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Abstract

This is not a book! These are notes written for personal use while preparing lectures
on “Andlise Matemédtica” for student of BIOQ in the a.y. 2011/12, and then “Tdpicos de
Matematica EC” for students of CIEAMB and GEOLOG in the a.y. 20012/13 and 2013/14,
and finally also for BA in the present a.y. They are rather informal and certainly contain
mistakes. I tried to be as synthetic as I could, without missing the observations that I consider
important.

I probably will not lecture all I wrote, and did not write all I plan to lecture. So, I included
empty or sketched paragraphs, about material that I think should/could be lectured within
the same course.

References contain some introductory manuals that I like, some classics, and other books
where I have learnt things in the past century. My favorite manuals are [Ba79] (for its examples
and its informal style) and [Ap69] (for its rigor and simplicity). Besides, good material and
further references can easily be found in the web, for example in Scholarpedia , in Wikipedia
or in the MIT OpenCoureWare.

It would be nice to have time and places to do simulations, using some of the software at
our disposal in laboratories: this includes proprietary software like Mathematica®8 | Matlab
and Maple , or open software like Maxima and GeoGebra . Occasionally, we may also use some
c++ code and Java applets. Some applets are in the bestiario in my web page, and everything
about the course may be found in my page

http://w3.math.uminho.pt/~scosentino/teaching/tm_BA_CIEAMB_GEOLOG_2013-14.html

Pictures were made with Grapher on my MacBook, or taken from Wikipedia, or produced
with Matlab or Mathematica®8 . Sections about linear algebra (matrices, linear systems,
determinants ...) are still missing.

This work is licensed under a
Creative Commons Attribution-ShareAlike 3.0 Unported License.
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CONTENTS 3

Notations

e.g. means EXEMPLI GRATIA, that is, “for example”, and is used to introduce important or

(I hope!) interesting examples.
means “exercise”, to be solved in training classes.

ref: means “references”, places where you can find and study what follows inside each section.

red paragraphs are technical definitions, axioms or theorems which you may skip if you are
not interested in proofs (but, of course, most following facts depend on them!).

QED or the symbol [, means QUOD ERAT DEMOSTRANDUM, and indicates the end of
a proof.



1 NUMBERS 4

1 Numbers

ref: [Ap69, Ba79, RHB06, Wae91]

The language of philosophy. “... Signor Sarsi, la cosa non ista cosi. La filosofia ¢ scritta
in questo grandissimo libro che continuamente ci sta aperto innanzi agli occhi (io dico 1'universo),
ma non si puo intendere se prima non s’impara a intender la lingua, e conoscer i caratteri, ne’
quali e scritto. Egli & scritto in lingua matematica, e i caratteri son triangoli, cerchi, ed altre figure
geometriche, senza i quali mezi e impossibile a intenderne umanamente parola; senza questi € un
aggirarsi vanamente per un oscuro laberinto.” !

Counting and measuring. We count finite collections of similar objects (as fingers in our hand,
years, molecules in a mole of gas, baryons in the Universe) using the numbers

1,2,3,4,5,...,33,...,6 x 1023, ...,10%, ...

We may “sum” 33 goats and 66 goats, to get a flock of 33 + 66 = 99 goats. Also, we may need a
surface of 23 x 23 = 529 square meters to build our pyramid with side of 23 meters. Conversely,
we may sell 2 of our 99 goats and stay with the remaining flock of 99 — 2 = 97 goats. Or we may
store the visible mass ~ 4 x 10! kg of the Milky Way into ~ (4 x 10%!)/(2 x 103°) = 2 x 10! stars
of the same size of our Sun (estimated to be ~ 2 x 103Y kg).

Peano axioms for the natural numbers. We use the notation N := {1,2,3,4,5,...} for the
set of natural numbers. In order to be able to prove something, it is convenient to define N by a
(minimal) set of “axioms”, and this is what Giuseppe Peano “ did back in 1889:

N1 any natural n € N has a “successor” n™ € N (which, a posteriori, we think as n + 1), different
from n, and no two different naturals have the same successor;

N2 there is an element, called “one” and denoted by 1 € N, which is not the successor of any
natural;

N3 (induction principle) a subset A © N which contains 1 and such that n € A implies n™ € A
is the whole N.

The third axiom is the key to prove that certain statements about numbers are valid for all naturals
(since we humans have no time to check for all of them!). It is also the property that makes possible
recursive definitions, as we’ll see soon.

Once accepted the axioms, we set 2 := 17, 3 := 2%, 4 := 3%, ... and so on (but of course any

other list of symbols, as & . & ... would do).

Sum and product. We define sums inductively, starting from n + 1 := n™, and setting n +
(m*) := (n+m)". The sum of two numbers represents a cardinality of an union. For example,
3+ 4 =7 means

[eee [+[cece]=[soecsse |

We define products inductively, starting from n -1 = n, and setting n- (m™) := n-m + n. Thus,
d - a is the sum of d times a, i.e. a + a + --- + a, and actually represents an “area”. For example,
_

d times
4 -3 =12 means

oo« F]=[ 31

If a + b = ¢, we say that b is the difference between ¢ and a, and write b = ¢ — a. Thus, for
example, 7 =13 — 6.

If g-r = p, we say that r is the ratio between p and ¢, and write r = % or p/q. Thus, for
example, 3 = 21/7.

LGalileo Galilei, Il Saggiatore, 1623.
2G. Peano, Arithmetices principia, nova methodo exposita, 1889.
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e.g. Triangular numbers. The sum of the first n naturals is given by the formula
n(n +1)
2 )
which you may conjecture summing the last with the first numbers (hence n + 1), then the last

and the first of what remain (again n — 1+ 2 = n + 1), and so on, up to a total of n/2 such pairs,
or, following the Greeks, observing the following picture (red bullets form the “gnomon”) :

142+434---+(n—-1)+n=

If you are not satisfied with that, you check the formula for n = 1 (this gives 1 = 1-2/2), assume it
holds for n, sum the next term, which is n+1, and verifies that n(n+1)/2+(n+1) = (n+1)(n+2)/2.
Square numbers and ... Show that the sum of the first n odd numbers is
1+34+54+7+--+2n—1)=n-n

(i.e. n?, but we have not introduced this notation yet!), as the following picture suggests (again,
red bullets form the “gnomon”):

and guess a formula for the sum of the first n even numbers

24446+ +2n="7

Well-ordering principle. We may define an order in N saying that n < m (“n is smaller than
m”) if there exists z € N such that n + z = m. We say that n < m (“n is not greater than m”) if
n < m or n = m. This relation is stable under sums and products: if n < m then also

n+r<m+ux and n-xr<m-x

for all x € N. It is clear that 1 is the “smallest” of all the numbers, i.e. 1 < z for all x € N. The
induction principle N3 is equivalent to the statement that any subset of the naturals has a smallest
element:

WO (well-ordering principle) every subset A — N has a first element (or minimum), i.e. an
element a € A such that a < z for all x € A.

Integers. It turns out (but this took quite a large time to mankind!) that even elementary
problems are solved with much easy if we enlarge our numbers allowing negative numbers, like
—237, hence a zero number, that we denote 0. The set thus obtained is the set of integer numbers

Z:={..,-3,-2,-1,0,1,2,3,...}.

(from the german zahlen = numbers) The two operations, + and x (but we’d rather use “dots”
for multiplication, like in 7 -3 = 21, or even nothing when there is no possible confusion, like in
ab = a - b) are then characterized (i.e. defined!) by the following properties:

R1 (associativity of both + and x) (z+y)+tz=x+(y+2) (x-y)-z=xz (y-2)
R2 (comutativity of both + and x) rt+y=y+zx T Y=y-x

R3 (exisistence of neutral elements 0 and 1) z+0=0 x-l==x

R4 (existence of the opposite for +) Vz there exists —z such that z + (—x) =0

R5 (distributive law) z-(y+2)=z-y+z-2

Mathematicians call a set with two such operations defined a commutative ring.
It is plain that all primary school arithmetical rules may be derived from these properties/axioms
(but you should try to prove them by yourself!). In particular, you may derive the useful rule

at+r=a+y = T=Y.
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Repeated sums and products. It is useful to have a short notation for repeated sums

N
an =2+ T2+ -+ TN
n=1

and products

N
[[@n =122 an
n=1

This is possible thanks to the associativity of both sums and products. The product of the first
n naturals is ubiquitous when counting cardinalities, and deserves a name: it is called n factorial,
and denoted by

Powers. It is convenient to have a short notation for repeated products of a fixed number. For
example, the product z - x is said “r squared”, and denoted by x? (for, if z > 0, it is the area of a
square with side ). Similarly, z - z - x is said “cube of 27, and denoted by x® (if z > 0, it is the
volume of a cube with side z). For integer n = 1,2,3,..., the n-th power of the (rational) number
x is defined by

n

2=z ...
- v
n times
(to be pedant, recursively according to z! := x and 2"t := 2" - x for n > 1). It is useful to set

20 = 1.

