−1x0x1x2 . . . in the letters
of the finite alphabet A = {1, 2, ...,Ω}, equipped with the product topology. Verify that the (full)
shift σ : Σ→ Σ, defined by (σ (x))k = xk+1, is a homeomorphism. Find the cardinality of Fix (σn),
and prove that periodic points are dense. Show that σ : Σ→ Σ is topologically mixing.

Subshifts. The restriction of the shift σ to a closed invariant subset X of Σ or Σ+ is called
subshift, or also symbolic dynamical system.

Given any family F of finite words, finite or not, one can define a subset ΣF ⊂ Σ as the set
of those infinite words which do not “contain” any of the finite words φ ∈ F (an infinite word
x = x1x2x3 . . . contais the finite word φ = φ1φ2 . . . φk if there exists a time n ≥ 0 such that
xn+1xn+2 . . . xn+k = φ1φ2 . . . φk). It is clear that XF is σ-invariant. Also, since cylinders are
clopen balls, such ΣF is also closed, being an intersection of closed sets. Indeed, it is easy to see
that any closed invariant subset of Σ is of this type: it is defined by the family of “forbidden”
words.

If the set F of forbidden words is finite, then the restriction of σ to ΣF or Σ+
F is called (full or

one-sided) subshift of finte type.
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Topological Markov chains. The simplest way to produce invariant subsets uses trasition
matrices, an idea which comes from the theory of Markov chains in probability. Let A = (aij) be
a “transition matrix”, i.e. a N ×N matrix with entries 0 or 1. Let

Σ+
A :=

{
x = x1x2x3 · · · ∈ Σ+ such that axnxn+1

= 1 ∀ n ≥ 0
}
.

It is clear that σ
(
Σ+
A

)
⊂ Σ+

A. The restriction

σA := σ
∣∣∣Σ+
A

: Σ+
A → Σ+

A

is called topological Markov chain. The idea is that the letters of the alphabet represents the
possible states of a system, and transition from the state xn = i at time n to the state xn+1 = j
at time n+ 1 is possible iff aij = 1. Thus, a topological Markov chain is a subshift of finite type,
where the set of forbidden words is made by words of lenght two, namely F = {ij s.t. aij = 0}.

A finite word (or “block”) α = α1α2 . . . αn is admissible if aαkαk+1
= 1 for all k = 1, 2, ..., n−1,

i.e. if it is a piece of an infinite word of Σ+
A. The set of admissible finite words is also called

language, with an obvious analogy.
The relative topology on Σ+

A is geneated by the intersections of centered cylinders Cα ⊂ Σ+

with Σ+
A, which are empty if α is not an admissible word. With abuse of language we will still

denote by Cα such non-empty intersections, and call them “admissible cylinders”.

Counting words. Let σA : Σ+
A → Σ+

A be a topological Markov chains defined by the transition
matrix A. Here we count admissible words and periodic points.

It is useful to introduce a Markov graph GA, whose vertices are the letters/states of the alphabet
A ≈ {1, 2, . . . , N}, with oriented edges from i to j whenever aij = 1. Admissible words are therefore
walks/paths, i.e. finite sequences of consecutive letters joined by the edges of the graph.

Let Wn(ij) be the cardinality of admissible words of lenght n+ 1 which start with the letter i
and end with the letter j (we omit any reference to the transition matrix to simplify the notation).
This the number of different walks/paths of lenght n+ 1 in GA joining i to j. The key observation
is the following.

Theorem 9.4. The number Wn(ij) is equal to the ij-entry of the n-th power of the transition
matrix, i.e.

Wn(ij) = (An)ij .

Proof. This is obvious when n = 1, since Wij(1) = aij , and follows easily by induction in the
general case. Indeed, to get an admissible word of lenght n + 1 starting from i and ending with
j, we must attach, to an admissible word of lenght n starting with i and ending with some k, one
more letter j, and this is possible provided akj = 1. By the inductive hypotesis, this number is

Wn(ij) =
∑
k

Wn−1(ik)W1(kj) =
∑
k

(An−1)ik akj = (An)ij .

In particular, when i = j we are counting the fixed points of σnA. Hence, summing over all i’s,
we get

Theorem 9.5. The cardinality of n-periodic points of a topological Markov chain defined by the
tansition matrix A is

Pn(σA) = tr(An) .
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Asymptotic growth of walks. Also interesting is estimate the asymptotic growth of the number
of walks in the graph. Let Wn be the cardinality of admissible words of lenght n+ 1, i.e. of walks
of lenght n+ 1 in the directed graph GA. As follows from 9.4, this number is

Wn =
∑
ij

Wn(ij) =
∑
ij

(An)ij = ‖An‖1

(since powers of the transition matrix also have non-negative entries, thus this sums coincides
with the 1-norm of the matrix An). Also, since the 1-norm in the algebra of square matrices is
sub-multiplicative, we see that

Wn+m ≤Wn ·Wm .

Thus, these numbers grow at most exponentially, since their logarithms are sub-additive. This
implies that we may define an exponential rate of growth (of the Markov chain defined by A),
according to

w(σA) := lim
n→∞

1

n
logWn

This number may be estimated using the Perron-Frobenius theorem, which implies that W (n)
grows like ∼ λn, if λ is the largest eigenvalue of A. Alternatively, one can use Gelfand’s formula
and deduce that w is the spectral radius of A, i.e. the maximal modulus of its eigenvalues. It turns
out that this number is the “topological entropy” of the topological Markov chain, to be defined
later.

Irreducible and transitive Markov chains. The topological Markov chain σA : Σ+
A → Σ+

A

is irreducible if for any two states i and j there exist a time n ≥ 1 (depending on i and j) such
that the ij entry of the n-th power of A is not zero, i.e. (An)ij 6= 0. This means that there exist
admissible words starting from any i and ending to any j. Equivalently, this means that the graph
GA is “strongly connected”, i.e. it admits paths joining any two vertices i and j (but the lenght of
these paths depend on the vertices).

Theorem 9.6. An irreducible topological Markov chain is topologically transitive.

Proof. Let Cα and Cβ be two admissible cylinders, defined by the admissible words α = α1α2 . . . αi
and β = β1β2 . . . βj . Since A is irreducible, there exist a time n such that the αi-β1 entry of the
matrix An is non-zero. This means that there exists an admissible word γ, of lenght n−1 (possibly
empty if n = 1), such that αiγβ1 is an admissible word. But then also αγβ is admissible. Since
clearly Cαγβ ⊂ Cα and σn+i−1(Cαγβ) = Cβ , we see that σn+i−1

A (Cα)∩Cβ contains Cβ , hence it is
not empty.

The topological Markov chain σA : Σ+
A → Σ+

A is transitive (or aperiodic) if there exists a time
n ≥ 1 such that all the entries of An are striclty positive. Thus, any two states i and j can be joined
by an admissible path of lenght n. It is clear that this implies that each row and each column of
A has at least a non-zero entry, for otherwise An = AAn−1 = An−1A would have a zero entry (if
you think about admissible paths this is obvious). This implies, by induction, that all the entries
of Ak are strictly positive whenever k ≥ n. Therefore, any two states of a transitive topological
Matkov chain are the initial and final letter of admissible words of any lenght ≥ n. Equivalently,
any two vertices i and j can be joined by a path in GA of any lenght ≥ n.

Clearly, a transitive Markov chain is irreducible, but the converse is false.

Theorem 9.7. A transitive topological Markov chain is topologically mixing and has dense periodic
points.

Proof. The same proof as above, with a uniform value of n which works for all possible pairs αn-
β1, shows that a transitive Markov chain is mixing. Moreover, any admssible cylinder Cα contains
an admissible cylinder Cαβ with some admissible word αβ of lenght n as above, and such cylinder
contains the admissible periodic point αβαβαβ . . . .
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ex: The Markov chain defined by the matrix E with all entries equal to one is the Bernoulli shift.
Compute the quantities Wn(ij), Wn, and Pn(σE) and w(σE).

ex: Consider the topological Markov chains defined by the transition matrices

A =

(
1 1
0 1

)
B =

(
1 1
1 0

)
C =

(
0 1
1 0

)
D =

(
1 0
0 1

)
Compute the number Pn of n-periodic points and the number Wn of different words of lenght n+1.
Are these topological Markov chains irrreducible? Are they transitive?

ex: Prove (along the lines suggested above) that if all the entries of the n-th power An of.
transition matrix A are positive, then also all the entries of Ak are positive, whenever k ≥ n.

Prime walks theorem. Since Pn = Pn(σA) counts the number of closed walks of lenght n
in the directed graph GA, it can be regarded as a geometric object. Cyclic permutations on the
vertices of a closed walk produce other “geometrically equivalent” walks, thus define the same
closed curve p of lenght |p| = m such that m | n. We may therefore consider the cardinality

Πn := card{closed curves p s.t. |p| = n}

of prime closed walks of lenght n. Thus,

Pn =
∑
m|n

mΠm

and therefore, by Möbius inversion formula (see for example [HW59] theorem 266),

nΠn =
∑
m|n

µ(m)Pn/m (9.1)

where µ(n) is the Möbius function (which is equal to 1 if n is a square-free integer with an even
number of prime factors, to −1 if n is a square-free integer with an odd number of prime factors,
and zero otherwise). The Perron-Frobenius theorem implies that a transition matrix A has a
positive simple eigenvalue λ1 with is strictly larger than the modulus |λk| of all other eigenvalues
λ2, λ3, . . . . In particular, the spectral radius of A is ρ = λ1. There follows from theorem 9.5 that

Pn = trAn = ρn + o(ρn)

for large n. The leading term in the sum (9.1) is when m = 1, and others are smaller, since

nΠn = Pn +
∑

m|n ,m≥2

µ(m)Pn/m = ρn +O
(
ρn/2

)
.

Finally, the “prime walks theorem” can be stated as

Πn ∼
ρn

n
.

It is evident the analogy with the “prime number theorem”, which says that the cardinality of
prime numbers smaller than x is asymptotic to π(x) ∼ x/ log x.

Deep generalizations have been found by Parry and Pollicott 35 36 and use, as expected, so-
phisticated methods of analytic number theory, starting from zeta functions.

35W. Parry, An analogue of the prime number theorem for shifts of finite type and their suspensions, Israel
Journal of Mathematics 45 (1983), 41-52.

36W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of axiom A flows, Annals
of Mathematics 118 (1983), 573-591.
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Coding. Symbolic dynamical systems are abstract models for dynamical systems. One of the
central idea in dynamical systems is indeed to “code” an actual map f : X → X with a symbolic
system.

A possible strategy is the following. We divide tha phase space X into a finite number of
disjoint pieces

X = B1 ∪B2 ∪ · · · ∪BN
The trajectory of any point x ∈ X visits the different pieces according to some pattern, hence
defines an “itinerary”, which is the infinite word h(x) = x0x1x2 . . . of letters in the alphabeth
A = {1, 2, . . . , N} defined according to xn = k iff fn(x) ∈ Bk.

We define the transition matrix A = (aij) such that aij = 1 if Bj ⊂ f(Bi) and aij = 0
otherwise. It is clear that possible histories of points of X belong to Σ+

A, so that h(X) ⊂ Σ+
A. Since

fn(f(x)) = fn+1(x), if h(x) = x0x1x2 . . . is the itinerary of x, then the itinerary of f(x) is

h(f(x)) = x1x2x3 · · · = σ+
A(x0x1x2 . . . ) = σ+

A(ψ(x)) .

That is, the coding map intertwines between f and σ+
A , i.e.

σA ◦ h = h ◦ f .

If it happens to be surjective, it defines a semi-conjugation. In general, the coding map h is neither
injective nor surjective. On way to get more admissible itineraries is to include boundaries (when
this makes sense) into the definition of the Bk’s, thus allowing not-empty (but of zero measure)
intersections between the pieces of the “partition”.

An alternative, is to look for a semi-conjugation in the opposite direction. If f is sufficiently
chaotic, one may hope that to any itinerary x0x1x2 · · · ∈ Σ+

A there corresponds a unique point

{x} =

∞⋂
n=0

f−n (Bxn)

of the phase space. This would give a map ` : Σ+
A → X . . .

Binary expansion. Consider the multiplication by two map f : [0, 1]→ [0, 1], defined by f(x) =
{2x}. The natural partition is given by B0 = [0, 1/2) and B1 = [1/2, 1]. Since f(B0) = [0, 1) and
f(B1) = [0, 1], the transition matrix has all entries equal to one: all transitions are allowed. The
itinerary of any point x ∈ [0, 1] defines a sequence x1x2x3 . . . of 0’s and 1’s such that fn(x) ∈ Bxn .
It is clear that we can recover the point as

x = 0.x1x2x3 · · · =
x1

2
+
x2

22
+
x3

23
+ . . .

Thus, the itinerary is a binary representation of the point (one of the two, if the point is ra-
tional). Vice-versa, to any sequence x1x2x3 . . . of 0’s and 1’s we may associate the number
x = 0.x1x2x3 · · · =

∑∞
k=1 xk/2

k.

Golden ratio shift. Consider the golden ratio map f : [0, 1]→ [0, 1], sending x to the fractional
part of γx, i.e. f(x) := {γx}, where γ = (1 +

√
5)/2 ' 1.618 . . . is the Greeks’ ratio. Consider

the partition given by B0 = [0, 1/γ] and B1 = [1/γ, 1]. Since the ratio is a root of the quadratic
equation γ = 1 + 1/γ, it follows that f(B0) = [0, 1] and f(B1) = B0. The transition matrix is
therefore

G =

(
1 1
1 0

)
The corresponding space of sequences Σ+

G is made of sequences in the letters 0 and 1 with no
consecutive 1’s, i.e. which do not contain the word 11. It is known as golden ratio shift.

One can show that the point corresponding to the itinerary x1x2x3 . . . is

x = x1γ
−1 + x2γ

−2 + x3γ
−3 + . . . .

(such expansions using non-integer bases are called beta expansions).
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ex: Show that the number Wn of admissible words of lenght n for the golden ratio shift satisfies
the Fibonacci recursion

Wn+2 = Wn+1 +Wn .

