Fundamentals of Dynamical Systems
(Tépicos de Sistemas Dinamicos)
Licenciatura em Matematica

Salvatore Cosentino
Departamento de Matemaética - Universidade do Minho
Campus de Gualtar - 4710 Braga - PORTUGAL
gab: CG - Edificio 6 - 3.48, tel: 253 604086
e-mail: scosentino@math.uminho.pt

url http://w3.math.uminho.pt/~scosentino

November 18, 2023

Mandelbrot set filled-in Julia set

This work is licensed under a
Creative Commons Attribution-ShareAlike 3.0 Unported License.


mailto:scosentino@math.uminho.pt
http://w3.math.uminho.pt/~scosentino
http://creativecommons.org/licenses/by-sa/3.0/

Abstract

This is an english version of the notes written for my lectures on “T'épicos de Sistemas
Dinamicos” for the “Licenciatura em Matemaética” of the University of Minho, during the last
decade (available at my page http://w3.math.uminho.pt/~scosentino/salteaching.html).
Emphasis is on examples presenting in the simplest way some important ideas, and on the
interplay between different areas of mathematics. Some very important parts of the modern
theory of dynamical systems, as hyperbolic theory, Lyapunov exponents, Hamiltonian systems,
thermodynamic formalism, ...are almost completely missing. Other interesting results or
directions are only sketched.

Classical modern references and sources are the encyclopedic [KH95] and the introductory
[HKO03] by Anatole Katok and Boris Hasselblat. I also recommend the great set of notes
[Kn05] by Oliver Knill and the wonderful movie Chaos by Jos Leys, Etienne Ghys and Aurélien
Alvarez. Other original references are suggested along the text and in the final bibliography.

It would be nice to have time and places to do simulations, using some of the software
at our disposal in laboratories: this includes proprietary software, like Mathematica®8 and
Matlab, or open software, like Python and GeoGebra. Occasionally, we may also use some
c++ code and Java applets. Some applets are in the bestiario in my web page, and everything
about the course may be found in my pages

http://w3.math.uminho.pt/~scosentino/salteaching.html

Black paragraphs form the main text.

Blue paragraphs are important or interesting examples, or computations, most of them
even more important than black paragraphs.

Red paragraphs are non-trivial facts and results which may be skipped in a first (and
also second) reading.

means “exercise”, to be solved at home or in the classroom.

A O indicates the end of a proof.

Pictures were made with Grapher or SketchBook on my MacBook, or taken from Wikipedia,
or produced with Matlab, Python or Java codes, like the one in the front page.
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1 ITERATIONS b

1 Iterations

1.1 Exponential growth/decay

Fibonacci numbers. Consider the following problem, posed by Leonardo Pisano (alias Fi-
bonacci) in his Liber Abaci, 1202:

Quot paria cuniculorum in uno anno ex uno pario germinentur.

Quidam posuit unum par cuniculorum in quodam loco, qui erat undique pariete circun-
datus, ut sciret, quot er eo paria germinarentur in uno anno: cum natura eorum Sit
per singulum mensem aliud par germinare; et in secundo mense ab eorum nativitate
germinant.

Let f, be the number of pairs of rabbits at the n-th month. The offspring one month later,
fnt1 — fn, is equal to the number of “adult” pairs present in the n-th month, which is f,,_1.
Therefore, the f,,’s satisfy the recursive law

fn+1:fn+fn—17 (1'1)

which prescribes the successive values of f,, given some initial values fy and fi;. The sequence
grows quite fast, as you can see: if we take, with Fibonacci, the initial values fo = f1 = 1, we get

1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584 , . ..

1,1,2 358 .. L]

200 ® F12)=233

150

100

0 2 a 3 B 10 2
First 13 Fibonacci numbers.
These numbers soon become astronomically large. For example, after 10 years we get

fr20 =~ 8.67 x 10%*,

larger than the Avogadro number! In order to see their growth, we must use a logarithmic scale.

1078 11,2358
10°*{ ® F120)=B670007398507948658051921 .
1020
107
1012
100
10¢
100
0 0 10 60 80 100 120

First 121 Fibonacci numbers in logarithmic scale.

An applet which computes the sequence is in my page http://w3.math.uminho.pt/~scosentino/
salbestiario.html. Also useful would be a formula, or at least an asymptotic formula, for the
fn’s, and T’ll show you one later. For example, an asymptotic formula would solve a problem like

Estimate the smallest time n such that f, > 10%°.


http://w3.math.uminho.pt/~scosentino/bestiario/fibonacci.html
http://w3.math.uminho.pt/~scosentino/salbestiario.html
http://w3.math.uminho.pt/~scosentino/salbestiario.html
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Duplication of bacteria. Experiments show that a population of bacteria, during a certain
initial period at least, double each characteristic time 7 > 0. Thus, an initial population of Ny
cells gives origin to N1 = 2N, after a time 7, to No = 4Ny cells after a time 27, ..., and to

N, =2"Ny

cells after time n7. For example, a unique cell gives origin to 1024 cells after a time ¢ = n7 such
that 2™ = 1024, i.e. nT = (log, 1024) - 7 =10 7.

Sequences as time series. A (real or complex valued) sequence is a collection (2, )nen, of num-
bers z, € R or C, indexed (hence ordered) by an non-negative integer n € Ng :={ 0,1,2,3,...}.
We may think of the index n as “time”, an therefore at the n-th term x, as the value of some
“observable” x at time n (as the number of pairs of rabbits or of bacteria). Physicists call them
“time series”.

Clearly, we may as well define sequences with values in an arbitrary set X, for example in the
Euclidean space R%. Also, we may allow time n to be negative, for example to live in Z. Such
collections (xy,)nez are called “two-sided” sequences.

Subsequences are obtained forgetting to observe x at certain times, i.e. are sequences (¥;)ien,
defined by y; := x,,, where ¢ — n; is an increasing function of Ny into itself.

Sequences may be defined as functions are. Indeed, a sequence with values in the set X is
nothing but a function

z: Ny — X

disguised by the notation xz,, := f(n). A second possibility, more interesting for our point of view,
is some recursive law prescribing the value of z,, given the (past) values of xg, 1, ..., Tp—1. A
third possibility, is using some property that the successive terms must have.
Engineers also use to look at sequences as “discrete-time signals” z[n] = z(n7), possibly ob-
tained from an analogic signal x(t), defined for times ¢ in some interval of the real line, sampling
its values at integer multiples of some “sampling time” 7.

Discrete derivative and primitives. Given a sequence © = (z,,) with values, for example, in
R, we can “integrate” and get the sequence Sz, defined by (Sz)g := 0 and

n—1
(Sx)n:zZxkzxo+x1+--~+xn_1 for n>1.
k=0

The operator S should be called sum operator, or also discrete primitive. Also, we may define its
(forward) discrete derivative taking differences, as the sequence Dz defined by

(Dx)y i= Tpy1 — Ty, -

It is clear that S and D are discrete versions of the integration and derivation operators, respec-
tively. Indeed, one easily checks that Newton’s fundamental theorem of calculus and Leibniz rule
looks like

(DSz), = xy and (SDz)p, = xy — 20,

respectively (observe that D and S do not commute, and that their commutator [D, S] is the
operator sending a sequence z to the constant sequence equal to zg). A law like (Sz), = b, should
be thought as a discrete “differential equation” solvable for the first derivative, and it is indeed
solved by integration, as x,, = xo + (Sb),.

Arithmetic progression. An arithmetic progression x, = a + nb, which may also be defined
using the recursion x,4+1 = z, + b, with initial term zg = a. It is a solution of the “discrete
differential equation” Dx = b (the constant sequence b,, = b) with initial condition z¢ = a.

Consider the sequence 1,2,5,10,17,26,... Differentiate twice, and guess the next term.

Consider the sequence 1,2,9,28,65,125,... Differentiate enough times to guess the next
term.
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Discrete exponential. A discrete version of the differential equation # = z satisfied by the
exponential function z(t) = e’ is Dx = x. Can you recognise the sequence it generate?

Fibonacci difference equation. The Fibonacci sequence 1,1,2,3,5,8, ... satisfies

(Df)n = fnfl

(where we set f_; := 0), a shifted version of the equation Dx = x.

The primes sequence. The sequence 2,3,5,7,11,13,17,19,23,..., whose generic term is the
n-th prime number p,,. It is not clear what the recursive law could be.

Euler method and discrete differential equations. Suppose we have a autonomous differ-
ential equation

y=v(y)
defined by a vector field v(y). Following Euler, we may discretize time looking at the variable at

integer multiples ¢ = n7 of some fixed (possibly small but positive) “time-step” 7. The solution
y(nT) is then approximated with the sequence x,,, defined by the recursion

Tpt1 — Tp = TY(NT) = T0(Y(NT)) = TU(XH)

provided some initial condition xzy = y(0). The above is a discrete differential equation of the
form (Dzx), = F(z,).

Limits. We say that the real or complex sequence (x,,) converges to some limit a € R or C, and
we write lim,, o , = a or simply z,, — a (as n — 00), if for any “precision” ¢ > 0 there exists
a time 7 such that |z, — a| < € for all times n > 7. This means that the values x,, are within an
arbitrarily small neighbourhood of a as long as the time n is sufficiently large.

The basic fact about limits in the real line R is that monotone (non-decreasing or non-increasing,
i.e. satisfying x,41 > @, or 41 < z,, for any n, respectively) bounded (i.e. such that |z,| < M
for some M > 0 and all n) sequences of real numbers do admit limit. For example, the limit of a
bounded increasing sequence is simply the supremum of the set of values.

We also use the notation z,, — 00 to say that given an arbitrarily large K > 0 we can find a
time 7 such that +x, > K for all times n > 7.

Of course, there exist sequences which do not admit limits in either senses. These are, for
example, oscillating sequences, as x,, = (—1)". We'll encounter sequences with stranger behaviors.

Fundamental sequences. A sequence (x,) is said fundamental, or Cauchy sequence, if for any
precision € > 0 there exists a time n such that

[Ty — x| < e

for all times n, m > m. Fundamental sequences are clearly bounded. It is obvious that a convergent
sequence is fundamental (a triangular argument, since both z,, and x,, are €/2-near to the limit for
sufficiently large n and m). A similar triangular argument shows that a fundamental sequence with
a convergent subsequence is itself convergent. Less obvious is that any fundamental sequence in R is
convergent. Indeed, let X,, := {x with k& > n}. It is clear that the X,, are bounded, and therefore
by the supremum axiom there exist the numbers a,, := inf X,,. But the sequence (a,) is bounded
and not decreasing, and therefore there exists a = lim, ;o a,, (indeed, a = sup {a,, with n € N}).
It is then easy to construct subsequences of (x,) which converge to a, and this implies that (z,,)
itself is convergent to a.

Thus, we may know that a sequence is convergent without knowing its limit! In general,
convergence of all fundamental sequences is taken as a definition of (sequential) completeness of a
metric space.
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Geometric progression. The most important sequence is the geometric progression, defined by
the recursion
Tn+l = )\mn 3

and an initial term xg = a (which we may assume # 0 to avoid trivialities). Thus, the sequence is
To=a T = a\ To = ar? Ty, = a\"

The parameter A (which may be real or complex) is called ratio, since it is the ratio z,y1/x,
between successive terms of the sequence.

The geometric sequence clearly converges to zero when |A| < 1. It is constant, hence trivially
convergent, when A = 1, while oscillates between +a when A\ = —1 (hence does not converge if
a # 0). We may also observe that |A\"| — oo when |A| > 1.

Show that the geometric progession x,, = aA™ is the solution of the discrete autonomous
differential equation Dx = v (doesn’t it remind the differential equation defining the exponential?)
with initial condition xy = a, where the parameter is v = A — 1. In particular, verify that the
doubling progression x,, = 2" satisfies Dx = = with initial condition xo = 1.

Show that each term x, = a\™ of a geometric progression is equal to the geometric mean
/Znt1Zn—1 of its neighbors (provided n > 0, of course).

Computing limits. First, observe that x,, — a is equivalent to x, —a — 0. Therefore, we
only need to understand how to “prove” that some sequence converges to zero. One possibility is
to “compare” the sequence (x,) under investigation with a sequence with known behavior, as for
example the geometric progression. Indeed, if |z,| < y, for all n sufficiently large, then y, — 0
implies x,, — 0 too.

Subsequences and sequential compactness. A subsequence of a sequence (x,,) is a sequence
(zn,,) obtained selecting only the values x,,, of the original sequence, where i — n; is an increasing
map Ng — Np.

Sometimes we are only interested in a rough estimate of the growth of a sequence (x,). The

“limsup” is the limit limsup,, . & = lim, o an, € R U {oo} of the non-increasing sequence
Ay, := Sup{ Tn, Tnt1, Tnt2,--- ;. The “liminf” is the limit lim inf,, o0 2, 1= limy, 00 by, € RU{—00}
of the non-decreasing sequence b,, := inf{ z,, Tp+1, Tpyo, ...}

The basic fact (that closed and bounded sets of the real line are sequentially compact) is that
any bounded sequence admits a convergent subsequence.

Exponential decay and half-life. Radioactive decay may be characterized by a “half-life”,
the time 7 after which approximatley half of the initial nuclei decay, between a sufficiently large
sample. If g, denotes the number of nuclei at time n7, with n =0,1,2,..., then

1
dn+1 = 5 qn -

Thus, the number of nuclei at time n7 is ¢, = 27 "qo, while the product of the decaiment is
4o — Gn = qo(1 — 27™). Observe that ¢, — 0 when n — oo.

If solar radiation produces radioactive nuclei at a constant rate o > 0 (i.e. a nuclei each time
interval 7), then the number of radioactive nuclei at time nr satisfies the recursion

Gni1 = %qn—i—a. (1.2)

Equilibrium is possible when qq is equal to § := 2q, since then ¢; = a+a = ¢, @2 = a+a = q1 = qq,
and so on, ¢, = ¢ for all n € N.
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What happens if the initial condition is go # g ? The recursion says that

Q1 %QO‘FO!

@ = [htzata

B3 = §0p+iotiata

G = 0+ (er+t+ititi+l)a

The first term 27 "¢y — 0 when n — oo, which means that “future” is independent on the initial
condition gg. The second term converges to the equilibrium § = 2a when n — oo, the factor of «
being the sum of a geometric series of ratio 1/2 (if you forgot about it, see below).

A simpler formula, and insight, for g, may be obtained using the substitution z,, := ¢, — q,
where § = 2« is the equilibrium solution. We get

Tptl = Qnt1 — 200
= I¢nt+a-—2a (using (1.2))
1
§$n7

So, the difference between ¢, and 7 is a geometric progression with ratio 1/2. Thus z, = 2027 ",
and therefore
Gn =2+ (go — 2c0) - 277"

Again, it is interesting to observe that x,, — 0, and therefore ¢, — ¢, when n — co. So, the
amount of radioactive nuclei converges to the stationary value independently on its initial value.

After how much time does the radioactive substance decrease to é-th of its initial value?

Half-life of 14C is estimated to be 7 ~ 5730 years. Show how to date a fossil, assuming that
we know the proportion of 1*C' in a living being. !

Exponential growth. FExponential growth of populations in a illimited environment is modeled
by the recursion

Pn+1 = >\pn 5

where p,, represent the population at time n (measured in units of some fixed time interval 7 > 0),
given an initial population pg. The meaning of the parameter A\ is the following: at every time
interval 7, the increase p,+1 — p, of the population is equal the “offspring” ap,, where a > 0 is
some “fertility” coefficient, minus the “deaths” Bp,, where § > 0 is some “mortality” coefficient.
Thus, A = a — 5. An applet with the simulations is in exponentialgrowth.

Discuss the behaviour of solutions p,, for different values of .

To a population growing exponentially is added or retired a certain amount [ each time
interval 7. Te model is therefore

Pn+1 = ADn + 8B,
where [ is a positive or negative parameter. Find the stationary solution, and then the solution

with arbitrary initial condition po (consider the substitution x, = p,, — D, where P is the stationary
solution).

For which values of A and 8 do the solution p,, converge to the stationary solution when
n — oo?

1J.R. Arnold and W.F. Libby, Age determinations by Radiocarbon Content: Checks with Samples of Known
Ages, Sciences 110 (1949), 1127-1151.


http://w3.math.uminho.pt/~scosentino/bestiario/exponentialgrowth.html
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Growth of Fibonacci numbers. How fast do Fibonacci numbers grow? Define the quotients
Gn := fn+1/fn between neighbor Fibonacci numbers. From (1.1) one deduce the recursive equation

i1 =1+1/qn (1.3)
for the ¢,’s. We compute:
1, 2, 3/2=15, 5/3~166666, 8/5=16, 13/8=1.625, 21/13~1.61538,

You may observe the sequence in the following applet. It turns out that the sequence (g, ) converge
(try to prove it!), namely, ¢, — ¢ as n — oo. Taking the limits in the recursive equation (1.3) we
see that ¢ = 1+ 1/¢, and therefore ¢ is the positive root of the quadratic polynomial 2% — x — 1,

145

5 = 1.6180339887498948482 . ..

¢

Hence, for large values of n we may approximate Fibonacci law as

fov1 = Ofn,

an exponential growth with rate ¢. In particular, we expect f, ~ ¢™.
The limit ¢ is a famous irrational, the Greeks’ “ratio/proportion”. As described by Euclid?:

“A straight line is said to have been cut in extreme and mean ratio when, as the whole
line is to the greater segment, so is the greater to the less.”

If a is the greater part and b the less of a line of length a + b, Euclid’s requirement is

a+b_a

a b

There follows that the ratio ¢ = a/b satisfies 1 + 1/¢ = ¢. This division of an interval is used
in Book IV of the Elements to construct a regular pentagon. Observe that, as follows from the
quadratic equation, ¢! is equal to ¢ — 1.

Show that ¢ is irrational using its geometric definition (see Euclid’s Elements, or [HW59]
section 4.6.)

The invention of chess. Legend says that Sissa invented chess, and offered the game to the
king of Persia. Asked for a reward, he suggested that he wanted one grain of rice on the first square
of the chessboard, two grains on the second, four grains on the third, and so on. The king didn’t
take it seriously, but a computation shows that the reward amounts to

1+24+4+8+ .42 ~184 x 10"

grains of rice. Now, if 1 Kg of rice contains something like 30000 grains, the above number amounts
to roughly 6.13 x 10! tons of rise (which you may want to compare with People’s Republic of
China’s production in 2017, which has been, according to FAO, about 2.14 x 108 tons!).

Series. A series is a formal infinite sum ZZOZO Ty, OT Zn>0 T,, where the x,, € R are elements
of some given real (or complex) sequence. If the sequence (s,) of partial sums, defined as s, =
> r—ozk (which are honest numbers) converges to some limit, say lim,_,o s, = s, then we say the
series is convergent (or summable), and that its sum is ) <, zp = s.

A series ) x, is absolutely convergent is the series ) |z,|, formed with the absolute values
of its terms, is convergent. Of course, absolute convergence is stronger than mere convergence.
Indeed, convergent but not absolutely convergent series are quite interesting and strange objects®
(see, for example, the last book by Hardy [Har49]).

2Buclid, Elements, Book VI, Definition 3.
3 According to Abel (1828), “divergent series are the invention of the devil, and it is shameful to base on them
any demonstration whatsoever.”


http://w3.math.uminho.pt/~scosentino/bestiario/fibonacci.html
http://en.wikipedia.org/wiki/Golden_ratio
http://faostat.fao.org/site/339/default.aspx
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Harmonic series. The harmonic series

o0

Zl—1+1+1+1+1+
n =2 3 4 5 7

n=1

diverges. Indeed, its generic term 1/n, for n > 1, is bigger than the integral f:ﬂ dx/x, hence the
partial sums ) ,_, 1/k are greater than the logarithm log(n + 1).

Geometric series. The identity (1 4+ X+ A2+ A3 + ... + A?)(A — 1) = A"+ — 1 shows that, if
A # 1, the sum of the first n 4 1 terms of the geometric progression (with a = 1) is

n+1_1

1+A+A2+/\3+...+)\”:ﬁ

In particular, when |A| < 1, the geometric series ZZOZO A" is absolutely convergent, and its sum is

T4+ A+ + 8+ A"+ = —— .

Dichotomy paradox. Using the above formula for the sum of the geometric series, you may try
to convince Zeno that
1/241/4+1/84+1/164+1/32+...=1.

Decimal expansions. Also, you may convince yourself that 0.99999. .., which by definition is

the sum of the series

9 9 9 9

10 100 1000 10000
is actually equal to 1. Moreover, you may learn how to recognize rational numbers as 0.33333. ..
or 1.285714285714 ... from their periodic expansion. Indeed, a real number is rational if and only

if its base 10 (or any other base d > 2) expansion is eventually periodic.

Say if the following series are convergent, and, if so, compute their sum.

1+1/24+1/441/8+1/16+ ... 1410+ 100 + 1000 + ... 1+1/10+1/100 + 1/1000 + ...
ST(4/5)"  9/10+9/100 +9/1000 + ... 0.3333...
n=0

Convergence tests. Deciding convergence or divergence of a series is not easy. The only tool
at our disposal is comparison with known series, and essentially the only known non-trivial series
is the geometric one. Comparison means the obvious observation that 0 < z, < vy, for any
n sufficiently large implies the following two conclusions: > vy, < oo = Yz, < oo, and
Do Tn =00= Y Yp = 00.

Now, if |z,| < CA™ for some constant C' > 0 and any n sufficiently large, then the partial
sums of the series ) x, are bounded by a constant times the partial sums of the geometric series
> A", therefore the series ) x, is absolutely convergent whenever |\| < 1. This happens when
lim sup,, o [n]/™ < 1 (root test) or when limsup,,_, . |[Zni1/%n| < 1 (ratio test).

1.2 Linear recursions

Fibonacci model is the prototype of


http://en.wikipedia.org/wiki/Zeno's_paradoxes#The_dichotomy_paradox
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Recursive linear equations. A recursive linear equation (or “finite difference linear equation”),

a law

ApTngp + Gp_1Tptp—1 + -+ + A1 Tpy1 + GoZy, = fp (1.4)
which defines a sequence (x,,) given a set of “initial conditions” xg,z1,...,%p—1 and the known
sequence (external force) f, . Above, ag # 0,a1,...,ap—1,ap 7# 0 are real or complex parameters.

It is a discrete version of a linear ordinary differential equation of degree p with constant coefficients.

We may interpret the left-hand side as Lx, obtained applying a linear operator L, obtained as a

superposition of a finite number of powers D* of the discrete derivative D, to the sequence x = (z,,).
When f, =0 for all n, we get a homogeneous recursive equation

ApTpgp + Gp_1Tptp—1 + - + A1Tpt1 + G0y =0. (1.5)

or simply Lz = 0. The set of solutions of the homogeneous equation (1.5) is a vector space H of
dimension p, and the set of solutions of (1.4) is an affine space modeled on H, i.e. has the form
(2n) + H, where (z,,) is any (particular) solution of (1.4).

Eigenfunctions. The general recipe is: “linear homogeneous equations have exponential solu-
tions”. The conjecture x,, = z™ solves the recursive equation (1.5) if z is a root of the characteristic
polynomial

P(z) = ap2? +ap_12P"' +- + a1z +ag

In particular, if P has p distinct complex roots (which is the generic case), say 21, 22, . . ., 2, then
the general solution of the homogeneous equation is a linear combination

Tp = c12] + 225 + 2y

where the cq,ca,. .., ¢, are constants which depend on the initial conditions g, z1,...2p—1.
Find the general solution of the recurrence x4 + 22,11 + x, = 0.
Find an explicit formula for the Fibonacci numbers f,,’s (which is known as Binet’s formula).

Discuss what happens when the characteristic polynomial has non-simple roots (observe that
if 2+ & and z are two roots, with € > 0 small, then the superposition ((z +¢&)" — 2") Je =~ n 2"~}
is also a solution ...).

Solve the discrete free particle Newton equation D%z = 0, i.e. 42 — 22,41 + 2, = 0.

Consider the recursive equation
Tnt2 = 2xn+1 + zp .

Find the geral solution. Find the solution with xy = 0 and z; = 1, and compute explicitely the
first few terms of the sequence. Show that the quotients g, := x, 41/, converge to 1+ /2 when
n — oo, and therefore

xn+1 — T - \/§
Tn

Obtain rational approximations of /2.

Generating functions. Given a sequence (z,), defined anyway, we may consider the (formal)
power series

F(z):= Z Tp 2"

n>0

If the series has a non-zero radius of convergence (since the radius of convergence R is given by
Hadamard formula 1/R = limsup,,_,, ¥/|zx|, this happens when the z,’s grow at most exponen-
tially, i.e. when |z,| < CA™ for some C > 0 and A > 0), it defines an analytic function F'(z)
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in some neighbourhood of the origin. Then, the original sequence may be recovered computing

derivatives, since
_ F™()

In |
n:

For this reason, F(z) is called generating function of the sequence (z,).
You may find interesting the following characterization of rational functions.

Theorem 1.1. A power series ), ., Tn2", converging in some neighbourhood of the origin, repre-

sents a rational function F(z) iff the coefficients x,, satisfy a recursive linear homogeneous equation.

Generating function of the Fibonacci numbers. If f,, denotes the n-th Fibonacci number,
starting from fo = fi = 1, then the power series ) ., fn2" represents the rational function

1

Fz)= ——
(2) 1—2z— 22

in a neighbourhood of the origin. Observe that it has a pole with smallest absolute value at 1/¢,
and deduce that limsup,,_,__ |f.|"/™ = ¢ (so that f, ~ ¢", as we already knew).

Give examples of sequences which do not satisfy any (finite) recursion.

Linear systems. A linear homogeneous recursive system is a law
Tpy1 = Az,

for some vector valued sequence z,, € R¥, given a square matrix A € Maty(R). The solution is
T, = A"xg,

where o € RF is the initial condition. The computation of powers A" of a square matrix A is
simplified if we can diagonalize it. For example, if the matrix has k distinct and real eigenvalues,
then in the basis formed by the eigenvectors it is a diagonal matrix, say A = diag(\1,...,\x), and
its n-th power is simply the diagonal matrix A™ = diag(A}, ..., A}).

A finite difference equation of order p like

ApYntp T Ap—1Yntp—1 + -+ + G1Ynt1 + GoYn =0

is equivalent to a recursive linear homogeneous system x,,+1 = Az, for the vector values sequence
Tn 1= (y’ru Yn—1y--- aynfpfl)-

Write and solve the system which corresponds to Fibonacci problem.

1.3 Iteration of maps

Iterations of maps. Given some space X (as the real line R, an interval I C R, an Euclidean
space RY | and so on ...) and a transformation f : X — X, we may form sequences according to

Tpt1 = f(Tn)

given some initial condition zy. Such sequences are called trajectories of the map f.
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Interval maps and cobweb plot. If X is an interval, we can follows trajectories using a
“cobweb plot”: drawing vertical and horizontal lines connecting the points

(z,2) = (2, f(2)) = (f(2), f(2)) = (f(2), f2(2)) = (FP(2), (@) = (f2(2), f22) = .

101 x(0)=0.1

® x(5)=0.889 ~— -
0.8 - AN

06 1 \
04

02

0.0 A

-0.2 0.0 02 04 0.6 0.5 10 12
Cobweb plot of the quadratic map f(z) = Az(1 — ) when A\ = 3.56.

Affine interval maps. As we have already seen, affine maps behave quite predictably.
Indeed, the trajectories of an affine map like

f@)= M+«

with A # 1, are sent, by the change of variable y = 2 — T, where T = a//(1 — ) is the stationary
solution, into the trajectories of g(y) = Ay, and the latter are geometric sequences. If A = 1,
trajectories are simply arithmetic series.

