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Abstract

The basic reference is the classic book by Hardy & Wright [HW59]. Topics on Diophantine
approximation may be found in Cassel’s tract [Cas57] and Khinchin’s monograph [Kh35]. A
modern reference for the metric theory of Diophantine approximation is Kleinbock’s notes
[Kl10], and a modern reference for ergodic theory in the theory of numbers is [EW10].
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1 More and less elementary topics in number theory

1.1 Square roots.

Heron method . . .

1.2 Irrationals

Irrationals roots. We owe to the Greeks the “discovery” that some numbers, which solve natural
geometric or arithmetic problems, are not fractions. We call them irrationals.

The archetypal observation is the famous

Theorem 1.1 (Pythagoras).
√

2 is irrational.

The proof traditionally ascribed to Pythagoras uses divisibility by 2, hence the dichotomy
between even and odd numbers. More general arguments, using Gauss’ fundamental theorem of
arithmetic (or Euclid’s lemma: if a prime p divides a product ab, then it divides at least one of the
factors, a or b) can be used to prove that any root

n
√
N

is irrational, provided not trivially rational, i.e. provided N is not the n-th power of an integer.
The n-th root of N is a root of the monic polynomial xn −N . Still more general is therefore the
following result.

Theorem 1.2 (Gauss, 1801). The roots of a monic polynomial

xn + an−1x
n−1 + · · ·+ a0

with integer coefficients a0, . . . , an−1 are either integer or irrational.

Proof. Assume that the polynomial f(x) = xn + an−1x
n−1 + · · · + a0 admits a rational root,

namely that f(p/q) = 0, where p and q are relatively prime integers with q 6= 0. Then

pn + an−1p
n−1q + · · ·+ a0q

n = 0 .

There follows that q divides pn (if at least one of the ak’s is not zero, for otherwise the result is
trivial). Consequently, any prime factor of q divides pn, and therefore p itself by Euclid’s lemma.
Since (p, q) = 1, this implies that q = 1, hence that the root p/q is actually an integer.

Other famous irrationals. Analysis (and geometry) provides further examples of irrational
numbers, but the proofs are not always so easy. For example, is quite clear that numbers like

log2 3

are irrationals, but it took much effort to prove

Theorem 1.3 (Euler, 1737). e is irrational.

Theorem 1.4 (Lambert, 1761). π is irrational.

The original proofs, by Euler and Lambert, used continued fractions, and it would be interesting
to look at them. Simpler analytic proofs were then discovered.
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Fourier’ s proof. A simple proof of the irrationality of e is due to Fourier (1815), and uses the
(power) series defining the exponential:

e :=

∞∑
n=0

1

n!
.

It goes as follows. Assume that e = p/q for some positive integers p and q, with q ≥ 1, and
consider any integer m ≥ q. Then the product e · m! is an integer, and, since m!/n! is also an
integer for all 0 ≤ n ≤ m, so is the sum m! ·

∑m
n=0 1/n! , and therefore the difference

x := m! · e−m! ·
m∑
n=0

1

n!
=

∞∑
n=m+1

m!

n!
.

It is clear that x > 0. On the other side, we may estimate from above the series as

x =
1

m+ 1
+

1

(m+ 1)(m+ 2)
+

1

(m+ 1)(m+ 2)(m+ 3)
+ . . .

<
1

m+ 1
+

1

(m+ 1)2
+

1

(m+ 1)3
+ · · · = 1

m

Since this holds for all m ≥ q ≥ 1, this shows that 0 < x < 1, a contadiction.

Niven’s proof. The proof quoted in [HW59] of the irrationality of π (actually of π2) was
discovered by Niven [Ni47].

The first ingredient is the remarkable function

f(x) :=
1

n!
xn(1− x)n =

1

n!

n∑
k=0

Cnk x
n+k ,

where the coefficients Cnk := (−1)k
(
n
k

)
are all integers. It has the following properties. First, its

values for all 0 < x < 1 are small and positive, namely

0 < f(x) <
1

n!
if 0 < x < 1 . (1.1)

Second, f(x), together all its derivatives f (m) := dmf/dxm, take integral values at the points 0
and 1, namely

f (m)(0) ∈ Z and f (m)(1) ∈ Z ∀m ≥ 0 . (1.2)

The first property is obvious, since both factors xn and (1 − x)n are positive and stricly smaller
than 1 for 0 < x < 1. It is also clear that the m-th derivatives f (m)(0) are all zero for m < n and
m > n. For n ≤ m ≤ 2n, or, equivalently, m = n+ k with 0 ≤ k ≤ n, we see that

f (n+k)(0) =
(n+ k)!

n!
Cnk

are also integers. Since f(x) = f(1− x), the same holds at the point x = 1.
The second ingredient is the observation that if ϕ(x) is a sufficiently smooth function, then a

double integration by parts shows that

π

∫ 1

0

ϕ(x) sin(πx) dx = ϕ(0) + ϕ(1)− 1

π

∫ 1

0

ϕ′′(x) sin(πx) dx .

There follows, iterating, that if ϕ(x) is a polynomial of even degree 2n then

π

∫ 1

0

ϕ(x) sin(πx) dx = Φ(0) + Φ(1) , (1.3)

where

Φ(x) := ϕ(x)− 1

π2
ϕ′′(x) +

1

π4
ϕ(4)(x)− · · ·+ (−1)n

π2n
ϕ(2n) (x) .
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Niven’s proof now proceed as follows. Assume that π2 = p/q for some positive integers p and
q. Define

F (x) := qn
(
π2nf(x)− π2n−2 f (2) (x) + · · ·+ (−1)nf (2n)(x)

)
It follows from (1.2) that both F (0) and F (1) are integers, and from (1.3) that

π pn
∫ 1

0

f(x) sin(πx) dx = F (0) + F (1) ,

which is therefore an integer. But, by (1.1), we also have

0 < π pn
∫ 1

0

f(x) sin(πx) dx <
π pn

n!
.

Since tha last quotient is < 1 for sufficiently large n, we get a contradiction.

Modern times. Much more difficult is the following

Theorem 1.5 (Gelfond, 1929). eπ is irrational.

Values of the Riemann zeta function. The Riemann zeta function is defined for <(s) > 1
by the sum of the series

ζ(s) :=

∞∑
n=1

1

ns

and then extended by meromorphic continuation to the whole complex plane C. This function
satisfies a remarkable “functional equation”, ralating its values at s and 1− s, and was shown by
Riemann of fundamental importance in the study of the distribution of prime numbers (due to
Euler’s product formula . . . ).

Its values at even integers were computed by Euler himself, who showed that

ζ(2n) = (−1)n+1B2n
(2π)2n

2 (2n)!

where the Bn’s are the Bernoulli numbers (which are rationals). There follows from Lambert’s
theorem 1.4 that such values are all irrationals. No such formula is known for the values of ζ at
odd integers, and therefore the following result came as a surprise.

Theorem 1.6 (Apéry, 1978). ζ(3) := 1 + 1
8 + 1

27 + 1
64 + . . . is irrational.

Open problems. Here one could list some numbers that everybody think are transcendental,
but such that nobody has been able to prove to be irrational.

1.3 Decimal representation

Decimal representation. When children we learn to represent numbers as decimals, like

3.14159265358979323846264338327950288419716939937510 . . .
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Of course, there is nothing special with the number 10, it is but the number of fingers in our hands.
Any other integer d ≥ 2 would work. Representing a non-negative (for simplicity) real number
x ∈ R+ in base 10 means writing x as the sum of a convergent series

x = “Xm . . . X1X0.x1x2x3 . . . ”

:= Xm · 10m + · · ·+X1 · 10 +X0 +
x1
10

+
x2
102

+
x3
103

+ . . .

=

m∑
n=0

Xn · 10n +

∞∑
n=1

xn · 10−n

where Xn and xn are letters of the “alphabet” A := {0, 1, 2, . . . , 9} and m ≥ 0. Some representa-
tions terminate, i.e. have xn = 0 as long as n is larger than some N , and some others are recurring,
i.e. of the form

A.ab := A.abbb . . .

where A, a and b are given finite words in the alphabet A (and of course a terminating decimal
is a recurring one with recurring word 0, indeed, the decimal representation of a reduced rational
p/q terminates iff the denominator is of the form q = 2α5β for some non-negative integers α and
β, and this of course is an accident due to the special chosen scale 10).

The representation is unique, if we do not admit recurrent 9’s, i.e. if we substitute . . . xk−19
with . . . (xk−1 + 1)0 (where we assume xk−1 6= 9).