Clock arithmetics. Less obvious is that there exist other commutative rings. For any integer
n > 2, we may equip the quotient Z/nZ := {k + nZ, with k € Z} ~ {0,1,...,n — 1} with the
obvious ring structure inherited from Z. Thus,

(a+nZ)+ (b+nZ)=a+b+nZ and (a+nZ)-(b+nZ)=a-b+nZ.

Combinatorial calculus. Let K ~ {1,2,...,k} and N ~ {1,2,...,n} be finite sets with car-
dinalities k& and n, respectively. The cardinality of their Cartesian product is |K x N| = k - n.
The cardinality of the space N¥ := {functions K — N}, isomorphic to the Cartesian product
NF:=NxNx---xNis

k vezes
VK| =t

The cardinality of the space D} := {injective functions K — N} is

n!
(n—k)!

provided k < n, where we define 0! = 1. In particular, the cardinality of the space D] of permu-
tations of N is

DR =n-(n—1) .- (n—k+1) =

|Dy| = n!

The cardinality of the space C}' := {subsets K ¢ N with |K| = k}, with k£ < n, is

eit= () = mem

since C! ~ D modulo D¥ (two injective functions K — N define the same subset K = N, their
image, off they differ by a permutation of K).
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Division, factorization and primes. We say that the number a divides (or is a divisor of) the
number b, and we write a | b, if there exists a d € N such that ad = b. If a does not divides b, we
write a t b. Given any p < g, either p|q, so that ¢ = dp for some d € N, or there exist a unique
d € N and a unique “rest” 0 < r < ¢ such that

g=dp+r.

We say that a natural number p is prime if it is not divided by any other natural but 1 and itself.
Thus, 2, 3, 5, 7, 11, 13, ...are primes. It is a fundamental fact of arithmetic (and should be
proved, of course!) that any natural n can be uniquely factorized (up to order!) into prime factors,
i.e. written as n = pi'py?...p,* for some primes p; and exponents n; € N. Thus, primes are the
building blocks with which all naturals are constructed.

Here is Proposition 20 of Book IX of the Elements by Euclid:

Ol np@&toL dpLhuol mhetoug elol Tavtoc Tol tpoteBévroc Thhbouc Tpdhtwy dptbuol *
or, in modern language,
Theorem 1.1. (Euclid’s theorem) The set of prime numbers is not finite.

Indeed, following Euclid, assume that py, ps, ..., p, are all the primes. We could take their
product and sum one, i.e. form the number x = p1ps...p, + 1, and observe that x is not divisible
by any of the pg, since the rest of the division is always 1. Since z is larger than any of the py, it
must have a prime divisor larger than all of them. O

Even and odd. The smallest prime number is 2, and it divides the set of natural numbers into
two classes: the even numbers, 2,4,6,8,... and the odd numbers, 1,3,5,7,....

Greatest common divisor and smallest common multiple. If d divides both a and b, it
also divides their difference b — a. This observation gives rise to the Fuclid algorithm to find (a,b).

e.g. Magicicadas. Prime numbers may be selected by Nature as survival strategies. One
example (popularized by Stephen J. Gould in [Gou77]) is that of Magicicada. They spend 13 or 17
years, depending on the species, under the ground as nimphs, and then get out for the few weeks
or months of adult life (to mate, have offspring, and die).

A 17-year cicada, or Magicicada (from Wikipedia).

e.g. Proportions. If the recipe of a cake for 4 persons uses 6 eggs, and if you need the same
cake for 12 guests, you must use x = % - 12 eggs. That is, you must solve the “proportion”

6:4=2:12.

3 “Prime numbers are more than any assigned multitude of prime numbers” [Euclid, Elements, Book IX, Propo-
sition 20].


http://en.wikipedia.org/wiki/Cicada
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Rationals and the four operations. We may form quotients p/q of integer numbers (the
denominator ¢ not being 0), and define their sum and product as

a N c ad + be q a ¢ ca
-+ == an — == —
b d bd b d bd
In addition to the properties of a commutative ring, axioms R1-R5, the set of fractions also satisfies

the following axiom
F6 (existence of the inverse for x) Vx # 0 there exists 27! such that z-271 =1

Indeed, the inverse of a non-zero fraction p/q is simply g/p. The set of fractions is called rational
field, and denoted by Q.
An important consequence of F6 is the rule

Ax=Ay and A#0 = zx=y.
Order. The field of rationals is an ordered field, i.e. may be “ordered”. This means that we may
define a subset QT := {p/qwith p, ¢ € N} of positive rationals satisfying the “axioms of order”
01 0¢Q,
02 ifa,be Qt, thenalsoa+be Q" anda-be Q™,
03 Vz #0, either z € Q" or —z € Q™.

We then define Q™ := Q\(Q" U {0}), the set of negative rationals. We say that a < b if there exists
a ce Q7 such that a + ¢ = b. We say that a > b if b < a. In particular, all a € QT, as for example
1, are a > 0, and all be Q~ are b < 0. We also say that a < bis a < b or a = b, and then that
a = bif a <b. Clearly,

a<b = at+tec<b+c
and also
a<b and c¢<d = a+c<b+d
Moreover,
b _ ad <bd ifd>0
“ ad>bd ifd<0
In particular,
a<b = —-b< —a

Also, if ab > 0, then a and b are either both positive or both negative. Finally,
a#0 = a-a>0

i.e. squares of non-zero numbers are positive.

Bernoulli inequality. For any n =1,2,3,... and any z > —1
I+2)"=21+nx

Prove it using indutction.

Absolute value and distance. The absolute value (or modulus) of a number x is

T sex =0
—x sex<0

|z|. := max{x, —x} = {

The distance between = and y is then defined as dist(x,y) := |« — y|. Thus, the distance between
x and y is zero iff x # y, and we have the triangle inequalities

|z +y| < |z| + |y that is, dist(z,y) < dist(z, z) + dist(y, 2) .
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Negative powers. For x # 0, we also define negative powers according to

We observe that for even n, the n-th power of any number x # 0 is 2" > 0.

Useful formulas. The square of a binomial is
(a+b)?* =a*+2ab+b?

Also,
(a+b)(a—0b) =a®—b?

Less obvious is that one can give a formula for the n-th power of a binomial. This has been found

by Newton, and is
X (n
a+b)" = akpnk
@ =3 ()

where the binomial coefficient is defined as

(0) = o

ex:  Show that if n2? is even then also n is even.

ex: Find and prove a formula for the sum of the cubes of the first n numbers

P42 433+ 4nd=2

e.g. Surface area to volume ratio and shapes. The volume and the surface area of an
organism depend on the linear dimension L according to V = vL3 and S = sL?, where v and s are
certain constants that depend on the shape. For example, in a (ideal!) spherical cell, V = %W LB
and S = 47 - L2. There follows that the surface area to volume ratio is

S:V=r-L"

(and in particular decreases as the linear dimension increases). Nature selected a huge variety of
shapes, hence of values of the constant r = s/v.*

(from Life at the Edge of Reef and Wikipedia)

For example, the “sahuaro” cactus (Carnegiea gigantea), from the Sonora desert of Mexico, optimize
their surface area to volume ratio, hence minimize transpiration, assuming a cylindrical shape.