Nonlinearity. Non-linear recursive systems show much richer dynamics. Here is a short list of
famous examples.

Hardy-Weinberg equilibrium. Consider the transmission of one gene with two alleles, say A
and a. Let xg, yo e zo be the frequencies of the genotypes AA, Aa and aa, respectively, within some
initial population. Then the probability to get the allele A or a in the formation of one gamete are

Po = o + 390 e g0 =1—po=20+3yo,

respectively (so that pg + go = 1). The offspring will therefore have genotypes AA, Aa or aa with
frequencies

z1 =pg, Y1 = 2poqo  and 21 =q;.

(observe that @1 + y1 + 21 = p3 + 2poqo + ¢3 = (po + qo)? = 1). The probabilities to get the allele
A or a in the formation of one gamete in the second generation are

pL=a1+ 50 and n=z+30

Then an elementary computation (using only pg + go = 1) shows that the second generation will
have genotypes AA, Aa or aa with same frequencies as in the first generation, since

xXr
Y2 = 2p1q1 = 2(z1 + 2y1) (21 + Sy1) = 2(p§ + Podo) (45 + Pogo) = 2pogo = Y1
2 2
=g = (z21+31)" = (¢ +pod) =q5 ==
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Thus, the distribution of the three genotypes attains a stationaty value starting from the first
generation (Hardy'-Weinberg® equilibrium,/principle/law).

Fisher-Wright-Haldane model of natural selection. A simple model of natural selection
was proposed by Fisher®, Wright” and Haldane® around 1930. It considers only one gene with two
alleles, A and a. Biological success of the three different genotypes is modeled by certain “fitness
coefficients” ¢ a4, ¢aq € Paa, Which determine the different survival/reproduction rates. Let p,, and
g¢n = 1 — p, denote the frequencies of the alleles A and a, respectively, within the n-th generation.
Then the frequency of the allele A at the next generation is

(14 a)p2 + pugn
14+ a)p2 + 2pngn + (1 + B8)q2

Pn+1 = (

where we set (1 4+ ) = paa/daq and (1 4+ 3) = dua/daa (so that, since the fitness coefficients are
positive by definition, both o and 8 are greater than —1).

The map p, — Pnt+1 = f(pn) fully describes the time evolution of the population. It has two
obvious fixed points, which are 0 and 1, and represent two homogeneous populations with only one
allele.

If o and 8 have opposite signs (i.e. when the mixed genotype Aa has a fitness coefficient lying
between the fitness coefficients of the pure genotypes AA and aa), these are the only fixed points.
Observing at the graphs of f(p) below

a<0<p <0<«

we see that if we start with any 0 < py < 1, then the sequence p,, converge to p, — 0 when
a < 0 < B and converge to p, — 1 when § < 0 < a. In both cases, the asymptotic population
only contains the fittest allele, while the weakest get extincted.
More interesting things happen when a and f§ shares the same sign. The map f(p) admits a
third fixed point |
|8

lof + 18]

stricly between 0 and 1, representing a mixed population.

When both a and § are positive (i.e. when both genotypes AA and aa perform better than
Aa), then the equilibrium p is unstable, a small perturbation py = P + ¢ produces extinction of
one of the two alleles, namely p, — 0 or 1, depedning on ther sign of the perturbation. This
phenomenon is called disruptive selection.

When both a and 3 are negative (i.e. when the mixed genotype Aa is the fittest), then the
equilibrium p is stable, for any initial condition which is not 0 or 1 we get p, — p. In particular,
both alleles survive in the asymptotic population. This phenomenon is called heterosis.

23:

4G.H. Hardy, Mendelian proportions in a mixed population, Science 28 (1908), 49-50.

5W. Weinberg, Uber den Nachweis der Vererbung beim Menschen, Jahreshefte des Vereins fiir vaterlandische
Neturkunde in Wirttemberg 64 (1908), 368-382.

SR.A. Fisher, Genetical Theory of Natural Selection, Clarendon 1930.

7S. Wright, Evolution in Mendelian populations, Genetics 16 (1931), 97-159.

8J.B.S. Haldane, A Mathematical Theory of Natural and Artificial Selection (1924-1934).
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Disruptive selection: 0 < a < 3. Heterosis: a < 8 < 0.

The quadratic family. As soon as the interval map is not affine, trajectories are not easily
understood. The simplest interval maps which are not affine are quadratic polynomials. A more
realistic model of population dynamics in a limited environment seems to be

Poy1 = AP, (1= P,/M)

where the constant M > 0 is the maximal allowed population. Observe that P, y; < 0 whenP,, >
M, which makes no physical sense (or may be we interpretde as “extinction”). The substitution
2y, = P, /M transforms the above law into the adimensional law

Tnyl = )\xn(l - xn)a

The family of maps
iz) = (1 —2a) (1.6)

is called logistic map/transformation”. The region where the relative population z,, makes

(physical) sense is the unit interval [0, 1] (which means real population between 0 < P, < M), and
the map preserves the unit interval if the parameter ranges in the interval 0 < A\ < 4. Thus, we
may think at f) as a map from the unit interval into itself. The particular map f4 is also known
as von Neumann or Ulam map.

Graphs of the logistic map when A = 0.5, 2, 3 and 4.

Stationary solutions are the trivial equilibrium 0 and the point Z = (A —1)/A (provided A > 1).
For small A, the trajectories are previsible. As A\ approaches 4, they become quite wild.

When A > 4, the unit interval is no longer preserved, and the map lose its physical/biological
meaning. Nevertheless, is continues to be interesting for mathematicians.

Write a code to simulate the system.

Discuss what happens to trajectories when 0 < A < 1.
Discuss twhat happens to trajectories when 1 < A < 3.
Observe what happens when A grows between 3 and 4

What happens when A >4 7

9Robert M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459-467.
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Try to understand the dynamics of the following maps, defined in convenient intervals (some
are easy, other are hard, if not impossible).

f(z) = 23 f(z) =23 flxy=2+z

flz)=2%4+1/4 fl@)=11-1z flz)=2%-2 f(x) =sinz f(x) =cosz

fl@)=a(l—2) fl)=22(1-2) flz)=3z1-2) [f(z)=42(1-2)

Henon map. The Hénon map'® is the map of the plane

Tnt1 =1+ yn — ax%
Yn+1 = an

Depending on the values of its parameters, its trajectories show regular, “intermittent” or “chaotic”
behavior. If you choose the parameters o ~ 1.4 and 5 ~ 0.3, an initial condition like zg ~ 0.3 and
yo ~ 0.3, and draw a sufficiently long orbit, you see the “Hénon attractor”

04
. 5‘::::\‘

02 N
01
00

-10 -05 0.0 05 10

Hénon attractor.

1.4 Babylonians-Heron method to compute square roots

Searching for efficient methods to solve problems/equations is another source of interesting dy-
namical systems.

Babylonian-Heron algorithm. Consider the problem to find the side ¢ of a square given the
value a > 0 of its area, i.e. to find the number which we call £ = y/a. A clever method, descibed by
Heron ', but probably already used by Babylonians 2 %, is as follows. We start with a rectangle
with basis z¢ and height yg, “simple” numbers such that zgyo = a (for example, if the area is an
integer like a = 2, we may start with zo = 3/2 and yo = 4/3). We choose a second rectangle is
such a way that its sides are nearer than the sides of the first rectangle. An obvius way to do it

10M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 69-77.

11 «Since 720 has not its side rational, we can obtain its side within a very small difference as follows. Since the
next succeeding square number is 729, which has 27 for its side, divide 720 by 27. This gives 26 2/3. Add 27 to
this, making 53 2/3, and take half this or 26 5/6. The side of 720 will therefore be very nearly 26 5/6. In fact,
if we multiply 26 5/6 by itself, the product is 720 1/36, so the difference in the square is 1/36. If we desire to
make the difference smaller still than 1/36, we shall take 720 1/36 instead of 729 (or rather we should take 26 5/6
instead of 27), and by proceeding in the same way we shall find the resulting difference much less than 1/36.”
Heron of Alexandria, Metrica, Book I.

12C.B. Boyer, A history of mathematics, John Wiley & Sons, 1968.

130. Neugebauer, The ezact sciences in antiquity, Dover, 1969.
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is to take as new basis the arithmetic mean x; = (xo + yo)/2, which forces to take y; = a/x; as
second height. And so on, if we are not satisfied yet. The recursion for that basis reads

1 a
$n+1:§ mn—i-m— .

Observe that if both a and the initial conjecture xo are rationals (the only numbers known to
Babylonians), then all the z,,’s are also rationals.

3.00

275
250
225
200
175 /
150 —

135 xi0)=2
& x(b)=1414214

100

05 10 15 20 25 30

First 6 iterations of the Heron method to find the square root of 2 starting from z(0) = 2.

Good rational approximations of v/2.  The algorithm converges, and quite fast. We could,
as the Babylonians, put an initial guess o = 3/2 for v/2 (quite reasonable, since 12 < 2 < 22), and
find

17 o577 665857
= — ~1.41 — ~ 1.41421 2 =
T1= 1o 666666666 ) 568627 T3 = m0339

= ~ 1.41421356237
408

As you see, the sequence stabilizes quite fast.
As a first attempt to explain this miracle, we could start looking at the recursive equations for
the bases and the heights of the rectangles:

Tn + Yn
2

1/n 4+ 1/yn

l/yn+1 = B)

Tp+1 =
(so, the next height is the “harmonic mean” of the base and height). We see that the z,,’s and the
yn’s form decreasing and increasing sequences, respectively (disregarding the first guess, of course),

namely
Y2ys < <y, <<z <o <3 < T,

The real root is somewhere between, namely y,, < v/a < z,. Hence, we have an explicit control
of the error. A computation shows that the lengths of those intervals, the differences ¢, = z, — y,

satisfy the recursion

1
Ent1 < 5 “Enp

So, and initial “error” £y < 1 (an easy achievement, since we easily recognize squares of integers)
reduces to at least g, < 27" after n iterations. The true error is actually much smaller. Indeed,
in our example we may compute

17 24 1 577 816 1

o2~ Lo d _ 2o
S1= 13717 " ogg S0V05 an 27408 ~ 577 235416

~ (0.000004

So that the first improved guess x; has already one correct decimals, and the second, x5 has already
four correct decimals!

What Babylonians didn’t suspect is that if you start with a rational guess for v/2, you get an
infinite sequence of rational approximations, but the process never stops. This is due to

Theorem 1.2 (Pythagoras). The square root of 2 is not rational.
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A formula by Heron says that the area of a triangle with sides of lengths a, b and ¢, and
semi-perimeter s = (a + b+ ¢)/2 , is given by

A=/s(s—a)(s—Db)(s—c)

Estimate the area of a triangle with sides 7, 8 and 9.

Estimate 4/13 with an error < 0.01 or 0.001.

Estimate how many iterations are necessary to obtain the first n correct decimals of v/2 using
Babylonians’ method.

Prove Pythagora’s theorem 1.2 above (take a look at [HW59]).
Arithmetic-harmonic mean. Heron method can be better visualized as a bi-dimensional map.

Given two positive numbers, 2y and yo (the sides of a rectangle with area a = xgyp), define
recursively

Tn+ Y 2

(xn-l-lvyn-‘rl ) = f(xnyyn) = ~ “ y 1 1

2 Ly L

T, T yn
It is clear that the area function A (x,y) := xy is preserved, i.e. A(f(x,y)) = A(z,y). This
means that trajectories belongs to hyperbolae zy = constant. Moreover, one easily sees that each
trajectory n > (x,,y,) converges to the diagonal, hence to the point (v/a,+/a). For example, if

we start with (1,2) we get (v/2,v/2) asymptotically.

Arithmetic-geometric mean. One is therefore tempted to generalize to other meaningful
means. Given two positive numbers x and y, define recursively

1
Up1 = i(an + gn) In+1 = VaAn Gn ,

starting with ap = (z + y)/2 and g9 = /Ty, the arithmetic and the geometric mean of x and
y, respectively. The arithmetic-geometric mean inequality (the fact that (z + y)? > 0) says that

gn < a,, and therefore
In+1 =0 Gn 2 /In 9n = Gn

Since both sequences a, and g, are between the minimum and the maximum of z and y, this
implies that g, converges, to some (positive) limit p. The sequence a,, also converges, and to the
same limit, since

n = Gpi1/9n = P
The common limit is called arithmetic-geometric mean of x and y, say p =: AGM(z,y). What is
not trivial is a formula for the limit, and this is due to Gauss: it says that

T Tty

4 7 (z—y)
K (52)

77/2 de
K(k) ::/ ——
0 V1 —Ek2sin” 0

is the “complete elliptic integral of the first kind”.

AGM (z,y) =

where

Side and diagonal numbers. Define side and diagonal numbers recursively as
Sn+1 = Sp + dp, dnJrl = 2s, + dn
respectively, starting from sy = dy = 1. A computation shows that
2 2
d; —2s;, = %1

where the sign depends on the parity of n. Thus, when n is odd, we get a whole family of integer
solutions of the Pell equation 22 — 2y? = 1. Since both s,, and d,, grow, the ratio d,, /s, tends to
V2 when n — oo, with an error of size 1//s,.
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1.5 From Newton method to Julia and Fatou sets

Finding y/a means solving the polynomial equation 22 — a = 0. What about finding roots of a
generic polynomial ?

Newton-Raphson iterative scheme. “Newton method” is a method proposed by Joseph
Raphson around 1690 to approximate roots of a polynomial p(x) (Newton used it to solve 2% — 2z —
5 =0). It consists in starting with an initial conjecture zy near to some root, and then improve it
using the linear approximation

p(x) = p(x0) + p'(20)(x — 20) -
This idea leads to the recursion
p(zn)
p'(zn)
It is clear that if the sequence converges, i.e. Z, — T, and if p'(zs) # 0, then the limit 2,
is a root.

Tn+l = Tp —

175 /
— Plx)=x*-2x-5

15.0 x(0) =3

o x(2)=2127

12.5

100
75
5.0
25

0.0 /‘./

18 20 22 24 26 28 30 32

Search for a root of 3 — 2z — 5 using Newton iterations.
Use Newton method to solve Newton’s problem, i.e. find the roots of 23 — 2z — 5.

Show that Newton method to solve 22 — a = 0 corresponds to babylonian-Heron iterative
scheme.

Use Newton method to approximate the Greeks’ ratio, the positive root of 2 — 2 — 1. Then,
compare with the babylonian-Heron method (i.e., estimate V/5, then sum 1 and divide by 2).

Write and implement Newton method to find n-th roots, i.e. to solve ™ —a = 0.

Newton’s fractals. In 1879 Cayley observed that the above method could be also used to
approximate complex roots of complex polynomials p(z) € C[z]. It amounts to iterate the rational
function

The problem is therefore to understand when, i.e for which initial values zy, the sequence z,
converges to one of the roots. The “basins of attraction” of the different roots draw beautiful and
unexpected patterns in the complex plane.
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Basins of attraction of the roots of 223 — 2z +2in C

(from http://en.wikipedia.org/wiki/Newton_fractal).

Iteration of rational functions in the Riemann sphere. The natural generalization is to
take a rational function of a complex variable f(z) € C(z), which is an endomorphism of the
Riemann sphere C = C U { oo}, i.e. try to understand its trajectories, i.e. the iteration z,,1 =

Most studied is iteration of the family of quadratic polynomials
f(z)=24+¢

depending on a parameter ¢ € C. Its beauty was foreseen by Gaston Julia'* and Pierre Fatou'® at
the beginning of the XX century, revealed with the help of the first modern computers by Benoit
Madelbrot, and then studied by a variety of great mathematicians (like Adrian Douady, Dennis
Sullivan, John Milnor, Misha Lyubich, Jean-Christophe Yoccoz, Curtis McMullen, ...) starting
from the 80’s of the last century.

Pictures of the Mandelbrot and Julia sets. Below, you may find a picture of what Julia
and Fatou could only dream about.

Mandelbrot set filled-in Julia set

Mandelbrot set (left) and Julia set (right) of the polynomial 22 + ¢ with ¢ ~ —0.7645 — i - 0.1595.
(from http://w3.math.uminho.pt/~scosentino/bestiario/julia.html)

The red hearts on the left form the Mandelbrot set, the set of those values of the parameter ¢
such the orbit of critical point zy = 0 is bounded. The almost invisible grey points on the right

14G. Julia, Mémoire sur l'iteration des fonctions rationnelles, Journal de Mathématiques Pures et Appliquées, 8
(1918), 47-245.

5P, Fatou, Sur les substitutions rationnelles, Comptes Rendus de I’Académie des Sciences de Paris, 164 (1917)
806-808, and 165 (1917), 992-995.


http://en.wikipedia.org/wiki/Newton_fractal
http://w3.math.uminho.pt/~scosentino/bestiario/julia.html

1 ITERATIONS 22

form the filled-in Julia set, the set of initial values zo with bounded orbits (once fixed a value of
¢). Blue colors, which help to to see the Julia set, are chosen depending on the speed with which
other trajectories diverge to oco.

Much more beautiful pictures, and then movies and so on, may be found in this page by Jos
Leys: http://www. josleys.com


http://www.josleys.com
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2 Differential equations and flows

2.1 Flows

The main way in which dynamical systems enter in physics is through differential equations.

Flows of vector fields. Let X be a differentiable manifold (as, for example, an open region of
RY), and let v be a vector field on X. If we assume that the autonomous differential equation

& =v(x)

with any given initial condition z (0) = x, has solutions ¢ — x (¢) which exist for any time ¢t € R
(as is the case when v is smooth and X is compact), then the flow of the vector field v is the
action @ : R x X — X given by ®; (x) = z (t). Indeed, it is clear that ®¢ is the identity map, and
that

By 0d, = By,

for any ¢, s € R. Therefore, ®_; = (®;)"L.

/\

Conversely, given a one-parameter group of diffeomorphisms ®,, one defines the phase velocity

according to
d L Dy(x) —
vie)i= gy dule)| =l ———

The group property then implies that the curve ¢ — x(t) = ®,(x) satisfies
Dyys(x) — @ . D (D —®
i(t) = tim 2000 @ = 2l@) _ g, Pal@e@) ZBil2) _ )

s—0 t s—=0 t
and therefore is a solution of the autonomous differential equation & = v(x) with initial condition
z(0) = z.

Also interesting are semi-flows ®;, which are defined only for non-negative times ¢ > 0.

A flow or semi-flow is called continuous time dynamical system, and indeed our basic definitions
in the previous chapter are adaptations of physicists’ ideas and terminolgy about flows of vector
fields. The map ¢ — ®,(z) is called trajectory of the (initial) point z, and its image O (z) =
{®¢(x) : t € Ry} is called (forward) orbit of x. If it happens, as usual in classical mechanics, that
flows are defined for all times ¢ € R, then the set O(z) = {®;(z) : ¢t € R} is called orbit of x.

From flows to maps, discretization. Given a flow ®; on X, one could specialize to discrete
time looking at the system at multiples integers n7 of a given time-unit 7 > 0, and this amounts
to iterate the transformation f = ..

More interesting is the following construction.

Poincaré maps. Let &, be the flow of the autonomous differential equation # = v(x) on a
manifold X, and let Y C X be a submanifold of codimension one which is transversal to the flow
(i.e. the tangent space T, Y does not contain the vectors v(z) for any = € Y).

If zo € Y is a periodic point, say ®.(xg) = zo for some period 7 > 0, then nearby points
x €Y also return to Y after some time near to 7. Thus, one could define, in a sufficiently small
neighbourhood U C Y of xg, a first return/Poincaré map f : U — Y, sending a point x € U into
O, (z)(z) if 7(z) is the smallest positive time ¢ > 0 such that ®;(z) € Y. This construction is even
possible around a point which is not periodic, provided its orbit returns to Y sufficiently near.
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Moreover, it may be also happens that the flow allows a global (Poincaré) section, a codimension
one submanifold Y C X transversal to the vector field v such that the orbit of any point y € YV
eventually returns to Y after a minimal time

T(y) :=1inf{t > 0 s.t. O(y) €Y} < o0,

called first return time. This allows to consider a globally defined first return/Poincaré map
f:Y =Y according to

fly) =@ (y).

Linear flows on the two-torus and rotations of the circle. A constant vector field v = (a, b)
generates a linear flow
Dy : (z,y) — (z + at,y + bt)

on the plane. This flow is clearly invariant under translations by integer vectors, and therefore it
defines a flow ®; on the two dimensional torus T? := R?/Z2. The circle R/Z ~ C := {(z + Z,0 +
Z)} C T? is transversal to the vector field if b # 0. The orbit of a point (x,0) € C goes back to
the section after a time 7 = 1/b (if b > 0) to the point ® ,(x,y) = (z + a/b,0). Thus, the first
return map is f : @ + Z — x + a + Z, a rotation of the circle by an “angle” a = a/b.

Suspension flows. Poincaré construction of a first return map out of a flow admits an inverse.
Given amap f : X — X, one can define the mapping torus Xy as the Cartesian product X x [0, 1],
with coordinates (z,¢) with € X and ¢ € [0, 1], modulo the equivalence relation (z,1) ~ (f(z),0).
The flow of the vertical vector field 9/0t on X; (which is a smooth manifold if X is) is called
suspension of f. It is clear that it admits a global Poincaré section X x { 0} ~ X, and its first
return map is precisely f.

More generally, given a map f: X — X and a roof function 7: X — Ry bounded away from
0, one can consider the space Xy, =Y/ ~ obtained as

Y={(z,t) : € X,0<¢t<7(2)}

modulo the equivalence relation (z,7(x)) ~ (f(x),0). The flow of the vertical vector field 9/9t on
Xy is called suspension of f with height . Again, it admits a global Poincaré section X x{ 0} ~ X,
and its first return map is f.




2 DIFFERENTIAL EQUATIONS AND FLOWS 25

2.2 Structure of physical models

Classical mechanics is the natural source of interesting dynamical systems.

Newtonian mechanics. According to greeks, the “velocity” ¢ = %q of a planet, where
q € R? is its position in our Euclidean space and ¢ is time, was determined by gods or whatever
forced planets to move around circles. Then came Galileo, and showed that gods could at most
determine the “acceleration” § = %q, since the laws of physics should be written in the same
way by an observer in any reference system at uniform rectilinear motion with respect to the fixed
stars. Finally came Newton, who decided that what gods determined was to be called “force”,
and discovered that the trajectories of planets, fulfilling Kepler’s experimental three laws'® , were
solutions of his famous (second order differential) equation

mg=F

where m is the mass of the planet, and where the attractive force F' between the planet and the
Sun is proportional to the product of their masses and inverse proportional to the square of their
distance.

Later, somebody noticed that most observed forces were “conservative”, could be written as
F = —VV, for some real valued function V (q) called “potential energy”. There follows that
Newton equations can be written as mg = —VV, and that the “total energy”

1.
E=mldl* +V (q)
is constant along trajectories. The function %m”q'H2 is called “kinetic energy” of the system.

Lagrangian and variational principle. An alternative (and indeed useful) formulation of
Newtonian mechanics is the one developed by Lagrange. He defined (what we now call) the
“Lagrangian” of the system as the difference between the kinetic energy and the potential energy

Lia,d) = ymldl =V ()

and observed that Newton equations are equivalent to the (Euler)-Lagrange equations

d (OL\ 0L
dt \9q) 0Oq
This is important because solutions of the Euler-Lagrange equations are critical points of the action

Sla(t)] = / " L(g(t), (1)) dt.

to

Thus, we may look at trajectories of a physical system as (local) minimizers of a certain variational
problem. This often allows to find the trajectories without even solving the equations of motion.

Hamiltonian mechanics. The product p = m¢ = dL/Jq is called “(linear) momentum”, and,
since p/m is the gradient of the kinetic energy K (p) = ||p||?>/2m, Hamilton could write Newton’s
second order differential equations as the system of first order differential equations

. oH . OH
§=

“% T Ta

161n Astronomia nova, 1609, and Harmonices mundi, 1619, Johannes Kepler published his three laws of planetary
motions:

i) planets moves in ellipses with focus at the Sun,

ii) the radius vector describes equal areas in equal times,

iii) the squares of the periods are to each other as the cubes of the mean distance from the Sun.

It was with the purpose to derive Kepler laws from a second order differential equation mg = F' that Isaac Newton
realized that the force of gravitational attraction between the Sun and a planet (hence between any two bodies!)
should be proportional to m/,o2 (Philosophiae naturalis principia mathematica, 1687).
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where H (¢,p) = K (p) + V (¢) is the total energy as function of ¢ and p, nowdays called “Hamil-
tonian”. It is a simple check that the energy is a constant of the motion, since

dH_(‘?H . OH . OH OH O0H O0H _
dt 78q.q ap.piaq.ap 8p.8q7

The modern abstract formulation of classical mechanics is as follows. Let (X, w) be a symplectic
manifold, i.e. a differentiable manifold X of even dimension 2n, equipped with a smooth closed
differential two-form w such that w™ ## 0. Darboux theorem says that locally one can choose
“canonical” coordinates (q1, ..., qn, P1, -, Prn) Such that w = 22:1 dpi, N dqi. The standard example
is the cotangent bundle T*RY of the Euclidean vector space R, whose coordinates are positions
qr and momenta py.

Let H : X — R be a smooth function, called “Hamiltonian” and thought as the “energy” of
the system. Typically, it has the form “kinetic energy+potential energy”, where the kinetic energy
is a positive definite quadratic form in the momenta p, and the potential energy is a function
V' depending on the positions ¢ and possibly on the momenta p. The Hamiltonian vector field
v is defined by the identity dH = i,w, and the Hamiltonian flow is the flow of v. In canonical
coordinates, the equations of motion read

OH ) OH

Gy = 7— P = —7—

Opk g
It happens that the Hamiltonian flow ®; preserves the energy, namely H (®; (z)) = H (z) for any
z € X and any time t € R, as follows form the fact that £,H = 0.

Also, according to Liouville theorem, it preserves the volume form w”, defined in canonical
coordinates by the volume element dg; A ...dg, Adpi1 A--- Adp,. In particular, if the phase space

if compact, it preserves a probability measure.

Free motion. Free motion in an inertial frame is described by the Lagrangian L = {m)|¢[|*.
The equations of motion are
i=0.

Solutions are straight lines ¢(t) = ¢ + vt, for same initial position ¢(0) = ¢ and velocity ¢(0) = v.

Free fall. Free fall near the Earth’s surface is modeled by the Lagrangian L = %quH2 —mgz,
where g ~ 9.8 m/s? is the gravitational acceleration and z is the height of the particle (assumed
much smaller than the Earth’s diameter), the third coordinates of ¢ = (,y, z). The equation of
motion for the height is
Z=g.
Solution are parabolae z(t) = ¢ + vt — gt?, for some initial height ¢ = z(0) and some initial
velocity v = 2(0).

Geodesic flows.  The simplest mechanical system, the free motion of a particle, belongs to the
class of geodesic flows. Let (M, g) be a Riemannian manifold, g beeing the Riemannian metric.
Let SM be the unit tangent bundle of M. If M is geodesically complete, to every unit vector
v € SM there corresponds a unique geodesic line (i.e. a local isometry) ¢ : R — M such that
¢(0) = v. The geodesic flow is the action ® : R x SM — SM, defined as ®; (v) = ¢ ().