The finite sum

[x] := Xm . . . X1X0 =

m∑
n=0

Xn · 10n ∈ Z

is the integral part of x, the largest of those integers n such that n ≤ x. The possibly infinite sum

{ x} := 0.x1x2x3 · · · =
∞∑
n=1

xn · 10−n ∈ [0, 1)

is the fractional part of x, the difference { x} = x− [x]. Consequently, [x] + {x} = x.

Division algorithm. The iterative scheme to obtain the decimal representation of a rational
number is the “division algorithm”. Consider a positive rational x = p/q, with p, q ∈ N and
(p, q) = 1, with decimal representation

p

q
= Xm . . . X1X0.x1x2x3 . . . .

The integer X := Xm . . . X1X0 is “the number of times q is contained in p”, i.e. the unique integer
such that

p = X · q + r0

for some rest r0 which is an integer 0 ≤ r0 < q. Hence, p/q = X + r0/q and 0 ≤ r0/q < 1. Thus,
the point r0/q lies between 0.x1 and 0.x1 + 0.1. Multiplying by 10 and then by q this means that

x1 · q ≤ 10 · r0 < x1 · q + q

or, equivalently, that x1 is the unique integer between 0 and 9 such that

10 · r0 = x1 · q + r1

where, again, the rest r1 is a non-negative integer 0 ≤ r1 < q. And so on. Hence, the digits xn’s
of the decimal expansion of p/q are iteratively determined by

10 · rn−1 = xn · q + rn where 0 ≤ rn < q

Since the possibilities for the rests rn’s are finite, they necessarily recurr. On the other side,
a simple computation using the sum of a geometric series (and the miracle that the sum of a
convergent geometric series 1 + λ+ λ2 + λ3 + . . . with rational “ratio” λ is rational!) shows that
a recurring decimal represents a rational number.

Theorem 1.7. The rational numbers are precisely those real numbers whose representation in base
10 (or any other base d ≥ 2) is (eventually) repeating/recurring.
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Irrationals defined by decimals. Consequently, numbers represented by non-recurring deci-
mals are irrational. This is the case, for example, of

0.101001000100001 · · · = 1

10
+

1

103
+

1

106
+

1

1010
+

1

1015
+ . . .

Other nice example may be found in section IX od [HW59]. Unfortunatly, it is not obvious to
compute the sum of such a series!

The weight of the rationals. Actually, almost all numbers are irrational, in a precise
probabilistic sense, since rationals are countable.

Consider the unit interval I = [0, 1] , and cut out all its rational points. What is left is a
set, I\Q, whose lenght is still equal to the lenght of the unit interval. Indeed, the rationals are
countable, for example those inside I may be ordered according to

0 1 1/2 1/3 2/3 1/4 3/4 1/5 2/5 3/5 4/5 . . .

say I ∩ Q = { r1, r2, r3, . . . } . Given any ε > 0, we may cut out a whole interval Jn =
(rn − `n/2, rn + `n/2) of finite lenght `n = ε/2n around each rn. The measure of what is left of
the unit interval is

lenght (I\ (∪nJn)) ≥ 1−
∞∑
n=1

ε/2n = 1− ε .

Since ε may be arbitrarily small (while positive), the rationals inside the unit interval have
neighborhoods of arbitrarily small lenght! Mathematicians say that

Theorem 1.8. Rationals form a set of Lebesgue measure zero inside the real line.

1.4 Decimals with missing digits

La biblioteca de Babel. According to Jorge Luis Borges (La biblioteca de babel (in El jard́ım
de senderos que se bifurcan), 1941) there exists a huge library with exagonal rooms containing
all possible books written combining 25 characters (letters and punctuation). The library must
therefore contain, together with lot of nonsense, all possible meaningful books, and variations or
translations of them. People spend their time searching between the books of the library, looking
for prediction of the future, biographies of people, and all classes of useful informations.

“. . . Una secta blasfema sugirió que cesaran las buscas y que todos los hombres bara-
jaran letras y śımbolos, hasta construir, mediante un improbable don del azar, esos
libros canónicos. Las autoridades se vieron obligadas a promulgar órdenes severas. La
secta desapareció, pero en mi niñez he visto hombres viejos que largamente se oculta-
ban en las letrinas, con unos discos de metal en un cubilete prohibido, y débilmente
remedaban el divino desorden.. . . ”

Expanding endomorphisms of the circle and Bernoulli shift. Here we restrict to the unit
interval [0, 1), identified with the circle T := R/Z, and consider the transformation f : T → T
given by multipication by 10, namely f(x + Z) := 10 · x + Z. If we write (in decimal notation) a
generic point of the circle as x = 0.x1x2x3 · · · ∈ [0, 1) ≈ T, we see that

f(0.x1x2x3 . . . ) = 0.x2x3x4 . . .

The Lebesgue measure ` on the circle (the σ-additive extension of the lenght of segments) is
clearly invariant under f , in the sense that `(f−1(A)) = `(A) for all measurable A ⊂ T.

More abstractly, we may consider the space Σ+ := AN of infinite words x1x2x2x3 . . . in the
alphabet A = {0, 1, 2, . . . , 9}, and the so called Bernoulli shift σ : Σ+ → Σ+, which consists in
forgetting the first letter:

σ(x1x2x2x3 . . . ) := x2x2x3x4 . . . .
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Σ+ is the space representing the sucessive results of throwing a “dice” with 10 faces. The decimal
representation is a surjective map F : Σ+ → T given by x1x2x3 · · · 7→ 0.x1x2x3, and the pull-back
of Lebesgue measure coincides with the Bernoulli measure µ saying that the repeted experiment
are independent and the appearence of each face of the dice is equiprobable. Multiplication by 10
corresponds to the shift, in the precise mathematical sense that

f ◦ F = F ◦ σ

(i.e. f is a “factor” of σ). Since the set where F fails to be injective has zero measure, the ergodic
properties of f coincide with those of the shift σ. Thus, with respect to the Lebesgue probability
measure, the appearence of the digits in the decimal representation of a random number between
0 and 1 is the same thing that the successive throwing of a honest dice with 10 faces.

Decimals with missing letters. Borges was inspired by the following observation, popularized
by Émile Borel as the “paradoxe des singes savants” [Bo13]:

“Concevons qu’on ait dressé un million de singes à frapper au hasard sur les touches
d’une machine à écrire et que [. . . ] ces singes dactylographes travaillent avec ardeur
dix heures par jour avec un million de machines à écrire de types variés. [. . . ] Au bout
d’un an, [leurs] volumes se trouveraient renfermer la copie exacte des livres de toute
nature et de toutes langues conservés dans les plus riches bibliothèques du monde.”

The proportion/probability of those numbers in [0, 1) which omit one given letter, say 7, in the
first place of their decimal representation is 9/10. Those which omit 7 in the first two places have
probability 81/100 . . . Those which omit 7 in the first N places have probability (9/10)N . Since
these probabilities go to zero as N →∞, there follows that numbers with missing 7 form a set of
zero probability within the unit interval. But the same reasoning can be done for numbers which
omit any given finite word b = b1b2 . . . bn in the alphabet A. In other words, as strange as it may
seems to not mathematically-educated minds, it happens that

Theorem 1.9. Almost all decimals contain all finite words in any number of digits.

The apparent paradox is “solved” once we try to compute the amount of time (i.e. digits)
needed to really see a given “meaningful” sentence within a random infnite book in our alphabet.
For example, the letters in our western alphabets are more or less 25, counting punctuation and
blank space. L’infinito by Giacomo Leopardi,

“Sempre caro mi fu quest’ermo colle,
e questa siepe, che da tanta parte
dell’ultimo orizzonte il guardo esclude.
Ma sedendo e mirando, interminati
spazi di là da quella, e sovrumani
silenzi, e profondissima qüıete
io nel pensier mi fingo, ove per poco
il cor non si spaura. E come il vento
odo stormir tra queste piante, io quello
infinito silenzio a questa voce
vo comparando: e mi sovvien l’eterno,
e le morte stagioni, e la presente
e viva, e il suon di lei. Cos̀ı tra questa
immensità s’annega il pensier mio:
e il naufragar m’è dolce in questo mare.”

is made of more than 550 characters. The probability to produce it typing randomly on a
computer a text of this lenght is of the order of 10−770. Equivalently, if you produce random texts
of lenght 550 characters, you must wait around

10770
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trials to see Leopardi’s poem for the first time. You may want to take a look at physically
meaningful numbers (the total number of fundamental particles in the universe is of the order
of 1080, the age of the universe is 4.32 × 1017 seconds, the Planck time, the shortest conceivable
interval of time, is 5.4×10−44 seconds) to make sense (or not!) of the above huge number. Indeed,
if every baryon in the universe were a monkey with a typewriter, typing one characterer each
Planck time, . . .