4K. Schmidt-Nielson, Scaling: Why is Animal Size so Important? Cambridge University Press, 1984.


http://www.edge-of-reef.com/
http://en.wikipedia.org/wiki/Image:Axolotl.jpg
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e.g. Gulliver in Liliput. “...the Emperor stipulates to allow me a quantity of meat and drink
sufficient for the support of 1728 Lilliputians. Some time after, asking a friend at court how they
came to fix on that determinate number, he told me that his Majesty’s mathematicians, having
taken the height of my body by the help of a quadrant, and finding it to exceed theirs in the
proportion of twelve to one, they concluded, from the similarity of their bodies, that mine must
contain at least 1728 of theirs, and consequently would require as much food as was necessary to
support that number of Lilliputians.”. °

Decimal notation. Since we have 10 fingers, we like powers of 10, as 100, 1000, ...1000000,
..., to the point that they also deserve their own names (hundreds, thousands, ..., millions, ...).

We decided to represent numbers using a “decimal” positional notation. This means that we
chose 10 symbols to represent the first 9 numbers and the “zero” number, as

{O’ 1) 2737 4’ 5’ 6) 77 87 9} )

and then write numbers as

1 1
367,89:=3-10°+6-10+74+8 - — +9- —
10 102
All finite decimal expansions represent fractions (just multiply by a convenient power of 10). Some
fractions do not terminate, and give rise to infinite periodic decimal expansions. Actually, rationals
are exactly those real numbers that admit periodic (possibly finite) decimal expansions.

Compute the following decimal expansions

1/20  3/4 5/100 1/3 1/7 1/9  1/111

First degree equations. In a field, like the rationals (or, as you will see, the reals), we are able
to solve a first degree equation like
ax+b=0

(as usual, the notation above means that we are given the numbers a and b, and we want to find
possible values for the “unknown” z). Indeed, we simply put b on the right hand side, multiplying
by —1, and then divide by a (the case a = 0 being trivial: it is no equation at all!). The solutions,
which is obviously unique, is

x = —b/a.

Percentage. A popular way to express ratios is using percentages: p% means p/100. For exam-
ple, the 25% of a mass of 60 kg is 60- (25/100) = 15 kg. Other popular expressions are “increase or
decrease of some percentage”. For example, a 20% increase means a factor (1+20/100) multiplying
the the given initial quantity.

e An increment of 20% followed by a farther increment of 20% correspond to a single increment
of 40% or not?

e Does the order of increments matter? That is, an increment of 20% followed by an increment
of 30% is the same thing as an increment of 30% followed by an increment of 20%?

e [Ba79] 1.3.2.

5Jonathan Swift, Travels into Several Remote Nations of the World. In Four Parts. By Lemuel Gulliver, First
a Surgeon, and then a Captain of several Ships, 1726.
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e.g. Composite interests. Assume your bank pays to yo an interest of p% each year. If you
deposit a capital of zg euros, youll get a gain of zq - p/100 after one year, and therefore a total
capital of £ = xg - (1 + p/100). The second year, the interest will be calculated on the capital z1,
thus leading to a total capital of x5 = 1 - (1 + p/100) = g - (1 + p/100)2. The total capital after

n years is therefore
p n
n — 1+ 7)
T = o ( 100
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2 Real line

e.g. Pythagora’s theorem. Take a rigth triangle, set to 1 the length of the hypotenuse, and
call @ and 3 the lengths of the other sides. The altitude from the vertex opposed to the hypotenuse
divides the latter into two pieces of lengths a? and 2, because they are sides of right triangles
similar to the first one, having hypotenuses the two sides of length « and 3, respectively. Therefore,

a?+p%2=1.

For example, the diagonal ¢ of a square with unit side satisfies 1 + 1 = ¢2, i.e. it is what we call

V2.

e.g. Babylonians-Heron method to compute square roots. Consider the problem to
find the side ¢ of a square given its area a > 0, that is, the number which we modern call
¢ = y/a. A method, described by Heron of Alexandria °, but most probably already known to
the Babylonians 7 ®, consists in constructing recursively rectangles with fixed area a and sides
which are nearer and nearer. If 27 and y; are the base and the height of the first rectangle (chosen
arbitrarily!), and therefore 21y, = a, then the second rectangle has for base the arithmetic mean
2o = (21 +¥1)/2 and consequently height y» = a/x2, the third rectangle has for base the arithmetic
mean r3 = (T2 + y2)/2, ...and so on. The recursive equation for the basis is

1 a
(En+1:§ "En+; .
n

Observe that if the area a and the initial conjecture x; are rationals, then all the x,, are rationals
too.

The algorithm converges, and quite fast. Consider, for example, a = 2, so that we are looking for
v/2. We could, as the Babylonians, start from an initial guess x; = 3/2 for v/2 (since 12 < 2 < 22),
and find

17 577 665857
— ~ 1.41666666666 = — ~ 1.41421568627 =
2 37 108 4T 470832
As you see, the sequence stabilizes quite fast.
As a first attempt to explain this miracle, we could start looking at the recursive equations for

the bases and the heights of the rectangles:

~ 1.41421356237

To =

Ty + 1z, +1
et = n2yn gmss — /n2 /Yn

(so, the next height is the “harmonic mean” of the base and height). We see that the x,,’s and the
yn’s form decreasing and increasing sequences, respectively (disregarding the first guess, of course),
namely

Y<ys<- <Y< ... KTy <--- <23 <22,

The real root is somewhere between, namely y,, < 1/a < x,. Hence, we have an explicit control of
the error: the difference between x,, (or y,) and the real value of y/a is not greater than |z, — yn|.
A computation shows that the lengths of those intervals, the differences ¢, = x,, — y, satisfy the
recursion

Ent1 < 5 *En

So, and initial “error” £; < 1 (an easy achievement, since we easily recognize squares of integers)
reduces to at least g, < 27" after n iterations. The true error is actually much smaller. Indeed,
in our example we may compute

7 12 1 577 408
— ot L0005 d _ 2 e
12 “17 204 an 37408 577 235416

So that the first improved guess x5 has already one correct decimal, and the second, x3 has already
four correct decimals!

€2 ~ (0.000004

6 Heron of Alexandria, Metrica, Book 1.
7Carl B. Boyer, A history of mathematics, John Wiley & Sons, 1968.
80. Neugebauer, The ezact sciences in antiquity, Dover, 1969.
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Of course, more important is the “relative error”, which may be estimated as |z, —+/a|/+/a ~
&n/Yn

Heron formula. According to Heron formula, the area of a triangle with sides a, b e ¢,
hence semi-perimeter s = (a + b+ ¢)/2, is given by

\/s(s —a)(s—Db)(s—¢)

Estimate the area of a triangle with sides 7, 8 e 9.

Estimate /13 with an error < 0.01 or < 0.001 (without using your machine!).

How many iterations are necessary to get the first n correct decimals of /2 using the
babylonians-Heron method?

A0, Al, ..., A4 paper. Find the ratio A := b/a of the sides of a rectangle such that
cutting it along the middle of the longer side, say b, you get two rectangles, with sides /2 and a,
similar to the original.

Irrationals. What Babylonians didn’t suspect is that if you start with a rational guess for v/2,
you get an infinite sequence of rational approximations, but the process never stops. This is due
to

Theorem 2.1. (Pythagoras theorem) There is no rational number whose square is equal to 2
(i.e. the square root of 2 is not rational).

Indeed, assume that such a rational p/q exists, and assume it is reduced. Squaring we get
(p/q)? = 2, that is, p?> = 2¢°. Therefore, p? is divisible by 2, hence by 22 (because the factorization
of a square must contain even exponents). But this implies the existence of an integer r such
that 22r = 2¢2, hence also ¢? is divisible by 2, contrary to our hypothesis that the fraction was
reduced. O

It is clear that the same proof work with other square roots.

The real line. Pythagoras theorem suggests the need to enlarge the set Q of rational numbers
and get the “reals” R. This is done by admitting a new axiom, in addition to the axioms of field
and order. This is a rather technical point, but it amounts to saying that the reals “have no holes”,
and may be thought as a continuous line of points. Thus, once fixed an origin, called 0, a “positive”
direction (typically pointing to the right) and a unit of measure (like meter, or feet, ..., fixing the
point called 1), any real number z € R corresponds to one and only one point on our line, the one
at a distance |z| from 0, on the right if £ > 0 or on the left, if x < 0.