Particularly interesting are geodesic flows over homogeneous spaces. Apart from the rather
trivial exemple of flat spaces, a source of interesting dynamical properties is the geodesic flow
on a manifold with constant negative curvature. The proptotype is as follows. The group G =
PSL(2,R) can be seen as the orientation preserving isometry group of the Poincaré half-plane H,
equipped with the hyperbolic metric of sectional curvature —1. Its action is transitive. Since the
stabilizer of a point in the half-plane is isomorphic to the group of rotations SO (2), we can identify
SD with G. Now, let I be a discrete cocompact subgroup of G with no torsion. The quotient
space ¥ = D/I' is a compact Riemann surface, which comes equipped with a Riemannian metric
of sectional curvature —1, and its unit tangent bundle is diffeomorphic to G/I'. The geodesic flow
on SY is then the algebraic flow ® : R x G/T' — G/T defined as @, (¢I") = e;gT", where

et’2 0
€t = 0 eft/2
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2.3 Integration of one-dimensional systems

Some techniques to integrate ordinary differential equations (ODEs) like & = v(x,t) when the
phase space is one or two-dimensional.

Integrating simple ODEs. The simplest case occurs when the velocity field v does not depend
on the phase space variable x, hence
& =v(t),

where v(t) is some given (piecewise) continuous function of time. This just says that 2 must be a
primitive of v, and the fundamental theorem of calculus (i.e. Leibniz and/or Newton’s discovery)
tells us how to compute such a primitive:

t
z(t) = xo +/ v(s)ds .
to
Here you may observe that this class of ODEs have “symmetries”. The line field does not depend
on z, hence slopes of solutions are the same along horizontal lines (¢ = constant) in the extended
phase space X x R. There follows that any translate ¢(t) + ¢ of a solution ¢(t) is still a solution.

Autonomous first order ODEs and their flows. A first order ODE of the form
& =v(x),

where the velocity field v does not depend on time, is called autonomous. Most fundamental
equations of physics (those describing closed systems, without external forces) can be written as
autonomous first order ODEs; and this corresponds to time-invariance of physical laws.

Here you may notice symmetries again. The line field v of an autonomous equation is constant
along vertical lines (z = constant) of the extended phase space X x R. Hence any translate ¢(t+s)
of a solution (t) is still a solution. This is the manifestation of time-invariance of a law codified
by an autonomous ODE. This also implies that there is no loss of generality in restricting to an
initial time tg = 0.

Equilibrium solutions.  First, we observe that an autonomous equation may admit constant
solutions. Indeed, if xq is a singular point of the vector field v, i.e. a point where v(zy) = 0, then
the constant function

z(t) = zo vV teR

obviously solves the equation. Such solutions, which do not change with time, are called equilibrium,
or stationary, solutions.

Solutions near non-singular points. The trick used to “guess” other solutions, when the
phase space is one-dimensional, i.e. X C R, is a first instance of the method of “separation of
variables”. Fix a non-singular point of the velocity field, i.e. a point zy where v(zg) # 0. We
want to solve the Cauchy problem with initial condition z(tg) = xg. First, rewrite the equation
dx/dt = v(z) formally as “dx/v(x) = dt” (multiply by dt and divide by v(x), so that all 2’s are
on the left and all ¢’s are on the right). Instead of trying to make sense to this last expression
(which is possible, of course, and here you can appreciate the beauty of Leibniz’ notation dz/dt for
derivatives!), observe that it is suggesting that [dxz/v(z) = [ dt. Now assume that the velocity
field v is continuous and let J = (z_, z4) be the maximal interval containing x¢ where v is different
from zero. Integrating, from z¢ to « € J on the left and from ¢y to ¢ on the right, we obtain a
differentiable function x — t(x) defined as

t(x):to—‘r/w;(iz)

for any = € J. Now, observe that the derivative dt/dx is equal to 1/v. Since, by continuity, 1/v
does not change its sign in J, our ¢(z) is a strictly monotone continuously differentiable function.
We can invoke the inverse function theorem and conclude that the function ¢(z) is invertible. This
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prove that the above relation defines actually a continuously differentiable function ¢ — z(¢) in
some interval I = ¢(J) of times around ¢y. Finally, you may want to check that the function
t — x(t) solves the Cauchy problem: just compute the derivative (using the inverse function
theorem),

dt
c(t) = 1/ —(=(t
i) = 1/ ()
= ’U((ﬁ) )
and check the initial condition. Observe that the function ¢(z) — ¢y has then the interpretation of
the “time needed to go from zg to x”.
At the end of the story, if you are lucky enough and know how to invert the function ¢(z), you’ll
get an explicit solution as
x(t) = F~1 (t —to + F(x0)) ,

where F' is any primitive of 1/v. Close inspection of the above reasoning shows that the local
solution you’ve found is indeed the unique one. Namely, we have the following

Theorem 2.1. Let v(z) be a continuous velocity field and let xo be a non-singular point of v.
Then there exist one and only one solution of the Cauchy problem & = v(x) with initial condition
x(to) = xo in some sufficiently small interval I around to. Moreover, the solution x(t) is the

inverse function of
o) =to+ [
Zxo U(y)

defined in some small interval J around xq.

Proof. Here we give the pedantic proof. Let J be as above. Define a function H : R x J — R as

H(t,x):t—to—/zvc(lz).

If t — ¢(t) is a solution of the Cauchy problem, then computation shows that £ H (t,¢(t)) = 0
for any time ¢. There follows that H is constant along the solutions of the Cauchy problem.
Since H(tp,zo) = 0, we conclude that the graph of any solution belongs to the level set ¥ =
{(t,z) e R x J s.t. H(t,x) =0}. Now observe that H is continuously differentiable and that its
differential dH = dt + dz:/v(z) is never zero. Actually, both partial derivatives 0H /9t and 0H/0x
are always different from zero. Hence we can apply the implicit function theorem and conclude
that the level set X is, in some neighbourhood I x J of (tg, x¢), the graph of a unique differentiable
function x — t(x), as well as the graph of a unique differentiable function ¢t — z(t), the inverse of
t, which as we have already seen solves the Cauchy problem. O

On the failure of uniqueness near singular points. The interval I = ¢(J) where the
solution is defined need not be the entire real line: solutions may reach the boundary of J, i.e. one
of the singular points x4 of the velocity field, in finite time. Since singular points are themselves
equilibrium solutions, this imply that solutions of the Cauchy problem at singular points may not
be unique, under such mild conditions (continuity) for the velocity field. Later we’ll see Picard’s
theorem, which prescribes stronger regularity conditions on the velocity field v under which the
Cauchy problem admits unique solutions for any initial condition in the extended phase space.

Counter-example.  Both curves x(t) = 0 and x(t) = 3 solve the equation
i = 32%/3

with initial condition (0) = 0. The problem here is that the velocity field v(z) = 3x2/3, although

continuous, is not differentiable and not even Lipschitz at the origin. You may notice that the

solution starting, for example, at 2o = 1 reaches (or better comes from) the singular point z_ =0

in finite time, since

0
1
t(z-) — t(zo) :/ Sy Py = —1.
1
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One-dimensional Newtonian motion in a time independent force field. The one-
dimensional motion of a particle of mass m subject to a force F'(x) that does not depend on time
is described by the Newton equation

mi = —U'(x),

where the potential U(z) = — [ F(x)dz is some primitive of the force. The total energy

E(z,7) = %mi‘z +U(x)

(which of course is defined up to an arbitrary additive constant) of the system is a constant of
the motion, i.e. is constant along solutions of the Newton equation. In particular, once a value £
of the energy is given (depending on the initial conditions), the motion takes place in the region
where U(z) < E, since the kinetic energy %miQ is non-negative. Conservation of energy allows to
reduce the problem to the first order ODE

2
.2
T =—(F-Ux)),
= (B -U()
which has the unpleasant feature to be quadratic in the velocity . Meanwhile, if we are interested
in a one-way trajectory going from some x( to x, say with = > xg, we may solve for & and find the
first order autonomous ODE
2

= (E-U@)).

i‘:

There follows that the time needed to go from z( to x is

t(:r):/xd—y.

The inverse function of the above ¢(x) will give the trajectory z(¢) with initial position x(0) = xg

and initial positive velocity @(0) = /2 (E — U(xy)), at least for sufficiently small times ¢.

The exponential. The exponential function, according to Walter Rudin “the most important
function in mathematics” ([Ru87], 1st line of page 1), is the unique solution of the autonomous
differential equation

T=zx

with initial condition z(0) = 1. If we try a power series like ag + a1t + azt® + ast® + ..., the
differential equation gives the recursion na, = a,_1 for the coefficients, while the initial condition
yelds ag = 1. Thus, the solution is z(t) = 1+t + /2 +3/6 + .. ..

Actually, it is convenient to complexify time, i.e. take z =t + i € C with ¢,0 € R, and define
the exponential as the power series

3 4 n

22 z z z
=1 2o Z 42 4= ol
exp(2) trt STt ;n!

Since limsup,, , ., (1/n!)*/™ = 0, the radius of convergence is oo, hence the power series defines an

entire function, i.e. a holomorphic function exp : C — C. Deriving each term of the series, we
easily verify that indeed exp’ = exp. The initial condition exp(0) = 1 is obvious. From absolute
convergence of the series and algebraic manipulation we also get the group property

exp(z + w) = exp(z) - exp(w)

for any 2z, w € C, saying that exp is a homomorphism of the additive group C into the multiplicative
group C* = C\{0}. In particular, exp(—z) = 1/ exp(z), so that the exponential exp(z) is never 0.
This also justifies our notation exp(z) = e*, where

1 1 1
e:=exp(l) =1+ T + B + 30 + -+ 2 2.7182818284590452353602874713526624977572 . . .
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(another famous irrational, actually a transcendental number!). For real time z = ¢, we recover
the familiar model of “exponential growth” ¢ — e, a strictly increasing function from the additive
group R onto the multiplicative group R4 =]0, 0o, growing faster than any power " as t — oo.
For pure imaginary times, say z = i with § € R, we get the Fuler’s formula

; 62 64 93 9°
0 __ e . . 7 7z _ .
e —(1—2!+ ! ...)—I—z(ﬁ 3!—1—5! ...)-cos(@)—l—zmn(ﬁ)

(and of course you may take the last identity as the “definition” of the trigonometric functions!).
So, 0+ €' defines a periodic function with period 27, sending the real line R onto the unit circle
S ={z € C s.t. |z| = 1}. There follows from the group property that

exp(t +i0) = €' (cos(#) + isin(d)) .

Finally, the exponential exp is a periodic entire function with period 27 which only omits the
value 0, a holomorphic bijection of the cylinder C/i27xZ onto C\{ 0}.

Interest rates and the exponential. Let x be the annual interest payed for a deposit (so that
an interest of 0.2% mean x = 0.02). If the interest is payed once each year, an initial deposit of a
euros increases to

at+za=a-(l+x)

after one year. If, however, the interest is “computed” every six months, the same initial deposit

produces
ata atoa)g=a 5

after one year. By induction, we see that if the interest is computed every 12/n months, after one
year we get a final capital of

a- (1 + E)
n
The limit of the gain factor as n — oo,
EB(z) = lim (1+2)
n— oo n

is another definition of the exponential function. If the argument lives in the Riemann sphere, you
may think that exp(z) = (1 — 2/00)* has a zero of order co at the point p = co € C.

Population dynamics. The exponential models the dynamics of a population in a unlimited
environment. The Malthusian/exponential model '7 is

N = AN

where N(t) is the population at time ¢, and A > 0 is some growth constant (the difference o — 8
between the natality rate and the mortality rate). The solution is N(¢) = N(0)e . If we retire
specimen at fixed rate o > 0

N=AN -«

we have a non-trivial stationary solution N = «/), and the difference z(t) = N(t) — N is still
exponential.
This behaviour has to be compared with the super-exponential model
N = ANZ

which undergoes a catastrophe (infinite population) in finite time! Indeed, the solution with
N(0) = No > 01is N(t) = No/(1 — Xt/Np). 7
A more realistic model of population dynamics in a finite environment is the logistic equation'®

N =AN(1— N/M)

17T.R. Malthus, An Essay on the Principle of Population, London, 1798.
18P F. Verhulst, Notice sur la loi que la population pursuit dans son accroissement, Correspondance mathématique
et physique 10 (1838), 113-121.
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where A > 0 and the constant M > 0 is a maximal population. Observe that N ~ AN if
N < M, and that N — 0 when N — M. The relative population z(t) = N(t)/M satisfies the
“adimensional” logistic equation

z=Ax(l —x).

Here we see two equilibria: the trivial equilibrium z(¢) = 0 and the maximum allowed polpulation
x(t) = 1. The generic solution with initial condition 0 < 2(0) < 1 is

2(t) = ! ,

1+ (;10 — 1) e~ At

Exponential growth, super-exponential growth and logistic model.

2.4 Existence and uniqueness theorems

Solutions of a differential equation. Here we consider a generic first order ODE of the form
& =wv(x,t)

where the velocity field v is a (continuous) function defined in some extended phase space X x R.
The phase space X may be some interval of the real line, an open subset of some Euclidean R",
or a differentiable manifold.

The problem we address is the existence and uniqueness of solutions of the initial value (or
Cauchy) problem. A local solution passing through the point (zg,t9) € X X R is a solution
t — ©(t), defined in some neighbourhood I of ¢y, such that ¢(tg) = xg. Eventually, we’ll be
interested also in the possibility of extending such local solutions to larger intervals of times.

The basic existence theorem is '

Theorem 2.2 (Peano). Let v(x,t) be a continuous velocity field in some domain A of the extended
phase space R?. Then for any point (zo,to) € A passes at least one integral curve of the differential
equation & = v(x,t).

Proof. (Idea) Natural guesses for the solutions are Euler lines starting through (zo,tg). If we
restrict to a sufficiently small neighbourhood of (zg,ty), we can assume that the velocity field is
bounded, say |v(z,t)] < K, and that all such Euler lines lies in the “papillon” made of two triangles
touching at (zg, to) with slopes +K. Construct a family of Euler lines, graphs of ¢, (t), such that
the maximal step &, of the n-th line goes to 0 as n — oo. One easily sees that the family (¢,,)
is bounded and equicontinuous. By the Ascoli-Arzeld theorem it admits a (uniformly) convergent
subsequence. Finally, we claim that the sublimit ¢,,, — ¢ solves the differential equation. O

19G. Peano, Sull’integrabilita delle equazioni differenziali del primo ordine, Atti Accad. Sci. Torino 21 (1886),
677-685. G. Peano, Demonstration de I'intégrabilité des équations différentielles ordinaires, Mathematische Annalen
37 (1890) 182-228.
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Both existence and uniqueness may fail. = The Hamilton-Jacobi equation
(@) —at+1=0

cannot have solutions satisfying the initial condition z(0) = 0, for otherwise we would have a
negative “kinetic energy” (13)2 = —1 at that point!

Some regularity of the functions involved in a differential equation is also needed to ensure the
uniqueness of solutions. For example, both curves t — 0 and ¢ > ¢3 solve the equation

i = 32°/%

with initial condition 2:(0) = 0. The problem here is that the velocity field v(t, z) = 32%/3, although
continuous, is not differentiable and not even Lipschitz at the origin.

Uniqueness of solutions. A velocity field v(t,z), defined in a domain I x D of the extended
phase space R x R"™, is locally Lipschitz w.r.t. to the variable x if for any (¢o,x0) € I x D there is
a neighbourhood J x U 3> (g, zp) and a constant L > 0 such that

[o(t,z) vty < L-lle =yl YV (t2),(ty) € xU

If v(¢, z) has continuous derivative w.r.t. z, i.e. if the Jacobian

Dyu(t,z) = (g; (t,ac))

exists and is continuous, then v(¢, z) is locally Lipschitz in any compact convex domain I x K C
R x R™. The basic uniqueness theorem is the following classical result by Lindeldf 2° and Picard.

Theorem 2.3 (Picard-Lindeldf). Let v(t,x) be a continuous velocity field defined in some domain
D of the extended phase space R x X. If v is locally Lipschitz (for example continuously differen-
tiable) w.r.t. the second variable x, then there exist one and only one local solution of & = v(t,x)
passing through any point (tg, o) € D.

Geometrically, the uniqueness theorem says that through any point (g, o) of the domain D
there pass one and only one solution. Hence solutions, considered as curves in the extended phase
space, cannot intersect each other.

In a domain where Picard’s theorem applies, if two local solutions agree in a common interval
of times then they are indeed restrictions of a unique solution defined in the union of the respective
domains. There follows that solutions are always extendible to a maximum domain. Such solutions
are called mazimal solutions.

Strategy of the proof of the Picard’s theorem. The first observation is that a function
©(t) is a solution of the Cauchy problem for & = v(t, ) with initial condition ¢(ty) = x¢ iff

t
p(t) =0+ [ 0(s.0(5)ds
to
Now, we notice that the above identity is equivalent to the statement that ¢ is a fixed point of the
so called Picard’s map ¢ — P¢, sending a function ¢ — ¢(¢) into the function

t
(Po) (t) = a0 + / v (s,0(s)) ds
to

At this point, one must chose cleverly the domain of the Picard’s map, which is the space of
functions where we think a solution should be. It will be a certain space C of continuous functions,
defined in an appropriate neighbourhood I of ¢y, equipped with a norm that makes it a complete
metric space (hence a Banach space). The Lipschitz condition, together with continuity, satisfied
by the velocity field will imply that if the interval I is sufficiently small then the Picard’s map
P : C — Cis a contraction. The contraction principle (theorem 6.5) finally guarantees the existence
and uniqueness of the fixed point of P in C.

20M.E. Lindelsf, Sur lapplication de la méthode des approximations successives aux équations différentielles
ordinaires du premier ordre, Comptes rendus hebdomadaires des séances de I’Académie des sciences 114 (1894),
454-457. Digitized version online via http://gallica.bnf.fr/ark:/12148/bpt6k3074
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Picard’s iterations. The contraction principle actually says that the fixed point, i.e. the
solution we are looking for, is the limit of any sequence ¢, P, ..., P"¢, ... of iterates of the Picard
map starting with any initial guess ¢ € C. In other words, the existence part of the theorem is
“constructive”, it gives us a procedure to find out the solution, or at least a sequence of functions
which approximate the solution.

Picard’s iterations for simple ODEs. Consider the simple ODE & = v(t) with initial condition
z(to) = xg. Picard’s recipe, starting from the initial guess ¢(t) = x gives, already at the first step,

(Po) (t) =20+ /t v(s)ds

which is the solution we know.

Picard’s iterations for the exponential. Suppose you want to solve & = z with initial
condition z(0) = 1. You start with the guess ¢(t) = 1, and then compute

(Po) (1) =1+t (P?¢) (t) = 1+t+%t2 (P"9) (t) :1+t+%t2+...+%t”

Hence the sequence converges (uniformly on bounded intervals) to the Taylor series of the expo-
nential function

1 1
(P'@) (1) > L+t + 5t 4 ot —t" = e

which is the solution we already knew.

Details of the proof of the Picard’s theorem. Choose a sufficiently small rectangular
neighbourhood -
I xB= [to*&,toﬁ*(i] X Bg (1’0)

around (tg, o), where B = Bj (70) denotes the closed ball with center zg and radius d in X. There
follows from continuity of v that there exists K such that

lv(t,z)| < K

for any (¢t,x) € I x B. There follows from the local Lipschitz condition for v that there exists M
such that
[o(t, 2) = v(t,y)| < Ml —y|

for any ¢ € I and any x,y € B. Now restrict, if needed, the (radius of the) interval I in such a
way to get both the inequalities Ke < § and Me < 1. Let C be the space of continuous functions
t — ¢(t) sending I into B. Equipped with the sup norm

I — ol = supg(t) — o(t)]
tel

this is a complete space. One verifies that the Picard’s map sends C into C, since

[ (Po) () — ol < [ v (s,(s)) [ds < Ke < 6.

to
Finally, given two functions ¢, ¢ € C, one sees that
t
| (Po) (t) — (Pe) (¢)] < / [v (s, 6(s)) —v (s, 0(s)) |ds < Me Sup |o(t) — (1)]
to

hence ||[P¢ — Pyl < Me||¢p — ¢l|. Since Me < 1, this proves that the Picard’s map is a contraction
and the fixed point theorem allows to conclude. O
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We may not be able to solve them! Last but not least, we must keep in mind that we are
not able to solve all equations. Actually, although we may prove the existence and the uniqueness
for large classes of equations, we are simply not able to explicitly integrate the really interesting
differential equations...

Ultimately we must recur to numerical methods to find approximate solutions and to qualitative
analysis

Dependence on initial data and parameters Consider a family of ODEs
& =v(t,x,\)

where ) is a real parameter. We want to understand how solutions depend on the parameter \. A
basic instrument is the?!

Theorem 2.4 (Gronwall’s lemma).  Let ¢(t) and (t) be two non-negative real valued functions
defined in interval [a,b] such that

t
o() < K + / (s)9(s)ds
for any a <t < b and some constant K > 0. Then

b(t) < Kela ¥()ds |

Proof. First, assume K > 0. Define

t
o(t) =K —|—/ P(s)p(s)ds
a
and observe that ®(a) = K > 0, hence ®(¢) > 0 for all a < ¢ < b. The logarithmic derivative is

P(t)o(t)

D og d(t) = o

Z < 1h(t)

where we used the hypothesis ¢(t) < ®(t). Integrating the inequality we get, for a <t < b,

t
log ®(t) < ®(a) +/ W(s)ds.
Exponentiation gives the result, since
b(t) < D(t) < K - efa ¥()ds

The case K = 0 follows taking the limit of the above inequalities for a sequence of K, > 0
decreasing to zero. O

Continuous dependence on initial conditions. If z(¢) and y(t) are two solutions of the same
differential equation
z=w(t,x)

then

(t) —y(t) = 2(0) — y(0) + / (v(s,2(s)) = v(s,y(s))) ds

to

21T H. Gronwall, Note on the derivative with respect to a parameter of the solutions of a system of differential
equations, Ann. of Math 20 (1919), 292-296.
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If L(s) denotes the Lipschitz constant of v(s,-), we get

() — y@) < [l2(0) — y(0) +/ L(s)[[x(s) —y(s)llds

to

The Gronwall’s lemma 2.4 gives the estimate
() = y(®)]] < o P2 (0) — y(0)]

Observe that the above control also gives an alternative proof of uniqueness of solutions given
a Lipschitz condition on the vector field.

Theorem 2.5 (smooth dependence on parameters). Let v(t, x, \) be a family of vector fields defined
on some domain of the extended phase space D C R x X depending on a parameter A € A C R.
If v is of class C* with k > 1, then in some neighbourhood of any (to, o, o) € D x A the local
solutions of

& =v(t,x,\)

with initial condition x(ty) = wo are differentiable (indeed C*) functions of (t,z,\).

A proof may be found in [BNO5].

Warning. Continuous dependence does not exclude sensitive dependence on both initial con-
ditions and parameters, even in the linear case! For example, the distance between solutions of
2 = px with different 2(0) and/or p may diverge for large time ...

2.5 Oscillations and cycles

The first remarkable natural phenomena are, of course, periodic motions.

Harmonic oscillator. The harmonic oscillator is the (phenomenon modeled by the) Newton
equation
j=-wq.

This is a quite universal equation, since it describes small oscillations around a “generic” stable
equilibrium of any one-dimensional Newtonian system?? (indeed, take a Newton equation mi =
—dU’(x) of a particle in a potential field U. An equilibrium position is a zero of the force, i.e. a
point xg where U’ (x¢) = 0. Tt is “stable” if x¢ is a local minimum of the potential, so that the Taylor
expansion of the potential around zg in powers of ¢ = © — x( starts with U(z) = a + %BqQ +...,
for some positive second derivative U”(xg) = 8. If we are only interested in small displacements
of x around zy, we can safely disregard high order terms and approximate the Newton equation
as m¢§ ~ —f3q, which is an harmonic oscillator with resonant frequency w = +/8/m).
Call p = ¢ the momentum. The Newton equation § = —w?q is equivalent to Hamilton’s first

order equations

q=p

p=-wq.
If we define the complex variable z = wq + i¢, Newton equation then takes the form of a first order
linear equation in the complex line, namely # = —iwz, whose solution is z (t) = e~z (0).

22 «“The harmonic oscillator, which we are about to study, has close analogs in many other fields; although we start
with a mechanical example of a weight on a spring, or a pendulum with a small swing, or certain other mechanical
devices, we are really studying a certain differential equation. This equation appears again and again in physics and
other sciences, and in fact is a part of so many phenomena that its close study is well worth our while. Some of the
phenomena involving this equation are the oscillations of a mass on a spring; the oscillations of charge flowing back
and forth in an electrical circuit; the vibrations of a tuning fork which is generating sound waves; the analogous
vibrations of the electrons in an atom, which generate light waves; the equations for the operation of a servosystem,
such as a thermostat trying to adjust a temperature; complicated interactions in chemical reactions; the growth of
a colony of bacteria in interaction with the food supply and the poison the bacteria produce; foxes eating rabbits
eating grass, and so on; ...”

R.P. Feynman [Fe63]
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In terms of the original (physical) variables, the solutions read

q (t) = qo cos (wt) + % gin (wt) = Asin(wt + ¢)
w
where the amplitude A and the initial phase ¢ depend on the initial conditions ¢(0) = ¢ and
G(0) = vg. So, all trajectories are periodic with common period 27 /w, and orbits are ellipses in
the ¢-¢ plane, determined by the conserved energy

1,
Ezi(q2+w2q2) — W2A2.
Phase portrait Trajectory
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0.6 4
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10 -05 0.0 05 10 0 5 1 15 0
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Harmonic oscillator, orbit and time series.

Dumped oscillations. Adding friction to an harmonic oscillator we get
G =—204 —w’q,

where a > 0 is some friction coefficient. The guess q(t) = e *'y(t) gives §j = Jy where the
“discriminant” is 6 = w? — . Find the general solution, draw pictures and discuss the cases
a? < w? (under-critical damping), a? = w? (critical damping), and a? > w? (overcritical damping).
Show that the energy

1., 1
E(q,q4) = =¢* + -w?¢®

2 2
decreases with time outside equilibrium points.
Phase portrait Trajectory
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Underdamped armonic oscillator, orbit and time series.
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Mathematical pendulum. The Newton equation
16 = —mglsin 6

models the motion of an idealized pendulum (meaning a point mass attached to a wire of negligible
weight, under a constant gravitational force) with mass m and length £, where I = m/? is the
moment of inertia, g is the gravitational acceleration (near the Earth’s surface), and 6 is the angle
of the wire with the origin 8 = 0 located at the stable equilibrium point. The energy

E= %92 — mgf cosf

is a constant of the motion. We can define the resonant frequency w = \/mgl/I = /g/¢ and write
the equation as

2

6= —w?sind

Observe that in the limit of small oscillations we could replace sinf ~ 6 and we are back to the
harmonic oscillator § = —w?#. To simplify thinks, let’s take w = 1. Solving the energy for 62 the
we see that the motion with energy E is given implicitly by the “elliptic integral”

t_/ df
) 2(E = cos(6))

What does a mathematician/physicist do when he/she face an integral and doesn’t see how to
solve in terms of known functions? He/she gives a name to it.

Define k = /£+L and then = = § sin(6/2). The conservation of energy reads

i =+/(1—22)(1 — k222)

There follows that time is given by the so called Jacobi’s elliptic integral of the first kind

dx
= / V(1 —22)(1 — k222)

The solution, actually the inverse function « = sn(¢, k) as a function of ¢ and the parameter k, is
“named” Jacobi elliptic function.

This is the beginning of a long and interesting story. You may want to know that sn, as well
its relatives, is a quotient of products of Jacobi’s theta functions, hence, we are at the intersection
between complex analysis, algebraic geometry, number theory, ...