Cantor sets. Decimals with missing digits are very important in mathematics, since they
provide the basic ingredient to produce examples of pathological or paradoxical behaviour. The
archetypal example is the middle-third Cantor set

K :=

{ ∞∑
n=1

xn
3n

with xn ∈ {0, 2}

}
⊂ [0, 1] ,

which is the set of those real numbers between 0 and 1 whose representation in base 3 does not
use the letter 1. Another definition is K = [0, 1] \ ∪∞k=1Ik , where the open intervals Ik are defined
recursively as follows: I1 is the central third (1/3, 2/3) of [0, 1], I2 and I3 are the central thirds
of [0, 1] \ I1, namely (1/9, 2/9) and (7/9, 8/9), and so on. A third, and more useful, definition is
K = ∩k≥0Kn, where the compact sets Kn’s are defined as

Kn :=

{ ∞∑
k=1

xk
3k

with x1, x2, ..., xn ∈ {0, 2} and xk ∈ {0, 1, 2} if k > n

}

Observe that ... ⊂ Kn+1 ⊂ Kn ⊂ ... ⊂ K0 = [0, 1], and that any Kn is a disjoint union of 2n

closed intervals of lenght 3−n each. In particular, the Cantor set K is compact end not-empty,
being the intersection of a nested sequence of not-empty compact sets. Also, the lenght of Kn is
clearly (2/3)n, and since these numbers get arbitrarily small as n grows, we see once more that
their intersection K has zero lenght.

Despite of this fact, the Cantor set is not countable, and indeed it has the cardinality of the
whole unit interva! To see this, observe that the map

∞∑
k=1

xk
3k
7→

∞∑
k=1

xk/2

2k

sends K onto [0, 1] (when the xk’s take values 0 or 2, their halves xk/2’s take values 0 or 1, so
that on the right we get the binary representations of all numbers between 0 and 1). Since K is
by definition a subset of the unit interval, the Schröder-Bernstein theorem implies that K and the
interval have indeed the same cardinality.

Equipped with the topology inherited from the Euclidean topology of the unit interval, K is
homeomorphic to the topological product Σ+ = {0, 2}N, the space of the Bernoulli shift in an
alphabet of two letters. The homeomorphism is simply

{0, 2}N 3 x1x2x3 · · · 7→
x1
3

+
x2
32

+
x3
33

+ · · · ∈ K

The map {0, 2}N → {0, 2}N × {0, 2}N defined by

x1x2x3x4 · · · 7→ (x1x3 . . . , x2x4 . . . )

induces an homeomorphism of K onto K×K. By induction, there follows that K is homeomorphic
to any topological product Kn, for n ∈ N. Indeed, one can also show that K is homeomorphic to
the infinite topological product KN.

Other interesting properties of the Cantor set are the following: it is is “perfect” ( i.e. K ′ = K,
so that any point is a limit point), and “totally disconnected” (i.e. it does not contain any not-
empty open interval). The proofs are simple exercises.

Finally, the Cantor set is “self-similar”. Any one of the little intervals forming Kn contains
a whole affine copy of K itself, indeed a copy scaled by a factor 1/3n and translated by the
appropriate distance.
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Normal numbers Much more is true. Lebesgue measure ` is ergodic w.r.t. multiplication
by 10 in the unit circle (or, equivalently, the Bernoulli measure µ is ergodic w.r.t. the shift σ).
Physically, this means that time averages of reasonable observables converge (almost everywhere)
to their respective mean values, as time goes to infinite.

For a = 0, 1, 2, ..., 9, let ϕa be the characteristic function of the interval [a/10, (a+ 1) /10[, i.e.
the observable which is equal to ϕa (x) = 1 if x1 = a and ϕa (x) = 0 otherwise. The time mean of
ϕa is

1

N

N−1∑
n=0

ϕa (fn(0.x1x2x3 . . . )) =
1

N
· card {1 ≤ n ≤ N s.t. xn = a}

that is the number of a’s within the first N digits of the decimal expansion of x. The limit as
N →∞, if it exists, is the “asymptotic frequency” of a’s contained in the expansion of x. Ergodicity
of ` implies that there exists a set Aa ⊂ [0, 1[ of Lebesgue measure one where the limit ϕa (x) exists
and is equal to

∫
ϕad` = 1/10. Since the intersection A0 ∩ A1 ∩ ... ∩ A9 has still probability one,

the result is that Lebesgue almost any number x ∈ [0, 1[ contains in its decimal expansion any of
the letters 0, 1, 2, ..., 9 with asymptotic frequency 1/10.

Actually, one could repeat the same argument considering any finite word b = b1b2...bn in the
alphabeth A, and show that there is a set Ab ⊂ [0, 1[ of probability one such that the base 10
expansion of any x ∈ Ab contains the word b with asymptotic frequency 10−n. A real number x
whose base 10 expansion contains any finite word with the right asymptotic frequency is called
10-normal (meaning “normal in base 10”). Since finite words in the alphabeth A are countable,
and a countable union of zero measure sets still has zero measure, we just showed that Lebesgue
almost any real number x is 10-normal. Indeed, Émile Borel [Bo09] showed that

Theorem 1.10 (Borel, 1909). Lebesgue almost any real number is normal in every base m ≥ 2.

An elementary proof of Borel theorem is presented in chapter IX of [HW59].
It is not so easy to give examples of normal numbers, actually of series whose sum is a normal

number. An example is Champernowne constant

0.1234567891011121314151617 . . . ,

which is normal in base ten. Much more difficult (impossible?) seems to show that a “given”
number, such as

π ,
√

2 , e , . . .

is normal. Here we quote Mark Kac ([Ka59] pag. 18):

“As is often the case, it is much easier to prove that an overhelming majority of objects
possess a certain property that to exhibit even one such object. The present case is
no exception. It is quite difficult to exhibit a ‘normal’ number! The simplest example
is the number (written in decimal notation) x = 0.1234567891011 . . . where after the
decimal point we write the positive integers in succession. The proof that this number
is normal is by no means trivial.”

1.5 Rational approximations of irrationals

Engineers’ problem. It is plain that we (or machines) can only operate with rationals, and
this explains why ancients developed a variety of clever methods to find good (i.e. useful for the
engineers!) rational approximations of important numbers. For example, Babylonians and Greeks
knew and used the approximations π ' 25/8 and π ' 377/120, respectively. More interesting is
the fact that Heron of Alexandria (but probably the Babylonians) used iteration of the recursive
equation xn+1 = (xn+2/xn)/2 to “compute”

√
2 (or any other square root). The method produces

super-exponentially convergent rational approximations. More recently, quotients of successive
Fibonacci numbers 1, 2/1, 3/2, 5/3, 8/5, 13/8, . . . , produce (very good) rational approximations to
the “ratio” (1 +

√
5)/2.
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Rational approximations of irrationals. In modern language, we say that rationals Q are
dense in the real line R (which is, indeed, the completion of rationals w.r.t. the Euclidean metric, so
that real numbers are equivalence classes of Cauchy sequences of rationals). Hence, for any x ∈ R
and any “precision” ε > 0 we may find “rational approximations” of x, i.e. reduced fractions
p/q ∈ Q solving the inequality

|x− p/q| < ε .

Natural questions, when x is irrational, are: how large must be the denominator q given ε ? How
do the denominators grow when we take smaller and smaller ε ?

For example, we say that a number x is approximable to order ω > 0 if there exists a constant
λ = λ(x) such that the inequality ∣∣∣∣x− p

q

∣∣∣∣ < λ

qω
.

occurs infinitely often, i.e. admits infinite rational solutions p/q (and it is clear that we may assume
that the fractions p/q are reduced). Or, more generally, we may bound the l.h.s. above by φ(q)/q
for some non-increasing function φ : N→ R+. We may then ask which numbers are approximable
to a given order, or at least measure their relative size, i.e. their probability. Indeed, the problem
is clearly invariant under integer translations, and therefore we may restrict to numbers x in the
quotient unit circle T := R/Z ≈ [0, 1).

An obvious argument (rationals with denominator q form a grid with spacing equal to 1/q)
shows that any real number x is approximable to first order, i.e.∣∣∣∣x− p

q

∣∣∣∣ < 1

q

infinitely often.