The supremum axiom. First, we need some terminology. A upper bound (limite superior) of
a set A is any number M such that a < M for any a € A. If a upper bound of A belongs to A
(and therefore is the unique one belonging to A!), than it is called a mazimum of A, and denoted
max A. Similarly, a lower bound (limite inferior) of a set A is any number m such that m < a for
any a € A. A lower bound which belongs to A itself is called minimum of A, and denoted min A.

Clearly, a set may have no upper and/or lower bound. A set of numbers A is bounded from
above if it admits an upper bound, and bounded from below if it admits a lower bound. It is called
bounded if it admits both upper and lower bounds (i.e. if there exists a number K such that
la] < K for any a € A). It may also happens that a set is bounded above and/or below without
having maximum and/or minimum.

We define the supremum of A, notation sup A, as the smallest of all the upper bounds of A.
This means that M = sup A if a < M for all @ € M, and if no b < M is an upper bound for
A. Similarly, we define the infimum of A, notation inf A, as the largest of all lower bounds. Both
supremum and infimum, if they exist, are clearly unique.

This is the final axiom, to be added to the field and order axioms, which entirely defines the
real line:



2 REAL LINE 14

S1 (the supremum aziom) Any not-empty subset A ¢ R of the real line which is bounded from
above has a supremum.

Of course, also any not-empty subset B — R which is bounded from below has a infimum (just
reverse the signs of the numbers forming the set). The real line is the unique (up to isomorphism!)
ordered and complete field, i.e. is characterized by the axioms R1-R5, F6, O1-O3 and S1.

e.g. Existence of the square root of two. So, for example, consider the set of decreasing

rationals - -+ < x, < --- < 3 < x5 obtained by the Heron method as basis of rectangles of area
equal to 2. Since they all satisfy 2 > 2, they admits an infimum, say a, which clearly satisfies
a’? > 2. Similarly, the heights yo < y3 < --- < y, < ... satisfy y2 < 2, and therefore their

supremum b satisfies b> < 2. But the difference |z,, — y,| is arbitrarily small, since it is bounded
by 1/2". There follows that a = b and therefore a? = 2.

Find examples of unbounded sets, and of bounded sets with no maximum or minimum.

Archimedean property of real numbers. A first consequence of the supremum axiom is that
the set of natural numbers N < R is unbounded from above (if it were bounded it would have a
supremum s = sup N, but then there would exist some natural n > s—1, and we could find another
natural n* = n+1 > s, contradicting the assumption that s is a upper bound for N). There follows
that any real = € R is strictly less than some natural n (and therefore of all its successors). Now,
take any positive real number € > 0. We claim that for any = € R we can find an integer n € N so
large that
n-e>uwx,

for otherwise x/¢ would be an upper bound for N. This property of numbers, that “multiples of a
given positive quantity (no matter how small) may be as large as we want”, is called Archimedean
property.

Intervals. The set of numbers a < z < b is called interval (a,b), the set of numbers a <z <b
is called interval (a,b], ...and so on. It is also useful to use the symbols oo to denote intervals
like (a, ), the set of numbers z > a, ...

e [Ba79] 1.6.1., 1.6.2., 1.6.3., 1.6.4.

e Solve (i.e., find the value/s or interval/s of x)

3x—1>xz+5 lz] =9 |z —1] =2

? <4 (x—1)*>1 |z| < 100

|z —3| <2 [7Tx —2| =3 (z—1)(z—2)(z—3)>0

Radicals and fractional powers. The square root of a non-negative number > 0 is the unique
non-negative y := \/z := 2'/2 such that y? = z (the side of a square with area 2). The cubic root
of a non-negative number z > 0 is the unique non-negative y := {/z := z'/3 such that 3* = z (the
side of a cube with volume z). In general, the n-th root of a non-negative number z > 0 is the
unique non-negative y := {/z := z'/™ such that y" = .

Similarly, we define “fractional powers” of non-negative numbers x > 0 as follows: for n,m € Z,
with m # 0, we define /™ as the unique y > 0 such that y™ = z". Therefore, the rules

a  ..b a+b (xa)b — xab % . ya _ (l,y)a

hold for all positive z,y > 0 and all rationals a,b € Q.
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e.g. Babilonians’ problems with areas and perimeters Besides square roots, typical prob-
lems considered by Babilonians were those involving rectangles. For example: find the sides a
and b of a rectangle given its area A = ab and its perimeter, or, equivalently, its semi-perimeter
P = a + b. Using our modern language, we see that both sides a and b solve a quadratic equa-
tion, namely z? + A = Pz. Observe that this means “finding the intersection between the line
x +y = P and the hyperbole zy = A”. A recursive method  may be devised writing the problem
as z(x — P) + A = 0, and therefore trying to solve simultaneously

A A
—p_= = .
T - and T Jop—

Solving a quadratic equation. We pose the problem to solve the quadratic equation
ar’ +br+c=0

where, of course, a # 0 (for otherwise the equation would not be quadratic!). We divide the Lh.s.
by a # 0, and “complete the square”, as

2?2 4 2(b/2a)x + (b/2a)* — (b/2a)* + ¢/a
= (z+b/20)> - b*/4d® + c/a

2 + (bja)z + c/a

This is zero when
(z + b/2a)* = (b* — 4ac)/4a®

Taking the square root, we see that two possible values of x are given by the well known resolvent

formula

—b +/b? — 4ac
2a
In particular, we get two real solutions when the discriminant A := b?> — 4ac is A > 0, one real
solution (to be interpreted as two coincident solutions!) when A = 0, and no real solutions (but
two complex conjugate solutions z4+ = (—b + iy/]A[)/(2a)) when A < 0.

T+ =

Solve

22—z—-1=0 22+432=0 322 —-624+2=0 2°+62+9=0

Find a quadratic polynomial with roots 2 and —7.

Find the sum and the product of the solutions of 22 — 5z + 6 = 0.

Find the interval defined by 22 < = + 1.

Means. The arithmetic mean of the numbers a and b is “TH’. The geometric mean of the positive

numbers a and b is vab (the side of a square with area equal to the area of the rectangle with sides
a and b).

e Show that the arithmetic mean between two positive numbers is never smaller that their
geometric mean (compute the difference between the squares of both means)

9E.L. Lima, Matemdtica e Ensino, Gradiva, 2004.
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Scientific notation. Se um observavel chamado x é observado/medido n vezes, e se x1,Z2, X3, ..., Ty
sao os valores obtidos nas n observagoes, é natural estimar o “valor verdadeiro” de x com a média
aritmética

To=2i30 jap=Lt(xi e+ )

Umas medidas da dispersao dos dados sao o desvio quadrdtico médio

852 =130 (z—72)?

e o desvio padrdao (standard deviation, ou standard uncertainty) S := v/ S2. Se n é grande, é
razoavel esperar que o valor verdadeiro esteja no intervalo

Z+ (S/vn)

com grande probabilidade. O “erro relativo” (S/4/n)/Z indica a quantidade dos digitos significa-
tivos, ou seja confidveis, na estimagao de x. Por exemplo, uma tabela das constantes da fisica tem
este valor da constante de gravitacao de Newton:

G = 6.673(10) x 10~ "' m3kg " 's2 with relative standard uncertainty 1.5 x 1073

Isto quer dizer que, embora a média observada seja 6.67310 x 10~ 'm3kg~'s~2, 56 podemos confiar

nos primeiros trés digitos decimais deste valor, e portanto escrever G ~ 6.673x10~ . Os algarismos
significativos sao apenas os primeiros 4, ou seja, 6.673, e o expoente —3 é a ordem de grandeza
de G (no sistema mks).

e A média aritmética T é o valor de a que minimiza a soma

(xl—a)2+(:ng—a)2+~-+(:vn—a)2

dos quadrados dos “desvios” nas distintas observagoes.

e Transforme em notagao cientifica os seguintes dados (de Wikipedia):
a massa de um eletrao ~ 0.00000000000000000000000000000091093822 kg,
a massa da Terra ~ 5973600000000000000000000 kg.
a circunferéncia da Terra ~ 40000000 m.

e [Ba79] 1.10.8, 1.10.9., 1.10.10., 1.10.12., 1.10.12., 1.10.14, 1.10.15, 1.10.16. 1.10.21., 1.10.22.
e 1.10.23.


http://en.wikipedia.org/wiki/Scientific_notation
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3 Euclidean spaces

A retareal. Fixada uma origem (ou seja, um ponto 0), um unidade de medida e uma orientagao
(ou seja, uma direcdo “positiva”), é possivel representar cada ponto de uma reta/linha com um
numero real x € R. Vice-versa, ao numero x € R corresponde o ponto da reta posto a distancia
Va2 da origem, na diregao positiva se x > 0 e negativa se x < 0.