Kepler problem. Kepler problem deals with the motion of two point-like bodies (planets
and/or stars) under mutual gravitational interaction. Let my, mg > 0 be their masses, and ¢, ¢z €
R3 their positions, respectively. Gravitational interaction is described by the conservative force
—VV with potential energy

mimeo
G—t12

g1 — g2
where G is the gravitational constant. This force verifies the ”third law of dynamics”, hence the
total linear and angular momentum

|4 (qla QQ) =

and

P =miq1 +magy M =miq1 N g1 +maqa A G2

are conserved. This implies that the center of mass moves at uniform rectilinear speed and that
the motion of the two bodies takes place in a plane orthogonal to the angular momentum M. If
we choose a Galileian reference system where P = 0 and M is parallel to the z-axis (in particular
M is supposed different from the zero vector, a case which leads to a collision ...) , the full system
is described by the single vector ¢go — ¢q; in the z-y plane, which we write in polar coordinates

as pe’?™ . Tt turns out that the two-body problem is equivalent to the motion of a single point
mass m = W’Zi’;@ moving on a plane under the influence of a potential energy V (p) = —G%, the

(conserved) energy beeing

E= %m (p2 + p292) +Vi(p)
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Observe that if one of the bodies is much bigger than the other (like the Sun and the Earth), say
my > me, then the center of mass nearly coincides with the position ¢; of the bigger body, while
the reduced mass m is essentially the mass mgo of the smaller one (hence it looks like the Earth
moving around the Sun, as Galileo had suggested).

Central forces. Consider the Newton equation
mit=F (|r])#

describing the motion of a particle (planet) of mass m in a central force field F'. Conservation
of angular momentum implies that the motion is planar, hence we may take r € R%. In polar
coordinates 7 = pe? | the equations reed

p—pb® = F(p)/m
pli+2p0 = 0.

The second equation says that the “areal velocity” ¢ = p29 is a constant of the motion (Kepler’s
second law).

Taking Newton’s gravitational force F'(p) = f@p"—zM (where M is the mass of the Sun and G is
the gravitational constant), the first equation may be written as
0

1S

Now we set p = 1/x and look for a differential equation for x as a function of §. Computation
shows that dx/df = —p/¢, and, using conservation of ¢, that d?z/d§* = —p?j/¢%. There follows
that the first Newton equation reads

&Pz

@ T gt W)
we get
d*z GM
e Tt TTE
The general solution of this second order linear differential equation is
GM
z(0) = - (I14+ecos (0 —byp)),

for some constants e and 6y. Back to the original radial variable we get the solution

2/GM

p(6) = 1+ecos (6 —6p)’

Hence, orbits are conic sections with eccentricity e and focus at the origin: an ellipse for 0 < e < 1
(corresponding to negative energy, hence to planets, and this is Kepler’s first law), a parabola for
e =1 (corresponding to zero energy), an hyperbola for e > 1 (corresponding to positive energy).

2.6 Phenomenological models

A number of phenomenological models (i.e. models which are not fundamental laws of nature),
like the ones below, are also a source of interesting dynamical behaviour.
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Lotka-Volterra predator-prey model. The Lotka-Volterra system is the first-order non-linear
differential equation

T = ax — bxy

y=—cy+duy

It has been proposed by Vito Volterra*® to model competition between x preys and y predators,
and by Alfred J. Lotka®? to model the cyclic behavior of certain chemical reactions, like the abstract

sceme
A+ X —2X X+Y -2 Y - B

Preys increase exponentially at rate a and are killed at rate proportional to the probability of
beeing captured by a predator, while predators decrease exponentially at rate ¢ and increase at
rate proportional to the probability of capturing preys.
The function
H(z,y) =dz+by — clogx — alogy

is a constant of the motion, i.e. £ H(x(t),y(t)) = 0. There follows that orbits are contained (and
actually are) in the level curves of H.

12870
[ [ (e
oo
N KRieas
(1170075

LA

\\\\\~~ﬂﬂ~A~~~Aﬂ~

Phase portrait of the Lotka-Volterra system.
Discuss the possible dynamics depending on the values of the parameters.

Competing species. Competition between two species sharing the same environment could be
modelled by a system of coupled logistic equations

z=Xx(l —x)— Bzy

y=py(l—y)—yay

Try to understand the phase portrait given some different values of the parameters.

SIRD models. A simple model of an epidemic in a fixed population of N specimen is the so
called SIRD model, the system

S =—BSI/N

I =BSI/N —~I —pul
szl

D= ul

Here S(t) is the susceptible population, I(t) the infected population, D(t) the deceased population,
and (3, and p are convenient positive parameters.

23V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie di animali conviventi, Mem. Acad. Lincei
2 (1926), 31-113. V. Volterra, Legons sur la Théorie Mathématique de la Lutte pour la Vie, Paris 1931.

24A.J. Lotka, J. Amer. Chem. Soc 27 (1920), 1595. A.J. Lotka, Elements of physical biology, Williams & Wilkins
Co. 1925.
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A trajectory of a SIRD model.

G—pl—¢*)g+q=0

which models current in a circuit with a non-liner element.
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Phase portrait and time series of the Van der Pols oscillator.
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is the second-order non-linear differential

Brusselator. The Brusselator is an auto-cathalytic model proposed by Ilya Prigogine and col-

laborator 26

which models the abstract reaction

A—X B+X—->Y+C 2X+Y = 3X

and reads

t=a—(B+ 1)+
y =Bz — 2%y

Observe what happens to the concentrations X e Y, namely x and y, when the concentrations
[A] ~ « and [B] ~ § are kept constant.

Simulate the system

i=a—(b+1)x+ 22y
y = bx — 2%y
b=—br+9§

for the concentrations of X, ¥ and B, obtained when the concentration [A] ~ « is mantained
constant and B in injected with constant velocity v ~ 4.

25B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review 1 (1920), 701-710

and 754-762. B. van der Pol and J. van der Mark, Frequency demultiplication, Nature 120 (1927), 363-364.

261. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems, J. Chem. Phys. 48 (1968),
1655-1700. P. Glansdorff and I. Prigogine, Thermodynamic theory of structure, stability and fluctuations, Wiley,
New York 1971. G. Nicolis and I. Prigogine, Self-organization in non-equilibrium chemical systems, Wiley, New

York 1977.
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Phase portrait of the Brussellator.

Goodwin oscillator. A system modeling the interaction protein-mRNA was poposed by Good-
win?” . )
M=~
P=M-p

where M nd P denote the relative concentrations of mRNA and protein, respectively.

(&%

- e e -

T o = = = = = =~ =

Phase portrait of the Goodwin oscillator.

Lorenz attractor. Finally, we mention the Lorenz system 2%

i=o(y— )
y=z(p—=2)—y
Z=zxy— Bz

For values of the parameters like o ~ 10, p ~ 28 and § ~ 8/3, one observe trajectories which
diverge from one another, and yet oscillate all along the figure-eight above.

27B.C. Goodwin, Temporal organization in cells, Academic Press, London/New York 1963. B.C. Goodwin,
Oscillatory behaviour in enzymatic control processes, Adv. Enzyme Regul. 3 (1965), 425-438.
28E.N. Lorenz, Deterministic nonperiodic flow, J. Atmspheric Science 20 (1963), 130-141.
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Some orbits of the Lorenz attractor.

This strange phenomenon motivated an important part of the modern theory of dynamical
systems.
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3 Topological dynamical systems, basic definitions

3.1 Transformations

Transformations. In these notes, we’ll be mainly interested in discrete time dynamical systems,
i.e. actions of Ny or Z on some space X, generated by a transformation/map

fX—-X.

Apart from some special cases, X will be a topological space (or even a metric space). The
transformation will be continuous, or at least piecewise continuous. In such cases we speak of
topological dynamical system.

The “(forward) iterates” of a transformation f are the transformations f" : X — X, with
n € Ny, defined inductively according to

fo=id and frtl = fofm ifn>0

Warning: with this notation f2(x) is not the square of f(z) (which does not even make sense
if X is not a field!), but f(f (z)) ... Indeed, a clever/better notation for the composition of n
transformations f would be f°™, but it is seldom used ...

In general, if n € N and A C X, then f~"(A) denotes the set

f7M(A) ={z e X st. f"(x) € A} .

If f is invertible (e.g. is an homeomorphism), we can also define the backward iterates, and
therefore the transformations f™*: X — X for all n € Z.

From the algebraic point of view, we have therefore an action ® : Ng x X — X, defined by
D, (z) = f™(x). It satisfies the semigroup property ®g = id and @y, ,,, = P, 0Dy, for all n,m € Ny.
If f is invertible, the last property extends to all n,m € Z, so that ® is indeed an action of the
additive group Z as transformations (e.g. homeomorphisms) of X.

Phase/states space. The space X where dynamics takes place is called phase space, or states
space. In the following, it will be a metric space (X, dist), equipped with its natural topology T,
locally compact (any point admits a compact neighbourhood) and separable (admits a countable
dense subset, and therefore, being a metric space, a countable basis for the topology). For example,
regions of RY intervals of the line, the circle R/Z, the torus R /Z"  the complex plane C, the
Riemann sphere C = C U { oo}, Cantor sets, and Cartesian products of finite spaces. Also, in
order to avoid trivialities, we’ll always assume tacitly that X is not a finite set and that it has no
isolated points.

Translations in homogeneous spaces. The simplest, tautological, way to build actions is
algebraic. Let G be a topological group (a group equipped with a Hausdorff topology such that
the group operations (g, ¢’) — gg’ and g — ¢! are continuous). Given a closed subgroup I' C G,
one can consider the homogeneous space X = G/T' = {¢I'; g € G}, equipped with the quotient
topology (the finest topology in G/I" such that the projection 7 : G — G/I" is continuous). If T" is
not too large or wild, for example if I" is discrete, X is a sufficiently large and interesting space.

Every subgroup S C G acts on the homogeneous space X = G/T', the action S x G/T' — G/T’
being (s, gI') — sgI'. The space of orbits is the quotient S\G/T.

In particular, a cyclic subgroup S = {s"}, ., generates an action ® : Z x X — X defined by
D, (gT") = s™gl', which consists in iterating the left translations gI" — sgI" of a generator.

Translations of the torus. The N-dimensional torus is the quotient space TV := RV /ZN
of the additive Abelian group R modulo the discrete subgroup Z~ of integer vectors. Observe
that the torus is itself an Abelian group. The one-dimensional case T! = R/Z is also called circle,
because it is isomorphic to the unit circle of the complex plane, the multiplicative Abelian group
St ={ 2 €C, |z| = 1}, under the exponential map x — e >,
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In dimension two, we may notice that any class (x,y)+Z%? has a unique representative in the unit
square [0,1) x [0,1), and that opposite sides of the closed unit square must be identified according
to (0,y) ~ (1,y) and (x,0) ~ (x,1). The resulting quotient space, the two-torus T? = R?/Z2, is
therefore the surface of a donut.

% ( L

Any a € RY defines a translation T, : RN — R¥ according to T,(z) = = + a. As explained
above, the translation defines a rotation Ry : TV — T, according to Ry (z + ZN) := v +a+ZN.

Generic properties. We will often want to talk about “most trajectories”, or “almost all
trajectories”.

Being X a topological space, one could consider (probability or infinite) measures on the Borel
o-algebra of X. Given such a measure u, one says that a properties is satisfied fo p-almost all
points if the subset N C X of those points which do not have the property has measure p(N) = 0.

The topological couterpart of the dichotomy “zero-one probability” is possible when X is a
Baire space, i.e. a Hausdorfl (any two distinct points have disjoint neighbourhoods) topological
space where a countable intersection of dense open sets is dense. Baire theorem, that we state and
prove for the reader’s convenience, says that examples of Baire spaces are complete metric spaces.

Theorem 3.1 (Baire). Let X be a complete metric space. The intersection of a countable family
of open and dense subsets is dense in X.

Proof. Let A,,, with n € N, be open and dense subsets of X. Let U be any non-empty open subset
of X. Since A; is dense and open, there exists a point 1 € X and a positive radius €; < 1 such
that

le(l‘l) CcANU

Inductively, one shows that we may find a sequence of points z,, and positive radii &,, < 1/n such
that -
Bé‘n+1 (xn-‘rl) - An—i—l N Bsn (‘rn)

By the Cantor intersection theorem, there exists (at least) a point € N,>1 Be, (¢,), and by
construction this point belongs to U as well as to the intersection of all the A,,’s. O
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A subset R C X is said residual if it contains a countable intersection of dense open sets. A
subset M C X is said meager if it is a countable union of “nowhere dense” subsets (subsets such
that the closure has empty inteiror), i.e. if its complementar X\ M is residual. A property is said
generic if the subset P C X of those points with this property is residual.

3.2 Trajectories and orbits

Trajectories. Given a transformation f: X — X, we are mainly interested in the asympthotic
behavior of the “history” of a point « € X, the sequence of points

obtained recursively applying f to the point x. If X is the space state of a physical system, and if
the system is (prepared) in the state x at time ¢ = 0, then it will be in the state f (z) at time 1,
in the state f2(x) = f (f (z)) at time 2, and so on.

4

The trajectory of x € X is the sequence (mn)neNO, the function that, given the “initial condition”
xo = x, produces the states x,, = f™ (x) of the system at each time n > 0. Thus, the trajectory of
z is the solution of the recurrence

Tny1 = f(Tn)

with initial condition xg = .

Orbits. The forward/positive orbit of x € X is the image of its trajectory, i.e. the set

OF (2) = {f"(2)}en,

(we put the supscript “+” to remind that we are only allowed to go forward in time, since in
general f will not be invertible). It is the “future” of a point.

A point x may have more than one pre-image, and therefore its “past” is not unique. The full
orbit of a point x € X is the set

Of(z):={z' € X : In,m>0: (') = f"(x)}

i.e the set of points which have eventually the same future of x.
If f is invertible, the full orbit coincides with the complete orbit of a point x, defined as

Of(x) == {f"(@)}ez

the past and future of a point.

Observe that “being in the same full-orbit” is an equivalence relation, and therefore X is a
disjoint union of equivalence classes, i.e. orbits. It must be said that the quotient space, the
space of orbits X/f, may be messy if trajectories are not regular (and this is when things get
interesting!). For example, if there exists a dense orbit, then the quotient topology in X/f is
the trivial topology. Thus, the space of orbits, as a topological space, does not contain much
informations on the dynamics of the system.
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3.3 Periodic orbits and basin of attraction

Fixed points. The simplest orbits are (composed of) fized points of f, those states p € X such
that

f(p)=p.

Geometrically, fixed points are the intersections of the graph of f with the “diagonal” A C X x X.
If X is a linear space, fixed points are roots of the equation f(z) —x = 0.

The set of fixed points of f is denoted by Fix(f) C X. Since f is continuous, it is a closed
subset of X

Periodic orbits. A point p € X is said periodic if it is a fixed point of some iterate f*, i.e. if
it belongs to some Fix(f*). A periodic point p is periodic with period n > 1 if f*(p) = p and n
is the smallest of those times k > 1 such that f¥(p) = p. Thus, the forward orbit of the periodic
point p is a cycle, a finite set

=0 p)={p, f®),.F (), ./}

of points which are permuted by the transformation f. The cardinality |7| = n of the periodic
orbit 7 is the common period of its points.

>

A point & may have a finite orbit without being periodic: this happens when there exists a
time k > 1 such that f* (x) is a periodic point. Such points are called pre-periodic.

It is convenient to denote Per,(f) := Fix(f™) the set of fixed points of the transformation f”,
called “n-periodic points”, that is the set of those periodic points of f whose period divides n.
Then

Per(f) = | Per,(f)

n>1

denotes the set of periodic points of the map f. Observe that any of the sets Per,(f) is closed,
because f™ is continuous, but their union Per(f) may not be closed.

It will be interesting, later, to compute or estimate the cardinalities P, (f) := card(Per,(f)),
provided they are finite. Also interesting will be the cardinalities IT,(f) of periodic orbits 7 of
length [7| = n. Clearly, P.(f) = 3_,,, mILn(f).

Convergent trajectories. If a trajectory is convergent, then its limit is a fixed point of f.
Indeed, if f™(x) — p, the continuity of f implies that

F®) = £ (Jim /" (@) = Tim /(@) =p.

Basin of attraction. Let p be a fixed point of f : X — X. The basin of attraction, or stable
set, of p is the set of those points € X whose trajectories converge to p, i.e.

We(p) :== {a: € X st. lim f"(z) :p}
n—oo
Uniqueness of limits of convergent sequences in a metric space implies that stable sets of different
fixed points are disjoint.
In an obvious manner one defines the basin of attraction of a periodic orbit.
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Endomorphisms of linear spaces.  Between the simplest dynamical systems are endomor-
phisms of a linear space. For example, endomorphisms of RY are defined, in the canonical basis,
by matrices A € Mat,, x,(R), according to f(z) = Az (vectors are column vectors, and the product
is the usual product between matrices). The origin is a fixed point, by linearity. Other fixed points
are the eigenvectors with eigenvalue A = 1, non-trivial solutions of the homogeneous equation
Az = x. Periodic points with period n are eigenvectors with eigenvalue A\ such that \™ = 1.

Collatz/Kakutani/Syracuse/Ulam problem. Consider the Collatz map f : N — N, defined
as
[ n/2 if n is even
Jn) = { 3n+1 ifnisodd
It is clear that 4 — 2 — 1 is a cycle. Collatz conjecture (“...an extraordinarily difficult problem,
completely out of reach of present day mathematics”, according to Lagarias?’) affirms that this is
the only cycle and that any initial condition will eventually fall in this cycle.

Dynamics on a finite state spaces. Dynamics in a finite state space is almost trivial. Consider
a transformation f : X — X of a finite set X ~ {1,2,...,N}. It is clear than any trajectory is
eventually periodic, so that the dynamics is completely described by a finite set of periodic orbits
and their disjoint basins of attraction. The particular case of invertible transformations consists
essentially in the study of the symmetric group Sy, permutations of X.

Nevertheless, if the map is chosen randomly, according to the natural uniform probability
measure in the space X*, we may compute mean values of the number of attractors, their size
and sizes of their basins ... This is the random map model, a source of interesting mathematical
and physical problems.

(Affine maps) Draw some orbits of the transformations of the complex plane f : C — C
defined by
f@)=z4+a or f(z) =Xz

for different values of the parameters a, A € C. Explain for which values of those parameters
there exists periodic orbits.

Find, when possible, periodic orbits (of small period) of the transformations of the interval

f(z) = 23 f(z) =23 flx)=23+z
f(z) =2+ 1/4 flz) =11 —z| flx)=a*-2 f(z) =sinz f(x) =cosz

fl@)=a(l-—2) fl@)=22(1-2) flz)=3z1-2) [f(z)=42(1-2)

Find the basins of attraction of the fixed points of f(x) = 2% and f(z) = 3, considered as
transformations of the real line R.

29].C. Lagarias (ed.), The Ultimate Challenge: The 3x + 1 Problem, AMS, 2010.
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Let f: R — R be the linear homogeneous transformation of the line defined by f(x) = Ax.
Study the basin of attraction of p = 0 depending on the “multiplier” .

Do the same for f(z) = Az defined in the complex line C.

Find the basin of attraction of the origin for the linear maps f : R?> — R? defined, in the
canonical basis, by the following 2 x 2 real matrices:
2 1 1 1
1 1 0 1

2 0 2 0 1/2 0
0 3 0 1/3 0 1/3
cosf) —sinf 1 cosf) —sinf 9 0 1
sinf)  cos® 5 \sinf cosf 1 0

North-South map. The map z — 2/2 of the compex plane extends to an automorphism
f : C — C of the Riemann sphere C := C U { o}, declaring that f(co) = oo. It is clear that the
basin of attraction of 0 is all of C = C\{ oo}.

The stereographic projection 7 : S2\{N} — C extends to a bijection between the two-sphere
S? = {2? + 9% + 22 = 1} C R3 and the Riemann sphere C, sending the North-pole N = (0,0,1)
to m(IN) = oo and the South-pole S = (0,0, —1) to 7(S) = 0. The composition g := 7 1o for:
S? — S? is called North-South map. It fixes the North-pole and the South-pole, and the orbit of
any other point converges (along meridians) to the South-pole. Thus, the basin of attraction of
the South-pole is W*(S) = S?\{ N}.

Sometimes, also the restricion of g to a meridian (for example, the meridian corresponding to
the real line under stereographic projection), which is a self-map of the circle, is called North-South
map.

Squaring complex numbers. Consider the transformation f : C — C of the complex plane
defined by “squaring”, i.e.
f(z) =22,

The basin of attraction of the fixed point 0 is the unit disk D = { |z| < 1}. Indeed, if |2| = X < 1,
then |f"(2)] = A2 = 0 as n — oo. We may also extend f to an endomorphism of the Riemann
sphere C = C U { oo}, and then, by the same reasoning, we see that the basin of attraction of oo
is the exterior of the disk, the set D™ = { |z| > 1}. Meanwhile, it is not obvious to describe the
basin of attraction of the fixed point p = 1. It is clear that its basin belongs to the unit circle
S ={ |z] = 1}, and that it contains +1, its square roots =+i, the square roots of these points, and
so on ...a countable and dense subset of the unit circle. The restriction of f to the unit circle
sends 2™ s 2722 [f we identify the unit circle S with R/Z, by means of the exponential map,
we see that this restriction is the doubling map x + Z — 2z 4+ Z. We will have much to say about

it in the following.
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) SO
L ”

3.4 Observables

Observables. Observables are functions ¢ : X — R or C. If the system is initially in the state
x, and therefore is observed the value ¢ (z) of the observable ¢, after a time n observation of ¢
will give the value ¢ (f™ (x)).

Invariant functions. Particularly interesting are observables which do not change with time,
that physicists call first integrals. The function/observable ¢ : X — R is invariant sif

pof=¢

oi.e. if it is constant in each orbit. Observe that if ¢ is invariant, I C R and A = ¢~ 1(I), then
f71(A) = A. The existence of an invariant function contains the following information: if we know
that ¢ (z) = a, then future and past of X belong to the level set ¥, = {x € X t.q. ¢ (z) = a}, i.e.
Of(x) C . Invariant functions, therefore, reduce the allowed phase space of trajectories.

Lyapunov functions. Also useful are monotone observable, which increase or decrease along
trajectories, known in physics as Lyapunov functions. For example, if we know that p o f < ¢,
and ¢ (z) = a, then the future of x does not leave the sub-level set X<, = {z € X s.t. ¢ (z) < a},
and the past of x comes from z X5, = {z € X s.t. ¢ () > a}.

Energy. The energy E(q,p) = p*/2+ ¢?/2, which is a constant of the motion for the harmonic
oscillator § = —¢ (here p = ¢), is a Lyapunov function for the dumped oscillator § = —ag — ¢,
since its time derivative is ©F = —ap? < 0.

di
Show that, if ¢ : X — R is invariant, ] C R and A = ¢~ 1(I), then f~1(A) = A.
Show that the characteristic function of a set A C X is invariant iff f~1(A4) = A.

Time means. The time mean (or Birkhoff mean) of the observable ¢ up to time n > 0 is the
observable ©,, defined by

_ 1 & o
@)= g e U )
i.e. the value of i, at the point x is the arithmetic mean of the values of ¢ along the “n-orbit of
x”, the set {z, f (), f2 (z), ..., f" (z)}. If the limit

P (z) = lim 7, (2)

n—roo

exists, it has the meaning of “asympthotic mean value” of ¢ along the orbit of x. Also observe
that @ (z) = (@ o f) (z) at points where the limit exists.



3 TOPOLOGICAL DYNAMICAL SYSTEMS, BASIC DEFINITIONS 50

If, in particular, 14 denotes the characteristic function of a subset A C X, then the limit

_ 1
14 (z) = lim 1card{0§k§n st f* (:C)EA}

n—oo 1 +

if it exists, represents the “asympthotic fraction of time that the trajectory of x spend inside A”,
i.e. the asymptotic “frequency” with which the trajectory of x visit the subset A.

3.5 Invariant sets

Invariant sets. The characteristic function of a subset A C X is invariant iff f~1(A) = A. This
motivates the folowing definition: a subset A C X is invariant if

Fiay =4

This condition implies that f (A) C A, and therefore a point inside an invariant set has all its
history, past and future, inside the invariant set.

Observe that Of(x) is the smaller invariant set which contains x, and therefore a subset is
invariant iff it a union of big orbits. If f is invertible, Of(z) is the smaller invariant set which
contains x, so that a subset is invariant iff it is a union o complete orbits, i.e. if A = UzcaOf(x).

We also say that a subset A C X is +invariant (positively invariant) if f(A) C A, and
—invariant (negatively invariant) if f~1(A) C A. In particular, if A is +invariant, it is possible to
define the restriction of f to A, i.e. dynamical system f|4 : A — A.

Discover the possible implications between the conditions
i) =4, fAca,  [i(A)cA,
f(A) =4, e F7HA) = A= f(4)

for a generic transformation, or a transfomation which is injective, surjective, or one-to-one.

Consider a set C equal to O¢(z) or O?(az) for some z € X, and determine the invariance
properties of C, C, OC and C’.

Let A C X. Show that |J,,~, f" (A) is +invariant, indeed the smallest +invariant set which
contains A. B
If f is invertible, show that (J,., f" (A) is invariant, indeed the smallest invariant set which
contains A.

Let ¢ : X — R be an observable, and A C X be the set of those points z € X such that the
limit @ (z) = lim, o @, (z) exists. Shows that A is invariant, and that the observable : A — R
is also invariant w.r.t. the restriction f|4 : A — A.
3.6 Conjugations

Conjugations. The topological dynamical systems f: X — X and g : Y — Y are (topologically)
conjugated if there exists a homeomorphism h : X — Y, called conjugation, such that

hof=goh

This means that arrows in the following diagram commute:
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This condition may be also written f = h™' o g o h, and is clearly an equivalence relation. By
induction, we see that f® = h™! o g™ o h for all times n > 0. In particular, a conjugation sends
orbits of f into orbits of g, and vice-versa. The idea is that two conjugated transformations are
indistinguishable from the topological point of view (we are just changing the names of the points).
Properties that are shared by conjugated transformations are thus called topological invariants.

e.g. Linear conjugations. Let f : 2 + Az be the linear map of R defined by the square
matrix A. An automorphism h : z — y = Uz, defined by the invertible matrix U, defines a linear
conjugation between f and the linear map g : y — UAU 1y.

Powers and multiplications. The unit circle S ¢ C is an invariant set for the square map
f(2) = 22, defined in the Riemann sphere. The exponential map ¢(z + Z) = e*™® is a home-
omorphism between the one-dimensional torus T = R/Z and the unit circle, and defines a con-
jugation between the restriction f|g : S — S and the doubling map E; : T — T, defined as
EQ({E + Z) =2z + 7.

Spirals. Consider the map z — Az of the Riemann sphere, where A\ = pe  is a complex number
with modulus |A\| = p < 1. The orbits of all points different from co converge to the origin along
logarithmic spirals (if the phase ¢ is not a multiple of 27). As a map of the two-sphere, it is a
variation of the North-South map sending z + pz. Indeed, the two are conjugated by the rotation
z ez,

Semi-conjugations. A continuous and onto function i : X — Y is a semi-conjugation beween
the dynamical systems f: X — X and g: Y — Y if ho f = go h. In this case, g is called factor
of f. The h-image of an orbit of f is an orbit of g, but each orbit of ¢ may have more than one
pre-image. Informally, the dynamics of f is richer than the dynamics of g. Meanwhile, when the
set where h fails to be bijective is small, the two dynamics are still nearby.

A dynamical property is said inheritable if factors of a transformation having this property also
have the property.
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4 Linear systems

The simplest higher-dimensional systems are described by linear differential equations. They
provide models for the local behaviour of more general systems.

4.1 Exponential of a linear operator

Linearity & exponentials. The exponential z(¢) = e is the unique solution of the differential
equation & = Az with initial condition x(0) = 1. Moreover, it satisfies the functional equation
z(t + s) = z(t) z(s), which says that exp : R — R* defines a homomorphism from the additive
group R into the multiplicative group C*. If we try to solve a system of linear homogeneous
differential equations like
i = Ax,
with € RY and A € Mat,,«,(R), we are tempted to look for a solution as
z(t) = e 2(0).