Why do we care. Mathematicians are naturally fascinated by the above questions, and then by
the problems that the search for their solution suggest (some of them you will see below). On the
other hand, it must be said that such questions also play an important role in other areas of pure
and/or applied mathematics, alias physics. A practical example referred by Khinchin ([Kh35], page
28) is Huygens’ problem to construct a model of the solar system using toothed wheels. Modern
more abstract examples are the problems of “small denominators”, in a variety of context of pure
and applied mathematics, from the classical linearization problem of Poincaré and Siegel (and then
Brjuno, and then Yoccoz . . . ) to KAM theory (for Kolmogorov, Arnold and Moser) [Mar00]. Here,
you may want to give some simple examples.

Diophantine approximation. In these contexts, the relevant notion is the converse of ap-
proximability: we say that a number x satisfies a Diophantine condition of order τ > 0 if there
exists a constant c = c(x) such that ∣∣∣∣x− p

q

∣∣∣∣ > c

qτ
.

for all reduced fractons p/q.
The relation with “Diophantine equations”, which originates the name Diphantine approxima-

tion, is explained, for example, at the end of chapter 17 of [IR90]: if the roots of a polynomial
anx

n + an−1x
n−1 + · · · + a0 with integer coefficients, irreducible over the rational and of degree

n ≥ 3, satisfy a Diophantine condition with exponent/order τ > 2, then the Diophantine equation

anx
n + an−1x

n−1y + · · ·+ a0y
n = m

with integer m > 0 has at most a finite number of integer solutions (x, y) ∈ Z2.

Dirichlet’s argument. The first non-trivial observation is due to Dirichlet, and it is the
original application of his box (pigeone hole) principle:

“if there are n + 1 objects in n boxes, there must be at least one box which contains
two (or more) of the objects”.
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Theorem 1.11 (Dirichlet, 1842). For any real number θ and any positive integer Q ∈ N there
exist integers p and q ≥ 1 such that

|qθ − p| < 1/Q and q ≤ Q (1.4)

and, a fortiori,
|θ − p/q| < 1/q2 . (1.5)

Proof. Divide the unit interval [0, 1) into the Q subintervals

[0, 1/Q) , [1/Q, 2/Q) , [2/Q, 3/Q) , . . . , [(Q− 1)/Q, 1)

of equal length 1/Q, and consider the Q+ 1 points1

{ 0} , {θ} , {2θ} , . . . , {Qθ}

inside [0, 1). By the box principle, at least two of those points, say {kθ} and {k′θ} with k > k′,
belong to the same subinterval. Therefore, there exist integers a, a′ such that |kθ−a−(k′θ−a′)| <
1/Q. The theorem follows taking q = k − k′ and p = a− a′, and observing that q ≤ Q.

If θ is irrational and p1/q1, p2/q2, . . . , pn/qn are any finite number of fractions satisfying (1.5),
we may consider an integer Q larger than the inverse of

ε = min
1≤k≤n

|qkθ − pk| > 0

and produce, by theorem 1.11, one more fraction p/q satisfying (1.5). Thus,

Theorem 1.12 (Dirichlet, 1842). For any irrational number θ there exist infinitely many reduced
fractions p/q such that

|θ − p/q| < 1/q2 .

Thus, all irrationals are approximable to order 2, at least.

Rational numbers are not well aproximable by other rationals! On the other side, let
θ = a/b be a rational number, say with a and b relatively prime integers. If p/q is any other
reduced fraction, we have

|θ − p/q| =
∣∣∣∣aq − bpbq

∣∣∣∣ ≥ 1

bq
,

since the numerator above is a non-zero integer. But 1/bq ≥ 1/q2 for denominators q ≥ b. There
follows that only finitely many reduced fractions p/q may satisfy the inequality

|θ − p/q| < 1/q2

stated in Dirichlet’s theorem 1.12. This observation gives a criterion to decide if a given number
is rational or not.

Simultaneous Diophantine approximation. The same box principle can be used to under-
stand simultaneous rational approximations.

Theorem 1.13. If at least one of the numbers x1, x2, . . . , xn is irrational, then the inequalities∣∣∣∣xk − pk
q

∣∣∣∣ < 1

q1+1/n
k = 1, 2, . . . , n ,

have an infinity of solutions.

1As usual, { x} denotes the “fractional part” of x, so that any real number may be written as a sum x = [x]+{ x}
for some unique [x] ∈ Z and {x} ∈ [0, 1).
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1.6 Geometry of numbers

Minkowski’s convex body theorem. Also important is Minkowski’s proof of Dirichlet theorem
1.11, which follows from his convex body theorem [Mi10, Mi27]. The most popular proof is (I think)
the one presented in appendix B of [Cas57] or in chapter III of [Cas59], which is based on the
following theorem by Blichfeldt [Bl14].

Theorem 1.14 (Blichfeldt, 1914). A measurable region A ⊂ Rn with volume Vol(A) > 1 contains
two distinct points such that their difference has integer coordinates.

Proof. The proof is simple but not trivial, being based on existence and σ-additivity of Lebesgue
measure, and goes as follows: if we fold all of A onto the unit hyper-cube � := [0, 1)n ≈ Rn/Zn, at
least two of the images An := n +A∩ (�− n), for n ∈ Zn, must overlap for otherwise the volume
of A would be ≤ Vol(�) = 1.

A subset C ⊂ Rn is convex if, whenever it contains two points x and y, it contain the entire
segment xy := {tx + (1 − t)y with 0 ≤ t ≤ 1} between them. A subset S ⊂ Rn is centrally
symmetric (i.e. symmetric about the origin) if, whenever it contains a point x it also contain its
symmetric −x. A region which is both convex and centrally symmetric is called convex body. In
particular, together with any two points x and y, a convex body contains the whole parallelepiped
with vertices ±x and ±y. Minkowski’s observation that a convex body is Lebesgue measurable,
and an obvious application of Blichfeldt theorem 1.14 gives the famous Minkowski’s convex body
theorem

Theorem 1.15 (Minkowski, 1896). Let K ⊂ Rn be a convex body with volume Vol(K) > 2n

(possibly ∞). Then K contains a point of the integer lattice Zn ⊂ Rn other than zero.

If the convex body K is also compact, then the weaker inequality Vol(K) ≥ 2n is sufficient.
There exist many other proofs of Minkowski convex body theorem 1.15, three or four of them

are in chapter III of [HW59]. Generalizations to lattices Λ ⊂ Rn other than Zn are straightforward.

Minkowski’s linear form theorem. Given n linear forms in Rn, say x 7→ ξk · x = ξk1x1 +
ξk2x2 + · · · + ξknxn with ξ1, ξ2, . . . , ξn ∈ (Rn)∗ ≈ Rn, and n positive numbers λ1, λ2, . . . , λn, we
may consider the problem of solving simultaneously the set of inequalites

|ξ1 · x| < λ1 |ξ2 · x| < λ2 . . . |ξn · x| < λn

for non-trivial integer vectors x ∈ Zn. If Ξ = (ξij) denotes the n × n matrix whose lines are
the vectors ξk’s, then the region K ⊂ Rn defined by the above inequalities (for all x ∈ Rn, not
only integers!) is a convex body and has volume 2n(λ1λ2 . . . λn)/|det Ξ|. Thus, if (λ1λ2 . . . λn) >
|det Ξ| then there is an integer point other than zero solving the inequalities. If some of the < is
substituted by ≤ in the definition of the convex body K, and if > is substituted by ≥ in the volume
estimate, we still get existence of an integer non-trivial solution from a continuity argument.

For example, Dirichlet’s theorem 1.11 corresponds to find non-trivial integer solutions (p, q) ∈
Z2 of the inequalities

|xq − p| ≤ 1/Q and |q| < Q ,

and the corresponding planar convex body has surface equal to 4.
A proof by Siegel and Mordell uses the Poisson summation formula from Fourier analysis [Si45].

Geometry of numbers. Minkowski ’s convex body theorem is the foundational result of a big
area called “geometry of numbers” [Mi10, Cas59]. Actually, this could be a theme on its own,
following chapter XXIV of [HW59].

A nice application of the convex body theorem is a proof of Pick’s theorem [Pi99, St99] by
Murty and Thain [MT07] (but there exist many proofs of this beautiful and elementary theorem).
A lattice polygon is a planar polygon with vertices belonging to the lattice Z2, i.e. with integer
coordinates.
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Theorem 1.16 (Pick, 1899). Let P be a convex lattice polygon with b lattice points on its boundary
and i lattice points in its interior. Then the area of P is

Area(P ) = i+ b/2− 1 .