Conclude that it grows like Wn ∼ C γn for some constant C and large n.

ex: The Backer’s map is the transformation f : [0, 1]
2 → [0, 1]

2
of the unit square defined by

(x, y) 7→
{

(2x, y/2) if 0 ≤ x ≤ 1/2
(2x− 1, (y + 1) /2) if 1/2 < x ≤ 1

Discuss its dynamics. Consider the full shift σ : Σ → Σ on Σ = {0, 1}Z. Show that the map

h : Σ→ [0, 1]
2
, defined by

. . . x−2x−1x0x1x2 · · · 7→

( ∞∑
n=0

x−n
2n

,

∞∑
n=1

xn
2n

)
is a semi-conjugation between σ and f .

9.4 Cantor sets

Orbit closures of sufficiently chaotic maps have often complicated structures. If disconnected, they
are typically Cantor sets, i.e. perfect and totally disconnected compact sets.

Middle-third Cantor set. The archetype if the middle-third Cantor set 37

K :=

{ ∞∑
n=1

xn
3n

with xn ∈ {0, 2}

}
⊂ [0, 1] ,

the set of those numbers in the unit interval such that their base 3 representation does not use the
letter “1”.

Another popular definition is K = [0, 1] \
⋃∞
k=1 Ik, where the open intervals Ik are defined in-

ductively as follows: I1 = (1/3, 2/3) is the central middle-third of the unit interval, I2 = (1/9, 2/9)
and I3 = (7/9, 8/9) are the central middle-third intervals of the two components of [0, 1] \ I1, and
so on.

One more definition is K =
⋂
k≥0Kn, where

Kn =

{ ∞∑
k=1

xn
3n

with x1, x2, ..., xn ∈ {0, 2} and xk ∈ {0, 1, 2} se k > n

}
denotes the compact set of those numbers in the unit interval such that their base 3 representation
does not use the letter “1” at the first n places. Observe that the Kn’s form a deacreasing family,
i.e. · · · ⊂ Kn+1 ⊂ Kn ⊂ · · · ⊂ K0 = [0, 1], and that each Kn is a disjoint union of 2n closed
intervals of lenght 3−n.

In particular, K is compact and not empty being a countable intersection of a decreasing family
of compact sets.

K does not contain isolated points, and therefore K ′ = K, i.e. it is “perfect”. Indeed, if
x = 0.x1x2x3 . . . is the base 3 representation of x ∈ K, we may change just the n-th digit (from 0
to 2 or vice-versa), and contruct a sequence of distinct points of K converging to x.

K is “totally disconnected”, i.e. the connected component of each x ∈ K is {x} itself. Indeed,
any two distict point are at a distance larger that 3−n for some sufficiently large n, and therefore
cannot be contained in the same connected component of Kn.

The strange properties of the Cantor sets become less misterious if one observe that it is
homeomorphic to the topological product {0, 2}N, the space of the Bernoulli shift over an alphabet
of two letters. The homeomorphism ϕ : {0, 2}N → K is simply

x1x2 . . . xn . . . 7→
∞∑
n=1

xn
3n

37G. Cantor, Über unendliche, lineare Punktmannigfaltigkeiten V, Mathematische Annalen 21 (1883), 545-591.
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The function φ : {0, 2}N → {0, 2}N × {0, 2}N, defined by

x1x2x3x4 . . . · · · 7→ (x1x3 . . . , x2x4 . . . )

induces a homeomorphism of K onto K×K. By induction, we see that K is homeomorphic to any
finite power Kn. Indeed, one can prove that K is also homeomorphic to the countable Cartesian
product KN (provided one understand the product topology on this space).

Observe that {0, 2}N is trivially homeomorphic to {0, 1}N, for example by the map sending

xk 7→ yk = xk/2. But the binary representation defines a continuous map of {0, 1}N onto the unit
interval [0, 1], given explicitely by y1y2y3 · · · 7→

∑∞
k=1 yk/2

k. Thus, there exists a continuous map
ψ : K → [0, 1] from the Cantor set K onto the unit interval [0, 1], given explicitely by

∞∑
k=1

xn
3n
7→

∞∑
k=1

xn/2

2n
. (9.2)

Since the Cantor set is a subset of the unit interval, by the Schröder-Bernstein theorem, K has
the cardinality of the interval.

Another much appreciated property of the Cantor set is its “self-similarity”, a property which
makes of K the prototype of a “fractal set”. It is clear, indeed, that any of the closed intervals
which form Kn contains an affine copy of K itself (we must only make an homothety of ratio 3n

and an appropriate translation).
Finally, the “lenght” (i.e. the Lebesgue measure) of K is

|K| = lim
n→∞

|Kn| = lim
n→∞

2n · 3−n = 0 .

The Cantor set is very “small”, while containing the same cardinality of points as the whole interval!

Cantor and multiplication by 3. Cantor sets, which were considered an oddity when they
were “discovered” at the end of the XIX century (and indeed provide the scenary to many coun-
terexamples in analysis), are atually easily observed in dynamical systems. Consider the expanding
map E3 : R/Z→ R/Z on the circle, which reads

E3(0.x1x2x3 · · ·+ Z) = 0.x2x3x4 · · ·+ Z

if we write points in base 3 according to 0.x1x2x3 · · · =
∑∞
k=1 xk/3

k with xk ∈ {0, 1, 2}. Then the
middle-third Cantor set (once identified 0 and 1, of course) is a closed +invariant subset, since
E3(K) = K. It is also clear that the restriction E3|K : K → K is topologically mixing and also
admits a dense set of periodic points. Indeeed, such restriction is, almost tautologically, topologi-
cally conjugated to the shift on an alphabet of 2 letters (the letters 0 and 2 in the representation
of numbers in base 3). In particular, there are many points in the circle such that the closure of
their orbits under E3 is K.

Peano curves. The homeomorphism K ' K × K and the continuous map ψ : K → [0, 1] of
the Cantor set onto the unit interval can be combined to give a continuos map of K onto the unit
square [0, 1] × [0, 1]. This map may be easily extended to a continuous map of the unit interval
onto the unit square (for example, declaring that the images of the missing intervals Ii = (ai, bi)
in the construction of the Cantor set are segments between the images of the boundary points ai
and bi, which belong to the Cantor set). This gives an elegant example of a Peano curve (which is
not Peano original example38), a so called “space-filling curve”.

Devil’s staircase. The continuous function ψ : K → [0, 1] defined in (9.2) is clearly non-
decreasing. It can be extended to a continuous non-decreasing function κ : [0, 1]→ [0, 1] from the
unit interval onto itself, declaring that its values for y /∈ K are

κ(y) = sup
K3x<y

ψ(x) .

38G. Peano, Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen 36 (1890), 157-160.
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This function is constant on the missing intervals of the Cantor construction, i.e. in a subset
of total Lebesgue measure. In particular, it has zero derivative almost everywhere, while still
“growing” from 0 to 1 ! It is called Cantor function39, or also devil’s staircase, and shows many
pathological properties. For example, one can show that it is uniformly continuous (actually Hölder
of exponent log 2/ log 3), but not absolutely continuous.

ex: Show that the restriction E3|K is topologically conjugated to the shift on an alphabet of 2
letters.

Cantor sets from the quadratic family. Consider the quadratic family fλ : R → R (this
time defined in the whole real line), defined by x 7→ λx (1− x), where λ > 0. The trajectory of
any point outside the unit interval I = [0, 1] diverges. We may therefore define the set

Λ =
⋂
n≥0

f−nλ (I)

of those points with bounded orbits. If λ > 4, a picture shows that f−1
λ ([0, 1]) is the disjoint union

of two closed not-empty intervals I0 and I1 contained in [0, 1]. If λ is sufficiently large, it is also
clear that |f ′λ(x)| is uniformly larger than one at the points of I0 ∪ I1. By induction, one can show

that this implies that f
−(n+1)
λ (I) is a disjoint union of 2n+1 compact intervals striclty contained,

in pairs, in the 2n compact intervals which form f−nλ (I). There follows that Λ is a Cantor set, and
that the restriction fλ |Λ : Λ → Λ is topologically conjugated to the Bernoulli shift σ : Σ+ → Σ+

in the alphabet {0, 1}.

9.5 Hyperbolic automorphisms of the torus

Expanding is not necessary to produce chaos. It was Anosov, following the work by Hadamard
and Hopf on the geodesic flow on surfaces with negative curvature, who discovered a large class of
chaotic transformations (and flows), where chaos is due to some non-trivial way of streching and
folding.

Automorphisms of the torus. Let Tn := Rn/Zn be the n-dimensional torus. A linear map
L : Rn → Rn defined, in the canonical basis, by a n×n matrix with integer entries A ∈ Matn×n(Z),
induces an endomorphism of the torus f : Tn → Tn according to

fA(x+ Zn) := Ax+ Zn .

This is clear, since a matrix with integer entries sends the lattice Zn into itself, i.e. A(Zn) ⊂ Zn.
If it happens that detA = ±1, then A is invertible and its inverse A−1 also has integer entries.
This implies that fA is invertible too, i.e. is an automorphism of the torus.

Modular group. The existence of non-trivial automorphisms of the torus is due to arithmetical
reasons. For example, orientation preserving automorphisms of the 2-dimensional torus are induced
by 2× 2 integer matrices with determinant one, which form the modular group SL2(Z). It is made
of matrices

A =

(
a b
c d

)
such that a, b, c, d are integers satisfying ad − bc = 1. But this means that lines and columns of
A are made of pairs of relatively prime integers! Simple non-trivial (different from the identity)
examples are (

1 1
0 1

) (
2 1
1 1

) (
3 2
1 1

)
. . .

And much more can be produced using the group structure. Indeed, SL2(Z) is a “large group”, and
one of the most interesting group in mathematics, since it contains informations about primes, and

39G. Cantor, De la puissance des ensembles parfaits de points: Extrait d’une lettre adressée à l’éditeur, Acta
Mathematica 4 (1884), 381-392.
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also is related to the hyperbolic geometry of the Poincaré upper half-space H. Indeed, isometries of
H are induced by fractional linear transformations z 7→ (az+b)/(cz+d) with A =

(
a b
c d

)
∈ SL2(R),

and the quotient H/PSL2(Z) is an interesting hyperbolic surface, called “modular orbifold”.
In general, orientation preserving automorphisms of the n-dimensional torus are induced by

matrices A ∈ SLn(Z). The homogeneous space SLn(R)/SLn(Z) is the space of lattices Γ ⊂ Rn
with unit co-volume (the volume of a fundamental region). Indeed, any G ∈ SLn(R) sends the
standard lattice Zn, which has a fundamental region [0, 1]n of volume one, into a lattice G(Zn)
with a fundamental region of volume one (because detG = 1), and the stabilizer of the standard
lattice is precisely SLn(Z).

ex: Shows that for any pair of relatively prime integers p and q there exists a matrix A ∈ SL2(Z)
having p and q in the first column (or row).

Hyperbolic automorphisms of the torus. Let fA : Tn → Tn be the automorphism of the
torus induced by a matrix A ∈ SLn(Z). If some power Aq of A has eigenvalue 1, and v ∈ Rn is a
corresponding eigenvector, then the entire line Rv+Zn ⊂ Tn is made of periodic points (of period
which divides q) of the automorphism fA. This line may be dense in the torus or in some subtorus,
depending on the rationality properties of the coordinates of v.

A square matrix A, and the corresponding endomorphism of the torus, is called hyperbolic if
it does not have eigenvalues with absolute value one, i.e. if its spectrum is disjoint from the unit
circle of the complex plane. If detA = 1, this also implies that (the complexification of) A has
eigenvalues with both |λ| > 1 and |λ| < 1, since their product must be one. Thus, A dilates
distances in some diections and contracts distances in some other directions.

Theorem 9.8. Let fA : Tn → Tn be a hyperbolic automorphism of the torus. The set of periodic
points of fA is the set Qn/Zn of points with rational coordinates. In particular, Per(fA) is dense
in the torus.

Proof. If x+Zn is a periodic point of period q ≥ 1, then Aqx = x+k, or, equivalently, (Aq−I)x = k,
for some k ∈ Zn. If the eigenvalues of A are not roots of one, then Aq − I is invertible, and it is
clear that the entries of its inverse are rationals. There follows that x = (Aq − I)−1k has rational
coordinates. Thus, periodic points are rational.

On the other side, for any fixed natural q ≥ 1, we may consider the finite set Qq ⊂ Tn of those
points of the torus with coordinates that are integer multiples of 1/q (it has cardinality qn). It is
clear that fA(Qn) = Qn, because A multiplies coordinates by integers, and fA is invertible. But if
we have a permutation of a finite set, any point is periodic. Since the denominator q was arbitrary,
this prove that all rational points are periodic.

Indeed, one also compute easily the cardinalities Pn(fA) := card(Pern(fA)) of n-periodoc
points, i.e. periodic points with period dividing n.

Theorem 9.9. The cardinality of n-periodic point of an hyperbolic automorphism of the torus
defined by the matrix A is

Pn(fA) = |det (An − I)|

Proof. A fundamental domain for the action of the lattice Zn on the space Rn is the hyper-cube
� := [0, 1)n. A point x ∈ � represents a fixed point of fn if Anx = x + k with k ∈ Zn, i.e.
if (An − I)x ∈ Zn. Thus, Pn is equal to the cardinality of the intersection (An − I)(�) ∩ Zn.
Since the sets (An − I)(�) tile the space Rn (they are rhomboids), it is clear that this cardinality
is exactly the volume of (An − I)(�), which is the absolute value of the determinant of An − I
(because � has unit volume).
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Arnold’s cat map. The classical example of a hyperbolic automorphism of the torus T2 is
induced by the unimodular matrix

A =

(
2 1
1 1

)
,

and reads
fA
(
(x, y) + Z2

)
= (2x+ y, x+ y) + Z2 .

It is known as Arnold’s cat map. The eigenvalues of A are

λ± =
3±
√

5

2
.

Moreover, since A is symmetric, one can find eigenvectors v± which form an orthonormal basis, and
they are vectors with irrational slopes. Thus, R2 is the orthogonal direct sum R2 = E+⊕E− of the
eigenspaces. The linear map x 7→ Ax dilates vectors of E+\{0} by a factor λ+ > 1, and contracts
vectors of E−\{0} by a factor λ− < 1. Observe that fA preserves areas, since detA = λ+λ− = 1.

Theorem 9.10. The Arnold cat map fA is topologically mixing, hence chaotic.