In the following, we recall how to give a meaning to such an expression, and prove that it solves
the problem. The functional equation will say that 4 is a one-parameter subgroup of the general
linear group GLy(R). The practical computation of the exponential of a matrix will make use
of diagonalization, commutativity, and related considerations. More important, some qualitative
aspects of solutions will derive simply from considerations on the spectrum of A, the eigenvalues
of its complexification.

Exponential of a linear operator. The ezponential of the square matrix A = (a;;) € Matyxn(C)

is the square matrix e”, or exp(A), defined by the power series
=1
A Lok
et = Z k;!A
k=0 (4.1)
Lo, 13
=T+A+ =A%+ A4 .
2 6
This definition makes sense because each entry of r.h.s. above is the sum of an absolutely
convergent series. To see this, observe that the operator norm [|A|| := sup ,eon o1 [|A0] is

multiplicative, i.e. satisfies ||[AB|| < ||AJl ||B]|- This implies the bound
A /K| < || A" /&!

There follows, since all norms in a finite dimensional vector space are equivalent, that the
absolute value of each entry of the series (4.1) is bounded by a constant times the convergent series
S 2o IA]F/k! = el Al Bytheway, this also implies the bound

e < .

It is clear that if the matrix A is real, then also its exponential e is real.

If A and B are similar matrices, i.e. A = U 'BU for some U € GLy(C), then also their
exponentials are similar, since powers of A are A" = U~'B"U for all n > 0, and therefore one
easily justifies the following computation

e =I1+U'BU+iU'B*U +...
=U'(I+B+iB*+...)U (4.2)
=U'ePU.

Therefore, if L is a linear operator defined in a finite-dimensional vector space isomorphic to CV

or RV represented in some fixed basis by the matrix A, then the formula (4.1) defines a linear
operator

1 1
eL:I+L+§L2+6L3+...

According to formula (4.2), this definition does not depend on the chosen basis.
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Exponential of diagonalizable matrices. If A is a diagonal matrix with eigenvalues A\ ’s, i.e.

A1
Az
A= diag()\l,. . -;)\N) =

AN

(missing entries are zero) then a straightforward computation shows that its exponential is also
diagonal, and indeed

et = diag (eM,...,eM) =

In particular, if A is diagonalizable, i.e. A = U~'AU with A diagonal and U € GLy(C), then its
exponential is similar to the diagonal matrix e®, namely e = U~'eAU.  Thus, exponentials of
diagonalizable matrices are easy to compute, provided we know the change of coordinates U that
diagonalizes the matrix.

An important consequence is a relation between the exponential and the principal invariants
of a square matrix, the determinant and the trace. It says that

det (eA) = ett4 (4.3)

This formula is obvious if A is diagonalizable, and follows by continuity in the general case,
because the set of diagonalizable matrices is dense in the space Mat,x,(C) of complex square
matrices (a generic degree n complex polynomial has n distinct roots).

Show that if v is an eigenvector of the linear operator L with eigenvalue A, then v is also an

eigenvector of e, with eigenvalue e*.

One-parameter groups of matrices. Given a matrix A € Maty«n(C), we may consider the
family of matrices
G(t) == e,

parametrized by a “time” ¢t € R. It is clear that G(0) = I. The series of functions t — (e');;
which define the entries of e!4 converge uniformly in any bounded interval of the real line, as well
the series of their derivatives. In particular, the time derivatives may be computed term-wise. The
result is that

tA)

d SN A
— G(t) = EA =AGt)=G@t)A (4.4)
k=0 "

In particular, A commutes with G(t).

The derivative of F(t) := e*4e™*4 is equal, by the Leibniz rule applied to every entry of the
product, to F’'(t) = AF(t) — F(t) A = 0, because A commutes with G(¢). By the mean value
theorem, F(t) = F(0) = I. Therefore, G(t) = e*” is invertible, and its inverse is (e!4)™! = ¢4,
Thus, the exponential sends exp : Mat,, x,(C) — GL,(C).

Theorem 4.1. Let A € Matyxn(C). The unique solution of the linear differential equation
X = AX or X=XA,
with initial condition X (0) = Xy € GL(N,C), is
X(t) =€ X, or X(t) = Xgett,

respectively.
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Proof. Tt is clear, by the above computation, that e!4 Xy or Xpe! are solutions of the two
problems. In order to prove uniqueness, we may observe that if X (¢) is a solution, then the matrix
X(t)e t (or e X (t) in the second case) does not depend on time, since its derivative is zero,
and therefore is constant and equal to its initial value Xj. O

Observe that the two differential equations in the above theorem are not the same, the product
between matrices does not commute, in general. Indeed, if A and B do not commute, the three
exponentials et 5 and etef and ePe? may all be different from each other. What is true is the
following.

Theorem 4.2. If A and B commute, i.e. if AB = BA, then

B — eAeB = eBeA

Proof. If A commutes with B, the all its powers A* also commute with all the powers B’, and
therefore with the exponentials e!® and e/, and viceversa. There follows that the derivative of

H(t) — ot(A+B) _ tAtB

is, using formulas 4.4,
H'(t) = (A4 B) A8 _ AetAetB _ ot 4e!B B — (A + B) H(t)

By the uniqueness theorem 4.1, H(t) = e!*TB)H(0). But H(0) = 0, therefore H(t) = 0 for all
times ¢, and in particular for ¢t = 1. O

In particular, since all multiples tA of A commute, the family of the G(t) = e*4, with ¢ € R, is
a one-parameter subgroup of the general linear group GLy (C), i.e. satisfies

eOA =7 and etAesA — e(t+s)A )

In other words, the correspondence t — e'” is an homomorphism of the additive group R into
GLy(C). Tts image is a curve in the linear group, which passes through the identity for ¢ = 0,
and solves the differential equation G = AG. The matrix A is called generator of the subgroup
{ G(t)} ter, and may be obtained as the derivative

A=6(0) = lim G(t)t_".
—

Thus, A is the velocity of the curve G(¢) at time t = 0.

4.2 Linear flows

Linear systems. A homogeneous linear system with constant coefficients is an autonomous

differential equation
& = L(x) (4.5)

for x(t) € RY, defined by a linear vector field L € End(RY). The origin is an equilibrium
solution, since L(0) = 0 by linearity. Fixed a basis of RV, e.g. the canonical basis, the system may
be written in matrix notation as
T = Ax,

where z(t) = (z1(t),72(t),...,2,(t))" € RY is a column vector, A = (a;;) € Matyxn(R) is
the matrix which represents the linear vector field L in the chosen basis, and Az denotes the
usual product between matrices. By the proof of theorem 4.1, the solution with initial condition
z(0) = 29 € RY is given by

z(t) = ey .

The flow of the linear vector field L is the one-parameter group of linear maps ®, = e*”, given, in
the chosen basis, by ®,(x) := e!4x.

Thus, if we want to understand solutions of a linear system, we must compute the exponential
of the linear vector field, in some convenient basis.
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Diagonalizable linear systems. Assume that A is diagonalizable, and has n real eigenval-
ues A1, A2, ..., Ay (not necessarily distinct) with linearly independent eigenvectors vy, vs,. .., vy,
respectively, so that Av, = A,y and the v;’s form a basis of RY. Then the solution of (4.5) with
initial conditions z(0) = >, arviis a superposition

N
x(t) = Z e aguy,
k=1

The qualitative asymptotic behavoiur of solutions is therefore decided by the signs of the eigen-
values.
For example, if all the eigenvalues are negative, i.e. Ay < 0 for all £ = 1,..., N, then all
solutions decay, exponentially fast to the origin, i.e.

l=@)]l < e [lz(0)]

for some o = ming |Agx| > 0. The origin is then an “asymptotically stable” equilibrium, or a
“sink”.
If, on the other side, all the eigenvalues are positive, i.e. Ay > 0 for all k = 1,..., N, then all
solutions different from the equilibrium solution diverge exponentially fast, i.e.

lz(®)]| > e[|z (0)]]

for some 8 = ming A\ > 0. The origin is an “asymptotically unstable equilibrium”, or a “source”.
More interesting is the mixed situation of a saddle, with some stable directions and some
unstable directions. The case with some zero eigenvalue, i.e. some indifferent directions, is clearly
non generic, although physically interesting (the harmonic oscillator is such a case!).
On the other side, generic real matrices are not diagonalizable. To understand their exponen-
tials, we must complexify and use the Jordan normal form.

Complexification. The complezification of the real vector space RY is the complex vector space
CN := R@ iR, i.e. the set of vectors z = = @ iy ~ x + iy, with =,y € RY, equipped with the
natural sum and multiplication by complex scalars.

The complexification of the linear map x + L(z) defined, in the canonical basis of RV, by a
matrix A € Mat,,»,(R) according to x ~— Az, is the linear operator z ++ LE(z) defined by the
same matrix, i.e. according to z = x + iy — Az = Ax + iAy.

The spectrum of the linear operator L (in a finite dimensional linear space) is the set o(L) C C
of the eigenvalues of its complexification LC, i.e. complex roots of the characteristic polynomial
P,(t) :=det(t — A). By Gauss’ fundamental theorem of arithmetic, the characteristic polynomial
factorizes as a product

Paty= [ t=nm.

Aeo(L)

The integer exponent my is called (algebraic) multiplicity of the eigenvalue A. It is clearl that
Z)\GU(A) my =n.

Complexification in dimension two. The relevant example, for our purposes, is the following.
Let  — L(z) be the linear operator defined, in the canonical basis e; = (1,0) and ez = (0,1) of

R2, by the real matrix
( o w >
—w o«

Thus, L(e;) = ae; — weg and L(ey) = wey + aey. Then the complexified operator z — LE(z) is
defined, in the basis v = e; +ies and v_ = e; — ey of C?, by the diagonal matrix

A0
(0 %)
where A = a + iw. Indeed, a computation shows that A(e; + ie3) = (a + iw) (e1 + iez) and
Aler —ieg) = (a — iw) (e1 —iea).
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Vice-versa, let LC be the complexification of a real operator defined by the real two-by-two
matrix A, and let v be an eigenvector of LE with eigenvalue A\ = o +iw, so that, in the canonical
basis, Avy = Avy. Then v_ := 77 is an eigenvector of L® with eigenvalue A = a —iw. Indeed, since
the entries of A are real, the roots of the characteristic polynomial comes in pairs of conjugated
complex numbers, and one check that Av_ = A7y = Av, = A73 = Av_. There follows that,
in the real basis ey = (vy +v_)/2 and e_ = (v4 — v_)/2i, which is therefore a basis of the real
vector space R? C C?, the real operator L is represented by the matrix A as above.

So, a diagonalizable complexified real linear operator in the plane with a couple of complex
conjugate eigenvaules Ay = o+ iw “corresponds” to a two-by-two real matrix which is the sum of
a multiple of the identity ol and an anti-symmetric matrix {2 as below

1 0 0 w
o<I—|—Q.—a<O 1>+<—w O)'

Since any matrix commute with any multiples of the identity, by theorem 4.2 we may compute
separately the exponentials of tpI and t€2, and then multiply the results. The flow of the diagonal
part is simply e '*f = e*]. A computation (using the power series of the trigonometric functions
sint and cos(t)) shows that the flow defined by the antisymmetric matrix Q above is

i ( cos(wt)  sin(wt) >

—sin(wt) cos(wt)

i.e. it is a clockwise rotation Ry, by an angle tw. Multiplying, we finally get

o tA _ o talt) _ ot cos(wt)  sin(wt)
—sin(wt) cos(wt)

So, the flow of A is a rotation with angular frequency w (or frequency v = w/2m) together with
stretching/contraction with exponential rate «. Orbits are logarithmic spirals entering or coming
from the origin, depending on the sign of a.

The case a = 0 corresponds to pure rotations (this is the case of the harmonic oscillator

¥ = —w?r).

4.3 Linear systems in the plane

Linear systems in the plane. We have now all the tools to understand the general linear
system of differential equations

T =ax+ by

y=cx+dy

in the plane R2, defined by a real 2 x 2 matrix

a b
A= ( o b ) .
Let Ay and A_ be the eigenvalues of the complexification of A, i.e. the complex roots (possibly

equal) of the characteristic polynomial det(¢t] — A). The product AyA_ of the eigenvalues is
q = det(A) = ad — bc, and the sum Ay + A_ of the eigenvalues is p = tr(4) = a + d. Eigenvalues

are therefore
_p + \/Z

At 5

where the “discriminant” is A = p? — 4q.

Two independent eigenvectors. If the matrix A is diagonalizable over the reals, i.e. admits
two linearly independent eigenvectors with real eigenvalues Ay € R (possibly equal), then the

system is linearly equivalent to
T _ >\+ 0 X
y) 0 A y
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(g )= (0 ) ()

The origin is called stable node if AL < 0, unstable node if AL > 0, or saddle if A\_ <0 < A.

Solutions are

Stable node, unstable node and saddle.

Only one eigenvector. Assume that the matrix A admits just one eigenvector v (or better,
a one-dimensional space of eigenvectors)), with eigenvalue A € R. Then the matrix representing
the operator in a basis v, w (where w is any other linearly independent vector) is upper triangular,
with both diagonal entries equal to A (for otherwise a different second diagonal entry would be
another eigenvalue and would therefore yelds a second independent eigenvector) and a non-zero
upper right entry (for otherwise w would be a second, linearly independent eigenvector, and the
operator diagonalizable). Therefore, the operator sends v — Av and w +— av + Aw for some a # 0.
Thus, in the basis formed by v and w/a, the operator is defined by the upper triangular matrix

( o ) (4.6)

This shows that the system is linearly equivalent to

T\ _ (A1 x

g) \0 A y
Since (4.6) is a sum of the diagonal matrix pI and the nilpotent matrix N = (J{ ), which indeed
satisfies N2 = 0, the power series defining its exponential is actually a polynomial os first degree,

and solutions are
< l’(t) ) = 6>\t ( 1 t > < i) >
y(t) = "

The origin is called degenerate node, stable or unstable, depending on the sign of p.

A more conceptual proof of the above observation introduces to the so called “Jordan chains”,
the building blocks of the Jordan normal form of a matrix. Let L be an operator on R?, and assume
that it admits only one-dimensional eigenspace, say generated by the eigenvector v; with eigenvalue
A. This means that the kernel of the operator N = L — X is one-dimensional. For dimensional
reasons, also the range of IV is one-dimensional. Their intersection cannot be trivial, for otherwise
the whole space would be a direct sum R? = ran(N) @ kernel(N) of two one-dimensional invariant
subspaces, and therefore the operator L would be diagonalizable. Thus, there exists e non-zero
vector vy such that Nvg = v1. The vectors vy and v, are independent. Indeed, let avy + bv; = 0.
Applying N, we get avy = 0, since Nv; = 0 and Nvg = vy, and therefore a = 0. But then bv; =0
implies that also b = 0 (the vectors vy and v1 = Nvg form a so called “Jordan chain”). Finally, one
just observes that, in the basis formed by v; and vg, the operator L is represented by the matrix
(4.6), since Lvy = Avq and Lvg = vy + Avp.

Complex eigenvalues. If the matrix A has no real eigenvalue, then its complexification admits
two complex conjugate eigenvalues A and \. If the eigenvaues are purely imaginary, say Ay = +iw,
with w > 0, then, by the previous discussion, the system is linearly equivalent to

(5)=(25)0)
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2

This is an harmonic oscillator & = —w*z with angular frequency w. Solutions are

xz(t) \ _ [ cos(wt) sin(wt) Zo

y(t) /] \ —sin(wt) cos(wt) Yo
Orbits are ellipsis, and the origin is called (indiffeent) focus. Trajectories which start near the
origin stay near the origin for all times, still not being asymptotic to the origin.

The generic case is a complexified matrix with complex eigenvalues Ay = p=+iw, with real part
p # 0. The system is linearly equivalent to

(5)=(29)(s)
(0] <o (ol sinte (20 )

orbits are logarithmic spirals that comes or enter into the origin, depending on the sign of p. The
origin is called unstable focus if p > 0, or stable focus if p < 0.

Solutions are

- Sl Dt

Stable, indifferent and unstable focus.

Global picture. It is clear that the stability or unstability of nodes or foci is preserved under
small perturbations of the parameters (the entries of the matrix A). Here is a famous picture of
the different phase portraits, depending on the trace and determinant of the matrix.

q A=0

dx _ p=A+D
dar =AX*BY  g-ap-BC
%:Cxﬂ)y A=p’-4q

By Maschen, from Wikimedia Commons.

ex: Discuss the degenerate cases when one of the eigenvalues is zero (so that the matrix A is not
invertible).


https://commons.wikimedia.org/wiki/File:Phase_plane_nodes.svg
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Consider the “inverted oscillator” )
q=0p

p=4q

Find the nature of the equilibrium, and determine the generic solution.

Sketch the phase portrait (i.e. some orbits near the equilibrium in the phase space) of the
following linear systems.

T=x—Y T=2r+vy T = 4x
y=x+y y=x+y y=2r—y
T = 6x + by T=—x+2y T=—-Tr+vy
y=x+2y Y =3y y=—4x — 3y
=y T=—x+5y T=2x4+ 5y
y = —4x y=-br—y Yy=-dx+y

The current I(t) in a LRC circuit is a solution of the homogeneous differential equation

. |
LI I+ =1=
+ R +C 0

Write the corresponding linear system for x(t) = I(¢) and y(t) = I(t), and sketch the possible
phase portraits, depending on the relative values of the positive parameters L, R and C.

4.4 Jordan normal form

In the higher-dimensional case, the useful normal form to understand exponentials is the Jordan
normal form.

Generalized eigenspaces.  Let L : CV — C linear operator defined in a complex linear space
CN. Given a scalar A, let Ly denotes the operator L — \. If the kernel of Ly is not trivial, then A
is an eigenvalue of L, and V) = kernel(L)) is its associated proper space, made of eigenvectors v
such that Lv = Av.

A non-zero vector v € CV is said generalized eigenvector if it is in the kernel of some power of
Ly, i.e. if there exists A € C and some minimal integer m > 1 such that LY'v = 0. The non-zero
integer m is called period of v, and the vector v itself is also called Ly-cyclic (meaning that the
orbit of v by the map Ly is formed by m distinct non-zero vector).

If the period is p = 1, then v in an eigenvector of L. In general, the m vectors

v = L;"_lv Vg = L;"_Qv .. Uy =V (4.7)

are all generalized eigenvectors, since , Lvy = LEIY %0 = L{'w = 0, and the first one, vy, is an
eigenvector of L with eigenvalue \.

Theorem 4.3. If v is a Ly-cyclic vector of period m, then the m wvectors (4.7) are linearly
independent and generate a L-invariant subspace of generalized eigenvectors.

Proof. 1If ajvy; + agva + - - - + @y vy, = 0 for some non-zero vector (a1, as, ..., a,), then p(Ly)v =0
where p(t) is the non-zero polynomial

p(t) = art™  +apt™ 2 b a1t F am

But also ¢(Ly)v = 0, where ¢(t) = t™, because v is Ly-cyclic with period m. If h(t) denotes
the maximum common divisor between the polynomials p(t) and ¢(t), then there exist polynomials
f(t) and g(¢) such that h(t) = f(t) p(t)+g(t) q(t). Therefore, also h(Lx)v = 0. But h(t) is a power
of ¢ (since it divides t™) of degree deg(h) = k < m — 1 (since it divides p(t)). Thus, h(t) = t*,
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and therefore Li{v = 0. This contradicts the fact that m is the period of v. Thus, the vectors are
linearly independent.

The v’s are all generalized eigenvectors, because Livy, = Llf\lT_kv = LYv = 0. Finally, the
subspace generated by the vy’s is L-invariant, because

Lu = L(LY Fv) = LY F o £ XL R0 = oy + My,

where, clearly, we set vg = (L — AI)"v = 0. O

The kernels kernel(L5) are called generalized eigenspaces of order k, and one easily sees that
kernel(Ly) C kernel(L3) C --- C kernel(L}). Moreover, if X is en eigenvalue of L, then the space
of generalized eigenvectors associated to the eigenvalue X is equal to kernel(L}) (which, of course,
may coincide with kernel(L%) for some smaller k < n).

Jordan blocks. If it happens that the vectors (4.7) span the whole space C¥V, i.e. if m = N,
then the entire space is said cyclic. The computation in the proof above shows that

Lvy = Ay and Lvg = Mg + v for 2<k<N.
Therefore, the matrix which represents the linear operator L in this basis vy, va, ..., vy iS
Al
A1
Iy = (4.8)
Al
A

In particular, vy is the unique eigenvector, with eigenvalue A, the proper space V) = kernel(L,)
being the line Cv;. Thus, the geometric multiplicity of A is equal to 1. The matrix (4.8) is called
Jordan block of dimension N, and the basis (4.7) is called Jordan basis, or Jordan chain of length
N. The vector vy is called generator, or lead vector of the Jordan chain.

Observe that a Jordan block of dimesion n has the form

=M+ D
where D is the nilpotent (upper triangular) matrix
0 1
0 1
D= (4.9)
0 1
0

which satisfies Dey, = ej_1, if the ej’s denote the column vectors of the canonical basis of CV, and
DN =0.

The characteristic polynomial of a Jordan block J of length N is Py (z) = (z—A)¥, and therefore
the algebraic multiplicity of the eigenvalue A is N. The minimal polynomial (the monic polynomial
of minimal degree such that f(J) = 0) is also M;(z) = (2 —A)" (to be compared with the minimal
polynomial of the diagonalizable matrix A = Al of order N, which is only Mx(z) = (z — A)).

e.g. Derivative and quasi-polynomials. The paradigmatic example is the derivative op-
erator 0, defined by (9f)(t) := f'(t) on complex-values functions f(t) of a real variable ¢. Its
eigenfunctions are the exponentials e, since J(e )‘t) = Xe M. On the other side, it is nilpotent
on the space of polynomials p(t) of fixed degree, say deg(p) < n, where 0" = 0. Exponentials and
polynomials combine to form the spaces @y, ~ CV of quasi-polynomials f(t) = p(t)e*!, where A
is a fixed complex exponent and the p(t)’s are polynomials of deg(p) < n. These are cyclic spaces
for the derivative, since (0 — A\)” = 0, and a generating vector is "~ 'e*. The eigenvector of 9 is,
of course, f(t) = e, and has eigenvalue \. A Jordan basis is

Y Mt %tQ oMt o ﬁ 1 A

In this basis, the operator 0 is represented by the matrix (4.8).
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Flow of a Jordan block. The exponential of ¢ times a Jordan block Jy of dimension N, which
defines the flow of the linear differential equation

”[}:J)\U

defined in a cyclic space, is easily computed. Indeed, since D commute with A\I, we may compute
separately the two exponentials and then multiply. But since D is nilpotent, namely DY = 0, the
series defining the exponential terminates, and indeed

t
et? :I+tD+§D2+--~+

So, the exponential of t.Jy is simply

elIh = etA [+tD+ED2+...+tN7_1DN—1 )
2 (N —1)!

It is clear, since polynomials corrections are negligible compared with exponential growth or
decay, that the asymptotic behaviour of solutions of the linear system ¥ = Jyv only depends on
the sign of the real part of A\, provided it is not zero.

Theorem 4.4. If R(\) <0, then for all 0 < a < |R(N)| there exists a constant C' such that

et || < C e v for t>0.

Proof. If we write a generic vector as a superposition v = ), axvy of the vectors vi’s of the Jordan

basis, we see that
ety =M (Z a; pik(t)> Uk
i

where the p;x(t)’s are certain polynomials of degree < n, which only depend on the dimension n
of the Jordan block. Assume that #(A\) = —p < 0. Take any 0 < o < p, and set ¢ = p—a > 0. We
may define a norm on the cyclic space according to ||v||x := maxy |ax|. Then, if M = max; ; M
denotes the maximal value of the M;, = sup ;~¢ |e *“pi (t)|, we clearly have

levllx < M e Jlu]a

for all ¢ > 0. Since all norms in a finite dimensional vector space are equivalent, this finally
implies that claimed inequality, for some other constant C', holds for the standard or any other
norm in the cyclic space. O

Thus, if () < 0, all vectors are exponentially contracted by the flow of Jy, and decay to zero
exponentially fast as ¢t — oco.
Reversing the arrow of time, one shows that if ®#(A) = p > 0 and p > § > 0, then there exists
a constant C' such that
le=* o < Ce P o] VE>0

Thus, if ®(A\) > 0, all vectors are exponentially stretched by the flow of Jy, and decay to zero
exponentially fast as t - —oc.

Jordan normal form. It happens that any linear operator in a finite dimensional complex
vector space is a direct sum of Jordan blocks.

Theorem 4.5 (Jordan normal form).  Let L be a linear operator in a finite-dimensional complex
vector space CV. The total space splits as a direct sum CN = E\, @ Ey, @ --- ® E\, of cyclic
L-invariant subspaces.
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Therefore, if we chose a Jordan basis in any invariant cyclic subspace E},, the matrix that
represents the linear operator L in the resulting basis is block diagonal as

Jy 0 ... 0
0 Jy, ... 0
J= . 7 , (4.10)
0 0 Jx,

where each Jy, = Ayl + Dy is a Jordan block as (4.8). The Ag’s are the eigenvalues of L,
the roots of the characteristic polynomial P4(z) = det(zI — A), where A is the matrix that
represents L in the canonical basis. Indeed, the characteristic polynomial factorizes as a product
Pa(z) = [lxeo(a) (z = A)™*, where my is the (algebraic) muliplicity ~of the eigenvalue A, which
is equal to the sum of the dimensions of the Jordan blocks with Ay = A, i.e. to the dimension
of the generalized eigenspace kernel(LY). The geometric multiplicity of the eigenvalue A is the
dimension of the proper space kernel(Ly), which is equal to the cardinality of those Jordan blocks
with Ay = A. The minimal polynomial of A is a product Ma(z) = [[ e, (a)(z — A)**, where py is
the dimension of the largest Jordan block with Ay = A.

If A is the matrix that represents the linear operator L in the canonical basis (or in any other
basis), then there exists an invertible matrix G € GLy(C) (whose columns are the vectors of the
Jordan bases) such that G=' AG = J. The canonical form J is unique modulo permutations of
the blocks. In particular, the matrix A may be represented as a sum

A=A+D

of a semi-simple, i.e. diagonalizable, matrix A = G (A1 ® X2 @...)G~! and a nilpotent matrix
D=G(D;® Dy®...) G~ which commute, i.e. such that AD = DA.
Clear proofs of the Jordan normal form theorem 4.5 can be found in the classical [HS74], or in
any good reference on linear algebra, as for example [La87, Ax97].

Normal form of real operators. We now consider a linear operator L : RV — RN defined,
in the canonical basis, by a matrix A € Mat, «,(R). We may think at A as a complex matrix,
representing the complexified operator L® : CV — CV, and as such conjugated to a block diagonal
matrix as (4.10) above. Eigenvalues are real, or come in couples of complex conjugated pairs
A+ = «a =+ iw, since the characteristic polynomial has real coefficients.

Theorem 4.6 (Jordan normal form for real operators).  Let L be a linear operator on the real
vector space RN . The total space splits as a direct sum of invariant subspaces Ey or E, 5 , namely

RN<EB EA>® P Ex|.
A€R AEC\R

where the operator is represented by a matriz of the form (4.8), for some real eigenvalue A, or by
a matriz of the form
R,y I

Iax = (4.11)

with
o w 1 0
R/\,/\—al—i—Q—(_w a) and I—(O 1),

for some couple of complex conjugated eigenvalues X = o + iw and X = o — iw, respectively.
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Proof. According to the Jordan normal form theorem 4.5, there exists a basis of CV such that the
complexified operator LC is represened by a block diagonal Jordan matrix.