O plano cartesiano. O plano cartesiano'® R? := R x R é o conjunto dos pontos r = (x,vy), com
z,y € R. A origem é o ponto 0 := (0,0). O ponto r = (z,y) pode ser pensado como o vetor (i.e.
o segmento orientado) entre a origem (0,0) e o ponto (x,y). A soma dos vetores r = (z,y) e
r' = (a/,y') é o vetor

r+r = (z+2y+7v),

que representa a diagonal do paralelogramo de lados r e r'. O produto do ntmero/escalar A € R
pelo vetor r = (z,y) é o vetor
Ar = (Az, A\y)

que representa uma dilatagdo/contracdo (e uma inversao se A < 0) de razao A do vetor r. Cada
vetor pode ser representado de maneira tinica como soma

r=(z,y) =zi+yj,

onde i:= (1,0) e j:= (0,1) denotam os vetores da base candnica.
Lugares geométricos (pontos, retas, circumferéncias, parabolas, . ..) podem ser descritos/definidos
por equacoes algébricas, ditas “equacoes cartesianas”.

e Descreva as coordenadas cartesianas dos pontos da reta que passa por (1,2) e (—1,3).
e Descreva as coordenadas cartesianas do tridngulo de vértices (0,0), (1,0) e (0,2).
e Esboce os lugares geométricos definidos pelas equagoes

xy=1 y=2x-7 (z+1)2+(y—3)2=9 x—2y* =3

e.g. O espago, o espago-tempo e o espago de fases da fisica newtoniana. O espago
onde acontece a fisica newtoniana é o espaco 3-dimensional R? := R x R x R. A posicio de uma
particula num referencial inercial é um vetor

r=(z,y,2):=zi+yj+2keR3

onde i:= (1,0,0),j:=(0,1,0) e k := (0,0, 1) denotam os vetores da base canénica.

A lei hordria/trajetdria, de uma particula é uma funcdo t — r(t) que associa a cada tempo
t € I = R a posicao r(t) = (x(t),y(t),2(t)) € R? da particula no instante t. A wvelocidade da
particula no instante t é o vetor v(t) := 1(t) = (&(t),y(t),2(t)). A acelera¢io da particula no
instante t é o vetor a(t) := v(t) = ¥(t) = (&(t), j(t), 2(t)), determinado pela equagio de Newton'!

mal(t) = F(r(t))

onde F : R? — R3 é um campo de forcas e m > 0 a massa da particula.

O espaco-tempo'? da fisica newtoniana é o produto cartesiano R x R3 ~ R*, o espaco dos
eventos (t,z,y,z) € R*, onde r = (x,y, z) € R? representa uma posicao num referencial inercial, e
te R é o tempo absoluto.

O estado de uma particula, a informagao necessaria e suficiente para determinar a trajetéria
futura (e passada), é um ponto (r,p) € R? x R?® = RS do espaco dos estados/de fases , onde r é a
posigao e p := mv é o momento (linear).

10René Descartes, La Géométrie [em Discourse de la Méthode, 1637].

Hisaac Newton, PhilosophieNaturalis Principia Mathematica, 1687.

12«Cette maniére de considérer les quantités de trois dimensions est aussi exacte que 'autre, car les lettres
peuvent toujours étre regardées comme représentant des nombres rationnels ou non. J’ai dit plus haut qu’il n’était
pas possible de concevoir plus de trois dimensions. Un homme d’esprit de ma connaaisance croit qu’on pourrait
cependant regarder la durée comme une quatriéme dimension, et que le produit temps par la solidité serait en
qualque maniére un produit de quatre dimensions; cette idée peut étre contestée, mais elle a, ce me semble, quelque
mérite, quand ce ne serait que celui de la nouveauté.” [Jean-le-Rond D’Alembert, Encyclopédie, Vol. 4, 1754.]
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e Determine a “dimensao” do espaco de fases de um sistema composto por 8 planetas (como,
por exemplo, Mercirio, Vénus, Terra, Marte, Jupiter, Saturno, Urano, Netuno) e de um
sistema composto por 6 x 1023 moléculas.

e.g. Reagoes quimicas. O estado de uma reagao quimica
aA+bB+cCH+... — zX+yY+z72+...

entre os n reagentes A, B, C, ... eosm produtos X, Y, Z, ... édescrito usando as concentracoes
[4], [B], [C], ..., [X], Y], [Z], ..., e portanto n 4+ m ndimeros (entre 0 e 1).

Spaces and coordinates. The space where we think we live in is the 3-dimensional space R3.
This means that we need 3 numbers, for example the Cartesian coordinates x, y and z in a fixed
reference frame, to uniquely define/indicate the position of a planet at a given time. A rattlesnake
in the Sonora desert thinks she lives in a plane, since she need just two coordinates, say = and y,
to say her friend where she lives. Similarly, a chemist who is describing a reaction like

A+2B+3C S4D +5FE +6F +7G

needs 7 numbers, the concentrations a = [A], b = [B], ..., g = [G] of the seven reagents, to
describe to his collegues the state of the reaction at a given time.

O espago vetorial R™. O espaco vetorial real de dimensao n é o espago
R":=RxRx---xR
%,—/
n vezes

das n-uplas x = (1,2, ..., 2,) de nimeros reais, ditas vetores ou pontos, munido das operagoes
adicao : R™ x R™ — R"™ | definida por

’X7Y'—>X+y1: (T1 + Y1, 22+ Y2, -, Tn + Yn)

e multiplicacdo por um escalar : R x R™ — R™ | definida por

’/\,x — AX = ()\ml,)\xg,...,)\xn)‘

O wvetor nulo/origem é o vetor 0 := (0,0,...,0), tal que x + 0 = x para todo x € R". O simétrico
do vetor x = (x1,%2,...,%,) é 0 vetor —x := (—x1,—Z2,...,—Ty), tal que x + (—x) = 0. Isto
justifica a notacao x —y := x + (—y).

A “combinacao linear” dos vetores vi, va, ..., Vi € R® com “coeficientes” A1, Ag, ..., A\ ER
é o vetor

k
Z ANV = AVy + Xava + -+ AV .
1=1

A base candnica de R™ é o conjunto ordenado dos vetores

ler=(1,0,...,0) e=(0,1,0,...,0) ... e,=(0,...,0,1)]

assim que cada vetor x = (x1,x2,...,%,) € R™ é uma combinagao linear unica
X = ZT1€1 +Xg2€2 + -+ Tpey

dos vetores da base candnica. O ntumero x; é chamado k-ésima coordenada do vetor x. Outra
notagao usada nos manuais para os vetores é .

As coordenadas no plano Euclidiano ou no espago 3-dimensional sao também denotadas, con-
forme a tradicdo, porr = (z,y) =zi+yjeR?our = (z,y,2) =xi+yj+ zke R
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Euclidean spaces according Descartes. O produto interno Euclidiano em R", denotado por
(x,yyoux-y,é
X, y) =211 + Tay2 +  + TnYn ,

(B REVAC S X

Dois vetores z e y sdo ditos ortogonais se (x,y) = 0. A desigualdade de Schwarz diz que

e a norma Fuclidiana é

[y [ < x] -yl

(para provar a desigualdade no caso ndo trivial em que x # 0 e y # 0, basta definir u = x/|x|
ev =y/|yl, e observar que 0 < |u £ v|? = 2(1 £ (u,v)), donde —1 < (u,v) < 1). O dngulo
0 € [0, 7] entre os vetores ndo nulos x e y é definido pela identidade (x,y) = |x]| - |y]| - cos(9). A
distancia Fuclidiana entre os pontos x,y € R™ é definida por

d(x,y) =[x —y|-

Em particular, o comprimento do vetor x, a distancia entre x e 0, é dado pelo teorema de Pitdgoras

d(x,0) = x| = 4/af + - +af.
A desigualdade de Schwarz implica a desigualdade do triangulo
d(x,y) < d(x,2) + d(z,y)

(para provar a desigualdade, calcule |z + y|? e use a desigualdade de Schwarz).