The convex body theorem is used to prove than every “elementary triangle” T , i.e. lattice
triangle with no integer points apart from its vertices, has Area(T ) = 1/2 (the inequality Area(T ) ≥
1/2 being trivial). Picks theorem follows decomposing a generic lattice polygon into elementary
triangles and using additivity of Pick’s formula.

1.7 Transcendental numbers

Algebraic and transcendental numbers. Algebraic numbers are the roots (which may be real
or complex) of non-zero polynomials

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

with integer coefficients a0, . . . , an ∈ Z. The degree of the algebraic number α is the minimal
degree of a non-zero polynomial f ∈ Z[x] such that f(α) = 0. So, algebraic numbers of degree 1
are the rationals, algebraic numbers of degree 2 are the quadratic irrationals (as for example

√
2),

and so on.
Numbers which are not algebraic are called transcendental. It not at all obvious that they exist.

Liouville argument. A simple argument, using the mean value theorem, gives the following

Theorem 1.17 (Liouville, 1842). A real algebraic number α of degree n ≥ 2 is not approximable
to any order τ ≥ n, i.e satisfies ∣∣∣∣α− p

q

∣∣∣∣ > c

qn

for all fractions p/q and some constant c = c(x).

Proof. Let α be an algebraic number of degree n ≥ 2 (hence irrational), and f(x) = anx
n +

an−1x
n−1+ · · ·+a0 a polynomial with integer coefficients and degree n such that f(α) = 0. Let p/q

be a rational approximation to α. We may assume that p/q belongs to an interval I = [α−ε, α+ε]
around α which is so small that it does not contain any other root of f(x). Since polynomials are
continuously differentiable, the derivative of f(x) is bounded in this interval, say |f ′(x)| ≤ C for
all x ∈ I. By the mean value theorem

|f(p/q)| = |f(α)− f(p/q)| = |f ′(x)| · |α− p/q| ≤ C · |α− p/q|

for some x ∈ I. On the other side,

|f(p/q)| = |anp
n + an−1p

n−1q + . . . |
qn

≥ 1

qn

since the numerator is a positive integer. The theorem follows putting together the two inequalities,
and setting c = 1/C.

Liouville theorem is not optimal, but has been important because for the first time it allowed the
construction of transcendental numbers: it is sufficient to produce numbers which are approximable
to any order. Liouville’s example is

λ = 0.1100010000000000000000010 · · · = 1

101!
+

1

102!
+

1

103!
+

1

104!
+ . . .

Indeed, consider the sequence of rationals pn/qn =
∑n
k=1 1/10k!, where

qn = 10n! and pn = 10n!
n∑
k=1

1/10k! .
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We see that ∣∣∣∣λ− pn
qn

∣∣∣∣ =

∞∑
k=n+1

1

10k!
≤

∞∑
k=(n+1)!

1

10k

≤ 1

10(n+1)!

∞∑
k=0

1

10k
=

10/9

10(n+1)!

≤ 10n!

10(n+1)!
=

1

qnn

Thus, λ is approximable to any order n ≥ 1, and, by Liouville theorem 1.17, is transcendental.

Optimal results. We owe the optimal result concerning algebraic numbers to the efforts
of Thue, Siegel, Dyson, Gelfond, Schneider, and finally Roth [Rot55]. This is really first class
mathematics (but elementary: it does not use any algebraic number theory nor deep analysis!),
indeed worth a Field Medal.

Theorem 1.18 (Roth, 1955). For any irrational real algebraic number x and any ε > 0 there A
exists a constant c = c(x, ε) such that ∣∣∣∣x− p

q

∣∣∣∣ > c

q2+ε
.

for all fractions p/q.

Thus, algebraic numbers are not approximable to any order greater that 2 (nevertheless, observe
that for quadratic irrationals Liouville estimate is better!). Roth theorem was used by Kurt Mahler
to show that the Champernowne constant is transcendental.

Other famous transcendental numbers. We know since Cantor that algebraic numbers
are countable, because rational polynomials are. This means tha most real or complex numbers
are not algebraic. Much more difficult is to prove that a given number, e.g. some famous constant
like e or π, is transcendental, but this is another story. Here one could include a sketch of some
proofs of the following

Theorem 1.19 (Hermite, 1873). e is transcendental.

Theorem 1.20 (Lindemann, 1882). π is transcendental.

(the last one being generalized as the Lindemann-Weierstrass theorem).

Modern times Much deeper is the following result, which solves Hilbert’s seventh problem.

Theorem 1.21 (Gelfond-Schneider, 1930). Let a and b be algebraic numbers such that a 6= 0, 1
and b is irrational. Then all values of ab are transcendental.

Observe that for complex a or b the above power is multi-valued, being defined by ab :=
exp(b log a). The theorem then refers to all its values. For example, the Gelfond-Schneider theorem
implies the transcendence of numbers like

2
√
2 log 2

log 3
eπ = (−1)−i . . .

1.8 Continued fractions

Continued fractions. Any irrational real number x ∈ R may be uniquely represented as an
infinite (simple) continued fraction

[a0; a1, a2, a3, . . . ] := a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .
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with a0 ∈ Z and with “partial quotients” an ∈ N if n ≥ 1. This means that x is equal to the limit
of the convergents, the finite continued fractions (hence rationals)

pn/qn = [a0; a1, a2, . . . , an] := a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

as n→∞.
Continued fractions constitute the fundamental tool to investigate rational approximations to

real numbers, because they provide base-free, hence intrinsic, rational approximations. Thus,
while Earthlings with ten fingers write π = 3.1415 . . . and Martians with three fingers write
π = 10.0102 . . . , they all agree to write π = [3; 7, 15, 1, 292, . . . ]). Moreover, they provide the best
rational approximations, in a certain precise sense [Cas57, HW59].

Continued fraction algorithm. The continued fraction converging to the given real number
x, rational or irrational, is the following. One starts with a0 = [x], and write x = a0 + x0 for some
0 ≤ x0 < 1. Then define the Gauss map G : (0, 1]→ [0, 1] as

G(x) := 1/x− [1/x] ,

(thus, G(x) is the fractional part of the inverse of x) and inductively define the partial quotients
and the “rests” as

an+1 = [ 1/xn] xn+1 = G(xn) ,

provided all the xk’s are different from zero. Thus,

x = a0 + x0

= a0 +
1

a1 + x1

= a0 +
1

a1 +
1

a2 + x2
...

= a0 +
1

a1 +
1

a2 +
1

. . . +
1

an + xn

If some xn vanishes, the iteration stops and x is equal to a finite continued fraction, hence to
a rational. Conversely, if x = a/b is rational, then the rn = 1/xn’s are rationals with strictly
decreasing denominators, so that we end up with some integer rn, and the iteration stops (and
indeed this is equivalent to Euclid’s algorithm to find the gcd(a, b)). Thus, finite continued fractions
correspond to rationals (and are unique if we demand the the last non-zero partial quotient be
an > 1). On the other side, if all the xn’s are different from zero (hence strictly positive), then the
even convergents form an increasing sequence bounded from above by x, and the odd convergents
form a decreasing sequence bounded from below by x.
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Graph of the Gauss map

The ratio. For example, the ratio

ϕ =
1 +
√

5

2
' 1.6180339887 . . .

is a root of the quadratic equation z2 − z − 1 = 0, hence satisfies

ϕ = 1 +
1

ϕ
.

Iterating this relation we get

ϕ = 1 +
1

1 + ϕ
= 1 +

1

1 +
1

1 + ϕ

= . . .

and therefore
ϕ = [1; 1, 1, 1, 1, 1, . . . ] .

Recursion and convergence. The basic fact is the following

Theorem 1.22. The convergents pn/qn = [a0; a1, a2, . . . , an] are obtained from the coefficients
ak’s by the recursions

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2
(1.6)

given the initial conditions p0 = a0, q0 = 1, and p−1 = 1 , q−1 = 0 (or p−2 = 0 and q−2 = 1) .

Proof. The proof is by induction. The first two values are easily verified. Assume the results holds
until n, and compute

pn+1

qn+1
= [a0; a1, a2, . . . , an, an+1]

= [a0; a1, a2, . . . , an + 1/an+1]

=
(an + 1/an+1)pn−1 + pn−2
(an + 1/an+1)qn−1 + qn−2

=
an+1(anpn−1 + pn−2) + pn−1
an+1(anqn−1 + qn−2 ) + qn−1

=
an+1pn + pn−1
an+1qn + qn−1
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It is important to write the recursion (1.6) in matrix notation as(
pn pn−1
qn qn−1

)
=

(
pn−1 pn−2
qn−1 qn−2

) (
an 1
1 0

)
,

whose solution, taking care of the initial conditions, is the backward product(
pn pn−1
qn qn−1

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
. . .