Consider a Jordan block with real eigenvalue A. If z = x + iy is a Ly-cyclic vector, then either
x or y is a real Ly-cyclic vector. This real cyclic vector generates, therefore, a real Jordan chain
of the same real dimension as the complex dimension of original block.

We now consider a Jordan block with complex eigenvalue A = a+iw. If A is not real, then the
complexified operator also admts an eigenvalue A = o — iw, and a corresponding Jordan block of
equal dimension. Indeed, if v is L-cyclic, then v is Lx-cyclic. Proceeding as in the two dimensional
case, one easily sees that this couple of complex Jordan blocks give origin to a real Jordan block
of the form (4.11). O

The invariant subspaces E) or E, ; of theorem 4.6 are also referred to as root spaces, using a
terminology borrowed from the theory of Lie algebras.

4.5 Hyperbolic linear flows

Stable and unstable spaces. Given a linear vector field L on RY, defined in the canonical
basis by a real matrix A, we are interested in its flow ®; = e **, which solves the linear system

T = Azx.

We already saw that the asymptotic behavior of the flow e!’ in each root space depends on the
sign of the real part of the corresponding eigenvalue.
One can write the total space as a direct sum of three invariant subspaces

RN =E ¢ E'¢ E*

where the stable space E~ is the direct sum of those root spaces with R(\) < 0, the unstable
space ET is the direct sum of those root spaces with ®()\) > 0, and finally the neutral space E° is
the direct sum of those root spaces with f(A) = 0.

Sinks and sources. The linear system, or better its equilibrium point 0, is calld a sink if all
the eigenvalues have negative real part, i.e. R()\) < 0, so that that RN = E~. It is called a source
if all the eigenvalues have positive real part, so that RY = E+. It is clear that reversing the arrow
of time transfoms a sink to a source, and vice-versa, since (e ‘£)~! = e ~tL,

Theorem 4.7. The linear system & = L(z) is a sink iff it satisfies one of the following equivalent
conditions:

i) all the eigenvalues of L have negative real part,

ii) all solutions decay e'*v — 0 when t — oo,

iii) there exist a positive a > 0 and a constant C' such that for all v € RN

||etL o|| < Ce = vl for times t>0 . (4.12)

Proof. Tt is obvious that iii) = ii). It is also clear that ii) = i), because if some eigenvalue has
R(N) > 0, then one easily find, in the corresponding Jordan chain, a solution which does not decay
to zero. Finally, to see that i) = iii), we note that this holds in each Jordan block according to
theorem 4.4. But if we have norms in each subspace of a direct sum decomposition (as for example
the restrictions of the Euclidean norm), we can define a norm on the total by space taking their
maximum (or their sum, or the square root of the sum of theirs squares). With respect to this
norm, we then have the inequality (4.12) for some a > 0 strictly smaller than all the |R(XA)|’s and
some maximal constant C. Again, by the equivalence of all norms, the same inequaity holds w.r.t.
to the any norm in RY, for some possibly different constant C. O



4 LINEAR SYSTEMS 64

Thus, all trajectories of a sink decay exponentially fast to the origin. Conversely, all trajectories
of a source are exponentially stretched, i.e. satisfy an inequality like

[e" v]| = Ce o]

for some 8 > 0 and all ¢ > 0, and therefore diverge exponentially fast as ¢ — oo, provided the
initial condition is not the equilibrium, i.e. v # 0. If the linear field has non-real eigenvalues,
trajectories may decay or diverge along logarithmic spirals.

Hyperbolic linear flows. A linear vector field L is called hyperbolic if the spectrum of its
complexification is disjoint from the imaginary axis, i.e. if all the eigenvalues A, real or complex,
have non-zero real part () # 0. The total space of a hyperbolic vector field therefore splits as a
direct sum

RN =E-g@Et

of a stable and an unstable invariant subspace.

Of course, sinks and sources are hyperbolic, but the most interesting case is when both the
stable and the unstable subspaces are not-empty. Reasoning as in the proof of theorem 4.7, one
shows that

Theorem 4.8. Let L be a hyperbolic linear field. The phase space is a direct sum of two invariant
subspaces RN = E~ @ E™, the stable and the unsable subspaces, and there exist positive constants
a, B >0 and a constant C such that

letfu|| < Ce = || if veE™ and t>0

and
le vl < Ce ~P || if veEET and t>0

Thus, the flow of a hyperbolic linear vector field contracts vectors in the stable space and
stretch vectors in the unstable space. Indeed, the stable and the unstable subspaces E may be
characterized /defined as the sets of those vectors satisfying e***v — 0 for t — oo, respectively. If
both spaces are not empty, generic trajectories, not starting in £~ U ET, diverge for t — %o0.

It turns out that the hyperbolic vector fields are precisely the structurally stable linear vector
fields. This is the starting point of a large area of the modern theory of dynamical systems, called
hyperbolic theory. Classical references are [HS74, PM78].
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5 Numbers and dynamics

Another important source of interesting dynamics is, quite surprisingly, elementary number theory.

5.1 Decimal expansion and multiplication by ten

Decimal expansion. When children we learn to represent numbers as decimals, like
3.14159265358979323846264338327950288419716939937510 . . .

Of course, there is nothing special with the number 10, it is but the number of fingers in our hands.
Any other integer d > 2 would work. Representing a non-negative (for simplicity) real number
z € R, in base 10 means writing = as the sum of a convergent series
X = “Xm...X2X1X0.CC1I21‘3...”
= Xy 10M 4+ X510 + X3 - 10 + X +

n=0 n=1

where X,,,z, € {0,1,2,...,9} and m > 0 (the series above is absolutely convergent because it is
bounded by 9 times the geometric series Y~ (1/10)™).
The finite sum

X T2 I3
10 102 108

[z] ::an-lO" ez

n=0

is the integral part of x, the largest of those integers n such that n < z. The possibly infinite sum
o0
{2z} =0z12005--- = Z Tn 107" €0,1)
n=1

is the fractional part of z, the difference { } = = — [z]. Consequently, [x] + {z} = =x.
Some representations terminate, i.e. have x,, = 0 starting from some n > N, and some others
are recurring (or eventually periodic), i.e. of the form

[] + 0.2125 ... xxG1G7 -~ - Gy = [2] + 0.2122 . .. Tpa1G2 . . . ApA1A2 . . . ARA1A2 .. . Gy, . . .

for some finite recurring word ajas . ..a, (and of course a terminating decimal is a recurring one
with recurring word 0).

The representation is unique, hence defines a bijection between R and the space of infinite
words X,, ... Xox1Xg.z12223 ... as above, if we do not admit recurrent 9’s, i.e. if we substitute

oo xp—19 with ... (zx—1 + 1)0 (where we assume xj_; # 9).

Division algorithm. The iterative scheme to obtain the decimal representation of a rational
number is the “division algorithm” that we also learn when children. Consider a positive rational
number z = p/q with p,q € N:

D _
— = 209.L1X2L3 ... .
The integer [z] = z¢ is “the number of times ¢ is contained in p”, i.e. the unique integer such that
P=To-q+To
for some rest o which is an integer 0 < ro < ¢q. Hence, p/q = xo + ro/q and 0 < ro/q < 1. The
“geometric” meaning of x; is that the point r/q lies between 0.z1 and 0.z; + 0.1. Multiplying by
10 and then by ¢ this means that

1-q<10-179 <zT1-9+¢q
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or, equivalently, that x; is the unique integer between 0 and 9 such that
10-rg=x1-q+ 1

where, again, the rest r1 is a non-negative integer 0 < r; < ¢. And so on. Hence, the digits of the
decimal expansion of p/q are iteratively determined by

1011 =xp-q+7n where 0<r, <q

Since the possibilities for the rests are finite, they necessarily recurr. On the other side, a simple
computation shows that a recurring decimal is a (series converging to a) rational number.

Theorem 5.1. The rational numbers are precisely those real numbers whose representation in base
10 (or any other base d > 2) is (eventually) repeating/recurring.

Meanwhile, there exist irrational numbers. For example,

1 1 1 1 1
0.101001000100001 -+ - = — + — +

=70 " 105 T 106 om0 T 1gm T

is irrational, since it is not recurring.
Indeed, almost all numbers are irrational, in a precise probabilistic sense, since rationals are
countable.

The weight of the rationals. Consider the unit interval I = [0, 1], and and imagine to cut
out all its rational points. What is left is a set, I\Q, whose length is equal to the length of the
interval! Indeed, the rationals are countable, for example those inside I may be ordered according
to

o 1 1/2 1/3 2/3 1/4 3/4 1/5 2/5 3/5 4/5

say INQ = { r1,re,r3,...} . Given an (arbitrarily small) e > 0, we may even cut out a whole
interval J, = (ry, — £,/2, 7 + £,/2) of finite diameter ¢,, = £/2™ around each r,,. The measure of
what is left of the unit interval is

o0

length (I\ (U, Jn)) > 1— ) e/2"=1-¢

n=1

In other words, the rationals inside the unit interval have neighbourhoods of arbitrarily small
length! Mathematicians say that

Theorem 5.2. Rationals form a set of Lebesgue measure zero inside the real line.

Therefore, almost all numbers are irrationals. In other words, if we “choose” a random number
in the interval [0,1], with respect to the uniform distribution giving probability |b — a| to any
interval [a,b] C [0, 1], it will be irrational “with probability one”. Despite this fact, showing that
a “given” real number, like 7, e, ...is irrational may be a hard problem.

Show that the decimal representation of a (reduced) rational p/q terminates iff the denomi-
nator is of the form ¢ = 2®5% for some non-negative integers o and f.

Write 1/3 in base 2, and 2/3 in base 3 and 7.

Show that the decimal (or any other base) representation of a rational number is repeating
(observe that the possibilities for the rests r,, are finite). Then show the converse: a repeating
decimal represents a rational number (compute the sum of the series).

Give examples of non-repeating decimal expansions (see [HW59], section 9.4).
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Prove that Fuler’s number -
1
n=0

is irrational (Fourier’s idea: assume that e = p/q for some positive integers p and ¢, and deduce
that = = ¢! (e — >} _1/n!) is then an integer. Estimate the series x = > ., ¢!/n! and prove
that 0 < z < 1).

Multiplication by an integer. The representation of real number in base 10 is strictly related
to the dynamics of a particular transformation acting on the circle.

Let N > 2 be an integer. The transformation Fy : R — R sending each number x to its
multiple Fy(z) = Nz has a trivial dynamics, since all trajectories diverge, apart from the fixed
point 0. Things get interesting if we do not allow trajectories to escape, i.e. if we force them to
a bounded domain. One way to do it is considering the quotient circle T = R/Z, and define the
transformation Ey : R/Z — R/Z as

En(x+Z):=Nzx+7Z.

Let m : R — R/Z denotes the projection of the real line over the circle, sending 7(z) = x + Z.
Then wo Fy = Ey o, i.e., Fi is a lift of Ey.

A “fundamental domain” for the action of Z on the real line is the interval [0,1). This means
that any class ¢ + Z € R/Z admits one and only one representative z € [0,1). If x = 0.z12023. ..
is the representation of z € R/Z ~ [0,1) in base N, then Fy sends

0.x12923... — 0.x92374...

Alternatively, we could have defined a transformation of the unit interval [0, 1] into itself sending
x — {Nz} = Na — [Nz], thus avoiding the identification 0 ~ 1. The simplest case is that of the
doubling map, Es(x + Z) = 2z + Z. Its graph, and the graphs of its first two iterates, are shown
in the picture below.

Once 0 and 1 are identified, we see that Fy “makes two turns around the circle” (technically,
it defines a double cover of the circle).

Find the cardinality of the inverse image by Ex of a generic point in R/Z.

Find periodic and pre-periodic points of Ex, show that they are dense in the circle.
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Show that the identification h : R/Z — S, given by z + Z + e 2™ is a topologcal conju-
gation between the doubling map Fs and the restriction of the squaring map z — 22 to the unit
circle S C C. State the corresponding result for the multiplication by an arbitrary integer N > 2.

Multiplication by 10 and frequencies of digits. Consider a (random?) number z € [0,1),
and its decimal representation = 0.x1z2x3 ..., with digits 2 € {0,1,2,...,9} and no recurring
9’s. The first digit x; is, for example, equal to 7 iff z belongs to the interval A = [0.7,0.8)+Z C R/Z
(though as an interval of the circle). Since Eig (0.z12223- -+ Z) = 0.2923%4 - - - + Z, the second
digit x4 is equal to 7 iff Ejg(z +Z) € A. And so on. Let x4 : R/Z — {0,1} be the characteristic
function of the interval A, which is equal to xa(x + Z) = 1 iff x + Z belongs to A. There follows
from the above discussion that the frequency of 7’s between the first n digits of « is a Birkhoff sum

n—1
1 1
Zecardfl1 <k <n : =7l== EF Z
ncar{ <k<n:xz, =T} n;;:o xa (Efo(z+2))

The limit for n — oo, if it exists, should be interpreted as an “asymptotic frequency” of 7’s in
the decimal representation of x.
It is clear that similar considerations holds for other possible values of x1, say 3 or 9, as well
as for possible initial finite strings xizs ...z, as 123 or 1415. Therefore, the dynamics of E1y on
the circle contains informations on the patterns of decimal representations of numbers.

Conjecture a value for the asymptotic frequency of 7’s, for “typical” numbers x.

Show that any value, for example a rational 0 < p/q < 1, may be attained as an asymptotic
frequency of 7’s, for particular numbers .

Show that there exist numbers for which the limit does not exist.

5.2 Bernoulli shifts

The abstract version of multiplication by /N on the circle is the shift on the space of Bernoulli
trials, a map which is basic in probability.

Infinite words. Let A~ {1,2,..., N} be an “alphabet” made of N > 2 letters, i.e. a finite set
equipped with the discrete topology, and let £* := AN be the topological product of infinite copies
of A. Points of ¥ are actually sequences (x,,)nen with values in A, but are more conveniently
denoted as

r =123 ...Tp ...

with z,, € A, and interpreted as “infinite words” in the letters of the alphabet A. In probability
theory, the z}’s represents the outcomes of a sequence of trials of some experience with NV possible
outcomes (as a dice with N faces).
The product topology is the weakest topology on AN such that all the projections m, : ¥T — A,
sending = — x,,, are continuous. A basis for this topology is the family C of centered cylinders. A
centered cylinder is a subset

Cy = {xe Yt st 21 = a1, 20 =g, ..., Tp :ak}

where o = ajay ...y € AF is a finite word of length & € N. More colloquially, C,, is the set of
those infinite words x starting with the finite word «, i.e. of the form z = ax*, with an obvious
meaning of the symbol “* ” (as in the UNIX language). Thus, a basis C of the product topology
is the countable family of C, when a ranges in the set J, AF of all finite words in the letters
of A. By definition, an open set of the topological product ¥T is a union A = U,C,, of centered
cylinders.

Observe that the family of centered cylinders is a basis of a topology because it is covering,
since obviously X7 = C; UCy U...UCy, and because the intersection of two cylinders is the empty



5 NUMBERS AND DYNAMICS 69

set or one of the two cylinders. Indeed, two cylinders C, and Cjs have non-empty intersection iff
one of the two words, say a = ajas ... ag, is the initial string of the other word, in the sense that
B =araz...050k41 ... Brti, and in this case Co N Cg = Cg. The idea is that the longer is the
word « the smaller is the cylinder C,.

Ultrametrics. The product topology is metrizable. This means that there exist metrics on XF
which induce the product topology. One possibility is the metric

oo
diSt)\ (a:,y) = Z AT |xn - ynl
n=1

for some A > 1 (for example A = N). Another possibility, simpler to deal with, is to define
ord(z,y) ;= min{ n € N : z, # y,} the smallest place where the two words z and y differ (equal
to oo if the x = y), and then a distance as

disteo(z,y) = A~ord(@y)

if x # y, and zero otherwise. It is clear that centered cylinders C\, are both closed and open balls
for this metric, as strange as it may seem. It turns out that this is indeed an ultrametric, triangular
inequality being a consequence of the stronger ultrametric inequality

distoo(z,y) < max{diste(z, 2), disteo (2, y)}

Between the strange properties of ultrametric spaces, one verifies that any point of a ball is its
center. The space X is the abstract example of a Cantor set: a compact, perfect and totally
disconnected metric space.

Show that dist,, is an ultrametric.

Show that any point of a ball in a ultrametric space is its center, and that balls are both
open and closed (therefore called “clopen”).

Show that a triangle in a ultrametric space is either equilateral or isosceles.

Bernoulli shift. The Bernoulli shift is the transformation o : ¥* — X7 which “forgets the first
letter” of the infinite word, sending

T1Tox3 -+ - > 0(T1X0T3) = ToT3Xy . ..

It is continuous, because the inverse image of any centered cylinder is a union of centered cylinders,
hence an open set. It is not invertible, and indeed the inverse image of any point is made of N
different points (the choices for the first letter of the infinite word).

In probability, letters of the alphabet A repesent the possible outcomes of an experience, as
tossing a coin or a dice. An infinite word x1x9x3...%, ... therefore represents the successive
results of a countable set of experiences, ordered, for example, by time n. Iteration of o means
forgetting the outcomes of the first experiences.

Describe periodic and pre-preriodic points of o. Show that they are dense in X T.
Consider the alphabet A = {0,1,2,...,9}. Define a map h: AN — [0,1] as

T1xox3 - +— 0.x12223 ... .

Show that h is a semi-conjugation between the shift ¢ and the multiplication E1g on the circle.
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5.3 Rotations of the torus

Rotations of the circle. The circle, or one-dimensional torus, is the quotient T := R/Z of the
commutative group R modulo its subgroup Z, equipped with the quotient topology. We denote
by 7 : R — T the projection z +— 7(x) := x + Z. The euclidean metric on the real line induces a
metric on the circle, defined by

dist (z + Z,y + Z)

min |z’ — /|
' €x+1L,y' €y+7Z

= wplevw

Thus, the distances between the classes of x and y is the minimal distance between the subsets
x4 7 and y + Z of the real line. Observe that the diameter of the circle, i.e. the maximal distance
between two points, is 1/2.

Rotations of the circle are the transformations R, : R/Z — R/Z defined by

r+2Z—r+a+7Z

where @ € R. Observe that R/Z is a commutative group, and the R, are its translations, since
only the class a + Z of a matters. Also, rotations are the isometries of the circle which preserve
the orientation. If we identify the circle with the unit circle S* := {z € C t.q. |z| =1} C C in the
complex plane, by means of the homeomorphism z + Z — e2™**, rotations are the transformations
2 2Ty,

It is interesting to observe that trajectories of a circle rotations are the successive points where
a billiard ball hits the boundary circle if thrown inside a circular billiard.

Orbits of a circular billard, with rational and irrational angle.

Theorem 5.3. A rotation R, has periodic points iff « is rational.

Proof. If « is rational, and equal to the reduced fraction p/q, then all points are periodic with
period g, since © + qa + Z = x + Z for any x. On the other side, if « is irrational, there exists no
natural n > 1 such that x +Z = = + na + Z, independently on . O

Indeed, what we showed is that all orbits of a rational rotation are periodic, hence finite. On
the other side, all orbits of an irrational rotation are infinite, and this will be the interesting case.
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Observe that any point 2 +Z of the circle R/Z has a unique representative {z} in the interval
[0,1), the fractional part of x, and show that the distance between two points of the circle is given
by the explicit formula

dist(z + Z,y + 2) = min{[{z} — {y}[, 1 - {z} - {y}|}

Rotations of a torus. The N-dimensional torus is the quotient TV := RY /Z" equipped
with the quotient metric. Rotations are the homeomorphisms R, : TV — TV defined by

z+ZN sz +a+7ZN

where now a € RYV.

Try to understand possible orbits of a torus rotation.

5.4 Dyadic adding machine

p-adic number fields and integers. The field R of real numbers may be considered (actually
constructed) as the completion of the rational number field Q with respect to the Euclidean norm
|z|oo := max{ £x}. This means that real numbers are equivalence classes of fundamental sequences
of rationals, two fundamental sequences (z,,) and (y,) being in the same class, i.e. representing
the same real ‘z :=lim, 00 7, if |Zn — Yn|oo — 0.

It happens that there exist other “norms”, i.e. positive and homogeneous functionals x — ||
on the rationals satisfying the triangular inequality, which respect the multiplicative structure, i.e.
such that |zy| = |z||y|. Such norms are called valuations.

Let p = 2,3,5,7,... be a rational prime, also called place in this context. The order of a
non-zero rational z € Q* := Q\{ 0} at the place p is the unique integer ord,(x) = n such that
x = p"a/b for some a,b € Z which are not divided by p. The p-adic valuation/place is the
absolute value on Q defined as

||, = pord(@) if x#0

and [0|, = 0. Clearly ord,(zy) = ord,(x) +ord,(y) (just like the degree of polynomials), and this
gives homogeneity of | - |,. Triangular inequality follows from the observation that

ord,(z + y) > min{ ord,(z),ord,(y)}

One can show that those, together with the euclidean norm, are the only valuations on Q, modulo
trivial equivalences. The p-adic (topological) number field Q, is the completion of Q with respect
to |- |p (uniqueness is trivial, and existence may be proved as usual considering equivalence classes
of fundamental sequences, the only annoying issue being keeping track of the field operations).
The p-adic valuation, naturally extended to Q,, is “non-Archimedean” (i.e. does not satisfy the
“Archimedean property” that for all ¢ > 0 and all N there exists an integer n such that ne > N)
since triangular inequality is enhanced by the stronger “ultra-metric” inequality

|z +ylp < max{fzp, |ylp} -

This causes many paradoxical properties. For example, closed balls are open as well (hence called
“clopen”), and any point of a ball is its center. The ultrametric inequality also implies that

< .
b1 + b2+ ... balp < max. bk p

Consequently, a series Y b, converges (for the p-adic metric, of course!) iff the norm of its
terms |b,|, — 0 as n — oo (there is no room for divergent series like the harmonic series in the
p-adic world!).
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The ring of p-adic integers Z, is the closure of Z in Q,. One can describe the p-adic integers
as the inductive limit Z, = lim (Z/p"Z), and represent a p-adic integer as a series
—

oo
2= ...%n...222120 ::Zznp" (5.1)
n=0

with z, € A, :={0,1,2,...,p — 1} =~ Z/pZ, which converges in Q, because the norm of the
generic term z,p”™ is bounded by |z,p"|, = p~™ — 0 as n — oo. Thus, as a topological space
(not as a ring!), Z,, is isomorphic to the topological poduct X+ = AN, the space of infinite words
(written backwards!) ...z, ...232221 in the letters of the alphabet A,. Observe that Z, = {z €
Qp s.t. |z|p <1}, ie. the ring of p-adic integers is the clopen ball of radius one around 0 in Q,,.
Moreover, as follows essentially from the definition, Z is dense in Z,,.
Any p-adic number z € Q, can be represented uniquely as * = z + r where z = [z], =
Y om0 TnD" € Zy is the “p-adic integer part” and r = {2}, = 22;1 Tnp~ ™ € Z[1/p] is the “p-adic
fractional part”. In symbols,

o0
T=...Tp...T901000—_1...L_N = g Tpp"
n=—N

It is clear that the ring Z[1/p] is dense in Q,. The quotient Q,/Z, = Z[1/p]/Z is a discrete
(additive) group where the norm | - |, takes values p™ with n € N.

Multiplication by p is a uniform contraction x + px of Q, with Lipschitz constant p~*, and
its inverse « — ap~! uniformly expands distances by a factor p. Thus, Z,, is the disjoint union
Ugi_:lo(ai + pZ,) of p clopen balls of radius p~! (and so on, iterating the contraction). Also, one
can represent the field of p-adic numbers as a union Q, = {J,,cx P~ " Zp.

1

Show that Z is dense in Z,,.

Compute the following sums in Zs.
...0114...001 ...0101+4...1010 ...1114-...001

Find the additive opposite of 1 =...001 in Zs.

Adding machine. Consider the ring Z, of dyadic integers, thought as an additive topological
group. The dyadic adding machine (or “Kakutani-von Neumann odometer”) is the translation
f :Zy — Zs, defined by

z—=z+1

Observe that f changes the first (starting from the right) digit of z = ... 292129. It has no fixed
points, and all of its orbits are dense, since Z is dense in Z,.

Show that z +— 2z + 1 is a homeomorphism of Z5, and find its inverse.

Show that the dyadic adding machine has no periodic points.

5.5 Continued fractions and Gauss map

Continued fractions. Any real number z € R can be represented (uniquely if irrational, and
with only a minor ambiguity if rational) as a continued fraction

1

x ~ [ag;a1,a9,as,...]:=ag+
a1+7

ay + ———

a3—|——
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with ag € Z and “partial quotients” a,, € N if n > 1. This means that x is equal to the limit of
the convergents, the finite continued fractions defined as

Pn/dn = [aoi a1, a2, ..., ay] == ag +
ay +

1 + !
a

S 1

4=

Qnp

as n — 0o. Observe that finite continued fractions are rationals, and obey the recursion

[ap; a1,a2, ..., an, any1] = [ag; a1, a, ... an + 1/an41] (5.2)

Continued fractions constitute the fundamental tool to investigate rational approximations to
real numbers, because they provide base-free, hence intrinsic, rational approximations. Thus,
while Earthlings with ten fingers write # = 3.1415... and Martians with three fingers write
m =10.0102..., they all agree to write 7 = [3;7,15,1,292,...]). Moreover, they provide the best
rational approximations, in a certain precise sense [HW59, Kh35].

Continued fractions algorithm and Gauss map. The continued fraction converging to
a given number x € R is given essentially by Euclid’s algorithm to find the m.c.d. of two integers.
One starts with ag = |x] € Z (here the “floor” function |z| returns the smallest integer n such
that n < & < n + 1), and write = ag + ¢ for some zg = {z} € [0,1). Then define the Gauss
map G:(0,1] — [0,1] as
G(z):=1/x — |1/z], (5.3)
(thus, G(z) is the fractional part of the inverse of z) and inductively define the partial quotients
a, € N and the “rests” z,, € [0,1) as

An4+1 = |_1/an Tn+1 = G(mn) 5
provided all the zq,z1,...,z, # 0. Then,

xr =ag+ To

:a0+
a1 +x1

1
:ao—"—i

ai +

a9 + T2

a1+

as +
2 1

Ay + Ty,

If some z,, = 0, the iteration stops and z is equal to a finite continued fraction as above.
Conversely, if © = p/q is rational, all the x,,’s are positive rationals, and have strictly decreasing
denominators (for if z, = a/b, then 1/x,41 = xy — an = (a — anb)/b = ¢/b, and ¢ < b because
ZTp — ap < 1). So, there must be some first x,, which is an integer, and the algorithm stops.
Thus, finite continued fractions correspond to rationals (and are unique if we demand the the last
non-zero partial quotient be a,, > 1).
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Convergence of the convergents.  We must therefore understand the case of infinite continued
fractions, which, as we already know, correspond to irrationals. The key observation is that the
convergents p,/qn, = [ao;a1,as,...,a,] of a continued fraction [ag, a1, as,as,...| are determined
by the partial quotients a,,’s according to the following recursive equation.

Theorem 5.4.  The convergents pn/qn = [ao;a1,az,...,a,] are obtained from the coefficients
ax’s by the recursions

Pn = AnPn—1 + Pn—2

(5.4)
Qn = QnQn—1 + qn—2

given the initial conditions po = ag, g =1, andp_1=1,q-1 =0 (orp_2=0andq_o=1) .