Proof. The projections of the lines x + E± ⊂ R2 into the torus T2 contain orbits of a minimal
translation of the torus, because the slopes λ± are irrational, and therefore they are dense in the
torus. In particular, for any δ > 0 there exist a lenght L such that any segment of lenght > L of
these lines is δ-dense in the torus (i.e. intersects any ball of radius ≥ δ). Let R ⊂ R2 be a small
square with sides of lenght ` > 0 parallel to the lines E±, projecting to a small rectangle B ⊂ T2.
The images An (R) are rectangles with sides of lenght ` · λn+ and ` · λn−, still parallel to the lines
E±, respectively. If n is so large that ` · λn+ > L, then the complementar set T2\fn (R) does not
contain balls of radius greater δ. Thus, fn (R) intersects stably any not-empty open subset of the
torus.

ex: Use theorem 9.9 to show that the cardinality of n-periodic points of the Arnold’s cat map is

Pn(fA) = λn+ + λn− − 2

9.6 Horseshoes and solenoids

Here, finally, hyperbolicity and Cantor-like constructions are combined to give some of the two
paradigmatic examples of chaotic dynamical systems.

Smale’s horseshoe. Consider a closed rectangle Q in the euclidean plane R2, as for example
the unit square [0, 1]2. We will define a map f : Q→ R2 which is a diffeomorphism onto its image
f(Q) (and which can be easily extended it to a diffeomorphism of the sphere S2 = R2 ∩ {∞} onto
itself, but we’ll omit this part), which exhibits a maximal invariant set Λ = ∩∞−∞fn(Q) ⊂ Q with
interesting dynamics. 40

We stretch Q in the horizontal direction, squeeze Q in the vertical direction, and then bend the
resulting rectangle in such a way that the intersection Q∩f(Q) is the disjoint union P1∪P2 of two
“horizontal” rectangles P1 and P2, as in the picture. Let Qk := f−1(Pk) be their inverse images,
so that f−1(Q)∩Q is the disjoint union Q1 ∪Q2. We ask that the restrictions f |Qk : Qk → Pk are
hyperbolic affine maps, which stretch the x-direction by a factor α > 2 and squeeze the y-direction
by a factor β < 1/2. This implies that the Qk’s are “vertical” rectangles. To achieve this, we
must stretch, possibly much more, the central vertical strip, and bend the resulting rectangle as
illustrated in the picture. If we want that both restrictions f |Qk preserve the orientation, we must
bend twice, as to form an upside-down letter G. What happens outside the vertical stripes Pk’s
does not matter.

40S. Smale, Diffeomorphisms with many periodic points, in Differential and Combinatorial Topology: a Symposium
in Honor of Marston Morse, Princeton Univ. Press, 1965, pp. 63-80.
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Let Λ := ∩∞−∞fn(Q) be the set of those points of Q with full orbit contained inside Q, and try
to understand its structure.

We first oberve that the intersection f−1(Q)∩Q∩f(Q) is the disjoint union of the four rectangles

Qx−1x0 = Qx0 ∩ Px−1 = Qx0 ∩ f(Qx−1) ,

where the xk’s may be 1 or 2. By induction, one easily sees that the intersection ∩nk=−nf
k(Q) is

the disjoint union of the 4n rectangles

Qx−n...x−1x0x1...xn−1 =

n−1⋂
k=−n

f−k(Qxk) ,

where the xk’s belong to the alphabet {1, 2}. Each such rectangle has sides bounded above by γn,
where γ = min{α−1, β} < 1/2, and therefore area bounded above by γ2n < 1/4n. There follows
that the infiite intersection Λ is a Cantor set, i.e. a compact totally disconnected perfect subset of
Q, and also that it has zero area. Observe that if the Pk’s do not contain the horizontal boundaries
of Q and if the Qk’s do not contain the vertical boundaries of Q, then Λ is contained in the interior
of Q.

Observe that if x ∈ Qx−n...x−1x0x1...xn−1
then x ∈ Qx0

, f(x) ∈ Qx1
, . . . and so on. There

follows that the map ϕ : Σ2 → Λ, defined by

ϕ(x) =

∞⋂
k=−∞

f−k(Qxk)

where (xk) ∈ Σ2 = {1, 2}Z, which is clearly a s homeomorphism, is a topological conjugation
between the full shift σ : Σ2 → Σ2 over an alphabet of two letters and the restriction f |Λ : Λ→ Λ.
So,

Theorem 9.11. The restriction f |Λ : Λ → Λ is conjugated to the full shift over an alphabet of
two letters. In particular, it is topologically mixing and admits a dense set of periodic points.

Observe that the Smale’s horseshoe is “hyperbolic”, in the sense that the differential of f at
the points of Λ is a hyperbolic linear map of the plane (actually diagonal, with eigenvalues α > 1
and β < 1).

This construction can be modified in many ways, as shown by Smale himself in [Sm67], a
cornerstone in the history of dynamicsl systems. For example, if f(Q)∩Q is made of N horizontal
rectangles, one obtain a dynamics conjugated to a shift over an alphabet of N symbols. Also the
requirement that the maps between rectangles shoud be affine may be relaxed, still mantaining
hyperbolicity, and even the rectangles may be deformed.

ex: Show that the infinite intersection ∩∞k=0f
k(Q) is the Cartesian product of the unit interval

times a Cantor set K ≈ Σ2. Show that the infinite intersection ∩∞k=0f
−k(Q) is the Cartesian

product of a Cantor set K ≈ Σ2 times the unit interval. Deduce that Λ is a Cartesian product of
two Cantor sets, hence a Cantor set itself.
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ex: Consider the simple case of the unit square Q = [0, 1] × [0, 1], take as horizontal rectangles
P1 = [0, 1]× [0, 1/3], and P2 = [0, 1]× [2/3, 1] and as vertical rectangles Q1 := [0, 1/3]× [0, 1] and
Q2 = [2/3, 1]× [0, 1]. Assume that the affine maps sending the Qk’s onto the Pk’s are

f |Q1
(x, y) = (3x, y/3) and f |Q2

: (x, y) 7→ (3x− 2, (y − 2)/3)

Show, in details, that Λ is the product K × K of two middle-third Cantor sets, and that the
restriction f |Λ : Λ→ Λ is topologically conjugated to the full shift σ : Σ2 → Σ2 over an alphabet
of 2 letters.

Inverse limits/Solenoids. There is a standard construction which produces a homeomorphism
out of a non-invertible continuous map (a particular case of a construction called “inverse limit”):
just take the space of all possible (past, at least) histories. More precisely, consider a map f : X →
X, possibly not invertible, and define the space

Xf := { . . . x−2x−1x0 ∈ X−N0 s.t. f(xn) = xn+1 for n < 0}

which is a subset of the product X−N0 , equipped with the product topology. This space fibers over
X, the projection π : Xf → X being defined by π(. . . x−2x−1x0) = x0. The fiber π−1(x0) over
a point x0 ∈ X is the set of possible past histories of x0. A map F : Xf → Xf may be defined
according to

F (. . . x−2x−1x0) := . . . x−2x−1x0x1 where x1 = f(x0)

It is clear that F is invertible, its inverse being the map . . . x−2x−1x0 7→ . . . x−3x−2x−1 which
forgets the first “letter”. Also, it is clear that both F and F−1 are continuous, so that F in an
homeomorphism. The original f may be recovered just observing F at the last coordinate. Indeed,
the projection π is a semi-conjugation between F and f , since by definition F ◦ π = π ◦ f . Thus,
the original map f is a factor of F .

Assume that f is an expanding map of degree deg(f) = N > 1 of some compact space X, so that
any point has exactly N pre-images. Then the fibers π−1(x0) are Cantor set {1, 2, . . . , N}−N ≈ Σ+

N ,
and may be equipped with their natural ultrametrics. Fix some λ > 1, for example λ = N . The
distance between two past histories of x0 is d(. . . x−2x−1x0 . . . y−2y−1x0) = λ−n if x−k = y−k for
all k < n and x−n 6= y−n. The homeomorphism F : Xf → Xf is then “hyperbolic” (although we
do not give a precise meaning to this word, yet), in the sense that it expands in the direction of
the base X and contracts, by a factor λ−1, in the direction of the fibers. Thus, this construction
produces a hyperbolic homeomorphism out of an expanding map, which is a factor of the former.

When X is a circle, the resulting space is called “solenoid”. The basic example is the following.

Dyadic solenoid. Consider the simplest expanding map, the linear expanding map of the circle
E2 : R/Z→ R/Z. The above prescription produces the dyadic solenoid

T2 := (R/Z)E2 = { . . . x−2x−1x0 ∈ R/Z−N0 s.t. 2xn = xn+1 (modulo 1), for n < 0}

It fibers over the circle with fibers which are Cantor sets Σ+
2 . The solenoid map is the homeomor-

phism F2 : T2 → T2 sending . . . x−2x−1x0 to . . . x−2x−1x0(2x0) (where coordinates are intended
modulo 1). One easily sees that the dyadic solenoid F2 : T2 → T2 is a factor of the full shift
σ : Σ2 → Σ2.

Smale’s solenoid. It was Smale who produced a “physical” model for the solenoid [Sm67].
Consider the solid torus X = S×D, parametrized by θ, z, where θ ∈ S = R/2πZ and z ∈ D = {z ∈
C s.t. |z| ≤ 1}. Consider the map f : X → X defined by

(θ, z) 7→
(
2θ, 1

4z + 1
2e
iθ
)

(the choise of 1/4 and 1/2 is arbitrary, any smaller values also work). Thus, the torus is stretched
by a factor two (in the circle direction), squeezed by a factor one-forth (in the disk directions), and
wrapped twice inside itself with some twisting provided by the exponential of θ, which prevents
self-intersections. Indeed, it is easy to see that f defines an injection of the solid torus into its
interior, f(X) is a thinner torus winding twice inside X, and that the intersection between any
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section D = {θ0} × D ≈ D of the torus and the image f(X) is made of two disjoint closed disks
D± of radius 1/4 around the points ± 1

2e
iθ0/2 of D (these disks are disjoint precisely because the

distance between the centers, which is one, is greater than the sum of the radii, which is one-half).

Solid torus and its image under the Smale’s map.

The image f2(X), which is contained in f(X), intersects each of the disks D± in two disjoint
smaller disks of radius 1/42. And so on, . . . the image fn(X) is a thin solid torus winding 2n times
around X, and its intersection with a section D is made of 2n small disjoint disks of radius 1/4n,
two inside each of the 2n−1 disks which form the intersection of D with fn−1(X).

The Smale attractor is the maximal invariant set

Λ :=

∞⋂
n=0

fn(X) .

It is an attractor because it admits a neighborhood U (for example, the interior of the solid torus)
such that ∩∞n=0f

n(U) = Λ. It fibers over the circle, the projection π : Λ → S being defined by
(θ, z) 7→ θ. Fibers π−1(θ0) are Cantor sets, naturally homeomorhic to Σ+

2 . Indeed, one easily sees
that the projection π : Λ→ S is a semi-conjugation between the restriction f |Λ and the expanding
map E2.

Actually, one can show that

Theorem 9.12. The restriction f |Λ : Λ → Λ is topologically conjugated to the solenoid map
F2 : T2 → T2 on the dyadic solenoid, and therefore it is a factor of the full shift σ : Σ2 → Σ2. In
particular, f |Λ is topologically mixing and admits a dense set of periodic points.



10 TOPOLOGICAL ENTROPY AND ZETA FUNCTION 126

10 Topological entropy and zeta function

10.1 Topological entropy

Entropy of coverings. Let X be a compact metric (or Hausdorff topological) space. Given an
open cover U , we define its entropy

H(U) := logN(U)

where N(U) is the minimal cardinality of a subcover of U , which is finite by compactness. In
information theory, entropy is usually computed using base 2 logarithms, thus measured in “bits”.
Here we use natural logarithms, and therefore measure entropies in “nats”.

Given two (finite) open covers U and V, we define their join as the open cover U ∨ V given by
the opens sets U ∩ V with U ∈ U and V ∈ V. The cardinality of such intersections that are not
empty is bounded by the product of the cardinalities of the two open covers. There follows that
the entropy of open covers is subadditive, i.e.

H(U ∨ V) ≤ H(U) +H(V) . (10.1)

An open cover V is a refinement of an open cover U , the notation being U � V, if each V ∈ V is
contained in some U ∈ U . It is clear that the entropy is monotone, namely if U � V then

H(U) ≤ H(V) , (10.2)

since any finite subcover of V refines some subcover of U of not greater cardinality.

Topological entropy. We now introduce dynamics. Let f : X → X be a continuous trans-
formation of a compact Hausdorff space. Given an open cover U , we can define the open covers
f−nU , made of the open sets f−n(U) where U ∈ U . Since inverse images of subcovers are also
subcovers, it is clear that

H(f−nU) ≤ H(U) . (10.3)

Consider the sequence of numbers

hn = H(U ∨ f−1U ∨ · · · ∨ f−(n−1)U) ,

The sequence hn is subadditive, i.e. hn+m ≤ hn + hm. Indeed, using the subadditivity (10.1) and
the monotonicity (10.3) under inverse images,

hn+m = H(U ∨ f−1U ∨ · · · ∨ f−(n+m−1)U)

≤ H(U ∨ f−1U ∨ · · · ∨ f−(n−1)U) +H(f−nU ∨ f−n+1U ∨ · · · ∨ f−(n+m−1)U)

≤ H(U ∨ f−1U ∨ · · · ∨ f−(n−1)U) +H(U ∨ f−1U ∨ · · · ∨ f−(m−1)U)

= hn + hm

There follows from theorem 8.11 that there exists the limit

h(U , f) := lim
n→∞

1

n
H(U ∨ f−1U ∨ · · · ∨ f−(n−1)U)

called entropy of U w.r.t. the map f . Assume tha U is finite and formed by the open sets
U1, U2, . . . , UN . To any point x ∈ X and any time n we may associate a word x1x2 . . . xn in
the alphabet {1, 2, . . . , N}, defined according to fk−1(x) ∈ Uxk . Then hn is the logarithm of the
minimal number of words of lenght n in those letters which are necessary to describe the possible
different itineraries of points of X up to time n− 1. The limit h(U , f) is therefore the asymptotic
exponential growth rate of those cardinalities.

