Nome ${f N}^o$

1. (2 valores) Calcule a fração reduzida que representa o número 0.(12) = 0.12121212...

$$0.121212\dots = \sum_{n=1}^{\infty} \frac{12}{(100)^n} = \frac{12}{100} \sum_{n=0}^{\infty} (1/100)^n = \frac{12}{100} \frac{1}{1 - 1/100} = \frac{4}{33}$$

2. (2 valores) Determine o valor x_{10} da solução da equação recursiva linear

$$x_{n+1} = 2x_n - 10$$

com condição inicial $x_0 = 13$.

A solução estacionária é $\overline{x} = 10$. A solução com condição inicial $x_0 = 13$ é portanto $x_n = (13 - \overline{x}) 2^n + \overline{x}$. Em particular,

$$x_{10} = 3082$$
.

3. (2 valores) Considere a equação recursiva linear homogénea

$$x_{n+1} = x_n + x_{n-1} \, .$$

Determine os possíveis limites $\lim_{n\to\infty} x_{n+1}/x_n$.

A solução geral é $x_n = a\lambda_+^n + b\lambda_-^n$ onde $\lambda_\pm = (1 \pm \sqrt{5})/2$ são as raízes de $\lambda^2 - \lambda - 1 = 0$ e $a, b \in \mathbb{R}$. Então $x_{n+1}/x_n \to \lambda_\pm$

quando
$$n \to \infty$$
, dependendo se $a \neq 0$ ou $a = 0$ e $b \neq 0$, ou não existe no caso trivial em que $a = b = 0$.

4. (2 valores) Determine as soluções estacionárias (ou seja, independentes do tempo) do sistema de Lotka-Volterra (a, b, c e d são constantes positivas)

$$\dot{x} = ax - bxy$$

$$\dot{y} = -cy + dxy$$

As soluções estacionárias são

$$(x,y) = (0,0)$$
 e $(x,y) = (c/d, a/b)$.

5. (2 valores) Determine o limite $\lim_{t\to\infty} x(t)$ da solução da equação diferencial

$$\ddot{x} + 2\dot{x} + 2x = 0$$

com condição inicial x(0) = 1 e $\dot{x}(0) = 2$.

O exponencial $x(t) = e^{zt}$ é solução de $\ddot{x} + 2\dot{x} + 2x = 0$ se $z^2 + 2z + 2 = 0$, ou seja, se $z = -1 \pm i$. Então a solução geral é $x(t) = Ae^{-t}\cos(t + \varphi)$ com $A, \varphi \in \mathbb{R}$ e, em particular,

$$\lim_{t \to \infty} x(t) = 0,$$

independentemente da condição inicial.

6. (2 valores) Considere a rotação da circunferência \mathbb{R}/\mathbb{Z} definida por

$$R(x + \mathbb{Z}) = x + 0.2 + \mathbb{Z}.$$

Determine os pontos periódicos de período 1, 2, 3, 4 e 5.

Todos os pontos são periódicos de período 5.

7. (2 valores) Calcule a constante de Lipschitz da transformação f(x) = (x + 3/x)/2 definida no intervalo $[\sqrt{3}, \infty[$, e diga se é uma contração.

A transformação f(x)=(x+3/x)/2 no intervalo $[\sqrt{3},\infty[$ é uma contração com constante de Lipschitz $\lambda=1/2,$ pois

$$|f'(x)| = |1 - 3/x^2|/2 \le 1/2$$

se $x \ge \sqrt{3}$.

8. (2 valores) Considere as iterações de

$$x_{n+1} = \frac{1}{2} (x_n + 3/x_n)$$

com condição inicial $x_0 = 3$. Estime $d_n = |x_n - \sqrt{3}|$ e um valor de n tal que $d_n \le 0.001$.

Pelo princípio das contrações,

$$|x_n - \sqrt{3}| \le 2^{-n} |3 - \sqrt{3}| \le 2^{-n}$$
.

Em particular, é suficiente fazer um número $n \ge \log_2 1000 \simeq 10$ de iterações para ter $d_n \le 0.001$ (mas basta muito menos!).