Proof. The proof is by induction. The first two values are easily verified. Assume the results holds
until n, and compute

Pn+1
Gn+1
= lag;a1,a9,...,an + 1/an41]
_ (an +1/an+1)Pn—1+ Pn—2
B (an +1/an11)qn—1+ qn—2
N avz+1(anp7L—1 +pn—2) + Dn-1
a1 (anGn-1 + Gn—2 ) + Gn—1
Gn+1Pn + Pn—1
Ont1qn + qn—1

= [ag; a1, a2, ..., Gn, Gny1)

It is important to write the recursion (5.4) in matrix notation as

Pn Pn-1 _ Pn—1 DPn—2 an 1
dn gn—1 dn—1 dn—2 1 0 ’

whose solution, taking care of the initial conditions, is the backward product

G )= o) (0 o) (7 ) @9

of n + 1 integer matrices with determinant —1. In particular,

Pndn—1 — Pn—19n = (71)n+1 )
which says that the matrix with columns p,, ¢, and p,_1,¢,—1 is unimodular, i.e. belongs to
the group GL2(Z) of (invertible) integer matrices with determninant +1 (two by two matrices
whose rows and columns are relatively prime integers, a group which contains much arithmetical
information!). This shows that the fractions p,, /¢, obtained using the recurrence in theorem 5.4 are
reduced.
There also follows that
Posr _pn _ (2"
dn+1 dn dn+19n

Also, one can easily show that convergents with n even form an increasing sequence, and conver-
gents with n odd form a decreasing sequence. Another consequence of the recursion (5.4) is that
the denominators ¢, of an infinite continued fraction (i.e. such that a,, > 1 for all n > 1) satisfy

qn+2 Z Qn+1 + dn 2 2Qn»
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and therefore grow exponentially fast:
ni1 > 272

(indeed, they grow at least like the Fibonacci sequence starting with fo = 1 and f; = 1, hence like
qn > cd™, where ¢ = (1 +/2)/2 is the “ratio” and c is some positive constant). This implies that

1 2
= S —_—
Gn1Gn ~ 2"

Pn+1 Pn

dn+1 dn

and therefore the sequence of the convergents p,, /g, is fundamental. Its limit lim, o0 pn/qn = =
is called “value” of the continued fraction, and denoted by

x = [ag; a1, az,as,...] = nlLrI;o[ao;al,ag,...,an].

It is also possible to find a lower bound to the difference between an irrational = and its convergents,
and the two-sided estimate reads as follows:

1
qn <Qn+1 + qn)

1
An+149n

pn
xr — —

an

<

Use the quadratic equation ¢ — ¢ — 1 = 0 to show that the “ratio” ¢ has the simplest
continued fraction, namely
1+5

=[1;1,1,1,1,1,...]
2
(observe that ¢=! = ¢ — 1 is a root of 2> + 2 — 1 = 0, hence # = 1/(1 + 1/x), and so on). Its
convergents are 1 , 2, 3/2 ,5/3 ,8/5, 13/8 , 21/13 , 34/21 , ..., ratios between successive

Fibonacci numbers. It is also the (irrational) number with worse rational approximations, namely
|¢ —p/q| > (1//5)/q? for any rational p/q.

Also, the most famous irrational has a simple continued fraction. Show that
V2=11;2,2,2,2,2,...]

(observe that 1 4 /2 is the positive root of #? — 2z — 1. Hence = 2 4 1/z, and so on). Its
convergents are 1, 3/2, 7/5,17/12 ,41/29 , 99/70 , 239/169 , 577/408 , ....

Continued fractions and Bernoulli shift. The continued fraction development, the map
x> [ag; a1, as,...]

realizes a conjugation between the restriction of the Gauss map (5.3) to the irrationals, the
transformation G : (0,1]\Q — (0,1]\Q, and the shift o : N — NN over an alphabeth A = N of
infinite letters. Indeed,

G: [0;a13a23a3a"'} }_)[O;GQaa3aa4a"'} .
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Graph of the Gauss map.
ex: Find the (largest two or three) fixed points of the Gauss map, and compute their values.

Periodic continued fractions and quadratic irrationals.  Quadratic irrationals (or quadratic
surds) are irrational roots of quadratic polynomials with integer coefficients

f(z)=az®> + bz +c

(with a,b,c € Z), i.e. numbers like

_a++/p
N 0
where a, 3,0 € Z, 6 # 0 and 8 > 0 which is not a square.

Theorem 5.5 (Lagrange). The continued fraction of an irrational number x € R\Q is periodic
iff © is a quadratic irrational.

See [Kh35, HW59).

5.6 Exponential sums

Arithmetic progressions . The dynamics of an arithmetic progression
a a+a a+ 2« a+3a a+ na ey

obtained from the initial condition xg = a using the recursion z,+1 = =, + «, is quite trivial. All
trajectories x,, = a + na diverge, provided « # 0.

Something interesting happens if we compute time averages of the basic character of the real
line, the observable e : R — S C C given by

e(x) := 2™,

Apart from a constant factor e?7:®

metic progression are

and the normalization 1/N, the Birkhoff averages of an arith-
N-1
SN(OZ) _ Z e27rzom )
n=0

ex: Show that the sum of the first n terms of an arithmetic progression =y = a + ko is

— n n(n—1)
Zxk = 5(:130 +z,1)=na+ —a«

2
k=0
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Exponential sums. Sums as
N
E(N) _ Z eQTriwk
n=1

are called exponential sums, and contain “spectral information” about the distribution of the
sequence of numbers (z,,) modulo 1. Triangular inequality gives the trivial bound |[E(N)| < N, i.e.
E(N) = O(N). If the different exponentials e?™*» were “uncorrelated”, as successive positions of
a random walk in the plane, we should expect E(N) = O(v/N). This, of course, does not happen
with “deterministic” generic sequences. The best we can hope is some bound as E(N) = o(N)
(which, in our case, would mean that the Birkhoff averages $,, — 0).

Observe that, for integer ¢ > 1, the complex number z = >/ is a non-trivial g-th root of
unity. Hence,
ltz+224 4271 =0.

Deduce that if & = p/q € Q with p € Z, then

q—1
Z e2milp/an —
n=0

so that the exponential sum S, (p/q) is periodic, and in particular is O(1).

Gauss sums. Much more interesting are exponential sums defined by a “quadratic progression”
z, = an?. These are

N-1 ,
GN(Oé) _ Z e27rwm )
n=0

When « = p/q is a rational, they are called (quadratic) Gauss sums, and they are extremely
interesting objects in number theory, as well as in the Fourier analysis on finite fields. These
sums are also obviously related to the Jacobi theta function, defined for complex z € C and
TeH:={x+iyeC : y>0} (the Poincaré upper half-space, a model for the hyperbolic plane)
by the series

[e%S)

. 2 .

9(2’7_) = § emiTn +2miz
n=0

If you plot the sums for a large number of values of N, given an irrational a or a rational with
large denominator, you see “curlicues” as in the following pictures:

Theta sums with x =3.1416 and N =100000

Theta sums with x =3.1416 and N =10000

50

200

15 250 L
E -3
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1000

Theta sums with x =3.1416 N =1000000

800

600

400

200

=200

<400 L N L L L L
-1200 -1000 500 -600 -400 -200 Q 200

Theta sums with a ~ 7, and N = 10000, 100000 and 1000000.

Observe the axis: the sums are of the order of v/ N, as typical trajectories of a random walk!

ex: You may also explore what happens with other exponents, such as y/n, and get interesting
patterns or phenomena.
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6 Simple orbits and perturbations

6.1 Topological fixed point theorems

To find periodic points of a transformation f : X — X, namely fixed points of its iterates f", may
be difficult. For example, when f(z) is a polynomial of degree d > 1, its iterates are polynomials
of exponentially growing degree.

Fixed point theorems in intervals. In real dimension one, connected and convex sets coincide,
and are called intervals. This “miracle” is responsable for two very simple criteria to prove the
existence of fixed points of continuous interval transformations. They say that if a compact interval
is squeezed or stretched, at least one of its points remains fixed.

Theorem 6.1 (fixed point theorem for intervals). Let f: I — R be a continuous transformation
defined in an interval I C R.

i) If J C I is a compact interval such that f (J) C J, then f has a fized point in J.

it) If J C I is a compact interval such that J C f(J), then f has a fixed point in J.

The proof is an elementary application of Bolzano theorem to the continuous function f(x)—z,
as the following pictures suggest.

A more abstract proof, which can be generalized to higher dimension (with the help of some
non-trivial algebraic topology), is as follows. Suppose thatf has no fixed points in J. Then the
function

g(z) = fla) -z
|f (z) — x|
(which makes sense if the denominator does not vanish) would define a continuous map of an
interval (J itself in case i) or some sub-interval of J in case ii)), which is a connected space, onto
the disconnected space {—1,1}.

Prove theorem 6.1.

Find examples of continuous functions f : I — I and non-compact intervals J such that
f(J)c Jor JC f(J) which do not contain fixed points of f.

Other topological fixed point theorems. In higher, but finite, dimension, part i) of theorem
6.1 generalizes as

Theorem 6.2 (Brouwer). A continuous map f : D — D of the closed unit disk D C RN into
itself has a fized point.

The idea is that if a continuous map f : D — D had no fixed point, the same formula as above
(associating to each point x of the disk the intersection between the ray passing through x and
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f(x) and the boundary sphere) would define a continuous map g : D — 9D from the disk onto the
unit N-sphere 0D = S™. That such a map cannot exist is quite clear intuitively, but needs some
non-trivial algebraic topology to rigorously prove it (the N-th homotopy group of the (IV 4 1)-disk
is trivial, while that of the N-sphere is not!).

In infinite dimension, one has the

Theorem 6.3 (Shauder-Tychonov). A continuous transformation f : K — K of a compact and
convex subset K C X of a Banach space X (or of a locally convex topological vector space) has a
fixed point.

6.2 Dynamics of contractions

The simplest dynamical systems are contractions.

Contractions. Let (X, dist) be a metric space. A map f : X — X is called contraction (or
A-contraction if one wants to keep track of the constant A) is it is Lipschitz and has Lipschitz
constant A < 1, i.e. if there exists a 0 < A\ < 1 such that for all z,2’ € X

dist(f(z), f(z")) < X - dist(z, 2") (6.1)

Clearly, a constant transformation, sending any « € X into f(x) = p, is trivially a contraction.
A linear homogeneous transformation f(z) = Az of the complex plane C or of the real line R is
a contraction provided |A| < 1. Observe that a contraction, as any Lipschitz map, is continuous
(take § = £/ in the e-¢ definition).

Smooth contractions in Euclidean spaces. Consider the Euclidean space RY, equipped
with the Euclidean distance dist(z,y) = || — y||, where the norm ||z| = \/(x, z) is induced by the
Euclidean inner product (z,y) = Zszl Tryk. A linear operator A : RN — RY dilates or contract
distances with possibly different ratios along different directions. The maximal stretching ratio,
i.e. the Lipschitz constant, is the operator norm of A, defined as

A
4] = sup 1221
o Tl

Indeed, by linearity, we have
[Az — Ayl| < [[A]l [|= — y|

Also by linearity, and compactness of the unit sphere, it is clear that the maximal stretching ratio
is achieved at a unit vector, so that ||Al| = sup|,= [[Az||. A linear map sends the unit sphere
SN=1 = { z € RN : |jz|| = 1} into an ellipsoid. The semi-axis of A(SV~!) are called singular
values of A, and are the square roots of the eigenvalues of the symmetric non-negative operator
AT A. Thus, the operator norm ||A|| is also equal to the maximal singular value of A.

In particular, a linear operator A is a contraction iff ||A]| < 1.
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We consider now a differentiable map f : X — R defined in some domain X C RY. The
local deformation of distances near a point « is controlled by the derivative f’(z), which is a linear
operator such that

fla+0x) = f(z) + f'(x) 0%
up to first order in ||0z||. It is reasonable to expect, by integration, that a upper bund on || f'(x)||
would give an upper bound for the Lipschitz constant of f. This is true when the domain is convex.

Theorem 6.4 (mean value inequality). Let f : X — RY be a continuously differentiable map
defined in a conver subset X C RN . If | f'(z)|| < X for any x € X then

1f () = f@)[l < Mlz -y
forallx,y € X.

Proof. The segment between two points x,y € X, parametrized as z; = (1—t)z+ty with t € [0, 1],
belongs to X by convexity. Consider the path ¢ — f(x:) between 2’ = f(x) and 3y’ = f(y). Define
the real function of a real variable t — ¢(t) := (f(x¢),y" — 2’), which is continuously differentiable
by the chain rule. By the mean value theorem of calculus (on the line), there exists a time s € (0, 1)
such that ¢(1) — p(0) = ¢'(s). The derivative of ¢ is

(f(@e),y —a') = (f'(z)(y — 2),y —2)
By the Schwarz inequality and the definition of operator norm, its absolute value is bounded by

(@)@ —y),y =2 < |f (@)@ =yl Iy =]l
< @)z —ylllly" — =

, we finally get

1£(y) = f@) < 1" (@) |z = yll
The result follows. O

d
! —_

Since (1) = (0)] = [ly" — '|]?

In particular, if X C RY is convex and the operator norm of the derivative of the smooth
transformation f : X — X is bounded by ||f(z)]] < A < 1 at all points € X, then f is a
contraction.

Show that a contraction of a compact metric space X cannot be invertible, provided the
space contains more than one point (compare the diameters X and f (X)).

Show that the conclusion of the mean value theorem 6.4 is false if X is not convex (for
example, if it is disconnected).

Give non-trivial (i.e. non constant) examples of contractions of

[0,1] [0,1] x [0, 1] B, (z) = {y € RN t.q. dist (z,y) < r} St={z€Ctq. |z|=1}

Contraction principle. The dynamics of a contraction is described by the following funda-
mental theorem, which we state with all details.

Theorem 6.5 (contraction principle/Banach fixed point theorem).  All trajectories of a contrac-
tion f: X — X of a metric space (X,dist) are fundamental sequences, and the distance between
any two trajectories tends to zero exponentially fast. If X is complete, then f admits one and only
one fized point p. The trajectory of any initial point x € X converges exponentially fast to the fixed
point, i.e.

dist(f"(x),p) < C A",

where C = dist(x,p) > 0 is a positive constant and 0 < \ < 1 is the Lipschitz constant of f.
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Proof. Let f: X — X be a A-contraction. Let ¢ € X be any initial point, and let (z,,) be its
trajectory, defined by the recursion x,11 = f(x,). Iterating (6.1), one sees that

dist (zg41, ) < dist(zq, o) - \F

Using k times the triangular inequality and then the convergence of the geometric series of ratio
A< 1, we get

k-1 k-1
dist(ppr, Tn) < Zdist(xn+j+17xn+j) < dist(xy, zo) - Z par
j=0 =0

n

< dist(xy, ) - A" - Z M < 1

. Y - dist(z1, o).
7=0

This implies that (z,,) is fundamental, since we can make A" -dist(z1,z9)/ (1 — A) smaller that any
€ > 0 choosing a sufficiently large n = n (g). Continuity of f implies that the limit p = lim, o0 @,
which exists if X is complete, is a fixed point of f. Uniqueness is clear, for if p and p’ were two
different fixed points, then by (6.1) their distance 6 = dist(p,p’) > 0 would be < A\, which is
impossible if A < 1. Again by (6.1) and finite induction, the distance between any two trajectories
xn = fM(x0) and ], = f™(xf) decay as dist(xy,2]) < A™ - dist(zo, yo). In particular, the distance
between an arbitrary trajectory and the fixed point p is bounded by dist(z,,p) < A™ - dist(xq, p),
proving our last assertion with C' = dist(zg, p). O

Show that a transformation f: X — X of a complete metric space (X, d) such that
dist(f(z), f(2')) < dist(x, ")

for all distinct x, 2’ € X may fail to have fixed points (think at a decreasing sequence forming a
divergent series).

Let a > 0 and zo > 0. Show that the sequence (x,,) defined by

1 a
$n+1=§ 3Cn+;

converges to y/a. This is Babylonians-Heron method to approximate square roots (the sequence is
a trajectory of the transformation f(x) = (x4 a/z) /2, which is a contraction once restricted to
the closed interval [\/a,o0) = f(Ry) ...)

Stability of contractions. A contraction f : X — X of a complete metric space X may be
thought as a “machine” that computes the fixed point p = lim,,_,, f™ (z) starting with any initial
guess z € X.

We pose the question whether contractions are stable, in some sense to be specified. We want
to decide whether a small perturbation of a contraction f, say g : X — X, produces a fixed
point p’ near to p. The point is to decide what “small” means. If we only require something
like distoo (f, g) := sup,cx dist(f(x),g(y)) < d, the transformation g needs not be a contraction,
no matter haw small § is chosen (to see this, try to visualize a d-neighbourhood of the graph of
a contraction of an interval, and fit there the graph of a transformation g with arbitrarily large
derivative). It is clear that we also needs some control on the derivatives. One possibility is to
assume that X has a linear and differentiable structure, e.g. is a subset of some Euclidean X € RY,
and look for f and g smooth. The condition

If = gller := sup [If(x) — g(x)| + sup_[f'(z) = g'(x)]| <
reX zeX

clearly implies that, if f is a A-contratraction and § < 1 — A, then also g is a contraction and has
Lipschitz constant < A + §. Simpler, however, is to formulate a stability result inside the class of
contractions.
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Theorem 6.6. Let f: X — X be a A-contraction of the complete metric space (X, dist), and let
p € X be its fizred point. For every e > 0 there exists some 0 < § <1 — X such that if g : X - X
is a (A + §)-contraction at distance diste(f,g) < 3§ from f, and if p’ is the fized point of g, then

dist(p,p) < ¢

Proof. Tf p’ is the fixed point of g, we know that ¢g" (p) — p’ when n — oo. By triangle inequality
we see that

o0 oo
dist (p,p') < > dist (g™ (p),g" (p) < dist (g (p),p)- > _(A+0)"
n=0 n=0
< 40 i()\ +0)" = 0
- 11— (\+9)
n=0
and this quantity is < € provided that ¢ is sufficiently small. O
Equivalence classes of linear contractions. Linear contraction of the real line, transforma-

tions f(x) = Az with |A| < 1, also provide a simple example of how to use the dynamics to built a
conjugation between two transformations.

Theorem 6.7. Let f:x+— ax and g : x — Bx be two linear non-trivial contractions of R. They
are topologically conjugated iff o and B share the same sign.

Proof. Assume first that 0 < o < 1 and 0 < 8 < 1. The origin is the common fixed point. The
set A= [—1,—a)U(a,1] is a “fundamental domain” for the action of f on the punctured real line
R* := R\ {0}, in the sense that for any x € R\ {0} there exists a unique time n (z) € Z such that
7@ (z) € A. Similarly, a findamental domain for the action of g on R* is B = [~1,—8) U (8, 1].
Let H : A — B be any homeomorphism such that H(—1) = —1, H(—a) = —f8, H(a) = 3 and
H(1) =1 (for example, an affine homeomorphism). It is easy to check that the recipe

0 sex=0
h(z) = { g @ H(f)(x) ifx#0

defines a homeomorphism h : R — R. Since n (z) = n (f (z)) + 1 (why?), we see that

(hof)(@) = gV (H(FIDf(@))) =g~ (H (O (f ()
= g(97@ (H(FDw@))) = (goh) (@)

and therefore h is a topological conjugation between f and g.

The case when —1 < a, 8 < 0 is analogous. On the other side, it is not difficult to see that
the contractions z — ax and x — —az, with a # 0, having opposed orientations, cannot be
conjugated. O

The result is that non-trivial linear contractions of the real line fit into two classes of topo-
logical conjugated transformations, those that preserve the orientation and those that invert the
orientation.

It is important to observe that a conugation h between two contractions f : x — az and
g : * — Bz cannot be differentiable, unless o« = S. Indeed, if f = h™'ogo h and if h is
differentiable, then the chain rule implies that f'(0) = ¢’ (0), hence that oo = §.

Show that the linear conractions z — ax and = — —ax, with a # 0, cannot be conjugated
(observe that a conjugation is a homemorphism of the line, in particular monotone).
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6.3 Linear maps

Linear systems are the only dynamical systems we can explicitely solve. They serve as models of
the local behavior of generic systems near a fixed point.

Linear maps. A linear transformation of the Euclidean vector space RV (which we may think
equipped with the standard Eucidean structure) is an endomorphism f : RY — RY defined, in
the canonial basis, by a square matrix A = (a;;) € Matyxn(R), according to

f(z) = Az

Here, we think at 2 = (21, 22,...,2x)" as a column vector, and therefore at Az as the usual raws-
by-columns product between matrices. Thus, the map is defined, in coordinates, by x; — Zj ai;T;.

A linear change of coordinates h : © — y = Uz, with U € GLx(R) an invertible square matrix,
defines a linear (and therefore topological) conjugation between f and the linear transformation
g : y — By, defined by the matrix B = UAU!. Thus, we are free to change coordinates.

Observe that the origin is a fixed point of f, i.e. f(0) = 0, and it is the unique fixed point iff
the matrix A — I is invertible, i.e. if 1 is not an eigenvalue of A.

If = is an eigenvector of A with eigenvalue A, i.e. a non-trivial solution of the homogeneous
equation Az = Az, then iterations are simple. Indeed, f™(z) = A"z, and therefore the asymptotic
behaviour of the trajectory of the eigenvector x depends on the absolute value of its eigenvalue.
Trajectories converge to the origin when |A\| < 1, and diverge when |A] > 1. In the exceptional
cases with A = £1, we have a fixed point or a periodic point with period 2.

In order to understand the possible global pictures, we start with the smallest non-trivial case.

Linear maps in the plane. = The simplest non-trivial case is that of a linear map endomorphism
of the plane R2, defined, in the canonical basis, by a two-by-two real square matrix A. The
qualitative behaviour of trajectories depends on the eigenvalues of A, and on their geometric
multiplicity. Remember that the eigenvalues Ay are the roots of the characteristic polynomial

det(A — A) = A% — (trA)\ +det A,

which is a degree two polynomial with real coefficients, and therefore they are a couple of real
numbers A+ = a=£ 3, possibly overlapping, or a couple of complex conjugate numbers Ay = a+iw.

If the matrix A is diagonalizable (as a real matrix in a real vector space), i.e. admits two
eigenvalues Ay (possibly equal) and two linearly independent eigenvectors vy, then the system is
linearly conjugated to a diagonal system

f(xay) = (>\+$7)\,y) :

If both eigenvalues have absolute values |A+| < 1, then f is a contraction and the orbit of any
point converges (exponentially fast) to f™(z,y) — 0. Trajectories move along curves

y=Ca”,

for some constant C' and some exponent o = log |A_|/log|A;| > 0. The basin of attraction of the
origin is the whole plane, and the origin, which is an attractng fixed point, is called a stable node,
or sink.

If both eigenvalues have absolute values |[A+| > 1, then the inverse f~! is a contraction, all
backward trajectories converge to f ~"(z,y) — 0 as n — oo, and all forward tarjectories of points
different from the origin diverge, i.e. |f™(z,y)] — oo as n — oo. The basin of attraction of the
origin is {0} itself, and the origin is called a unstable node, or source.

If one of eigenvalue has |[A_| < 1 and the other |A;| > 1, what happens is the following:
trajectories starting at the “stable line” E~ = Ruv_ = {(0,y)}, the eigenspace of the eigenvalue
A_, converge to the origin, while trajectories starting at the “unstable line” ET = Rv, ~ {(z,0)},
the eigenspace of the eigenvalue A, diverge. A generic trajectory, starting at a point which does
not belong to E-UE™T, i.e. (z,y) with both z # 0 # y, also diverge (since the y coordinate decays
but the = coordinate explodes), moving along curves

y:cl’ﬁ,
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for some constant C' and some exponent S = log|A_|/log|A;+| < 0. The origin is then called a
saddle, and the linear map hyperbolic.

The next case is when A has only one eigenvalue A\, with geometric multiplicity one (i.e. ad-
mits just a one-dimensional family of eigenvectors). It can be shown that the system is linearly
conjugated with

flz,y) = Az +y,A\y).

(any eigenvector is proportional to (1,0)). One easily check that iterations of this map are
f(a,y) = A" O+ ny, Ay) .

Therefore, if |A\| < 1 all trajectories converge to the origin, which is then called a degenerate stable
node. If |A| > 1, then all trajectories of points different from the origin diverge. The origin is then
called degenerate source. It is clear, however, that this is not a generic situation. A small (generic)
perturbation of the matrix leads to one of the previous cases, or to the following case.

Finally, it may happen that the characteristic polynomial has no real roots, but a couple of
complex conjugated roots A\r = pe®® for some p = |[Ay| > 0 and @ ¢ 7Z. This means that the
complexification of A, the linear operator A® : C2 — C? defined in the canonical basis by the same
matrix as A, admits two linearly independent eigenvectors v, corresponding to the two complex
eigenvalues A\y. Moreover, since A = A, we may take v_ = Ty. But then, in the basis of R? C C?
defined by e; = (vy +v_)/2 and ey = (vy — v_)/2i, the map f : R? — R? is induced/defined by

the matrix
B_ cosf —sinfd
P\ sin® cosh ’

This means that f is a (counter-clockwise) rotation by an angle 6 followed by a homothety/scaling
with ratio p. Iterations of B are simply

(S )

To understand trajectories, it is easier to identify the plane with the complex line R? ~ C, and use
polar coordinates (z,y) ~ x +iy = re . Then f"(re'¥) = rp™e’#t79) and therefore trajectories
move along logarithmic spirals

r=_Ce %,

for some constant C' and some exponent v = (log p)/60, which may be positive or negative, or
along circles r = C, if it happens that p = 1. In particular, if [A1| = p < 1, then all trajectories
converge to the origin f™(x,y) — 0 as n — oo, which is then called a stable focus. If |AL| = p > 1,
then the trajectories of all points different from the origin diverge, and the origin is then called an
unstable focus.

Describe what happens in the exceptional situation when f(x,y) = (z + y,y), i.e. the only
eigenvalue is 1 and it has geometric multiplicity one.

General linear maps, Jordan normal form. Let f(x) = Az be a linear system defined by
a real m x n matrix A, and consider its complexification, i.e. the linear operator A : CN — CV,
acting on CV = RY @ iRY according to A(x + iy) := Az + iAy. According to the Jordan normal
form theorem, the complexified linear space is a direct sum CV = P E), of generalized eigenspaces,
or root spaces, Ey, which are invariant under A and where the action of A is

M+ N

where A is the eigenvalue, and N is a nilpotent operator. More precisely, the matrix which repre-
sents the restriction of A on Ey € C¥ is a Jordan block

Al
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(empty entries are all zero). Moreover, generalized eigenspaces with non-real eigenvalues come in
pairs of generalized eigenspaces I and Ey, whose vectors are related by a complex conjugation.
As in the two-dimensional situation, one can then contruct an invariant subspace FE A C RY where
the acion of A is given by the Jordan block

pRo I
pRy I

pRg 1
pRy

_ cosf —sinf \ [ o —f (10
pRe_p(sin@ cost9>_(ﬂ a) and I_(O 1)’

and A\ = a + i = pe'?.

The conclusion if that the phase space RY of the real linear system f(x) = Az splits as a direct
sum of invariant subspaces, E or E, 5, where A acts as (6.2) or as (6.3), respectively.

It is clear that the asymptotic behavior of iterations of A on each root space depends on the
absolute value |A| of the corresponding eigenvalue. Indeed, one can write the total space as a direct
sum of three invariant subspaces

where

RY=FE " @E°@E"
where the stable space E~ is the direct sum of those root spaces with |A| < 1, the unstable space
E7T is the direct sum of those root spaces with |[A| > 1, and finally the neutral space E° is the
direct sum of those root spaces with |A| = 1.