The trivial cover formed by X itself has zero entropy. To get something interesting and inde-
pendent of the cover we are forced to take the supremum over all covers. The topological entropy of
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the transformation f : X → X is finally defined, according to Adler, Konheim and McAndrew41,
as

htop(f) := sup
U

h(U , f) (10.4)

where the sup is taken over all open covers.
It is not clear how to compute the topological entropy using the above definition. We may

replace the sup by a limit, as follows. Consider a sequence of open covers Un with diameters
diam(Un) := maxU∈Un diam(U) → 0 as n → ∞. Since X is compact, any (finite) cover V has a
Lebesgue number ` (a number such that any subset of diameter < ` is contained in some V ∈ V), we
see that any subcover of V is refined by some Un of this family (for n so large that diam(Un) < `).
But then monotonitity of H implies that H(V, f) ≤ H(Un, f), so that

htop(f) := lim
n→∞

h(Un, f) .

10.2 Expansiveness and generators

Expansve homeomorphisms form a rich class of topological dynamical systems where computation
of the topological entropy simplifies. Their definition is clearly related to the idea of coding.

Expansive maps. A continuous transformation (or homeomorphism) f : X → X of a metric
space (X, d) is (positively) expansive if there exists a constant δ > 0 such that for all distinct
x, y ∈ X there exists a time n ≥ 0 (or n ∈ Z, in the case of a homeomorphism) such that

d(fn(x), fn(y)) > δ

The greatest such constant δ is sometimes called expansive constant of the map f .
Equivalently, f : X → X is expansive if there exists a δ > 0 such that if the orbit of two points

x, y ∈ X stays at distance d(fn(x), fn(y)) < δ for all times n (positive for maps or both positive
and negative for homeomorphisms) then the points coincide, i.e. x = y. In particular, expansive
maps have sensitive dependence on initial conditions.

Theorem 10.1. Let f : X → X be an expansive homeomorphism of a compact metric space.
Then the sets Pern(f) of n-periodic points are finite for every n.

Proof. Indeed, if x and y are distinct n-periodic points, then their distance must be d(x, y) > δ.
But a compact metric space contains only a finite number of disjoint balls of radius δ/2 > 0.

Expanding versus expansive. It is clear that an expanding map is expansive. Indeed, assume
that f expands by a factor λ > 1 the distances between different points which are δ-near. Then δ
is an expansive constant for f , since if d(fn(x), fn(y) < δ for all n ≥ 0 then the distance between
x and y satisfies λnd(x, y) < δ for all n ≥ 0, which is only possible when d(x, y) = 0. Thus, for
example, expanding linear maps of the circle or one-sided shifts are expansive maps.

Shifts and topological Markov chains are expansive. Full or one-sided shifts are also
expansive. Indeed, let δ > 0 denotes the minimal distance between two points with different initial
letter x0 6= y0. If d(σn(x), σn(y)) < δ for all n ∈ Z then the two points have same letters xn = yn
for all n, hence coincide. The same holds, by the same reasoning, for topological Markov chains.

41R.L. Adler, A.G. Konheim and M.H. McAndrew, Topological Entropy, Transactions of the American Mathe-
matical Society 114 (1965), 309.
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Hyperbolic automorphisms of the torus are expansive. Hyperbolic automorphisms of the
torus fA : T2 → T2 are also expansive. This happens because fA and f−1

A expands by some factor
λ > 1 points which are sufficiently near, say at distance d(x, y) < δ, in the same unstable or
stable line, respectively. If x and y are two generic points at sufficiently small distance d(x, y) < δ′

(depending on δ and the slopes of the eigenvectors of A), one can join them in a unique way with an
unstable segment [x, z] and a stable segment [z, y] of lenght < δ. But then fA expands by a factor
λ the distance between x and z, if they are different, and f−1

A expands by a factor λ the distance
between y and z, if they are different. Expansivity follows easily from triangular inequality.

Isometries are not expansive. On the other side, it is clear that an isometry cannot be
expansive (unless the space if finite, of course). Thus, for example, rotations of the circle (or left
translation on infinite groups equipped with a left-invariant metric) are not expansive.

ex: Show that if f : X → X is expansive and Y ⊂ X is a closed invariant subset, then also the
restriction f |Y : Y → Y is expansive.

ex: Shows that there is no expansive map f : I → I defined in a compact interval I ⊂ R (observe
that such map would be locally injective, hence strictly increasing or decreasing . . . )

Generators. Let f : X → X be a homeomorphism of a compact metric space X. A finite
open cover U = {U1, U2, . . . , UN} is called a generator for f if for every sequence/bi-infinite word
{nk} ∈ {1, 2, . . . , N}Z the intersection ⋂

k∈Z
f−kUnk

contains at most one point. This means that points of x are uniquely determined by their
“itinerary”, the sequences of opens sets of the cover that they visit along their history (which are
not unique, if the Un’s overlap!).

The closures in the above definition may be omitted. Indeed, if f admits a generator U , with
Lebesgue number `, and V = {V1, V2, . . . , VN ′} is any finite open cover with diameter diam(V) < `,
then clearly also the intersections

⋂
k∈Z f

−kVnk contain at most one point, since each Vk is contained
in the closure of some Un.

As the word itself suggest, a “generator” allows to recover the topology of X under the iterates
of the map. More precisely, given a generator U = {U1, U2, . . . , UN} of cardinality N for f , we
may consider the sequence of finite open covers

n∨
k=−n

f−kU = fnU ∨ · · · ∨ fU ∨ U ∨ f−1U ∨ · · · ∨ f−nU

made of intersections Cα :=
⋂N
k=−N f

−kUak of finite numbers of inverse images of the Uk’s, where
α = a−n . . . a−1a0a1 . . . an ranges between the space of words of lenght 2n + 1 in the letters of
the alphabet {1, 2, . . . , N}. The diameters of these covers shrink to zero uniformly with n. More
precisely,

Theorem 10.2. Let U be a generator for the homeomorsphsm f : X → X of the compact metric
space X.

i) For any ε > 0 there exist a time n ≥ 0 so large that if n ≥ n and Cα ∈
∨n
k=−n f

−kU then
diam (Cα) < ε.

ii) Vice-versa, for all n ≥ 0 there exists a ε > 0 so small such that if d(x, y) < ε then both x
and y belong to some Cα ∈

∨n
k=−n f

−kU .

Proof. (from [Wa82] theorem 5.21) If i) is false, there exists an ε > 0 and two sequences of points
xn, yn ∈ ∩nk=−nf

−kUk,n, with Uk,n ∈ U and n → ∞, at distance d(xn, yn) ≥ ε. By compactness,
passing to some subsequence, we can assume that both sequences converge, say xni → x and
yni → y as i → ∞, to different limits x 6= y, since d(x, y) ≥ ε. Since the elements of U are finite,
for any fixed k the open sets Uk,ni coincide with some Uk ∈ U for infinitely many ni’s. But then
both x and y belong to ∩∞−∞f−kUk, and this contradicts the fact that U is a generator.
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To prove ii), let δ be a Lebesgue number for the cover U . By the uniform continuity of f and
its inverse f−1, for all n there exists an ε > 0 so small that if d(x, y) < ε then d(fkx, fky) < δ for
all times |k| ≤ n. This implies that, for all such k, both x and y belong to same f−kUk for Uk ∈ U ,
and therefore that both belong to same ∩nk=−nf

−kUk ∈
∨n
k=−n f

−kU .

Of course, given a map f : X → X, it is not clear neither true that generators always exist.
Indeed, it happens that existence of generators is equivalent to expansiveness 42.

Theorem 10.3. Let f : X → X be a homeomorphism of a compact metric space. Then f is
expansive iff has a generator.

Proof. Assume that f is expansive, with expansivity costant δ. Let U be any finite open cover
with balls of radius δ/2. If both x and y belong to

⋂
k∈Z f

−kUnk , then d(fk(x), fk(y)) < δ for
every time k. By expansivity this implies that x = y, hence that U is a generator.

Conversely, assume that U is a generator for f , and let δ be its Lebesgue number. If x and y are
two points such that d(fk(x), fk(y)) < δ for any time k, then for any k there exist a Unk ∈ U such
that both fk(x) and fk(y) belong to Unk . This means that both x and y belong to

⋂
k∈Z f

−kUnk ,
and therefore that x = y.

As a consequence, expansiveness is a topological property, only the value of the expansive
constant depends on the actual metric. Also, it is a property which is preserved under topological
conjugacy, since a topological conjugacy sends generators to generators (if they exist).

Also interesting is that expansive homeomorphisms are factors of subspaces of full shifts ([Wa82],
theorem 5.24).

ex: Show that powers fk of an expansive homeomorphism f are also expansive (use generators).

Entropy of expansive homeomorphisms. Finally, we see that in order to compute the topo-
logical entropy of expansive homeomorphism one does not need to take a supremum: it is sufficient
to consider the entropy of a generator.

Theorem 10.4. Let f : X → X be an expansive homeomorphism of the compact metric space X.
If U is a generator for f , then

htop(f) = h(U , f) .

Proof. Let V be any finite open cover, and let ` be its Lebesgue number. By theorem 10.2, there
exists a time m so large that the diameters of the Cα ∈ ∨mk=−mf

−kU are smaller that `. This

implies that ∨mk=−mf
−kU is a refinement of V, so that, by monotonicity (10.2),

h(V, f) ≤ h
(
∨mk=−mf

−kU , f
)

The last entropy is

h
(
∨nk=−nf

−kU , f
)

= lim
n→∞

1

n
H
(
∨n−1
i=0 f

−i (∨mk=−mf
−kU

))
= lim
n→∞

1

n
H
(
∨m+n−1
k=−m f−kU

)
= lim
n→∞

1

n
H
(
∨2m+n−1
k=0 f−kU

)
= lim
n→∞

2m+ n− 1

n

1

2m+ n− 1
H
(
∨2m+n−1
k=0 f−kU

)
= h(U , f)

Since h(U , f) is an upper bound for all the h(V, f)’s, it is the topological entropy.

42H.B. Keynes and J.B. Robertson, Generators for topological entropy and expansiveness, Math. Systems Theory
3 (1969), 51-59.
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Entropy of full shifts. Consider the full shift σ : Σ → Σ over an alphabet A = {1, 2, . . . , N}
made of N letters. Given a letter k ∈ A, let Ck be the centered cylinder made of those bi-infinite
words x such that x0 = k. It is clear that the finite cover U = {C1, C2, . . . , CN} is a generator for
σ, since the elements of

∨n
k=−n σ

−kU are the centered cylinders Cα, where α = α−n . . . α0 . . . αn
ranges over all the finite words of lenght 2n+ 1 in the letters of the alphabet. Also, one easily sees
that U ∨ σ−1U ∨ · · · ∨ σ−(n−1)U is a cover made of Nn not-empty cylinders. There follows from
theorem 10.4 that the topological entropy of the full shift over al alphabet of N letters is

htop(σ) = logN .

10.3 Dimensions of metric spaces

Coverings, nets and separated sets. The following notions of size of a metric space (X, d)
are due to Kolmogorov’s school 43 44.

An ε-covering of (X, d) is a covering of X ⊂
⋃
α Cα by subsets of diameters diam(Cα) < 2ε.

Call Cε(X, d) the minimal cardinality of an ε-covering of X.
An ε-net for (X, d) is a collection N ⊂ X of points such that any point of X is at a distance

smaller than ε from some point of A, i.e. X ⊂
⋃
p∈N Bε(p). Call Nε(X, d) the minimal cardinality

of an ε-net for X. If X is a centered space (any subset of diameter 2r is contained in a ball of
radius r centered in some point of X) then Nε(X, d) = Cε(X, d).

A subset S ⊂ X is said ε-separated (or ε-distinguishable) if its points are a distance greater
than ε from each other, i.e. if d(p, p′) > ε for all p, p′ ∈ S such that p 6= p′. The collection of
disjoint balls Bε/2(p), where p ranges in a ε-separated set S, is also called ε-packing. Call Sε(X, d)
the maximal cardinality of a set of ε-separated points inside X.

These three definitions make sense if the above extremal cardinalities are finite for every ε > 0,
and it is not difficult to see that this happens simultaneously. The class of metric spaces with this
property is called the class of totally bounded sets and the main examples are compact spaces.

The (base 2, for example) logarithms of these quantities have interpretations related to the
probabilistic theory of transmission of signals, and are called

logCε(X, d) absolute ε-entropy of (X, d)

logNε(X, d) ε-entropy of (X, d)

logSε(X, d) ε-capacity of (X, d)

ex: Show that an ε-net defines an ε-covering, and any ε-covering determines a 2ε-net, so that

Cε(X, d) ≤ Nε(X, d) ≤ C2ε(X, d) (10.5)

ex: Show that a maximal ε-separated set is a ε-net, and that any ε-ball centered at a point of
a minimal ε-net cannot contain more than one point of a 2ε-separated set, so that

S2ε(X, d) ≤ Nε(X, d) ≤ Sε(X, d) (10.6)

Box-counting dimensions. The upper and lower box counting dimension (also known as Minkowski
dimensions or metric dimensions) of the metric space (X, d) are defined as

dimb(X, d) := lim sup
ε↘0

− logNε(X, d)

log ε

43A. N. Kolmogorov, On certain asymptotic characteristics of completely bounded metric spaces, Dokl. Akad.
Nauk SSSR 108, 3 (1956), 385-389.

44A.N. Kolmogorov and V.M. Tihomirov, ε-entropy and ε-capacity of sets in functional spaces, Uspekhi Mat.
Nauk 14 (1959), 3-86. [Translated in Amer. Math. Soc. Transl., series 2, 17 (1961), 277-364.]
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dimb(X, d) := lim inf
ε↘0

− logNε(X, d)

log ε

We get the same values if we substitute Sε(X, d) or Cε(X, d) to Nε(X) in the above formulas (use
(10.5) and (10.6), and compare the counting functions at the values ε and 2ε).

For reasonable self-similar metric spaces the two limits coincide, and their common value
dimb(X) is simply called box counting dimension, and denoted by dimb(X).

An important observation if that box dimensions do not change under scalings of the metric,
i.e. if we measure distances as d′(x, y) = λ d(x, y) instead of d(x, y), for some fixed λ > 0.

ex: Show that the box-counting dimension of the n-dimensional cube [0, 1]n is what you expect,
namely dimb([0, 1]n) = n.

ex: Show that the box counting dimension of the middle-third Cantor set is dimb(K) = log 2/ log 3.

ex: Compute the box dimension of the space Σ+ = AN of infinite words in an alphabet of N
letters, equipped with the ultrametric

dλ(x, y) = λ−min{k≥1 s.t. xk 6=yk} .