A bola aberta de centro a € R™ e raio r > 0 é o conjunto B,(a) := {x € R"s.t. |[x—a| < r}. Um
subconjunto A < R™ é aberto em R™ se cada seu ponto a € A é o centro de uma bola B.(a) < A,
com ¢ > 0 suficientemente pequeno.

Lines and planes. A reta que passa pelo ponto a € R™ na dire¢ao do vetor nao nulo v € R™ é
a+[v]:={a+1tv com teR}.

A reta perpendicular/normal ao vetor ndao nulo n € R? que passa pelo ponto a € R? é
a+[n]t:={xeR? t.q. (x—a,n)=0}

O plano gerado pelos vectores linearmente independentes v e w que passa pelo ponto a € R™ é

a+[v,w]:={a+tv+sw com (ts)eR?}

O plano ortogonal /perpendicular /normal ao vetor nao nulo n € R? que passa pelo ponto a € R? é

a+[n]t:={xeR?tq (x—an)=0}

(n é dito vector normal ao plano).
Trigonometric functions.

Coordenadas polares. As coordenadas polares (p,0), com p € Ry e 0 € [0,27[, no plano estéo
definidas por

x = pcos(0)

y = psin(0)

onde z e y sdo as coordenadas cartesianas de R?. Em particular, p = y/22 + 2 é a norma do vetor
(2,9).
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8 Sequences and series

ref:  [Ap69] [EKO05]

e.g. Fibonacci numbers. Consider the following problem, posed by Leonardo Pisano (a.k.a.
Fibonacci, namely “filius Bonacci”) in his Liber Abaci, 1202:

Quot paria cuniculorum in uno anno ex uno pario germinentur.

Quidam posuit unum par cuniculorum in quodam loco, qui erat undique pariete circun-
datus, ut sciret, quot ex eo paria germinarentur in uno anno: cum natura eorum Sit
per singulum mensem aliud par germinare; et in secundo mense ab eorum nativitate
germinant.'3

Let us denote by f,, the number of pairs (of rabbits) in the n-th month. It is clear that the number
frn+1 — fn of pairs of newborns in the (n + 1)-th month is equal to the number of adult pairs in
the n-th month, which is f,_;. Therefore, we may write

fn+1 :fn+fn—1a (81)

This is a law that recursively determine the values of f,, given certain initial values fy and f7.
Natural initial conditions are fy = fi1 = 1 (corresponding to Fibonacci’s problem if the initial
pair is made of newborn rabbits). The sequence grows quite fast, as you can see,

1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584 , . ..

and the numbers soon become astronomically large. For example, after 10 years we get (assuming
rabbits do not die or get murdered!)

fr20 ~ 8.67 x 10%*,

larger than the Avogadro number!
help:  An applet which computes the sequence is in my bestiario.

help: A Java or c++ recursive definition could be

int Fib(int n)
{
if (n==0) return 1;
else if (n==1) return 1;
else return Fib(n-1) + Fib(n-2);
}

e.g. Duplicacao de células. As experiéncias mostram que a populagdo de uma colénia de
bactérias, num periodo de tempo em que podemos considerar ilimitado o nutrimento e desprezaveis
as toxinas produzidas, duplica-se em cada tempo caracteristico 7 > 0. Assim, uma populagao inicial
de Ny células, da origem a uma populacao de N7 = 2Ny células passado o tempo 7, No = 4Ny
células passado o tempo 27, ..., de

N, =2"Ny

células passado o tempo n7. A lei recursiva que produz esta sucessao é
Nn+1 = 2Nn .

Por exemplo, uma unica célula dé origem a 1024 células passado um tempo n7 dado por 2™ = 1024,
ou seja, nT = (log, 1024) - 7 =10 - 7.

13Quantos pares de coelhos podem ser gerados por um par em um ano.
Alguém tem um par de coelhos, em um lugar inteiramente fechado, para descobrir quantos pares de coelhos podem
ser gerados deste par em um ano: por natureza, cada par de coelhos gera cada més outro par, e comega a procrear
a partir do segundo més apds o nascimento.


http://w3.math.uminho.pt/~scosentino/bestiario/fibonacci.html
http://w3.math.uminho.pt/~scosentino/salbestiario.html
http://java.com/
http://www.cplusplus.com/
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Sequences. A (real valued) sequence is a collection (xy,)nen, of (real) numbers z,, € R, indexed
(hence ordered) by a non-negative integer n € Ny := {0,1,2,3,...}. We may think of the index n
as “time”, and therefore at the n-th term x, as the value of some “observable” (something that
we may observe, i.e. measure) x at time n. Clearly, we may as well define sequences with values
in an arbitrary set X, for example in the Euclidean space R<.

Sequences may be defined as functions are. Indeed, a sequence with values in the set X is
nothing but a function = : Ng — X, disguised by the notation z, := z(n) or z[n]. A second
possibility is some recursive law

Tp+1 = f(xo,ml, ce 7$n)

prescribing the value of x,, 11 given the (past) values of zg, x1, ..., ,. A third possibility, is using
some property that the successive terms must have.

e.g. Discrete-time signals. Engineers (in digital signal processing) think at sequences as
discrete-time “signals”, and use the notation z[n] for the value of the signal z at “sample” n,
which corresponds to a physical time ¢ = n7, which is an integer multiple of a “sampling time”
7 > 0. Of course, one may also imagine a signal x[n] which is defined for all samples n € Z, past
and future.

e.g. Arithmetic progression. An arithmetic progression
T, =a+nb

which may also be defined using the recursion x,, 11 = x, +0b, with initial term zy = a. It represents
the successive positions of a walk starting at a with step b.

e.g. The primes sequence. The sequence
2,3,5, 7,11, 13,17, 19, 23, ...

whose generic term is the n-th prime number p,,. It is not clear what the recursive law could be.

Limits. We say that the real sequence (x,) converges to some limit a € R, and we write
lim, o @, = a or simply z, — a (as n — ), if for any “precision” € > 0 there exists a
time 7 such that |z, — a| < ¢ for all times n > @. This means that the values x,, are within an
arbitrarily small neighborhood of a as long as the time n is sufficiently large.

The basic fact about limits in the real line R is that monotone (non-decreasing or non-increasing,
i.e. satisfying zp41 = @, or p41 < &y, for any n, respectively) bounded (i.e. such that |z,| < M
for some M > 0 and all n) sequences of real numbers do admit limit. For example, the limit of a
bounded increasing sequence is simply the supremum of the set of values.

We also use the notation x,, — +00 to say that given an arbitrarily large K > 0 we can find a
time 7 such that +x,, > K for all times n > 7.

Of course, there exist sequences which do not admit limits in either senses. These are, for
example, oscillating sequences, as x, = (—1)". We’ll encounter sequences with much more wild
behavior.

Fundamental sequences. A sequence (x,) is said fundamental, or Cauchy sequence, if for any
precision € > 0 there exists a time n such that

|z — 2| < e

for all times n, m > m. Fundamental sequences are clearly bounded. It is obvious that a convergent
sequence is fundamental (a triangular argument, since both x,, and x,,, are £/2-near to the limit for
sufficiently large n and m). A similar triangular argument shows that a fundamental sequence with
a convergent subsequence is itself convergent. Less obvious is that any fundamental sequence in R is
convergent. Indeed, let X, := {z}, with k& = n}. It is clear that the X,, are bounded, and therefore

14This is not the place to talk about it, but if you find it intriguing, you may take a look at the wonderful book
by Marcus du Sautoy, The music of primes, Harper-Collins, 2003 [A misica dos nimeros primos, Zahar, 2008].


http://www.musicoftheprimes.com/
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by the supremum axiom there exist the numbers a,, := inf X,,. But the sequence (a,) is bounded
and not decreasing, and therefore there exists a = lim,,_,o a,, (indeed, a = sup {a,, with n € N}).
It is then easy to construct subsequences of (x,) which converge to a, and this implies that (z,,)
itself is convergent to a.