(
an 1
1 0

)
(1.7)

of n+ 1 integer matrices with determinant −1. In particular, the matrix with columns pn, qn and
pn−1, qn−1 is unimodular, i.e. belongs to the group GL2(Z) of (invertible) integer matrices with
determninant ±1 (two by two matrices whose rows and columns are relatively prime integers, a
group which contains much arithmetical information!), and this shows that the fractions pn/qn are
reduced.

There easily follows from the recursion (1.6) that even and odd convergents form an increasing
and decreasing sequence, respectively, and indeed, computing the determinant of the product
formula (1.7), that their difference is

pn
qn
− pn−1
qn−1

=
(−1)n

qnqn−1

If all the an’s are different from zero (thus if they are the partial quotients of an irrational
number), it follows from (1.6) that the denominators grow at least as qn ≥ 2(n−1)/2. The above
estimate then implies that the convergents form a fundamental sequence, and therefore there exists
the common limit x = limn→∞ pn/qn. Actually, one can estimate the rate of convergence from
both sides as

1

qn(qn+1 + qn)
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qn+1qn
. (1.8)

In particular, since the qn’s grow, from the second inequality we recover Dirichlet theorem 1.12.

Best rational approximations to reals. Of fundamental importance is the fact that conver-
gents provide the best approximations in the sense that

|qnx− pn| ≤ |qx− p|

for all reduced fractions p/q with denominator q ≤ qn. Thus, if we define ‖y‖ := infn∈Z |y−n| as
the distance between a real number y and the integer lattice Z ⊂ R, then the denominators of the
convergents minimize ‖qx‖ over all q ≤ qn.

Moreover, using again the recursion (1.6) in (1.8) we get

1

(an+1 + 2) q2n
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

an+1 q2n
(1.9)

A first consequence is that there exist numbers which are approximable to any given degree φ(q)/q2,
with φ : N → R+, i.e. satisfying |x − p/q| < φ(q)/q2 infinitely often, for we may recursively
choose the partial quotients in such a way that an+1 > 1/φ(qn). A second consequence is that
the worst numbers, from the point of view of rational approximations, are those with bounded
partial quotients, for if an < M then the convergents satisfy |x− pn/qn| > c/q2n for some constant
c = c(M) (and the worst is, of course, the number with smallest possible partial quotients, which
is [1; 1, 1, 1, . . . ] = (1 +

√
5)/2, the Greeks’ ratio!). These numbers are called badly approximable.

1.9 Modular group and Farey series

Modular group and equivalence. The modular group is the group PSL2(Z) = SL2(R)/ ± I
of two-by-two integer matrices A =

(
a b
c d

)
with determinant 1 modulo the equivalence relation

A ∼ −A. Rows and columns of such matrices are made of relatively prime integers, a fact that
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makes us suspect their relevance in number theory! The modular group acts on the Poincaré upper
half-plane H := {z ∈ C s.t. =(z) > 0} as fractional linear transformations

x 7→ az + b

cz + d

This actions extends by continuity to a bijection of the “ideal boundary” ∂H ≈ R∪{ ∞}, provided
we set (a∞+b)/(c∞+d) = a/c. The two-fold cover SL2(Z) is generated by the translation z 7→ z+1,
defined by the matrix T = ( 1 1

0 1 ), and the inversion z 7→ −1/z, defined by the matrix S =
(
0 −1
1 0

)
,

satisfying the relations S2 = 1 and (ST )3 = 1 (and one can actually show that it is isomorphic, as
a group, to the free product Z2 ∗ Z3).

It happens that the continued fractions of two “equivalent” numbers x and y in the ideal
boundary ∂H ≈ R ∪ { ∞}, i.e. two numbers in the same PSL2(Z) orbit, have eventually equal
continued fractions representations. This means that x ∼ [a0; a1, a2, . . . ] and y ∼ [b0; b1, b2, . . . ]
are related by y = (ax + b)/(cx + d) with integer coefficients a, b, c, d such that ad − bc = ±1 iff
there exist sufficiently large “times” n and m such that an+k = bm+k for all k ≥ 1.

Patterns in continued fractions. In particular, since PSL2(Z) form a group, if the continued
fractions of x is eventually periodic then x = (ax+ b)/(cx+d) with integers a, b, c, d, and therefore
x is a root of a quadratic polynomial with integer coefficients. The converse is also true, and is
due to Lagrange [La70]:

Theorem 1.23 (Lagrange, 1770). Eventually periodic continued fractions correspond to quadratic
irrationals.

For example, (
√

5 + 1)/2 ∼ [1; 1, 1, 1, 1, . . . ].
Not too much is known on other possible regularities of continued fractions (but late Arnold

had some conjectures, illustrated in a seminar I’ve seen on youtube).

Modular orbifold and Ford circles. The Poincaré upper half-plane H is a model of the
hyperbolic plane, equipped with the Riemannian metric dzdz/=(z)2. Another model is the unit
disk D := { z ∈ C s.t. |z| < 1}, equipped with the metric dzdz/(1−|z|2)2. The action of fractional
linear transformations PSL2(R) on H is by hyperbolic isometries, and the quotientM = H/PSL2(Z)
is called modular orbifold (it is the “moduli space” of complex tori, any complex torus being
conformally equivalent to C/(Z+τZ) for some τ ∈M). The PSL2(Z) orbit of the point∞ ∈ ∂H is
the set of rationals, and the orbit of the “horoball” H = {z ∈ H s.t. =(z) > 1} centered at ∞
is the set of Ford disks, which touch the real line at reduced rationals p/q and have diameter 1/q2.
Ford disks form a packing by pairwise tangent disks (similar to a packing considered by Apollonius
of Perga).

Tessellation of the modular group and Ford circles
(from http://en.wikipedia.org/wiki/Ford_circle)

A vertical line over an irrational x ∈ R ⊂ ∂H (a hyperbolic geodesic coming from∞ if parametrized
as t 7→ x+ ie−t) enters in infinitely many such disks. Therefore, we get one more proof of Dirichlet
theorem: for any irrational x there exist infinitely many reduced fractions p/q such that∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
.

http://en.wikipedia.org/wiki/Ford_circle
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We now reduce the diameters of the Ford disks to 1/q2+ε with ε > 0. They do not touch anymore,
but leave a lot of room. Indeed, we may bound the sum of the shadows of those disk with
0 ≤ p/q ≤ 1 as smaller than (forgetting the coprime conditions)

∞∑
q=1

q∑
p=0

1

q2+ε
≤
∞∑
q=1

1

q1+ε
<∞

There follows from the easy half of the Borel-Cantelli lemma that for almost all numbers x there
exist only finitely many reduced fractions p/q such that∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2+ε
,

Therefore,

Theorem 1.24 (folklore). For all τ > 2, the set of those numbers satisfying a Diophantine
condition of order τ has full measure.

This is a sort of complement to Roth theorem 1.18 (which deals with the zero measure, hence
more elusive, set of algebraic numbers). In particular, as Cassels wrote ([Cas57], page 119), Roth’s
“criterion of transcendence ‘almost never’ applies”!

For more about the relation between continued fractions and the hyperbolic geometry of the
modular orbifold you may start with [Se85] and look for papers by Curtis McMullen.

Farey series. Given a maximal denominator Q ∈ N, the set of those reduced fractions p/q with
1 ≤ q ≤ Q and 0 ≤ p ≤ q (hence in the interval [0, 1]), arranged in increasing size, form the Farey
sequence of order Q, say FQ (this is not a sequence, but a finite ordered set, and Farey was not a
mathematician, but a geologist!). Alternatively, consider the points (q, p) of the lattice Z2 which
are “visible” from the origin and belong to the triangle 0 < x ≤ Q and 0 < y ≤ x. The slopes p/q
of the segments joining them to the origin, arranged in increasing size, form the Farey sequence
of order Q (see chapter III of [HW59], and also [Ar78], pages 110-112, or the original [Kl09], for
Klein’s beautiful geometric interpretation). For example,

F5 =

{
0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1

}
Two Ford circles are tangent iff they touch the real line at points p/q and p′/q′ such that pq′−p′q =
±1, hence at neighbors elements of a Farey sequence (indeed, together with the origin, the points
(q, p) and (q′, p′) are vertices of an elementary triangle, whose area must be 1/2 !). Indeed,
neighborhood relations of elements in each Farey sequence reflect arithmetic properties according
to the following elementary fact, discovered by Farey and proved by Cauchy, 1816. If the reduced
fractions p/q < p′/q′ are neighbors of a Farey sequence, then

p′q − pq′ = 1 .