Observe that a centered cylinder Cα, defined by a finite word α = α1α2 . . . αn of |α| = n letters,
is a closed ball Br(x) of radius/diameter r = λ−(n+1) centered at any one of its points x ∈ Cα,
and that the distance between any two different centered cylinders Cα and Cβ , defined by finite
words of the same lenght |α| = |β| = n, is d(Cα, Cβ) ≥ λ−n.

ex: Consider the unit interval I = [0, 1] equipped with the Euclidean metric d, and define new
metrics

dα(x, y) := d(x, y)α ,

for α ≤ 1. Verify that these are indeed metrics, and compute the box-counting dimension of the
metric spaces (I, dα).

10.4 Topological entropy according to Bowen and Dinaburg

Bowen45 and Dinaburg46 adapted Kolmogorov’s ideas to define an invariant of topological
dynamical systems, which measures the asymptotic exponential rate of divergence of orbits. It
turns out to be an alternative definition of the topological entropy.

Topological entropy according to Bowen and Dinaburg. Let f : X → X be a continuous
transformation of a compact metrizable topological space X. If d is a metric on X which induzes
its toplogy, we may define a family of “dynamical metrics”, depending on time n ≥ 0, according to

dnf (x, y) := max
0≤k≤n

d
(
fk (x) , fk (y)

)
(10.7)

That is, dnf (x, y) is the “maximal distance between the n-trajectories of x and y”. It is clear that
these metrices do not decrease with n, i.e. that dnf (x, y) ≤ dmf (x, y) if n ≤ m. They are constant if
f has Lipschitz constant ≤ 1, e.g. for an isometry or a contraction, but we expect them growing
with n if the transformatiom stretches distances in some directions.

If we fix a precision ε > 0, then Nε

(
X, dnf

)
is the “minimal number of n-orbits necessary

to describe all the n-orbits with an error at most ε”, and Sε

(
X, dnf

)
is the “maximal number

of n-orbits which an instrument with sensibility ε can distinguish”. If X is compact, then these
numbers are finite, and are monotone non-decresing as n↗∞ and ε↘ 0.

45R. Bowen, Entropy for Group Endomorphisms and Homogeneous Spaces, Transactions of the American Math-
ematical Society 153 (1971), 401

46E. Dinaburg, Relationship between topological entropy and metric entropy, Doklady Akademii Nauk SSSR 170
(1970), 19.
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The (Bowen) topological entropy of the continuous transformation f : X → X of the compact

metric space X is finally defined as the exponential growth rate of Nε

(
X, dnf

)
, namely, the iterated

limit

hBtop(f) := lim
ε↘0

lim sup
n→∞

1

n
logNε(X, d

n
f ) (10.8)

By inequalities (10.5) and (10.6), we may replace Nε(X, d
n
f ) in the above definition with Sε(X, d

n
f )

or even with Cε(X, d
n
f ), the cardinality of a minimal ε-cover of (X, dnf ). This is useful because one

easily shows that
Cε(X, d

n+m
f ) ≤ Cε(X, dnf ) · Cε(X, dmf ) (10.9)

Therefore, for any fixed ε > 0, the sequence cn = logCε(X, d
n
f ) is subadditive, i.e. satisfies

cn+m ≤ cn+ cm. By theorem 8.11, there exists the limit limn→∞ cn/n. Thus, again by inequalities
(10.5) and (10.6), the limsup in the definition (10.8) of topological entropy may be substituted by
a limit, i.e.

hBtop(f) = lim
ε↘0

lim
n→∞

1

n
logCε(X, dfn)

(but the corresponding limits for Sε and Nε need not exist!). Moreover, the different characteri-
zations are useful to get upper bounds (from nets) and lower bounds (from separated sets) for the
entropy, and therefore, in some simple cases where the two are equal, the exact value.

The notation suggests that the iterated limit which defines the topological entropy does not
depend on the actual metric d, but only on the topology it induces on X. This is the case, at
least for compact X’s. It is particularly important in computations, because it allows to choose a
metric adapted to the transformation.

Theorem 10.5. The Bowen topological entropy does not depend on the metric used to define the
topology of the compact space X.

Proof. Let d and d′ be two equivalent metrics generating the same topology of X. Since X is
compact, the identity transformation is a uniformly continuous homeomorphisms between (X, d)
and (X, d′). Thus, for any ε > 0 there exists δ > 0 such that if d′(x, y) < δ then d(x, y) < ε. This
clearly implies that Cε(X, d

n
f ) ≤ Cδ(X, d

′n
f ). Since the inverse homeomorphism is also uniformly

continuous, the reverse inequality also holds.

Theorem 10.6. If f : X → X is a factor of g : Y → Y , then

hBtop(f) ≤ hBtop(g)

In particular, topologically conjugated dynamical systems share the same topological entropy.

Proof. This is more or less the same argumet as before. Let d and d′ be the metrics of X and
Y , respectively. The semi-conjugation h : Y → X is uniformly continuous, because Y (and
X) is compact. Therefore, for any ε > 0 there exists a δ > 0 such that the h-image of a δ-
ball in Y is contained in a ε-ball of X, i.e. h(Bδ(y)) ⊂ Bε(h(y)). This clearly implies that
Cε(X, d

n
f ) ≤ Cδ(Y, d′nf ). Taking limits this shows the first result. The second follows changing the

roles of f and g.

For non-compact phase spaces X, one still can define the entropy taking the supremum over
compact subsets K ⊂ X. Then one shows invariance under equicontinuous homeomorphisms (see,
for example, [Wa82]).

Finally, we must show that Bowen’s definition recovers Adler’s definition of the topological
entropy, at least for continuous transformations of compact metric spaces. This is also one more
proof that the Bowen topological entropy does not depend on the metric, but only on the topology.
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Theorem 10.7. The topological entropies of a continuous transformation f : X → X of a compact
metric space X, defined in (10.4) and (10.8), are the same, i.e. htop(f) = hBtop(f).

Proof. Let U is an open cover with diameter diam(U) < ε. Two distinct points of an ε-separated
set for the metric space (X, dn) cannot belong to the same element of U ∨ f−1U ∨ · · · ∨ f−(n−1)U .
Therefore,

Sε(X, d
n
f ) ≤ N(U ∨ f−1U ∨ · · · ∨ f−(n−1)U) . (10.10)

This implies that Bowen’s entropy is not larger than Adler’s entropy.
Conversely, let U be an open cover of X, and let ` be its Lebesgue number. Consider any ε < `.

Let x1, x2, . . . , xm be a minimal ε-net for the metric space (X, dnf ), thus realizing Nε(X, d
n
f ) = m.

For any such xi, consider the open balls Bε(f
k(xi)) of radius ε centered at the images fk(xi), for

k = 0, 1, . . . , n− 1. Any such ball is contained in some element of U ∨ f−1U ∨ · · · ∨ f−(n−1)U , say
Bε(f

k(xi)) ⊂ Uik,. The open sets

Ui := Ui,0 ∩ f−1Ui,1 · · · ∩ f−(n−1)Ui,n−1

for i = 1, 2, . . . ,m, all belong to the open cover U ∨ f−1U ∨ · · · ∨ f−(n−1)U , and form a subcover,
since the xi’s form an ε-net. There follows that

N(U ∨ f−1U ∨ · · · ∨ f−(n−1)U) ≤ Nε(X, dnf ) . (10.11)

This implies that Adler’s entropy is not larger than Bowen’s entropy.

It turns out that the second limit as ε → 0, in the definition of the topological entropy, is
unnecessary, provided the map is expansive and we take ε sufficiently small (half the expansive
constant). We can also explicitely see this phenomenon in the simple examples below.

ex: Let f : X → X be a topological dynamical system, and dnf , for n ≥ 1, be the dynamical
metrics defined in (10.7). Observe that is A ⊂ X is a set of dnf -diameter < ε and B ⊂ X is a set

of dfm-diameter < ε, then A ∩ f−n(B) is a set of dn+m
f -diameter < ε. Deduce inequality (10.9).

ex: Show that htop(fn) = nhtop(f).

Isometries have zero entropy. Contractions, isometries, or Lipschitz maps f : X → X of a
metric space with Lipschitz constant ≤ 1, have zero entropy htop(f) = 0. This is obvious since the
dynamical metrics dn do not depend on time n.

Entropy of expanding maps of the circle. We first consider the expanding endomorphism
EN : x+ Z 7→ Nx+ Z of the circle T, with degree N ≥ 2. One explicitly computes Nε(T, dnEN ) ≤
Nn+m and Sε(T, dnEN ) ≥ Nn+m, for ε ≈ N−m. More precisely, consider the set

Am+m =

{
pk =

k

Nn+m
+ Z , with k = 0, 1, 2, . . . , Nn+m − 1

}
,

made of “dyadic” points of the circle with denominator Nn+m, of cardinality Nn+m. For m
sufficiently large, any two successive points of An+m are at a distance dnEN (pk+1, pk) = Nm .
Therefore, An+m is a ε-net for the metric dnEN and N−m−1 < ε ≤ N−m, as well as a ε-separated
set for the metric dnEN and N−m < ε ≤ N−m+1. These estimates imply that

lim
ε→0

lim sup
n→∞

logNε(T, dnEN )

n
≤ logN and lim

ε→0
lim sup
n→∞

logSε(T, dnEN )

n
≥ logN .

The two inequalities implies that htop(EN ) = logN . For negative N , a similar reasoning shows
tha htop(EN ) = log |N |, Since, by theorem 9.2, a generic expanding map of circle g : T → T is
topologically conjugated to a linear expanding map of same degree, its topological entropy is the
logarithm of the absolute value of its degree, i.e.

htop(g) = log |deg(g)| .
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Entropy of Bernoulli shifts. Consider the Bernoulli shift σ : Σ+ → Σ+ over an alphabet A
of N ≥ 2 letters. It is convenient to use the ultrametric d(x, y) = N−min{k≥1 xk 6=yk} (for which
cylinders are clopen balls, centered at any of their points), one explicitely computes Nε(Σ

+, dnσ) ≈
Nn+m for ε ≈ N−m, since a ε-net for the metric dnσ on Σ+ is given by one point for each cylinder
Cα with |α| = n+m. Therefore,

htop(σ) = logN .

This is as well the topological entropy of the full shift σ : ΣN → ΣN .

Entropy of topological Markov chains. Now, consider the topological Markov chain σA :
Σ+
A → Σ+

A, induced by a N × N transition matrix A. As above, for ε ≈ N−m, we must count
the number of admissible sylinders Cα, i.e. defined by admissible words α, with |α| = n+m, and
this number is equal to Nε(Σ

+
A, dσAn) =

∑
i,j(A

n+m−1)ij , the number of Markov paths of lenght
n+m, starting with i and ending with j. The above sum is clearly bounded from above and from
below by

c ‖An+m−1‖ ≤
∑
i,j

(An+m−1)ij ≤ C ‖An+m−1‖ ,

for some positive constants c and C. The right inequality is obvious. The left inequality comes
from the fact that

∑
i,j(A

n+m−1)ij = ‖An+m−1‖1, since all the entries of A are non-negative,
and the fact that all norms in a finite dimensional Euclidean space are equivalent. According to
Gelfand’s formula, the spectral radius of a square matrix A, the maximal absolute value of its
eigenvalues, can be recovered as the limit ρ(A) = limn→∞ ‖An‖1/n. Taking logarithms, we finally
get

htop(σA) = log ρ(A) .

ex: Comupute the topological entropy of the golden ratio shift.

ex: Compute the topological entropy of the dyadic solenoid map F2 : T2 → T2 (compare with
the full shift σ : Σ2 → Σ2 and the expanding map E2 : R/Z→ R/Z).

Entropy of hyperbolic automorphisms of the torus. Consider the Arnold’s cat map, the
hyperbolic automorphism of the torus fA : T2 → T2 induced by the linear map of the plane defined
by the matrix

A =

(
2 1
1 1

)
To compute its entropy, we use a metric which is “adapted” to the map. Let v± be the

normalized eigenvectors with eigenvalues λ± = (3 ±
√

5)/2. Since they form a basis (actually, an
orthonormal basis), any vector of the plane is a unique superposition x = x+v+ + x−v−, for some
coordinates x±. We define a norm in the plane as ‖x‖ := max{|x+|, |x−|}, which is the sup norm
relative to the basis v±, and the corresponding metric d(x, y) = ‖x− y‖ on Rn. The ball of radius
ε centered at the origin for this metric is the set of vectors x such that |x±| < ε, a square with
sides of euclidean lenght 2ε parallel to the eigenvectors v±. The map A contracts the direction v−
by a factor λ−, and expands the direction v+ by a factor λ+. Therefore, a ball Bε(a; dn) of radius
ε and centered at the point a = a+v+ + a−v− for the dynamical metric dfAn is a rectangle with
sides |x− − a−| < ε and |x+ − a+| < ε/λn+. The euclidean area of such a rectangle is 4ε2/λn+. A
covering of the torus must therefore contain at least λn+/4ε

2 projections of such balls, since the
torus have unit area. Thus,

Nε(X, d
n
fA) ≥ λn+/4ε2 .

In order to get upper bound, we construct explicitely a ε-net of the torus for the metric dn.
Consider, inside the unit square (which is a fundamental domain for the action of Z2 on the
plane), a collection of segments parallel to v+ at a distance ε from each other. Their cardinality
is L ≤

√
2 /ε. On each such segment, we choose points at a distance 2ε/λn+ from each other. Each

segment contains at most N ≤
√

2λn+/ε such points (since
√

2 bounds the lenght of each segment).
It is clear that this collection of points form a ε-net of the torus for the metric dnfA . Thus,

Nε(X, d
n
fA) ≤ LN = 2λn+/ε

2 .
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These two inequalities show that the entropy of Arnold’s cat map is the logarithm of the stretching
factor, namely

htop(fA) = log λ+ .