9. (2 valores) Dê um exemplo, se existir, de uma transformação contínua $f:]0,1[\rightarrow]0,1[$ sem pontos fixos ou periódicos.

$$f(x) = x^2$$

10. (2 valores) Considere a transformação $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, definida por

$$x + \mathbb{Z} \mapsto 10 \cdot x + \mathbb{Z}$$

Calcule a cardinalidade da órbita do ponto $0.101001000100001000001\cdots + \mathbb{Z}$ e justifique a sua resposta.

É infinita e numerável (i.e. a cardinalidade de $\mathbb{N}),$ pois $0.10100100010000100001\dots$ é irracional.

Nome \mathbf{N}^o \mathbf{N}^o

1. $(2 \ valores)$ Dê um exemplo de uma contração da circunferência \mathbb{R}/\mathbb{Z} , e determine o seu ponto fixo

A tansformação constante $f(x + \mathbb{Z}) = 0 + \mathbb{Z}$, cujo ponto fixo é $0 + \mathbb{Z}$.

2. (2 valores) Estude a natureza dos pontos fixos da transformação $f:[0,1] \to [0,1]$ definida por

$$f(x) = 2x - 2x^2, \tag{1}$$

Os pontos fixos são 0, que é repulsivo, e 1/2, que é super-atrativo.

3. (2 valores) Determine o limite $\lim_{n\to\infty} f^n(0.33)$ quando f é definida pela (1).

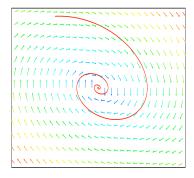
$$\lim_{n \to \infty} f^n(0.33) = 1/2.$$

4. $(2 \ valores)$ Diga se o equilíbrio (0,0) do seguinte sistema linear é um nodo, um ponto de sela ou um foco, e se é estável:

$$\dot{x} = -x + y
\dot{y} = -x - y$$
(2)

O equilíbrio (0,0) é um foco estável, pois os valores próprios da matriz que define o sistema, $\lambda_{\pm}=-1\pm i$, têm parte real negativa.

5. (2 valores) Esboce o retrato de fase (ou seja, algumas órbitas no plano x-y) do sistema linear (2) numa vizinhança do equilíbrio (0,0).



6. (2 valores) Discuta a estabilidade do equilíbrio (1,1) do sistema

$$\dot{x} = 1 - x - x^2 + x^2 y
\dot{y} = 1 - y + y^2 - xy^2.$$
(3)

A linearização do sistema (3) em torno de (1,1) é o sistema (2), portanto o equilíbrio (1,1) é um foco estável.

7. (2 valores) Considere a transformação $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ definida por

$$f(x + \mathbb{Z}) = 10 \cdot x + \mathbb{Z}.$$

Existem pontos com órbitas densas? Justifique.

Existe um conjunto residual de pontos com órbitas densas, pois a transformação é toplogicamente misturadora, e de consequência transitiva.

8. (2 valores) Dê uma definição de ponto recorrente, e dê um exemplo, se existir, de uma transformação contínua $f:X\to X$ sem pontos recorrentes.

Um ponto x é recorrente se $x \in \omega_f(x)$, ou seja, se toda vizinhança de x contêm infinitos pontos $f^n(x)$, com $n \ge 1$, da trajetória de x. A translação $f : \mathbb{R} \to \mathbb{R}$, definida por f(x) = x + 1, não admite pontos recorrentes.

9. (2 valores) Dê um exemplo, se existir, de uma transformação $f: X \to X$ cujas órbitas sejam todas densas. Justifique.

Uma rotação irracional da circunferência, ou seja, $f(x+\mathbb{Z}) = x + \alpha + \mathbb{Z}$ com $\alpha \notin \mathbb{Q}$, que é um homeomorfismo minimal de acordo com o teorema de Kronecker.

- 10. (2 valores) Dê uma definição do conjunto de Cantor standard, e enuncie algumas das suas propriedades.
 - O conjunto de Cantor standard é

$$K := \left\{ \sum_{n=1}^{\infty} \frac{x_n}{3^n} \text{ com } x_n \in \{0, 2\} \right\} \subset [0, 1] .$$

 \acute{E} um conjunto compacto, perfeito e totalmente desconexo, tem comprimento (medida de Lebesgue) nulo, tem a cardinalidade do intervalo, \dots