Equivalently, if the reduced fractions p/q < p′/q′ < p′′/q′′ are neighbors in a Farey sequence, then

p′/q′ =
p+ p′′

q + q′′
.

This fact may be used, as explained in chapter XI of [HW59] (a proof using continued fractions
is in [Cas57]), to prove the following

Theorem 1.25 (Hurwitz, 1891). For all irrational numbers x, there exist an infinity of rationals
p/q such that ∣∣∣∣x− p

q

∣∣∣∣ < 1√
5 q2

.

The constant 1/
√

5 is now optimal, if we want to include all irrationals, as those numbers
equivalent to the simplest continued fraction, the “ratio” (1 +

√
5)/2 ∼ [1; 1, 1, 1, . . . ].
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1.10 Uniform distribution

Minimal rotations. Consider the unit circle R/Z ≈ [0, 1), its points identified with classes x+Z
or with fractional parts { x} := x−bxc ∈ [0, 1), for x ∈ R. Any number, or “angle”, θ ∈ R defines
a “rotation” of the unit circle according to

Rθ(x+ Z) := x+ θ + Z ,

and the (forward) orbit of Rθ is the collection of points Rqθ(x + Z) = x + qθ + Z for q ∈ N. It
is clear that all orbits of a rational rotation are periodic. Dirichlet theorem says that the forward
orbit of 0 of an irrational rotation, the set of points θ, 2θ, 3θ, . . . , qθ, . . . , passes infinitely often
1/q-near 0 (i.e. at a definite speed). Indeed, more is true, if we forget the estimate of the error:
all orbits of an irrational rotation of the circle are dense, or, in the modern language of dynamical
systems,

Theorem 1.26 (Kronecker, 1884). An irrational rotation of the circle is minimal.

This is but a particular case of a general result by Kronecker [Kr84]. We say that the frequen-
cies/numbers ω1, ω2, . . . , ωk are linearly independent over the rationals (a physicist would say that
“the vector ω = (ω1, ω2, . . . , ωk) is not resonant”) if the only rational solution of the equation

n1ω1 + n2ω2 + · · ·+ nkωk = 0

is the trivial solution n1 = n2 = · · · = nk = 0. An important example: the logarithms ωk =
log pk of different primes pk are linearly independent, as follows from the uniqueness of prime
decomposition.

Theorem 1.27 (Kronecker, 1884). If θ1, θ2, . . . , θn, 1, are linearly independent over the rationals,
then the set of points

Z (θ1, θ2, . . . , θn) + Zn

is dense in the torus Rn/Zn ≈ [0, 1)n.

This means that for any x = (x1, x2, . . . , xn) ∈ [0, 1)n ≈ Rn and any precision ε > 0 we can
find integers p1, p2, . . . , pn and n such that |nθk − pk − xk| < ε for all k = 1, 2, . . . , n. Chapter
XXIII of [HW59] contains some different proofs, my favorite being Bohr’s analytic proof.

In general, the subgroup of Tn/Zn generated by ω = (ω1, ω2, . . . , ωn) will be either finite or its
closure will be a torus ≈ Rk/Zk of dimension k ≤ n.

Billiards. Kronecker theorem is actually a statement about orbits in a square billiard: orbits
are either closed, if they have rational slope, or dense. This is the beginning of another long story,
starting with [KS13], and particularly active these days . . .

Uniform distribution and exponential sums. Much more is true. We state for simplicity
just the one-dimensional case. We say that a sequence (xn)n∈N is uniformly distributed in the
circle R/Z ≈ [0, 1) if for any interval I ⊂ [0, 1), the cardinality CI(n) of those points x1, x2, . . . , xn
belonging to I is

CI(n) = n · |I|+ o(n) ,

i.e., if the ratio CI(n)/n converges to the length |I| of the interval. Equivalently (well, this is a
theorem by Hermann Weyl!), if for any continuous observable ϕ : R/Z→ C, the Birkhoff averages
converge to the mean value, i.e.

1

N + 1

N∑
n=0

ϕ(x+ nθ)→
∫ 1

0

ϕ(t) dt .

Above, we identify a function on the circle R/Z with a Z-periodic function on its universal
covering R. It is interesting to observe that continuity of the observable f may be substituted
by Riemann integrability, but not by Lebesgue integrability (since a Lebesgue integrable function
may be zero along an orbit, which is countable, without having zero mean). This last statement,
when the convergence is uniform in x, is called unique ergodicity (w.r.t. the Lebesgue measure, see
Oxtoby theorem) in the slang of dynamical systems.
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Theorem 1.28 (Weyl, 1916). If θ is irrational, then the points { nθ} are uniformly distributed in
[0, 1) ≈ R/Z.

Weyl observed that, according to Weierstrass theorem, trigonometric polynomials are dense
in the space of continuous functions on the circle (equipped with the sup norm), and therefore
it is sufficient to check uniform distribution on the “characters” eξ(x) := e2πiξx, with ξ ∈ Z (see
[SS03]). Indeed, more important than the actual result above is Weyl’s criterion relating uniform
distribution to a bound on the corresponding exponential sums [We16].

Theorem 1.29 (Weyl, 1916). A sequence (xn) of points xn ∈ [0, 1) ≈ R/Z is uniformly distributed
(w.r.t. Lebesgue measure) iff

1

N

N∑
n=1

eξ(xn)→ 0

as N →∞ for all non-zero “frequencies” ξ ∈ Z\{0} .

The proof of Weyl theorem 1.28 then goes as follows : for integer ξ 6= 0 and irrational θ,∣∣∣∣∣ 1

N + 1

N∑
n=0

eξ(x+ nθ)

∣∣∣∣∣ =

∣∣∣∣∣ 1

N + 1

N∑
n=0

e2πiξθm

∣∣∣∣∣ ≤ 2

N + 1
· 1

|1− e2πiξθ|
→ 0

uniformly in x (while the time averages of e0 are constant and equal to 1).
Today, this is just a particular case of a general statement about translations in compact

abelian topological groups. Weyl himself and then Furstenberg extended this result proving uniform
distribution for values of polynomials with at least one irrational coefficient, . . . but this is another
long story (see [EW10] and some of the n books by Terence Tao).

Today, many other example os equidistributed sequences are known. Not so difficult is, for
example, to show that the sequence θ

√
n is equidistributed, provided θ is irrational. More difficult

is the following

Theorem 1.30 (Vinogradov, 1935). If θ is irrational, then the points { pnθ} are uniformly dis-
tributed in [0, 1) ≈ R/Z, where pn denotes the n-th prime.

Speed of equidistribution. The error may be bounded provided some “Diophantine condi-
tion” on the rotation angle θ, depending on the regularity of the test function. This is done using
some Fourier analysis (actually, Sobolev spaces). Indeed, if ψ is a solution of the cohomological
equation

ψ(x+ θ)− ψ(x) = ϕ(x) ,

then the Birkhoff sums of the observable ϕ are telescopic, and equal to

1

N

N−1∑
n=0

ϕ(x+ kθ) =
ψ(x+Nθ)− ψ(x)

N

The cohomological equation may be solved in Fourier series provided some Diophantine condition
on θ, as in Arnold’s version of KAM theorem for circle diffeomorphisms.

1.11 Zero-one laws

Metric theory. We may forget about the nature of the numbers that we want to approximate,
but try to measure the relative sizes of those sets which are or are not approximable with the
desired speed, and possibly look for results valid for almost all numbers. This is called “metric”
(although a better term would be “probabilistic”) Diophantine approximation. The story starts
with Borel, Bernstein, and Khinchin at the beginning of the XX century.

For example, we know since Cantor that the set of algebraic numbers is countable, and therefore
has zero measure. More interesting is Borel’s theorem saying that the set of “bounded type”
numbers (i.e. those numbers x such that their continued fraction has bounded partial quotients,
say an ≤M for some M = M(x)) has zero measure too [Bo09, Be12]. Thus, typical numbers have
unbounded partial quotients. More precisely, we have the following dichotomy.
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Theorem 1.31 (Borel-Bernstein). Let (αn)n∈N be a sequence of positive integers.