A similar argument, using the Jordan normal form of the matrix A which defines an hyperbolic
automorphism of the torus, shows that only the eigenvalues with absolute value larger than one
count. The result is the following

Theorem 10.8. Let fA : Tn → Tn be an hyperbolic automorphism of the torus induced by the
matrix A ∈ SLn(Z), with eigenvalues λ1, λ2, . . . , λn. Its topological entropy is the sum of the
logarithms of the eingenvalues with absolute value greater than one, i.e.

htop(fA) =
∑
k

log+ |λk|

Above, we use the notation f+ := max{f, 0}, so that log+(x) := max{log x, 0}.

10.5 Growth of periodic orbits and zeta function

The growth of periodic orbits is also a source of invariants of a dynamical system.

Growth of periodic points. Let f : X → X be a continuous transformation of a topological
space X, and let Pn(f) := |Pern(f)| be the cardinality of n-periodic points (i.e. periodic points
whose period divides n). We assume implicitely that these numbers are finite for any n, hence in
particular that periodic points are isolated. This is the case for expansive maps of a metrizable
space, by theorem 10.1.

In typical and interesting cases, these number grow at most exponentially, and one could define
an asymptotic exponential rate of growth according to

p(f) := lim sup
n→∞

1

n
log+ Pn(f)

You may want to compare this number, in the cases where you can compute it, with the topological
entropy. Indeed, for expansive homeomorphism it is a lower bound for the topological entropy.
This happens because periodic points provided separated sets.

Theorem 10.9. Let f : X → X be an expansive homeomorphism of the compact space X. Then

p(f) ≤ htop(f) .

Proof. We claim that if ε is smaller than the expansive constant of f , then the set Pern(f) of
n-periodic points is a ε-separated set for the dynamical metric dn. Indeed, if x and y are points of
Pern(f) at distance dnf (x, y) < ε, then also d(fk(x), fk(y)) < ε for all times k ∈ Z (by periodicity),
and therefore they must coincide by expansivity. Thus, Pf (n) ≤ Sε(X, dnf ), and the claim follows.

ex: Consider the expanding map of the circle EN : R/Z→ R/|Z defined by EN (x+Z) = Nx+Z,
with |N | ≥ 2. Verify that

p(EN ) = log |N | .

ex: Consider the shift σ : Σ+ → Σ+ over an alphabet of N letters. Verify that

p(σ) = logN .
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ex: Consider the Arnold’s cat map fA : T2 → T2. Verify that

p(fA) = log
3 +
√

5

2
.

Zeta function. The collection of all these cardinalities (and not just their asymptotics) may be
used to define the Artin-Mazur zeta function 47 of the dynamical system (motivated by the Weyl
zeta function of an algebraic variety over a finite field), according to

ζf (z) := exp

( ∞∑
n=1

Pn(f)
zn

n

)
(10.12)

The above formal power series defines a holomorphic function in some disk |z| < ρ of the complex
plane. This disk is not empty if the Pn(f)’s grow at most exponentially, say Pn(f) ≤ Cλn for some
constants C and λ > 0, since then it contais the disk |z| < 1/λ.

Clearly, if this convergence disk is not empty, one can recover the Pn(f)’s from the zeta function.
It is also obvious that the zeta functions is invariant under topological conjugations, since the
numbers Pn(f)’s are.

More interesting is that, just like Euler’s product formula for the classical Riemann zeta func-
tion, also the Artin-Mazur zeta function allows a product formula. A periodic point p ∈ Fix(fn)
defines a periodic orbit π = {p, f(p), . . . , f |π|−1(p)} of period |π| := card(π) (which is the minimal
k > 0 s.t. fk(p) = p) which divides n. Thus, a periodic orbit π contains |π| different periodic
points of same period. Periodic orbits play the role of prime numbers in the product formula.

Theorem 10.10. The Artin-Mazur zeta function is equal to the product

ζf (z) =
∏
π

(
1− z|π|

)−1

over all periodic orbits π.

Proof. Using the Taylor series log(1− z) =
∑∞
k=1 z

k/k, we compute, for small |z|,

log
∏
π

(
1− z|π|

)−1

=
∑
p

log
(

1− z|π|
)

=
∑
π

∞∑
k=1

zk |π|

k

=

∞∑
k=1

∑
π

|π| z
k |π|

k |π|

=

∞∑
n=1

Pn(f)
zn

n

where, in the last sum, we set n = k |π| and observed that Pn(f) is the sum of the |π|’s over all
periodic orbits such that |π| divides n.

If the zeta function is rational, as will be the case for some simple but interesting systems, then
the growth of the Pf (n)’s is determined by the finitely many zeros and poles of ζf (z).

47M. Artin and B. Mazur, On periodic points, Ann. of Math. 81 (1965), 82-99.
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Zeta function for the Bernoulli shift. The simplest computation if that of the shift σ : Σ+ →
Σ+ over an alphabet of N letters. Since Pn(σ) = Nn, we compute

∂

∂z

( ∞∑
n=1

1

n
Pn(σ) zn

)
=

∂

∂z

( ∞∑
n=1

1

n
(Nz)n

)
=

∞∑
n=0

Nn+1zn =
N

1−Nz
.

inside the disk |z| < 1/N . Integrating, we get

∞∑
n=1

1

n
Pn(σ) zn = − log(1−Nz)

where log denotes the principal branch of the logarithm. There follows that the zeta function is

ζσ(z) =
1

1−Nz
.

ex: Show that the zeta function of the expanding map of the circle f(x + Z) = Nx + Z, where
N is positive integer N ≥ 2, is

ζf (z) =
1− z

1−Nz
inside the disk |z| < 1/N .

Zeta function for the Arnold cat map. The cardinality of n-periodic points of the Arnold’s
cat mapfA : T2 → T2 is Pn(fA) = |λn+ + λn− − 2|, where λ± = (3±

√
5)/2 are the eigenvalues of A.

There follows that its zeta function is

ζfA(z) =
(1− z)2

(1− λ+z) (1− λ−z)

Zeta functions for topological Markov chains. Rationality of the zeta function for subshifts
of finite type was proved by Bowen and Lanford 48. Here we consider the case of a topological
Markov chain defined by a transition matrix A over an alphabet of N letters. Since Pn(σA) ≤ Nn,
the power series in (10.12) is certainly holomorphic in the disk |z| < 1/N .

Theorem 10.11 (Bowen-Lanford). The zeta function of a topological Markov chain with transi-
tion matrix A is holomorphic in the disk |z| < 1/ρ(A) and admits a meromorphic continuation to
the whole complex plane, where it is given by the Bowen-Lanford formula

ζσA (z) =
1

det(I − zA)

Proof. Using theorem 9.5 and the Jordan normal form of the matrix A, one sees that

Pn(σA) = tr(An) =

N∑
k=1

λnk ,

where the λk’s are the eigenvalues of A, counted as many times according to their multiplicities.
Arguing as above, one sees that

∞∑
n=1

1

n
Pn(σA) zn =

∞∑
n=1

N∑
k=1

1

n
λnk z

n = −
N∑
k=1

log(1− λkz)

48R. Bowen and O.E. Lanford III, Zeta functions of the shift transformation, Proc. AMS Symp. Pure Math.. 14
(1970), 43-49.
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and therefore

ζσ(z) =

N∏
k=1

1

1− λkz

in the disk |z| < 1/ρ(A), where ρ(A) = maxk |λk| denotes the spectral radius of A. Since the
(1− λkz)’s are the eigenvalues of I − zA, their product is the determinant of I − zA.

ex: Show that the Artin-Mazur zeta function of the golden ratio shift σ : Σ+
G → Σ+

G is

ζσG(z) =
1

1− z − z2
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11 Ergodicity and convergence of time means

11.1 Ergodicity

Ergodicity. Let f : X → X be an endomorphism of the measurable space (X, E). The invariant
probability measure µ is said ergodic if any invariant event, i.e. any A ∈ E such that f−1(A) = A,
has probability µ(A) = 0 or 1. If this happens, one also says that f is an ergodic endomorphism
of the probability space (X, E , µ).

If f is ergodic, then also events which are invariant mod 0, those A ∈ E such that the symmetric
difference f−1A∆A := (f−1A\A)∪(A\f−1A) has zero measure, have probability zero or one. This
happens because a quasi-invariant event A defines an invariant event A∞ = ∩∞n=0 ∪∞k=n f

−kA such
that µ(A∆A∞) = 0.

ex: Verify the inclusion

f−nA∆A ⊂
n−1⋃
k=0

(
f−(k+1)A ∩ f−kA

)
=

n−1⋃
k=0

f−k
(
f−1A ∩A

)
Deduce that if µ is invariant then

µ(f−nA∆A) ≤
n−1∑
k=0

µ
(
f−1A ∩A

)
= 0 .

Conclude that µ(A∆A∞) = 0.

Ergodicity, observables and time means. Ergodicity admits many different equivalent for-
mulations. In particular, it says something about invariant observables and about time means.

Theorem 11.1. Let f : X → X be an endomorphism of the measurable space (X, E , µ). The
following are equivalent:

i) µ is ergodic.
ii) any invariant (measurable) observable ϕ is constant µ-a.e.
iii) for any observable ϕ ∈ L1 (µ), the time average

ϕ (x) = lim
n→∞

1

n+ 1

n∑
k=0

ϕ
(
fk (x)

)
exists and is equal to the mean value

∫
X
ϕdµ for µ-amost any point x.

Condition iii) is the physical meaning of ergodicity, as it says that “time averages are almost
everywhere constant and equal to space averages”. In particular, taking ϕ equal to the character-
istic function of any event A, almost any trajectory spend in A a fraction of time asymptotically
proportional to µ (A), as dreamed by Boltzmann in his “ergodic hypothesis”.

Conditions i) or ii) are what one usually check in order to prove ergodicity of a probability
measure.

Proof. To see that iii)⇒ i), let A be an invariant event, and ϕ its characteristic function. Invariance
of A implies that ϕ is invariant, hence that ϕ = ϕ. There follows fom i) that µ (A) =

∫
X
ϕdµ = ϕ (x)

for some x ∈ X, hence that µ (A) = 0 or 1, the only values of characteristic functions.
Conditions i) and ii) are clearly equivalent, since any invariant event defines an invariant func-

tion (its characteristic function), and conversly level sets of invariant functions are invariant events.
Finally, in order to show that ii) ⇒ iii), let ϕ ∈ L1 (µ) be an integrable observable. According

to the Birkhoff-Khinchin ergodic theorem 7.9, the time average ϕ (x) exists for µ-almost any x ∈ X
and

∫
X
ϕdµ =

∫
X
ϕdµ. Since ϕ is invariant mod 0, by iii) it is constant with probability one. This

implies that ϕ (x) =
∫
X
ϕdµ for µ-almost any x ∈ X.
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It is clear from the proof that in condition ii) we may restrict our attention to invariant observ-
ables ϕ ∈ Lp(µ), for any p ≥ 1. Indeed, since the measure is finite, Lp(µ) ⊂ L1(µ) for all p ≥ 1,
and characteristic functions belong to all such spaces. This is particularly useful when we can use
Fourier analysis.

Ergodicity is also equivalent to each of the following conditions (see [Wa82]), which look like
measure theoretic analogues of topological transitivity: for any A ∈ E with positive measure we
have

µ
(
∪∞n=0f

−n(A)
)

= 1 ,

for any A,B ∈ E with positive measure there exists a time n ≥ 0 such that

µ
(
f−n(A) ∩B

)
> 0 .

Also useful is the following characterization of ergodicity as “averaged asymptotic indepen-
dence”.

Theorem 11.2. An endomorphism f : X → X of a probability space (X, E , µ) is ergodic iff for
any two events A,B ∈ E

1

n+ 1

n∑
k=0

µ(f−k(A) ∩B)→ µ(A)µ(B) (11.1)

as n→∞.

Proof. Consider an invariant event A and take B = A. If (11.1) holds, then µ(A) = µ(A)2, and
therefore A has probability zero or one. Thus, f is ergodic.

Conversely, assume that f is ergodic. The Birkhoff ergodic theorem 7.9, applied to the charac-
teristic function of A, says that

lim
n→∞

1

n+ 1

n∑
k=0

χA ◦ fk → µ(A)

a.e. Multiply both sides by the characteristic function of B and integrate. Since

(χA ◦ fk)χB = χf−k(A)∩B ,

the dominated convergence theorem implies (11.1).

Warning. Ergodic dynamical systems exist, and some are listed below. On the other side, to
show that a physically interesting system is ergodic turns out to be extremely difficult, and very
few examples are known. The most famous are some “billards”, systems of hard spheres inside a
billard table interacting via elastic collisions, studied by Yakov Sinai in the sixties . . .

Ergodic measures as extremal measures. We already saw that the space Probf of invariant
probability measure is a convex and closed subset of the compact space Prob. Here, we observe
that ergodic measures are the “indecomposable” elements of this set.

Theorem 11.3. Ergodic invariant measures are the extremals of Probf . Namely, an invariant
measure µ is ergodic iff it cannot be written as a convex combination

µ = tµ1 + (1− t)µ0

where t ∈ (0, 1) of two distinct invariant measures µ0 and µ1
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Proof. First, observe that if ν is an invariant measure which is absolutely continuous w.r.t. the
ergodic measure µ, then ν = µ. Indeed, one easily verifies that the Radon-Nykodim derivative
ρ = dν/dµ is an invariant function, and ergodicity of µ implies that it is constant and equal to one
µ-a.e. Now, let µ be an ergodic measure, and assume that µ = tµ1 + (1− t)µ0 for some t ∈ (0, 1).
Since both µ0 and µ1 are absolutely continuous w.r.t. µ, they coincide with µ, hence, are not
different. To prove the converse, assume that the invariant measure µ is not ergodic, hence there
exists an invariant event C such that 0 < µ (C) < 1. Let µ0 and µ1 be the ”conditional probability
measures” defined as µ1 (A) = µ (A ∩ C) /µ (C) and µ0 (A) = µ (A ∩ Cc) /µ (Cc). Clearly they are
different, both are invariant, and µ = µ (C)µ1 + (1− µ (C))µ0.

Ergodic decomposition. In the first lines of the above proof, we actually showed that any
two ergodic invariant measure µ and ν are either equal or ”mutually singular”, namely, if µ 6= ν
then there exists a measurable set A such that µ (A) = ν (Ac) = 1 and µ (Ac) = ν (A) = 0. This
suggests that maybe any invariant measure could be ”disintegrated” along a partition whose atoms
are the support of all the different ergodic measure, in other word that µ is a ”convex combination”,
namely an integral, of the ergodic measures. This is true, sometimes, but both its statement and
proof are quite technical: we just quote the result.