Thus, we may know that a sequence is convergent without knowing its limit! In general,
convergence of all fundamental sequences is taken as a definition of (sequential) completeness of a
metric space.

Geometric progression. The most important sequence is the geometric progression, defined
starting from an initial term zy = a using the recursion

Tptl = AT -
Thus, the sequence is
To=a T = a\ To = ar? T, = a\”

The parameter A (which may be real or complex) is called ratio, since it is the ratio x,4+1/2,
between successive terms of the sequence.

If |A] < 1, it follows from Bernoulli inequality, applied to = 1/|]A] — 1 > 0, that |\|7" =
(I14+2z)™ = 1+ nz > nz, and therefore 0 < [A|™ < 1/(nz). Thus, the geometric sequence converges
to zero when |A| < 1. It is constant, hence trivially convergent, when A = 1. It also follows from
Bernoulli inequality (taking 1 + x = |A]) that |A"| — o as n — oo whenever |A| > 1.

Show that the term x,, of a geometric progression is equal to the geometric mean /T, 11,1
of its neighbors.

Computing limits. Observe that x,, — a is equivalent to x,, — a — 0. Therefore, we only need
to understand how to “prove” that some sequence converges to zero, i.e. is “infinitesimal”.

One possibility is to “compare” the sequence (z,) under investigation with a sequence with
known behavior, as for example the geometric progression. Indeed, if |x,| < y, for all n sufficiently
large, then y, — 0 implies z,, — 0 too. More generally, if a sequence is bounded between two
convergent sequences with common limit, then the first sequence too is convergent to the same
limit, i.e.

’ynéxnézn and y, —a, z,—a = Ty —>a‘

In particular, the product of a bounded sequence times an infinitesimal one is infinitesimal too, i.e.

’xn—>0 e |lynl<M = xn-yn—>0‘

Algebra of limits. Limits are linear, namely,

Tp, > a and y, b = =z,+y,—a+b and /\xn—>)\a‘

and behave nicely under multiplication and division, namely,

’xn —a and y, — b = Xy Yn — ab  and  x,/y, — a/b (provided b # 0) ‘

e Compute the limits when n — o0 of the following sequences, or show that they do not exist.

1 (="

st —1)" 2 " 3" —92)™

S (-2)
10n2 + 11 n+1 Inb — n3 3n+1 2n+1
nd+n ™m—3 nb + 1023n5 — 3 n—2 6n-—3

sin(n) sin(1/n) sinn N S

n n cosn
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Subsequences and sequential compactness. A subsequence of a sequence (x,,) is a sequence
(2,,) obtained selecting only the values z,,, of the original sequence, where i — n; is an increasing
map Ng — Ny.

The basic fact (that closed and bounded sets of the real line are sequentially compact) is that
any bounded sequence admits a convergent subsequence.

Limsup and liminf. Sometimes we are only interested in a rough estimate of the growth of a
sequence (z,). The “limsup” is the limit

limsup z,, := lim a, € R U {0}
n—o0 n—o

of the non-increasing sequence a,, := sup{x,, Tn+1, Tn12,. ... The “liminf” is the limit

liminf z,, := lim b, € R U {—ow0}
n—a0 n—00

of the non-decreasing sequence b,, := inf{z,, xp+1, Tni2, ...}

e.g. Tempo de meia-vida. O decaimento de uma substancia radioactiva pode ser caracterizado
pelo “tempo de meia-vida” 7, passado o qual aproximadamente metade dos ntcleos inicialmente
presentes terd decaido (dentro de uma amostra suficientemente grande). Se g,, denota a quantidade
de substancia radioactiva presente no instante nr, com n = 0,1,2,..., entao

_ 1
In+1 = 5 qn -

Portanto a quantidade de substancia radioactiva no instante n7t é ¢, = qo2™", enquanto o produto
do decaimento é gg — g, = go(1 — 27™). Observe que ¢, — 0 quando n — .

Se a radiacdo solar produz nicleos radioactivos a uma taxa constante o > 0 (i.e. « nicleos
cada tempo 7), a quantidade de niicleos radioactivos no instante nr é dada pela lei recursiva

n+1 = %qn +o. (82)

Um equilibrio é possivel quando a quantidade inicial ¢g é igual a G := 2« pois entdao q; = a+a = qq,
g2 = a+ a = q = qp, e assim a seguir, ¢, = q para todos os n € N.
O que acontece se gy # ¢ 7 A equagao recursiva diz que

Q= %CIO-FC!

@ = jq0+zata

3 = F@p+i0+iata

= mdo+ (ot +g+i+s+1)a

A primeira parcela qo/2"*! — 0 quando n — o, ou seja, o futuro é independente da condicao
inicial gg. A segunda parcela tem limite 2« quando n — oo (uma prova estd no pardgrafo sobre a
série geométrical).

Uma férmula (aparentemente) mais simples para os g, pode ser obtida usando a substituigao
Ty = qn — G, onde § = 2« é a solugao estaciondria. De facto,

Tntl = Gni1 — 20
= fgmta-2a (usando a (8.2))
_ 1
- 3 Ty

ou seja, a diferénga entre ¢, e g é uma progressido geométrica de razdo 1/2. Portanto =, = xo27",
donde

qn =20+ (g0 — 2a) - 27"
E interessante observar que z, — 0, e de consequéncia ¢, — ¢, quando n — 0. Ou seja, a
quantidade de substancia radioactiva converge para o valor estacionério, independentemente do
valor inicial.
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O tempo de meia-vida do radiocarbono *C é 7 ~ 5730 anos. Mostre como datar um féssil,
sabendo que a proporcio de '4C num ser vivente é conhecida.'®

e.g. Crescimento exponencial. O crescimento exponencial de uma popula¢ao num meio am-
biente ilimitado é modelado pela equagao recursiva

Pnt+1 = )\pnu

onde p,, representa a populagao no tempo n, dada uma certa populacao inicial pg. Um significado
do parametro A\ é o seguinte: em cada unidade de tempo o incremento p,1 — p, da populacao é
igual a soma de uma parcela ap,, onde a > 0 é um coeficiénte de fertilidade, e uma parcela —fp,,
onde 8 > 0 é um coeficiénte de mortalidade.

Se a uma populagao que cresce segundo o modelo exponencial, é adicionada ou retirada uma
certa quantidade 8 em cada unidade de tempo, o modelo é

Pnt1 = )\pn +B7

onde 8 é um parametro positivo ou negativo.

Determine a solugao estacionaria de p,+1 = Ap, + 5, e a solugao com condigao inicial
po arbitrdria (considere a substituigdo x, = p, — P, onde P é a solucao estaciondria). Para quais
valores dos parametros A e 3 as solugoes p,, convergem para a solugao estaciondria quando o tempo
n — o0?

help: An applet with the simulations is in exponentialgrowth.

help: A Java or c++ cycle could be

for (int i = 0, i < n, i++)
{

population = lambda * population + beta;

}

e.g. Growth of Fibonacci numbers. We want to understand how fast do Fibonacci numbers
grow. We call ¢, := f,+1/fnthe quotients between successive Fibonacci numbers. They satisfy the
recursive law

Gnt1 =1+ 1/q, (8.3)

which is an immediate consequence of (8.1). An applet with the sequence is in fibonacci. We
compute:

1, 2, 3/2=15, 5/3~1.66666, 8/5=16, 13/8=1.625, 21/13~1.61538,

It turns out that the sequence of the g, converge, namely ¢, — ¢ as n — 0. Taking limits in the
recursive equation g,4+1 = 1+ 1/g, we see that ¢ = 1 + 1/¢, so that ¢ is a root (positive) of the
polynomial 22 —x — 1, i.e.

145
b = +2\F ~ 1.6180330887498948482 . . .