• If
∑

1
αn

<∞ then for almost all reals x ∼ [a0; a1, a2, . . . ] the inequalities an ≥ αn holds for
only finitely many n’s

• If
∑

1
αn

= ∞ then for almost all reals x ∼ [a0; a1, a2, . . . ] the inequalities an ≥ αn holds
infinitely often.

Another relatively simple result is Khinchin’s uniform estimate c ≤ n
√
qn ≤ C, or, equivalently,

ean ≤ qn ≤ eAn

for the denominators of the convergents of Lebesgue almost all x (the left inequality being trivial
and valid for all x, since qn ≥ 2n−1) [Kh35].

Khinchin’s zero-one law. The real big achievement is Khinchin’s famous dichotomy [Kh24,
Kh35]

Theorem 1.32 (Khinchin, 1924). Let ϕ : N → R+ be non-increasing. Then for almost all real A
numbers x, the inequality ∣∣∣∣x− p

q

∣∣∣∣ < ϕ(q)

|q|

• holds only finitely often if
∑∞
n=1 ϕ(n) <∞,

• and holds infinitely often if
∑∞
n=1 ϕ(n) =∞.

Thus, for example, for almost all x we may find an infinite number of reduced fractions p/q
such that ∣∣∣∣x− p

q

∣∣∣∣ < 1

q2 log q

but only a finite number such that ∣∣∣∣x− p

q

∣∣∣∣ < 1

q2 (log q)1+ε

for ε > 0.

Borel-Cantelli and quasi-independence. Khinchin theorem is a typical 0-1 law of probability
theory, and although the original proof uses continued fractions, we easily recognize a variation of
the (now) classical Borel-Cantelli lemma [Bo09, Ca17]. Indeed, the theorem estimates the measure
(i.e. probability) of the set W (ϕ) of “ϕ-approximable” numbers, the set of those x ∈ R/Z ≈ [0, 1)
for which the inequality

‖qx‖ < ϕ(q)

has infinite natural solutions q. Define Bp,q(ϕ) := (p/q − ϕ(q)/q, p/q + ϕ(q)/q), the “balls” of
radius φ(q)/q centered at p/q, and Aq(ϕ) :=

⋃
0≤p≤q Bp,q(ϕ). Then

W (ϕ) = lim sup
q→∞

Aq(ϕ) :=

∞⋂
n=1

∞⋃
q=n

Aq(ϕ) .

Therefore, the first statement of Khinchin theorem follows from the first half of the

Theorem 1.33 (Borel-Cantelli, 1909-17). Let (An)n∈N be a sequence of events of the probability
space (Ω,B,P).

• If
∑
n P(An) <∞ then P(lim supn→∞An) = 0.

• If
∑
n P(An) =∞ and if the An’s form an independent family, then P(lim supn→∞An) = 1.
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On the other hand, the family Aq(φ) is not independent. To establish the second half of
Khinchin theorem more is needed. Some finer properties of continued fractions, as in Khinchin’s
original proof, or an extension of the Borel-Cantelli lemma to “quasi-independent” families , sat-
isfying

N∑
n,m=1

P(An ∩Am) ≤

(
N∑
n=1

P(An)

)2

+ C ·

(
N∑
n=1

P(An)

)
A different proof, using more arithmetic, is explained in [Ha98, Kl10].

In the 80’s Dennis Sullivan extended Khinchin ideas to the non-arithmetic situation of geodesic
excursion in non compact hyperbolic surfaces [Su82]. The quasi-independence is then a consequence
of mixing of the geodesic flow. More geometric proofs use a “shrinking targets” argument, and
apply to a variety of flows on homogeneous spaces. For recent and beautiful mathematics, you
may look for the papers by Margulis, Kleinbock, Shah, Stratman, Velani, Lindenstrauss . . .

A nice popular texts on probabilistic independence in number theory is [Ka59]. There is also
an interesting paper by Dodson, but I don’t remember which one!

1.12 Gauss map and ergodicity

The Gauss map. Numbers in the unit interval (0, 1] are uniquely represented, i.e. “coded”,
by continued fractions. If we disregard rationals, which form a set of zero Lebesgue measure,
we are left with infinite continued fractions [0; a1, a2, a3, . . . ], i.e. one-sided infinite sequences
(a1, a2, a3, . . . ) ∈ NN. Recall that the Gauss map G : (0, 1]→ [0, 1] is defined as

G(x) := 1/x− b1/xc if x 6= 0

(but we may also define G(0) = 0). Observe that for any rational r ∈ Q there exists a time n such
thatGn(r) = 0. The infinite sequence of the continued fraction expansion of x ∼ [0; a1, a2, a3, . . . ] ∈
[0, 1]\Q is a coding of the orbit of x. Indeed,

G([0; a1, a2, a3, . . . ]) = [0; a2, a3, a4, . . . ]

This means that an = b1/Gn−1(x)c, or, equivalently, an = k if Gn(x) ∈
[

1
k+1 ,

1
k

)
. In the language

of dynamical systems, the Gauss map (restricted to the full measure set of irrationals) is conjugated
to the one-sided shift σ : NN → NN, the conjugation being the continued fraction representation
x ∼ [0; a1, a2, a3, . . . ]. In particular, the equivalence relation coming from the action of PSL2(Z)
corresponds to “being in the same great orbit” of the Gauss map.

Ergodicity and distribution of digits. It is essentially due to Gauss himself the crucial ob-
servation that the absolutely continuous measure µ with density

dµ(x) =
1

log 2

1

1 + x
dx (1.10)

is an invariant probability measure for G, meaning that µ(G−1(B)) = µ(B) for all Borel subsets
B ∈ (0, 1]. It is sufficent to check invariance for intervals. The measure of an interval [a, b] is

1

log 2

∫ b

a

dx

1 + x
=

1

log 2
log

1 + b

1 + a
.

The preimage G−1([a, b]) is a union of intervals
[

1
b+n ,

1
a+n

]
with n = 1, 2, 3, . . . . Therefore, its

measure is

1

log 2

∞∑
n=1

∫ 1
a+n

1
b+n

dx

1 + x
=

1

log 2

∞∑
n=1

log
1 + 1

a+n

1 + 1
b+n

=
1

log 2

∞∑
n=1

log(1 + a+ n)− log(a+ n) + log(b+ n)− log(1 + b+ n)

=
1

log 2
log

1 + b

1 + a

Indeed, more is true [Kn26]:
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Theorem 1.34 (Knopp, 1926). The Gauss measure µ is ergodic for the Gauss map. A

Modern proofs are in [Ma87, EW10]. Ergodic means that invariant subsets have measure 0
or 1, or, equivalently, invariant observable f : (0, 1] → C are constant µ-a.e. (an observable f is
invariant if f ◦G = f , i.e. if it is constant along orbits). There follows from the Birkhoff-Khinchin
ergodic theorem (see, for example, [Wa82, Ma87, KH95]) that time-averages of integrable (i.e. in
L1(µ)) observables f converge µ-a.e. and are equal to the space averages, i.e.

lim
N→∞

1

N

N∑
n=1

f(Gn(x)) =

∫ 1

0

f(x) dµ(x) µ - a.e.

In particular, we may compute the distribution of digits in the continued fraction representation
of a number in the unit interval, simply taking for f the indicator function of some digit d ∈ N
in NN ≈ (0, 1]. The result is the Gauss-Kuzmin distribution (conjectured by Gauss and proved by
Kuzmin [Ku28], see also [Ar78]):

Theorem 1.35 (Gauss-Kuzmin, 1928). For almost every real number x, the asymptotic frequency
of the digit d in the continued fraction representation x ∼ [a0; a1, a2, a3, . . . ] is

pd =
1

log 2
log

(
1 +

1

d(d+ 2)

)

The ergodicity of the Gauss map w.r.t. the Gauss measure imply many other “surprising”
results, for clever choices of the observable f . For example, if we choose f(x) = log(a1) then the
Birkhoff averages are the geometric means of the first n partial quotients. There follows that for
almost all numbers x ∼ [a0; a1, a2, a3, . . . ] the limit limn→∞ n

√
a1a2a3 . . . an exists and is a constant,

equal to
∞∏
n=1

(
1 +

1

n(n+ 2)

)log2 n

' 2.6854 . . . ,

a number now called Khinchin constant [Kh35]. A similar result is: the n-th root of the denomi-
nators qn of the convergents of almost all numbers converge to

lim
n→∞

n
√
qn = eπ

2/(12 log 2) ' 3.2758 . . . ,

a number called Khinchin-Lévy constant [Kh24, Le29]. On the other hand, the arithmetic mean
of the partial quotients is unbounded for almost all numbers.
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