Theorem 11.4 (Ergodic decomposition). Let f : X → X be a continuous transformation of
the compact metrizable space XThere exists a partition P = {Pe}e∈E of X (modulo sets of zero
measure) into invariant measurable sets indexed by a Lebesgue space E, and a measurable map
E 3 e 7→ µe ∈Probf with values in the space of ergodic Borel probability measures and with the
property that µe (Pe) = 1 for any Pe ∈ P, such that any invariant Borel probability measure µ can
be written as an integral

µ =

∫
E

µe dµ (e)

where µ is some probability measure on E.

Observe that the above theorem contains the statement that any continuous transformation of
a compact space admits at least one ergodic Borel probability measure.

11.2 Examples of ergodic maps

Bernoulli shift. Let σ : Σ+ → Σ+ be the Bernoulli shift over the alphabet A = {1, 2, ..., N},
let p = {p1, p2, . . . , pN} be any probability on A, and µ the Bernoulli invariant measure on the
Borel σ-algebra E defined by p.

Theorem 11.5. The Bernoulli invariant measure µ is ergodic w.r.t. σ+.

Proof. First observe that, given two centered cylinders Cα and Cβ , the definition of µ implies that
there exists a time n ≥ 1 such

µ
(
Cα ∩ σ−k (Cβ)

)
= µ (Cα) · µ

(
σ−k (Cβ)

)
= µ (Cα) · µ (Cβ)

whenever k ≥ n. Indeed, one can take n = |α| + 1, and the above reflect the ”independence” of
the different trials encoded in the construction of the Bernoulli measure. By aditiviity, the same
holds true for any couple of elements of E , the algebra made of finite unions of centered cylinders.
Now, assume that A ∈ B is invariant. Since any Borel set A ∈ B can be aproximated in measure
by an elements of E , given any ε > 0 one can find an Aε ∈ E such that µ (A∆Aε) < ε. Using the
above result, we can find an n ≥ 1 such that

µ
(
Aε ∩ σ−n (Aε)

)
= µ (Aε) · µ

(
σ−n (Aε)

)
= µ (Aε)

2

where the last equality comes from invariance of µ. Then, observe that the symmetric difference
between A ∩ σ−n (A) and Aε ∩ σ−n (Aε) is contained in (A∆Aε) ∪ σ−n (A∆Aε). This gives∣∣µ (A ∩ σ−n (A)

)
− µ

(
Aε ∩ σ−n (Aε)

)∣∣ ≤ µ (A∆Aε) + µ
(
σ−n (A∆Aε)

)
≤ 2 · µ (A∆Aε) < 2ε
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which, together with ∣∣∣µ (A)
2 − µ (Aε)

2
∣∣∣ ≤ 2 · µ (A∆Aε) < 2ε

gives ∣∣∣µ (A)− µ (A)
2
∣∣∣ < 4ε

Since ε > 0 was arbitrary, we just showed that the measure of any invariant Borel set A satisfies
µ (A) = µ (A)

2
, hence it is either 0 or 1.

Observe that this proof is very similar to the argument in the Kolmogorov zero-one law for tail
events in the theory of stochastic processes.

Now, let ϕk be the the characteristic function of {x ∈ Σ+ s.t. x1 = k}. The observables ϕk ◦σn
form a sequence of independent and identically distributed random variables with mean pk. One
can interprete the event {ϕk ◦ σn = 1} = {x ∈ Σ+ s.t. xn = k} as ”sucess in the n-th trial”, where
the probability of sucess in each trial is pk. The Birkhoff-Khinchin ergodic theorem, together with
the ergodicity of µ, gives the result that

µ

{
x ∈ Σ+ s.t.

1

n+ 1

(
ϕk + ϕk ◦ σ1 + ϕk ◦ σ2 + ...+ ϕk ◦ σn

)
(x)→ pk

}
= 1

which is the Kolmogorov strong law of large numbers.

Irrational translations of the torus. When dealing with maps of the torus, the most conve-
nient tool to check ergodicity if Fourier analysis.

Theorem 11.6. Lebesgue probability measure is ergodic for the rotation Rα : R/Z → R/Z iff α
is irrational.

Proof. Let ϕ ∈ L2(R/Z), and consider its Fourier series

ϕ(x+ Z) ∼
∑
k∈Z

ϕ̂(k) e2πikx

with
∑
n∈Z |ϕ̂(k|2 <∞. We compute

(ϕ ◦Rα)(x+ Z) ∼
∑
k∈Z

ϕ̂(k) e2πikα e2πikx

If ϕ is invariant then
ϕ̂(k)

(
1− e2πikα

)
= 0

for all k ∈ Z. If α is irrational, this implies that ϕ̂(k) = 0 for all k 6= 0, and therefore that
ϕ(x+ Z) = ϕ̂(0) almost everywhere.

Conversely, when the angle is rational, say α = p/q, one easily finds non-constant invariant
obseravables, e.g. the character e2πiqx.

Indeed, much more is true, as we will see in the next subsection.
It is clear that the same argument works in higher dimension. Consider a translation Rα : Tn →

Tn of the torus Tn = Rn/Zn, defined by Rα(x+Zn) = x+α+Zn, for some α = (α1, . . . , αn) ∈ Rn.

Theorem 11.7. Lebesgue probability measure is ergodic for the rotation Rα : Rn/Zn → Rn/Zn
iff α1, . . . , αn, 1 are rationally independent, i.e. if the scalar product 〈k, α〉 /∈ Z for all k ∈ Zn\{0}

ex: Wrtite the details of the proof of the above theorem.
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Expanding endomorphisms of the circle. Let EN : x + Z 7→ Nx + Z be an expanding
endomorphism of the circle T = R/Z of degree N such that |N | > 1. Lebesgue probability
measure ` is clearly invariant under EN . We claim that

Theorem 11.8. Lebesgue probability measure ` is an ergodic measure for EN .

Proof. Let ϕ ∈ L2(R/Z), and consider its Fourier series

ϕ(x+ Z) ∼
∑
k∈Z

ϕ̂(k) e2πikx

with
∑
n∈Z |ϕ̂(k|2 <∞. We compute

(ϕ ◦ EN )(x+ Z) ∼
∑
k∈Z

ϕ̂(k) e2πikNx

If ϕ is invariant, then ϕ̂(k) = ϕ̂(Nnk) for all k ∈ Z and all times n ≥ 0. The Riemann-Lebesgue
lemma implies that, if k 6= 0, then ϕ̂(k) = limn→∞ ϕ̂(Nnk) = 0. There follows that the only
non-zero Fourier coefficient is ϕ̂(0), so that ϕ is constant a.e.

An alternative proof, which does not use Fourier analysis, is the following.

Proof. To prove ergodicity, let A be an invariant Borel set, and assume that ` (A) < 1. We must
show that the complement B = T\A, that has positive measure, has indeed probability one. The
argument goes as follows: if ` (B) > 0, then, according to Lebesgue density theorem, B contains
nearly all the mass of some nonempty interval. Namely, given any ε > 0, we can find an open
interval In with lenght ` (In) = |N |−n and centered at a density point of B such that

` (B ∩ In) > (1− ε) · ` (In)

Now observe that the restriction EnN |In is an injective map sending In onto the circle minus one
point, in particular, ` (fn (In)) = 1. Since EN uniformly dilatates lenghts by a factor |N |, there
follows that

` (EnN (B ∩ In))

` (EnN (In))
=
` (B ∩ In)

` (In)

Since, moreover, A is invariant, its complement B is +invariant, and this implies that the left-hand
side above is equal to ` (B). There follows that

` (B) =
` (B ∩ In)

` (In)
> (1− ε)

and, since ε was arbitrary, that ` (B) = 1.

Hyperbolic automorphisms of a torus. Let fA : T2 → T2 be an hyperbolic automorphism
of the torus, induced by the unimodular matrix A ∈ SL2(Z). Lebesgue measure on the torus is an
invariant probability measure, since det(A) = 1.

Theorem 11.9. fA is ergodic w.r.t. Lebesgue measure iff no eigenvalue of A is a root of unity.

Proof. Let ϕ be an invariant square integrable function in T2, and consider its Fourier series

ϕ(x+ Zn) ∼
∑
k∈Z2

ϕ̂(k) e2πi〈k,x〉

One compute

(ϕ ◦ fA)(x+ Zn) =
∑
k∈Z2

ϕ̂(k) e2πi〈k,Ax〉 =
∑
k∈Z2

ϕ̂(kA−1) e2πi〈k,x〉 .

If ϕ is invariant, the Fourier coefficients must verify ϕ̂(k) = ϕ̂(kA), and consequently

ϕ̂(k) = ϕ̂(kAn) (11.2)
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for all times n ≥ 0 and all wave numbers k ∈ Z2. Fix a wave number k ∈ Z2 different from 0. If the
sequence of integer vectors kAn were bounded, then some of the v = kAn would be periodic, say
vAm = v (since bounded integer vectors are finite). But then A would have an eigenvalue λ such
that λm = 1. If this is not the case, then ‖kAn‖ → ∞ for all k 6= 0. By the Riemann-Lebsesgue
lemma and by invariance (11.2), this implies that all the non-zero Fourier coefficients vanishes.
There follows that ϕ is constant a.e.

Conversely, assume that A has an eigenvalue λ such that λn = 1, for some minimal n ≥ 1. Then
An has a unit eigenvalue. Since A has integer entries, the corresponding eigenvector v, satisfying
v(An − I) = 0, may be taken with integer coordinates too. The trigonometric polynomial

ϕ(x+ Z2) =

n∑
m=0

e2πi〈v,Amx〉

is invariant, since 〈v,Anx〉 = 〈vAn, x〉 = 〈v, x〉 modulo one, and is not constant because v is
different from the zero vector. Therefore, fA is not ergodic.

As a consequence,

Theorem 11.10. Hyperbolic automorphisms of the torus are ergodic w.r.t. Lebesgue measure.

11.3 Normal numbers

Normal numbers. Lebesgue measure ` is ergodic w.r.t. multiplication by 10 in the unit circle,
the map E10(x+Z) = 10·x+Z. Identify the circle with the interval [0, 1), and let x = 0, x1x2x3... be
the base 10 expression of a point of the circle, which is unique outside a subset of Lebesgue measure
zero. For k = 0, 1, 2, ..., 9, let ϕk be the characteristic function of the interval [k/10, (k + 1) /10),
i.e. the observable which is equal to ϕk (x) = 1 if x1 = k and ϕk (x) = 0 otherwise. The time mean
of ϕk is

1

n+ 1

n∑
j=0

ϕk

(
Ej10 (x)

)
=

1

n+ 1
· card {1 ≤ j ≤ n+ 1 s.t. xj = k}

that is the number of k’s within the first n+ 1 digits of the decimal expansion of x. The limit as
n→∞, if it exists, is the “asymptotic frequency” of k’s contained in the expansion of x. Ergodicity
of µ implies that there exists a set Ak ⊂ [0, 1[ of Lebesgue measure one where the limit ϕk (x)
exists and is equal to

∫
ϕkd` = 1/10. Since the intersection A0 ∩A1 ∩ ... ∩A9 has still probability

one, the result is that Lebesgue almost any number x ∈ [0, 1) contains in its decimal expansion
any of the letters 0, 1, 2, ..., 9 with asymptotic frequency 1/10.

Actually, one could repeat the same argument considering any finite word b = b1b2...bn in the
alphabeth {0, 1, 2, ..., 9}, and show that there is a set Ab ⊂ [0, 1[ of probability one such that the
base 10 expansion of any x ∈ Ab contains the word b with asymptotic frequency 10−n. A real
number x whose base 10 expansion contains any finite word with the right asymptotic frequency is
called 10-normal (meaning “normal in base 10”). Since finite words in the alphabeth {0, 1, 2, ..., 9}
are countable, and a countable union of zero measure sets still has zero measure, we just showed
that Lebesgue almost any real number is normal in base 10. Indeed, as first observed by Émile
Borel49,

Theorem 11.11 (Borel). Lebesgue almost any real number is normal in every base d ≥ 2.

It is not so easy to give examples of normal numbers, actually of series whose sum is a normal
number. Much more difficult is to show that a “given” number, such as π,

√
2 or e ..., is normal.

Here we quote Mark Kac:50

49E. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rendiconti del Circolo Matematico
di Palermo 27 (1909), 247-271.

50Mark Kac, Statistical independence in probability, analysis, and number theory, Carus Math. Monographs, 12,
New York 1959 (pag. 18).
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“As is often the case, it is much easier to prove that an overhelming majority of objects
possess a certain property that to exhibit even one such object. The present case is
no exception. It is quite difficult to exhibit a ‘normal’ number! The simplest example
is the number (written in decimal notation) x = 0.1234567891011 . . . where after the
decimal point we write the positive integers in succession. The proof that this number
is normal is by no means trivial.”

11.4 Distribution of digits in continued fractions

Continued fractions and Gauss map. Numbers in the unit interval (0, 1] are uniquely rep-
resented, i.e. “coded”, by continued fractions. If we disregard rationals, which form a set of zero
Lebesgue measure, we are left with infinite continued fractions [0; a1, a2, a3, . . . ], i.e. one-sided
infinite sequences (a1, a2, a3, . . . ) ∈ NN. Recall that the Gauss map G : (0, 1]→ [0, 1] is defined as

G(x) := 1/x− b1/xc if x 6= 0

(but we may also define G(0) = 0). Observe that for any rational r ∈ Q there exists a time n such
thatGn(r) = 0. The infinite sequence of the continued fraction expansion of x ∼ [0; a1, a2, a3, . . . ] ∈
[0, 1]\Q is a coding of the orbit of x. Indeed,

G([0; a1, a2, a3, . . . ]) = [0; a2, a3, a4, . . . ]

This means that an = b1/Gn−1(x)c, or, equivalently, an = k if Gn(x) ∈
[

1
k+1 ,

1
k

)
. In the language

of dynamical systems, the Gauss map (restricted to the full measure set of irrationals) is conjugated
to the one-sided shift σ : NN → NN, the conjugation being the continued fraction representation
x ∼ [0; a1, a2, a3, . . . ]. In particular, the equivalence relation coming from the action of PSL2(Z)
corresponds to “being in the same great orbit” of the Gauss map.

