1. (2 valores) Determine a solução da equação recursiva linear

$$x_{n+1} = 2x_n - 10$$

com condição inicial $x_0 = 11$.

2. (2 valores) Considere uma população N(t) que decai de acordo com a lei

$$\dot{N} = -\beta N + \alpha$$
 (com $\beta > 0$ e $\alpha > 0$).

Determine o limite $\lim_{t\to\infty} N(t)$ da solução com condição inicial $N(0)=2\alpha$.

3. (2 valores) Estude as trajetórias do sistema dinâmico definido pela transformação $f: \mathbb{R} \to \mathbb{R}$, com

$$f(x) = -|x+1|.$$

4. (2 valores) Estude a natureza dos pontos de equilíbrio do sistema dinâmico definido pela transformação $f:[0,1] \to [0,1]$, com

$$f(x) = \frac{3}{2} x(1-x).$$

5. (2 valores) Considere o sistema linear

$$\dot{x} = y$$

$$\dot{y} = -2x - 2y.$$

Discuta a natureza do ponto de equilíbrio (0,0) (ou seja, diga se é um nodo, um ponto de sela ou um foco, e se é estável).

6. (2 valores) Considere a rotação da circunferência $R_{\alpha}: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, definida por

$$R_{\alpha}(x+\mathbb{Z}) = x + \alpha + \mathbb{Z}$$
.

Mostre que se α é irracional então nenhum ponto é periódico.

7. (2 valores) Considere a transformação $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ definida por

$$x + \mathbb{Z} \mapsto 10 \cdot x + \mathbb{Z}$$
.

Dê um exemplo de um ponto $x + \mathbb{Z}$ cuja órbita seja infinita, e justifique a sua resposta.

- 8. (2 valores) Seja $f: X \to X$ uma contração do espaço métrico completo X. Mostre que toda trajetória $(x_n)_{n\in\mathbb{N}}$, com $x_n = f^n(x_0)$ e $x_0 \in X$, é uma sucessão convergente.
- 9. (2 valores) Seja $f: I \to I$ uma transformação contínua do intervalo compacto $I \subset \mathbb{R}$. Mostre que f tem um ponto fixo.
- 10. (2 valores) Linearize o sistema

$$\dot{x} = -x^2 + y$$

 $\dot{y} = -2\sin(x) - y(y+2)$,

em torno do ponto de equilíbrio (0,0) e discuta a estabilidade.

- 1. (2 valores) Sejam $I \subset \mathbb{R}$ um intervalo compacto e $f: I \to I$ uma função contínua e crescente. Prove que a trajetória de cada ponto de I é monótona e converge para um ponto fixo de f.
- 2. (2 valores) Seja $f: X \to X$ uma transformação contínua de um espaço métrico completo. Defina o conjunto ω -limite $\omega_f(x)$ de um ponto $x \in X$. Diga, justificando, se $\omega_f(x)$ pode ser vazio.
- 3. (2 valores) Dê uma definição e um exemplo de ponto recorrente.
- 4. (2 valores) Dê uma definição e um exemplo de ponto errante.
- 5. (2 valores) Mostre que se o homeomorfismo $f: X \to X$ é topologicamente transitivo então toda função contínua $\varphi: X \to \mathbb{R}$ invariante é constante.
- 6. (2 valores) Considere a transformação tenda $T:[0,1] \rightarrow [0,1]$, definida por

$$T(x) = \begin{cases} 2x & \text{se } x < 1/2\\ 2(1-x) & \text{se } x \ge 1/2 \end{cases}$$

Determine a cardinalidade dos pontos fixos de T^n .

7. (2 valores) Considere a transformação $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ definida por

$$f(x + \mathbb{Z}) = 10 \cdot x + \mathbb{Z}.$$

Mostre que é topologicamente misturadora.

8. (2 valores) Considere a transformação $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ definida por

$$f(x + \mathbb{Z}) = 10 \cdot x + \mathbb{Z}.$$

Existem pontos recorrentes? Justifique.

- 9. (2 valores) Dê um exemplo, se existir, de uma transformação $f: X \to X$ que admite órbitas densas. Justifique.
- 10. (2 valores) Considere o conjunto de Cantor standard

$$K := \left\{ \sum_{n=1}^{\infty} \frac{x_n}{3^n} \text{ com } x_n \in \{0, 2\} \right\} \subset [0, 1] .$$

Mostre que K tem a mesma cardinalidade do intervalo [0,1].