One can then show that the restriction of f to E~ is eventually contracting (i.e. some power is
contracting), and therefore f™(z) — 0 as n — oo if x € E~. This happens because the exponential
contraction dominates the nilpotent part of each Jordan block for sufficienly large n, and therefore
|A™v|| < Cp™||v|| for some constants C' and p < 1 and every v € E~. Similarly, one shows that
the inverse of the restriction of f to E™ is eventually contracting.

A linear map is called hyperbolic if all the eigenvalues have || # 1, i.e. if the spectrum of the
complexification is disjoint from the unit circle of the complex plane. This means that the phase
space splits as a direct sum

RV =E-@E"
of a stable and an unstable subspace. If an hyperbolic map has eigenvaules with absolute values
both |A| < 1 and |A| > 1, then the origin is called a saddle.

6.4 Local analysis: attracting and repelling fixed points

Differentiability of a transformation and the contraction principle helps to understand the trajec-
tories of points which are near to the fixed or periodic points.

Attracting and repelling fixed points. Let f : X — X be a transformation of class C!
defined in some open subset X C RY, and let p € X be a fixed point of f.

We say that the fixed point p is attracting if its basin of attraction W#(p) is a neighbourhood
of p, i.e. if p its admits a neighbourhood B such that f" (x) — p for all x € B. The following
criterium is a simple consequence of the contraction principle.

Theorem 6.8. If || f'(p)|| <1, then p is attracting.

Proof. By continuity of f/, there exist A < 1 and a ball B = B.(p) around p such that |f/'(z)| < A
for all x € B. By the mean value theorem, i.e. by theorem 6.4, f (E) C B, since if dist (z,p) < ¢
then

dist (f(z),p) < A-dist (z,p) < e

Moreover, the mean value theorem also implies that dist (f (), f (z)) < A-dist (z,2”) if z,2" € B.
Thus, f|z : B = B is a contraction, and the contraction principle says that trajectories of all

points « € B converge exponentially to p. O
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We say the fixed point p is repelling if it admits a neighbourhood B such that the trajectory of
any x € B, different from p, leaves B in finite time, i.e. f™(z) ¢ B for some n > 1. The following
criterium use the order of the real line.

Theorem 6.9. Let f : X = X be a transformation of class C' defined in some open interval
X CR.If|f'(p)| > 1, then p is repelling.

Proof. By continuity of f’, there exist A > 1 and an interval B = [p — ¢, p + €] around p such that
|f'(z)| > A for all x € B. Also observe that f is strictly increasing or decreasing, depending on the
sign of f’(p), and therefore sends bijectively intervals onto intervals. take a point x € B different
from p, and suppose that f* (x) € B for all times 0 < k < n. The chain rule implies that the
derivative of f™ at points ¢ between p and x grow exponentially, since

(Y @ =1 (@) [ (@)1 (@] > A
The mean value theorem implies that n cannot be arbitrarily large, since
dist (p, f™ (x)) > A™ - dist (p, z) and dist (p, /" (x)) < e

are not compatible for large n. Thus, there exists a time n > 1 duch that f*(z) ¢ B. O

It must be said that this result is local, it does not say anything about the basin of attraction of
p. Also, the condition ||f'(p)|| > 1 is not sufficient to establish a similar result in higher dimension
(there may be directions where f dilates distances, and directions where it contracts distances ... )

Show by examples that the basin of attraction of a repelling fixed point p can be larger than

{r}.

Find a good definition of attractiong peiodic orbit (observe that the derivative of f™ is
constant along a periodic orbit of period n, then consider iterations of f™ ...)

Consider the family of quadratic maps
r = Ax?

depending on the parameter \. Find the basin of attraction of the fixed point p = 0, and describe
the speed of convergence of convergent trajectories.

If p is a fixed point of f : R — R such that f’(p) = 1, then everything can happen! The basin
of attraction of p can be a neighbourhood of p, or just {z}, or may contain an half-neighbourhood
like [p,pte) ...

Consider the examples
e e x>+ a2’

and find others.

The quadratic family. The quadratic family is the family of transformations of the unit
interval fy :[0,1] — [0, 1], defined according to

alz) = Az (1l —x)

Here the parameter A takes values in the interval [0,4]. It is also called logistic (from the French
“logement” ), since it is a model of population growth in a limited environment,  being the relative
population, the quotient of the actual population over the maximal allowed population.

Fixed points are 0, which is attracting for 0 < A < 1, and p) = %, which appears when
A > 1 (remember that our phase space is only the unit interval and not the whole real line) and is

attracting when 1 < A < 3.
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If A € [0,1) then all trajectories converge to 0. Indeed, trajectories are bounded and decreasing
sequences, and 0 is the unique fixed point.

If A € (1,3] then all trajectories converge to py. This is not so obvious.

What is really interesting is to observe what happens for increasing values of A > 3. You may
take a look at my applet in http://w3.math.uminho.pt/~scosentino/salbestiario.html.

10 x(0)=0.1

® x(6)=0.889 ~ o
08 AN
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-0.2 00 0z 0.4 06 0.a 10 12

Cobweb plot of the logistic map, for A\ ~ 3.56.

Convergence for Newton method. Let F' € Rz] be a polynomial with real coefficients.
Newton method to find the roots of F, i.e. to solve the equation F(x) = 0, consists in choosing a
first approximation xg, and then iterate

Tn+l = Tp — F/(LL' ) .

This means that we try to refine our bet x,, using the linear approximation (first order Taylor)
F(z) ~ F(x,) + F/(xn) (7 —zn)

Clearly, we may iterate provided the derivative stays away from zero in a neighbourhood of the
root we want to approximate.
It is clear that if the sequence (x,) converges to some p, and if F’(p) # 0, then the limit
p =lim, o @, is a root of the polynomial F. Conversely, if p is a root of F, and if F'(p) # 0 (so
that it is also different from zero in a neighbourhood of p), then p is a fixed point of the map

x> flx) =z —

The derivative of f at p is

(F'(p))* = F(p) F"(p)
(F'(p))?

Therefore, p is an attracting fixed point of f: the trajectory of any initial guess x( sufficiently close
to p converges to p.

Indeed, since the derivative is f'(p) = 0, any root of F' is a super-attracting fixed point of f,
and the convergence is much better than exponential.

f'p)=1~- =0

Theorem 6.10. Let p be a non-critical root of the polynomial F € Rx], i.e. a root where F'(p) #
0. Then Newton’s iterations starting from any xo sufficiently near the root p converge to this root,
and the convergence is “quadratic”; i.e. the error e, = |z, — p| decreases as

En+1 < Kfi

for some K > 0.


http://w3.math.uminho.pt/~scosentino/salbestiario.html
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Proof. We may assume, without loss of generality, that the root we are looking for is the origin,
so that F(0) = 0. Now, suppose we are at x,, after n iterations. Taylor’s formula with Lagrange
estimate of the error around x,, says that

1
F@):F@H+JWWM-@fxﬁ+§F%w~@fx@2
for some y between x and z,,. Taking x = 0 (the root!) and dividing by F'(z,) we get

0= F(0) = Flan) ~ F'(wn) — on + 5F"(4) - 22

and therefore
Flz,) 1 F'(y) »

T F (e, 2F(w,) "
But the Lh.s. is x,41, so that
LF"(y) o
Tp4+1 = §F’(zn) Xy,
Since F’(0) # 0 (and polynomials have continuous derivatives), there is an interval I =] — ¢, ¢|

around the root 0 where M = sup,; |F" ()| < oo and 6 = infyer [F'(x)| > 0. Let K = M/20.
There follows that the distance ¢, = |z, — 0| between the n-th iterate and the root satisfies the
iterative bound

lent1] < K- |5n|2

Check that Newton’s method applied to the quadratic polynomial 22 — a, with a > 0,
corresponds to Heron’s algorithm.

Estimate v/17.
Write down Newton’s repice to solve 2z —a = 0, with @ > 0 and n > 2.

Use Newton’s method to estimate the roots of

224142 P | P 4+z241 22-922-5

Linearization in the complex plane. Let f : C — C be a rational function defined in the
Riemann sphere C = C U {oo}. Any fixed point p has its basin of attraction B,. Looking for fast
methods to compute the iterates, in 1871 E. Schreeder had the idea to look for local conformal
conjugations of f with simpler rational functions, like affine functions g : z — Az. The method
amount to solve the functional equation

hofls, =goh,

where h : B, —+ B is an holomorphic function. E. Schreeder, G. Kecenig and J.H. Poincaré solved
the problem with |A| # 1, and then Carl S. Siegel solved the case |\| = 1 around 1940.

Theorem 6.11 (Koenigs). Let zg be a fized point of f with multiplier f'(zo) = A such that |\| #
0,1. Then there exists a conformal map ¢, unique up to a non-zero factor, from a neighbourhood
of zo onto a neighbourhood of 0 such that ¢po f = X-¢.
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Proof. We assume that z is attracting, i.e. |A| < 1, since the repelling case follows considering
the local inverse of f. Also, after conjugation, we can assume that zy = 0, hence the map has the
form

f(z) =Xz +az® +....

Now define ¢, (z) = f™(z)/A". There exists a 6 > 0 and a constant ¢ < |A\| < 1 such that, for
2l <,
Pnt1(2) = @ul2)] < K- (/A"

for some k > 0. Hence the sequence of holomorphic functions ¢,, converges uniformly in a small
ball around 0. The functional equation ¢ o f = X - ¢ follows immediatly from its definition.

Comparing coefficients it is easy to see that any conjugation of z — Az to itself is a constant

multiple of the identity, as long as |\| # 0, 1. Uniqueness follows. O

Theorem 6.12 (Bottcher). Let zo be a superattracting fized point of f, where
f(z) = 20+ ap(z—20)" + ...

with ap # 0 and p > 2. Then there exists a conformal map ¢, unique up to multiplication by a
(p — 1)-root of unity, from a neighbourhood of zy onto a neighbourhood of 0 such that ¢ o f = ¢P.

Proof. (scketch) We can assume that zp = 0 and that a, = 1. As in Koenigs proof, we look for the
conjugation as a limit af the functions

n

$n(2) = f"(2)" .

It can be shown that the ¢, converge uniformly in some sufficiently small ball around 0, and the
functional equation follows from the definition. Uniqueness, up to a (p — 1)-root of unity, can be
checked comparing power series. O

6.5 Transversality and bifurcations

Transversality. Let f: I — R be a transformation of class C! defined in some interval I C R,
and let p be a fixed point of f. If f/(p) # 1, then this fixed point is “isolated”, i.e. it is the unique
fixed point of f in some neighbourhood of p. Indeed, a fixed point is a solution of

F(x)=f(z)—2=0

Now, if f'(p) # 1 then F’ (p) # 0. The inverse function theorem then says that F' is invertible in a
neighbourhood B of p, and this implies that p is the unique zero of F' in B, so that p is the unique
fixed point of f in B.

Fixed points satisfying the condition f’(p) # 1 are called transversal, because the tangent to
the graph of f at p is transversal to the (tangent to the) graph of the identity function.

Persistence. The condition f’'(p) # 1 is an open condition, and this suggests that it may stable
under small perturbations of f.

Theorem 6.13. Let f : I — R be a transformation of class C', and p be a transversal fized point
of f. Then all transformations g : I — R sufficiently C*-near to f have one, and only one, fived
point in some neigbourhood of p, which is also transversal.

Proof. Let g = f — h be a perturbation of f, with ||h[|o1 = ||h|lec + [|A]lcc < 6. A fixed point of g
is a solution of g (z) —z =0, i.e. of
F(x) = h(z)

if we define F (z) = f(z) —x. We know that F' in some neighbourhood B’ of p, hence a fixed
point of g inside B is a solution of z = (F~! o h) (z), which means a fixed point of F~* o h. The
strategy, now, it to show that F~! o h is a contraction in some neighbourhood of p. If the closed
neighborhhod B = B, (p) is sufficiently small, then the inverse of F' has bounded derivative, say
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‘(F’l)/ (x)’ < M in F (B). If ¢ is sufficiently small, then the derivative ’(F*1 o h)' (:17)‘ <M-§

is uniformly < X\ := MJ < 1 in B, and therefore F~! o h has good chances to be a contraction.
We must show that the image (Ffl o h) (B) is contained in B. Now, given x € B, triangular
inequality, the mean value theorem and the chain rule, imply o

d((F~"oh)(z),p) d(F~ " (h(z),F 'h(p)) +d(F " (h(p)),p)
d(F~" (h(z)),F'h(p)) +d(F~ " (h(p),F~'(0))
M-§-r+M-§

VAN VAR VAN

(where we used the fact that p is a fixed point of f) and this quantity is < r whenever ¢ is
sufficiently small. The contraction principle then says that a fixed point p’ € B of g exists and is
unique. The derivative of g at this point is d-near the derivative of f in p, and therefore this fixed
point is also transversal. O

Let f : R = R be a transformation of class C', and let p a periodic point of period n such
that (f™)" (p) # 1. Show that all transformations sufficiently C*-near to f have a periodic point of
period n near p. (consider the iterate f™ and apply the above theorem)

Let f:V — RY be a transformation of class C! defined in some open set V' C RY, and let p
be a fixed point of f. Transversality of p now means that the derivative (Jacobian) operator f'(p)
does not have 1 has an eigenvalue. State and prove the analogous of theorem 6.13 in this case.

Bifurcations. Non-transversal fixed points need not be persistent, and may disappear or
change thei nature under generic perturbations. This phenomenon is called bifurcation. The idea
of bifurcation theory is to treat families f) of transformations, defined in some neigbourhood of
a fixed or periodic point of f = fy, and describe possible changes in the dynamics when the
parameter A varies.

Consider, for example, the family

fr(z) =z +x2 =\

defined in the real line. The origin is a non-transversal fixed point of fo, where f5(0) =1. If A # 0
is small, then fy has two fixed points +v/), one repelling and the other attracting, if A > 0, or
none if A < 0.

Graphs of f(z) = x + 22 — )\, for A = —0.2, 0 and 0.2 (different kinds of blue), compared with the diagonal (red).

The family
h@)=z+23+ M\

shows a different behavior. The problem is to decide which phenomena are “generic”, and possibly
“stable”, in some sense to be specified.
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If we admit the existence of a sufficent number of derivatives, an arbitrary family of transfor-
mations with a non-transversal fixed point at the origin when A = 0 is

(x) = ax+ba+eoa’+ ..
= (@A+ad"V+. )+ (L+VA+0"N+ )+ (c+dA+IN+ )22 +

The generic case is when ¢ # 0 (i.e. fo = 2 + cx? + ...) and a generic perturbation has a’ # 0
(i.e. the constant term of f) is different from zero when X # 0). It is then not difficult to convince
oneself that this family behaves qualitatively like the simpler family fy(z) = x + 22 — X above.
A small perturbation of fy may destroy the fixed point, in one direction, or create two new fixed
points, in the other direction.

State and prove the above result (observe that looking for roots of f) () = x, as function of
A, amount to to define look for functions A — x (A) which satisfy G (A\,z) = fi (z) —x = 0, and
this problem is treated by the implicit function theorem).

Period-doubling and Feigenbaum universality. Also interesting is the case of a family inter-
val transformations fy such that fj has a fixed point at the origin with multiplies f}(0) = —1. Such
a fixed point is transversal, hence persistent. Meanwhile, (—1)2 = 1, and therefore the derivative
of f2 at 0 is ( fg)/ (0) = 1. This says that the origin is not transversal as a fixed point of the second
iterate f2. A small perturbation may produce periodic points of period 2 in a neighbourhood of
the persistent fixed point 0.

This kind of bifurcation is called “period-doubling”. An example is that of the family

(@)= —z+22+ Az

Another example occurs in the quadratic family f(z) = Az(1 — z), when we pass the value A = 3
of the parameter. You may check this with my applet http://w3.math.uminho.pt/~scosentino/
bestiario/logistic.html.

In 1975, doing simulations with a small HP calculator, Mitchell Feigenbaum *° 3! discovered
that certain families of transformations produce a “cascade” of period-doublings. This means that
there is a sequence of values A\; < Ay < ... < A, < Apy1... of the parameter such that, when passing
through A, 41 orbits of period 2”1 are created in a neighbourhood of orbits of period 2", created
by the previous value \,,. This phenomenon is easily observed, and indeed seems to be “universal”:
it happens for almost all families, provided we find the region where it takes place. The following
picture is obtained if we plot the parameter A, within some interval, versus a typical orbit of fy,

say {Z100, %101, - - ., %200} starting from a random initial point zy. Here is what you get.
1.0 ww
0.8 % i
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Bifurcation diagram for the logistic family.

(from https://en.wikipedia.org/wiki/Period-doubling_bifurcation)

30M.J. Feigenbaum, Universality in complex discrete dynamics, Los Alamos Theoretical Division Annual Report
1975-1976, pp. 98-102.

31M.J. Feigenbaum, Quantitative Universality for a Class of Non-Linear Transformations, J. Stat. Phys. 19
(1978), 25-52.


http://w3.math.uminho.pt/~scosentino/bestiario/logistic.html
http://w3.math.uminho.pt/~scosentino/bestiario/logistic.html
https://en.wikipedia.org/wiki/Period-doubling_bifurcation
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Even more mysterious is that, as already observed by Feigenbaum, the limit A\, = lim,, .. Ay,
seems to exist, it is achieved exponencially, i.e. [Aoo — Ay| ~constxd~" where
Ap — A

§= lim 22— 2" ~ 4.669201609102990671853 . . .
n—0o0 >\n+1 —An

seem to be independent from the family! This mystery was explained later, and gave origin to the
modern theory of “renormalization (group)”, explored by both mathematicians (as Oscar Lanford,

Henri Epstein, Dennis Sullivan, Mikhail Lyubich, ...) and physicists (as Leo Kadanoff, Kenneth
Wilson, Giovanni Jona-Lasinio, ... ).
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7 Statistical description of orbits

Together with the topological point of view, a source of informations about dynamical systems
is their statistical description. The idea is to measure the relative size of those points whose orbits
have certain definite properties. This is done looking for invariant probability measures, and the
main result is the Birkhoff-Khinchin ergodic theorem. To state and prove the Birkhoff-Khinchin
ergodic theorem, we need to recall many standard facts and results of integration theory. You can
find most of them in the classical [Ru87] or [Ha74].

7.1 Probability measures

Probability spaces. A measurable space is a pair (X, ), a non-empty set X together with a o-
algebra of subsets £. Recall that a (Boolean) algebra is a nonempty family A of subsets of X which
contains X, which contains the complement of any of its elements, and which is closed under finite
unions and intersections. A o-algebra is an algebra which is also closed under countable unions
and intersections. Given any family C of subsets of X, there exists a minimal o-algebra o (C) which
contains all the elements of C, which is called the o-algebra generated by C.

If (X,7) is a topological space, the Borel o-algebra is o (7), the smallest o-algebra which
contains all open sets.

A measure on the measurable space (X, &) is a o-additive function p : £ — [0, 00] such that
() = 0. Here o-additivity means that, if (S,,) is a countable family of pairwise disjoint elements
of £, then

w (Unsn) = Z 12 (Sn)

The triple (2, &, 1) is said a measure space, or probability space if it happens that u (X) = 1. Given
a probability space, measurable sets A € £ are commonly called ”events”, and the number p (A)
is called ”probability of the event A”. Basic properties of probability measures are the following:
probability measures are monotone, i.e. p(S) < p(7T) it S C T, and o-subadditive, i.e. if (S,) is
a countable family of elements of £ then

w (UnSn) < Z 14 (Sn)

Probability measures are continuous from below and from above, in the following sense: if S,, 1 S
then p(S,) T w(S), and if S, L S then u(S,) J 1 (S). Both continuity properties are equivalent,
and indeed a simple argument shows that they are equivalent to continuity from above at (: if
Sn 4 0 then p(S,) L 0. Moreover, continuity is equivalent to o-additivity if the set function p is
only assumed (finitely) additive.

A subset E C X has zero measure if it is contained in a measurable set S € & with p (S) = 0.
If any set with zero measure belongs to £, then the measure space (X, &, p) is said complete. Any
measure space can be canonically completed, extending the measure to the o-algebra £ made of
& and of subsets of zero measure. A property (like continuity of a function, or convergence of a
sequence of functions) holds u-a.e. (“almost everywhere” with respect to the measure p) if the set
of points of X where it does not hold has zero measure.

Construction of probability measures.  Measures are never ”explicitely” given as functions
on a oc-algebra. A set function p : P(X) — [0,00] is an exterior measure if it is monotone,
o-subadditive, and if p (@) = 0. It happens that, given an exterior measure y, the family of
pu-measurable sets, defined as

& ={FE C X such that u(S) = u(SNE)+ u(SNE) for any S C X}

is a o-algebra, and that p is a complete measure if restricted on £ (the proof is quite long and
delicate, but the only idea it uses is the following: in order to check that E € £ it is indeed sufficient,
by virtue of monotonicity and subadditivity of u, to check that u(S) > p(S N E) 4+ u(S N E°) for
any S C X). A strategy to construct interesting measures on uncountable spaces is: start with an
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exterior measure (it is very easy to produce exterior measures, for example by means of variational
principles) and then check that the o-algebra of measurable sets is sufficiently big for our purpose.

The idea of Carathéodory is the following. A probability measure on an algebra A of subsets
of X is an additive function m : A — [0, 1] such that m () = 0, m (X) = 1, and such that A,, | ()
implies m (A,) | 0. Given a probability measure m on a algebra A , the recipe

w(S) = inf {Z m(A,) with S C U, A4, e 4, € A}

defines an exterior measure on P(X), hence the above construction produces a measure p on the
o-algebra of u-measurable sets, which contains A and so contains o (A). One then checks that
w(A) = m(A) for any A € A, so that p is an “extension” of the measure m. Carathéodory’s
extension theorem is then stated in the following form:

Theorem 7.1 (Carathéodory’s extension theorem). Given a probability measure m on a algebra
A of subsets of X, there exists a unique measure p on o (A) which extends m.

The following corollary of Carathéodory’s theorem is also useful, for example when trying to
prove that some event has a definite probability.

Theorem 7.2 (Approximation theorem). Let (X,&,u) be a probability space, and let A be an
algebra of subsets of X such that o (A) = E. Then, for any A € £ and any € > 0, we can find a
A, € A such that

p(AAA,) <e.

Indeed, one easily sees that the family C = {A € £ s.t. Ve > 0 JA. € Ast. p(AAA) <e}is
a o-algebra. Since A is obviously contained in C, this implies that £ =0 (A) C C C €£.

Lebesgue measure. The collection Z of intervals of the real line is a semi-algebra, i.e. the
intersection of two elements of Z is in Z and the complement of an element of Z is a union of
elements of Z. The function m : Z — [0, 00|, defined as m ([a,b]) = |b — al if a e b are finite, and
oo if the interval is unbounded, is monotone and gives value zero to the empty set. Postulating
additivity, the function m extends to a measure on the algebra A made of disjoint unions of
elements of Z (this is not triviall, the proof uses the Heine-Borel theorem about compact subsets
of the real line). The function u : P(R) — [0, o0], defined as

() =inf {3 m(Cy) with E € UpCy e C, € A}

is then an exterior measure on the real line. The o-algebra £ of u-measurable sets, called Lebesgue
o-algebra, contains the Borel sets, because it contains the intervals. The restriction £ = u|., as
well as p |5(R) , is called Lebesgue measure.

Observe that Lebesgue measure on the real line is not a probability measure, having infi-
nite mass. Nevertheless, one can easily define probability measures on bounded intervals taking
normalized restrictions of Lebesgue measure. For example, take X = [0,1], and & = B(X) =
{X N B with B € B(R)}, the Borel subsets of the interval. The restriction of ¢ to £ is a probabil-
ity measure, called Lebesgue measure on the unit interval.

The very same construction works in RY, starting with the semi-algebra of “rectangles” mea-
sured by the “euclidean volume”, and produces a measure ¢ on B (RN ), also called Lebesgue
measure. Lebesgue measure is the unique measure over the Borel sets of the euclidean space which
is invariant under translations, i.e. ¢(\+ B) = £(B) for any A € R and any Borel set B, and
which is normalized to give measure one to the unit square, i.e. £([0,1]") = 1.

The axiom of choice allows one to “give examples” of subsets wich are not Lebesgue-measurable
(for example, the set made of one point for each orbit of an irrational rotation of the circle).

The following result is useful (see [Mat95] for a proof). Below, B.(z) = {y € RV st. |z —
ylla < €} denotes the open ball of radius € > 0 and center z € R w.r.t. the Euclidean distance
o = yll3 = X0y fes — wil2.
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Theorem 7.3 (Lebesgue density theorem). Let A C RY be a Lebesgue-measurable set. For
{-almost any x € A there exists the limit

ANB
lim (A0 B(@)
e—=0 {(B:(x))
Kolmogorov extension. Let X be a finite space, equipped with the discrete topology, and

let * be the topological product X~ = {z: N — X}, its point indentified with sequences = =
(z1,22 ..., T, ...) with x,, € X. Let C be the collection of cylinders of X, the subsets of the form

Cp = {x eXt st (x1,29 ...,1p) € B}

with B an open subset of X™. Cylinders form a basis of the product topology of ¥T, which
makes 1 a compact metrizable space. In particular, the Borel o-dlgebra of T is B = o (C).
Let fu1, fta, 43, - - - ; b, - . - be probability measures defined on the Borel sets of X, X2,..., X", ...,
respectively. The sequence (u,,) is said consistent if

fnt1 (B x X) = pn (B)

for any n and any Borel subset B C X™. The (most elementary version of) Kolmogorov extension
theorem says that

Theorem 7.4 (Kolmogorov extension theorem). Given a consistent family of probability measures
as above, there exists a unique probability measure u, defined on the Borel o-algebra of ¥T, such
that

p(Cp) = pn (B)
for any cylinder Cp.

Proof. The proof consists in the following two steps. First, observe that cylinders form an algebra,
and use consistency of the u,’s to verify that the formula above does define a function p : C — [0, 1]
on cylinders (i.e. it does not depend on the different ways the same cylinder may be presented)
which is additive and properly normalized. Then, use compactness of X to check that p is con-
tinuous at (), in order to apply Carathéodory theorem. Indeed, let (A,,) be a sequence of cylinders
such that A, | , and assume by contradiction that p(A,) > § > 0 for any n. This implies that
A, # 0 for any n, but, since the A,, are compact, then the Cantor intersection theorem says that
NpA, # (), contrary to the hypothesis. O

Kolmogorov theorem is the key tool in probability theory, since it allows one to construct mea-
sures which describe an infinite sequence of trials starting with some rule which gives information
about the n-th trial given the knowledge of the first n—1. It actually works with much more general
spaces and in a more general setting. Also, one can easily adapt the construction to [,y Xn, the
topological product of a countable family of finite spaces. In some precise sense, this is a universal
model of a dynamical system.

Bernoulli trials. If X = {0, 1}, then ¥* = X" is the state space of infinite Bernoulli trials with
two possible outcomes: success and failure. Let p; : P (X) — [0,1] be a any probability measure,
defined by p; ({1}) = p. Kolmogorov construction can be applied postulating the independence of
different trials, i.e. declaring that the family formed by the cylinders {z, = 1} is an independent
family, and giving measure p to each {x,, = 1}. The resulting probability space (X%, B, ;1) describes
the infinite independent Bernoulli trials. Of course, the very same construction can be made when
X is a finite space with any finite numer z of elements.
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7.2 Transformations and invariant measures

Measurable transformations. A transformation f : X — X of the measurable space (X, &)
is said measurable if f~1(A) € € for any A € £. A measurable transformation f is said an
endomorphism of the mea