Ergodicity and distribution of digits. It is essentially due to Gauss himself the crucial ob-
servation that the absolutely continuous measure µ with density

dµ(x) =
1

log 2

1

1 + x
dx (11.3)

is an invariant probability measure for G, meaning that µ(G−1(B)) = µ(B) for all Borel subsets
B ∈ (0, 1]. It is sufficent to check invariance for intervals. The measure of an interval [a, b] is

1

log 2

∫ b

a

dx

1 + x
=

1

log 2
log

1 + b

1 + a
.

The preimage G−1([a, b]) is a union of intervals
[

1
b+n ,

1
a+n

]
with n = 1, 2, 3, . . . . Therefore, its

measure is

1

log 2

∞∑
n=1

∫ 1
a+n

1
b+n

dx

1 + x
=

1

log 2

∞∑
n=1

log
1 + 1

a+n

1 + 1
b+n

=
1

log 2

∞∑
n=1

log(1 + a+ n)− log(a+ n) + log(b+ n)− log(1 + b+ n)

=
1

log 2
log

1 + b

1 + a

Indeed, more is true 51

Theorem 11.12 (Knopp, 1926). The Gauss measure µ is ergodic for the Gauss map.

51K. Knopp, Mengentheoretische Behandlung einiger Probleme der diophantischen Ap- proximationen und der
transfiniten Wahrscheinlichkeiten, Math. Ann. 95 (1926), 409-426.
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There follows from the Birkhoff-Khinchin ergodic theorem 7.9 that time-averages of integrable
observables ϕ converge µ-a.e. and are equal to the µ- averages, i.e.

lim
N→∞

1

N

N∑
n=1

ϕ(Gn(x)) =

∫ 1

0

ϕ(x) dµ(x) µ - a.e.

In particular, we may compute the distribution of digits in the continued fraction representation
of a number in the unit interval, simply taking for ϕ the indicator function of some digit d ∈ N
in NN ≈ (0, 1]. The result is the Gauss-Kuzmin distribution (conjectured by Gauss and proved by
Kuzmin52, see also [Ar78]):

Theorem 11.13 (Gauss-Kuzmin, 1928). For almost every real number x, the asymptotic frequency
of the digit d in the continued fraction representation x ∼ [a0; a1, a2, a3, . . . ] is

pd =
1

log 2
log

(
1 +

1

d(d+ 2)

)

The ergodicity of the Gauss map w.r.t. the Gauss measure imply many other “surprising”
results, for clever choices of the observable ϕ. For example, if we choose ϕ(x) = log(a1) then the
Birkhoff averages are the geometric means of the first n partial quotients. There follows that for
almost all numbers x ∼ [a0; a1, a2, a3, . . . ] the limit limn→∞ n

√
a1a2a3 . . . an exists and is a constant,

equal to
∞∏
n=1

(
1 +

1

n(n+ 2)

)log2 n

' 2.6854 . . . ,

a number now called Khinchin constant [Kh35]. A similar result is: the n-th root of the denomi-
nators qn of the convergents of almost all numbers converge to

lim
n→∞

n
√
qn = eπ

2/(12 log 2) ' 3.2758 . . . ,

a number called Khinchin-Lévy constant 53 54. On the other hand, the arithmetic mean of the
partial quotients is unbounded for almost all numbers.

11.5 Unique ergodicity and equidistribution

Unique ergodicity. A homeomorphism f : X → X of a compact metric space (X, d) is uniquely
ergodic if it admits one, and only one, invariant Borel probability measure µ. It is clear that this
unique invariant measure is ergodic.

This notion is the probabilistic counterpart of minimality, and indeed both minimality and
unique ergodicity are often observed simultaneously (this means that, although equivalence of the
two is false, it is not easy to think at a couterexample!). Observe that we defined unique ergodicity
in the context of continuous transformations. The relevance of ths notion for time means is due to
the following55

Theorem 11.14 (Oxtoby). Let f : X → X be a homeomorphism of a compact metric space X.
The following statements are equivalent:

i) f is a uniquely ergodic,
ii) there exists an invariant Borel probability measure µ such that, for any continuous observable

ϕ, the time averages ϕ (x) exist and are equal to
∫
X
ϕdµ for any initial condition x ∈ X.

52R.O. Kuzmin, Ob odnoi zadache Gaussa, Doklady akad. nauk, ser. A (1928), 375-380.
53A.Y. Khinchin, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approx-

imationen, Math. Ann. 92 (1924), 115-125.
54P. Lévy, Sur les lois de probabilité dont dependent les quotients complets et incomplets d’une fraction continue,

Bull. Soc. Math. 57 (1929), 178-194.
55J.C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136.
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iii) there exists an invariant Borel probability measure µ such that, for any continuous observable
ϕ, the convergence

1

n+ 1

n∑
k=0

ϕ
(
fk (x)

)
→
∫
X

ϕdµ

as n→∞ holds and is uniform in x ∈ X.

Proof. It is obvious that iii) ⇒ ii). To show that ii) ⇒ i), take any invariant Borel probability
measure ν, and any continuous observable ϕ. By invariance,

∫
X
ϕdν =

∫
X

(ϕ◦fk) dν for any k ≥ 0,
and therefore ∫

X

ϕdν =

∫
X

(
1

n+ 1

n∑
k=0

(ϕ ◦ fk)

)
dν .

By ii) and the dominated convergence theorem, the limit of the r.h.s. when n → ∞ is
∫
X
ϕdµ.

Since ϕ was arbitrary, this implies that ν = µ. Finally, we must show that i ⇒ iii). If iii) is false,
there exist a continuous function ψ, a ε > 0, a subsequence ni →∞ and a sequence (xi) of points
xi ∈ X such that ∣∣∣∣ψni(xi)− ∫

X

ψ dµ

∣∣∣∣ ≥ ε
(recall the notation ϕn for the mean averages 1

n+1

∑n
k=0(ϕ ◦ fk)). According to the Riesz repre-

sentation theorem 7.6, there exist Borel probability measures νi such that ϕni(xi) =
∫
X
ϕdνi for

all continuous functions ϕ. By compactness of the space of invariant Borel probability measures,
we may assume, up to passing to a subsequence, that the νi’s converge to ν in the weak∗ topology.
One easily verifies that also the limit ν is invariant under f . Finally, one checks that ν is different
from µ, since∣∣∣∣∫

X

ψ dν −
∫
X

ψ dµ

∣∣∣∣ = lim
i→∞

∣∣∣∣∫
X

ψ dνi −
∫
X

ψ dµ

∣∣∣∣ = lim
i→∞

∣∣∣∣ψni(xi)− ∫
X

ψ dµ

∣∣∣∣ ≥ ε .
The existence of two distinct invariant measures contradicts i).

Weyl equidistribution theorem. The classical example of equidistribution was discovered by
Hermann Weyl56, and refines Dirichlet and Kronecker theorems, 8.1 and 8.9, on irrational rotations
of the circle.

Theorem 11.15 (Weyl, 1916). An irrational rotation of the circle is uniquely ergodic.

Proof. Let Rα : x + Z 7→ x + α + Z with α /∈ Q. We must check that time means of continu-

ous observables ϕ converge uniformly to the average
∫ 1

0
ϕdx. According to Weierstrass theorem,

trigonometric polinomials are dense in the space of continuous functions of the circle. Trigonomet-
ric polynomials are finite superpositions of the characters ek (x+ Z) := ei2πkx, with k ∈ Z (the
characters of the abelian group R/Z). Therefore, by a simple triangular argument, it suffices to
check that uniform convergence of Birkhoff sums holds for any of the ek. A computation gives, for
k 6= 0, ∣∣∣∣∣∣ 1

n+ 1

n∑
j=0

ek
(
Rjα (x+ Z)

)∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

n+ 1

n∑
j=0

ei2πkjα

∣∣∣∣∣∣ ≤ 2

n+ 1
· 1

|1− ei2πkα|
→ 0

as n → ∞, uniformly in x. On the other side, it is obvious that time averages of the constant
character e0 are constant and equal to 1.

The theorem owes its name to the fact that

1

n+ 1

n∑
j=0

ϕ (x+ jα)→
∫ 1

0

ϕdx

56H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.
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uniformly for any continuous function ϕ on the circle, and this is interpreted as saying that the
sequence of points {x, x+ α, x+ 2α, x+ 3α, ...} is “equidistributed” w.r.t. Lebesgue measure.

We also observe that the convergence of time means also holds for Riemann integrable functions,
since any such function ψ can be approximated by a couple of continuous functions ϕ− ≤ ψ ≤ ϕ+

such that the mean
∫

(ϕ+ − ϕ−)dx is arbitrarily small.
On the other side, mean values of Lebesgue masurable functions need not converge. For exam-

ple, the time mean of the characteristic function of the orbit of a point of the circle converge to
one, while its mean value is clearly zero, since the orbit is countable.

Weyl’s theorem extends to higher-dimensional tori. Here we state a version for flows.

Linear flows on tori. Consider the torus X = Rn/Zn of dimension n ≥ 2, and the linear flow
φt : x+ Zn 7→ x+ tα+ Zn defined by the differential equation

ẋ = α

where α ∈ Rn. The “frequency vector” α = (α1, α2, ..., αn) is said non-resonant if the scalar
product 〈k, α〉 =

∑n
j=1 αjkj 6= 0 for any k ∈ Zn\ {0}. As above, one can approximate any

continuous function on the torus with trigonometric polynomials. One then checks that

1

T

∫ T

0

ei2π〈k,x+tα〉dt =
ei2π〈k,x〉

i2π 〈k, α〉
ei2π〈k,α〉T − 1

T
→ 0

as T →∞, for any k ∈ Zn\ {0}, while the time mean of the observable 1 is constant and equal to
one. There follows that

Theorem 11.16. A non-resonant linear flow on the torus is uniquely ergodic w.r.t. to Lebesgue
measure.

Digits of powers of two. Look at the sucessive powers of two, written in base ten:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536,

131072, 262144, 524288, 1048576, 20197152, 4194304, 8388608, 16777216, . . .

The last digit recurs every four iterations. This happens also to the last two digits, although with
a much larger period. The reason is quite dull, since there are a finite number of possibilities and
the digits on the left do not interfere.

More interesting is to observe the first (non-zero) digit. Although the initial time serie

2 , 4 , 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, . . .

looks periodic, this is just an accident of the first few iterations. Moreover, any of the letters
k = 1, 2, . . . , 9 will eventually appear, and with a definite asymptotic frequency. To see this,
observe that the first digit of 2n is equal to k iff

k · 10m ≤ 2n < (k + 1) · 10m

for some integer m ≥ 0, i.e. iff

log10 k +m ≤ n log10 2 < log(k + 1) +m

If we denote α = log10 2, which is irrational, then the above inequality means that the image
Rnα(0 +Z) of the origin under the n-th iterate of the irrational rotation Rα belongs to the interval
Ik = [log10 k, log10(k + 1)) of the unit circle R/Z. The lenght of this interval is

|Ik| = log10

(
1 +

1

k

)
.

By Weyl theorem 11.15, if Ck(N) counts the number of times that the letters k appears as the
first digit of 2n for 1 ≤ n ≤ N , then

lim
N→∞

Ck(N)

N
→ log10

(
1 +

1

k

)
as n→∞. Thus, for example, the letter 1 appears about 30% of times, while the letter 7 appears
only less than 6% of times.
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11.6 Mixing

Finally, we describe the measure theoretical notion of mixing.

Mixing. An endomorphism f : X → X of a probability space (X, E , µ) is called mixing if

lim
n→∞

µ(f−n(A) ∩B)→ µ(A)µ(B)

for all events A,B ∈ E . This means that the past of any event becomes “asymptotically indepen-
dent” from any other event, in the sense of probability.

There follows from theorem 11.1 that mixing implies ergodicity.
As happens for ergodicity, this condition may be checked using integrable observables. We

denote 〈ϕ,ψ〉 :=
∫
X
ϕψ dµ the L2 inner product in L2(µ), so that 〈ϕ, 1〉 =

∫
X
ϕdµ is the mean

value of ϕ. Also, we denotes by Uf the isometry ϕ 7→ ϕ ◦ f .

Theorem 11.17. Let f : X → X be an endomorphism of the measurable space (X, E , µ). The
following are equivalent:

i) f is mixing
ii) for any observables ϕ,ψ ∈ L2 (µ),

〈Unf ϕ,ψ〉 → 〈ϕ, 1〉 〈1, ψ〉 (11.4)

as n→∞,

Condition ii) is easier to check using Fourier analysis (when possible). The implication ii) ⇒
i) is obvious taking characteristic functions, which are square integrable. The other is also true (a
proof can be found in [Wa82]), but we don’t need it.

Expanding endomorphisms of the circle. Let EN : x + Z 7→ Nx + Z be an expanding
endomorphism of the circle T = R/Z of degree N such that |N | > 1. Lebesgue probability
measure ` is invariant under EN , and also ergodic. We claim that

Theorem 11.18. EN is mixing.

Proof. It is easy to check (11.4) for characters ek(x+ Z) = e2πikx’s. Indeed, the inner product

〈Unf ek, em〉 =

∫ 1

0

e2πi(Nnk−m)x dx

vanishes for sufficiently large n as long as k or m are different from zero, just like the product
〈ek, 1〉 〈1, em〉. On the other side, it also happens that 〈Unf e0, e0〉 = 1 = 〈e0, 1〉 〈1, e0〉.

The claim follows from linearity and from denseness of trigonometric plynomials in L2.

ex: Show that an irrational rotation of the circle is not mixing (use harmonics).
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1978.

[Ro99] J.C. Robinson, Dynamical Systems, Stability, Symbolic Dynamic and Chaos, CRC Press,
Cambridge 1999.

[Ro04] J.C. Robinson, An introduction to ordinary differential equations, Cambridge University
Press, 2004.

[Ru87] W. Rudin, Real and complex analysis, McGraw-Hill, 1987.

[Sm67] S. Smale, Differentiable dynamical systems, Bull. of the AMS 73 (1967), 747-817.

[SS03] E.M. Stein and R. Shakarchi, Fourier Analysis. An Introduction, Princeton University
Press, 2003.
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