Hence, for large values of n we may approximate Fibonacci law as

fn+1 ~ ¢fn7

an exponential growth with rate ¢. In particular, we expect f,, ~ ¢™.
The limit ¢ is a famous irrational, the Greeks’ ratio/proportion. As described by Euclid'®:

15J.R. Arnold and W.F. Libby, Age determinations by Radiocarbon Content: Checks with Samples of Known
Ages, Sciences 110 (1949), 1127-1151.
16Buclid, Elements, Book VI, Definition 3.


http://w3.math.uminho.pt/~scosentino/bestiario/exponentialgrowth.html
http://w3.math.uminho.pt/~scosentino/bestiario/fibonacci.html
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“A straight line is said to have been cut in extreme and mean ratio when, as the whole
line is to the greater segment, so is the greater to the less.”
If a is the greater part and b the less of a line of lenght a + b, Euclid’s requirement is
a+b a

a b

There follows that the ratio ¢ = a/b satisfies 1 + 1/¢p = ¢. This division of an interval is used in
Book IV of the Elements to construct a regular pentagon.

a b

& &
g g

N _/c
~"
a+b

at+bistoaasaistob

Extreme and mean ratio, and regular pentagon.

(from http://en.wikipedia.org/wiki/Golden_ratio)

e.g. Invencao do xadrez. Dizem que o sdbio hindu Sissa inventou o jogo do xadrez e o ofreceu
ao rei de Pérsia. Ao rei, que o convidou a escolher uma recompensa, pediu um grao de arroz (ou
era trigo?) para o primeiro quadrado do tabuleiro, o dobro, ou seja, dois graos, para o segundo
quadrado, o dobro, ou seja, quatro graos, pelo terceiro quadrado, e assim a seguir até o ultimo dos
quadrados do tabuleiro. O rei riu-se, num primeiro instante, mas ...a recompensa é

(see (8.6) below) graos de arroz.

Se 1 Kg de arroz contém ~ 30000 grios, isto significa algo como 6.13 x 10*! toneladas de arroz
(which you may want to compare with People’s Republic of China’s production in 2008, which has
been, according to FAO, about 1.93 x 10® metric tons!).

Sums. Given a sequence (z,,), one may compute the partial sums

n
X, = Z$k=l‘1+$2+$3+"'+xn
k=0

The partial sums are then obtained from the x,’s by the recurrence
Xny1 = Xn + ZTng1,

given the initial value Xg = x3. Conversely, the original sequence is obtained from its sum
computing a sort of “discrete (backward) derivative”

Tp = (A—x)n = Xn - Xn—l )

where, of course, we must start with X_; = 0.

Let (z,,) and (y,) be two sequences, and (X,,) and (Y;,) be their partial sums. Rearranging
the terms in the partial sums of the product sequence x,y,, we discover the Abel transforma-
tion/formula

Z TrYr = Toyo + Z (Y — Y1)
k=0 k=1
n—1
= ToYo — T1Y0 + Z (Tr — Tpg1)Ye + 20 Y (8.4)
k=1
n—1
= -TnYn - Z (karl - xk)Yk
k=0


http://en.wikipedia.org/wiki/Golden_ratio
http://faostat.fao.org/site/339/default.aspx
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If we then substitute xj, with its partial sum X} in Abel’s formula (8.4), we get the summation by
parts formula

n n
D Xiye = XY — > 2iYia (8.5)
k=0 k=1
Asymptotic averages.
1 To+T1+- -+ Tp
X, =
n+1 n+1

Series. A seriesis a formal infinite sum

e}
“an:x0+x1+x2+x3+...”,

n=0

where the z,, € R are elements of some given real (or complex) sequence. If the sequence (X,,) of
partial sums, defined as X,, := Y7, 2 (which are honest numbers) converges to some limit, say
lim,, o X,, = s, then we say the series is convergent (or summable), and that its sum is

A series ), x, is absolutely convergent if the series ), |x,|, formed with the absolute values of
its terms, is convergent. Of course, absolute convergence is stronger than mere convergence.

A series which is not absolutely convergent is quite a delicate object, since rearrangements of
its terms may produce convergence to any real number (including infinite): i.e. the order matters!

[Ap69]

e.g. Arithmetic series. The partial sums of an arithmetic sequence z,, = a + nb is

Mb = E(xN +11).

N
ngla:n:Na-i- 5 5

In particular, the series diverges, unless a = b = 0.

e.g. Harmonic series.  The harmonic series is the formal inifinite sum of the inverses of all
natural numbers:
TR S
2 3 4 5 7

It is not convergent, since, if we ...to be completed!

Geometric series. A identidade
A+A+N X+ L+ A=) =" -1

(just multiply, and observe that all terms but the first and the last do cancel) mostra que, se A # 1,
a soma dos primeiros n + 1 termos da progressao geométrica (com a = 1) é

) 3 n_)\n+171
THAFAF A4+ A =1 (8.6)

. s . z - [e0] 7
Em particular, quando |A| < 1, a série geométrica Y, _, X" é (absolutamente) convergente, e a sua
soma é

1
1+/\+/\2+)\3+~~~+>\"+~~=ﬁ. (8.7)
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e.g. Dichotomy paradox. Using the above formula (8.7) for the sum of the geometric series,
you may try to convince Zeno that

1/2+1/4+1/8+1/16 +1/32+---=1.
e.g. Decimal expansions. Also, you may convince yourself that 0.99999. .., which by definition
is the sum of the series
0.99999... = ) + 9 + J +L+ R

10 T 100 '~ 1000 ' 10000 -

is not “almost one” or “a bit less than one”, as somebody says, but actually equal to

9 11 1
. o= (1 ——
0.99999 10(*10*100*100* )
2
10

Moreover, you may learn how to recognize rational numbers as 0.33333... or 1.285714285714 ...
from their (eventually) periodic expansion. Indeed, a real number is rational if and only if its base
10 (or any other base d = 2) expansion is eventually periodic.

Diga se a seguintes séries sao convergentes, e, se for o caso, calcule a soma.

1+1/2+1/4+1/8+1/16+ ... 1+ 10+ 100 + 1000 + . .. 1+1/10+1/100 + 1/1000 + . ..
0
DI4/5)"  9/10+9/100 +9/1000 +...  0.3333... 0123
n=0

Convergence tests. Deciding convergence or divergence of a series is not easy. The only tool
at our disposal is comparison with known series, and essentially the only known non-trivial series
is the geometric one. Comparison means the obvious observation that 0 < x,, < y, for any n
sufficiently large implies the following two conclusions: », v, < © = >, x, < 0, and >, =, =
W=D Yp = 0.

Now, if |z,| < C A" for some constant C' > 0 and any n sufficiently large, then the partial
sums of the series ) x, are bounded by a constant times the partial sums of the geometric series
>, A", therefore the series Y| x, is absolutely convergent whenever |A\| < 1. This happens when

e limsup,_, ., |2,|"" < 1 (root test)
e or when limsup,, ,, |Zn+1/2n| <1 (ratio test).

[Ap69]

e.g. The exponential. Take z, = t"/nl. The series

tTL
exp(t):=zg
n=0 "
2 43 p
=1+t+—+—=+—+...
R T

is absolutely convergent for any ¢ € R (for example, by the ratio test). Therefore, it defines a
function exp : R — R, which we call ezponential, and also denote by ef, if the Neper constant is
defined by e := exp(1), i.e.
1 1 1
6.:1+1+§+6+ﬂ+...
~ 2,7182818284590452353602874 . ..


http://en.wikipedia.org/wiki/Zeno's_paradoxes#The_dichotomy_paradox
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Comparing the coefficients of the power series and using the binomial formula, one may show
that the exponential “sends sums into products”, namely

for any t, s € R. Consequently, e~t = (¢!)~1, and in particular e! is never zero.

Conditional convergence and rearrangements. A series which is convergent but not ab-
solutely convergent is called conditionally convergent. The standard example is the alternating
harmonic series Y (—1)"/n. According to the Riemann rearrangement theorem, given any num-
ber a € Ru { £ o0}, it is possible to rearrange the terms of a conditionally convergent series ), p,
i.e. to find a permutation o : N — N of the naturals, and get a series ), 2,(,) which converges to
the desired a. Thus, a conditionally convergent series may simulate all convergent series!
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9 Elementary functions

Functions. It turns out that a convenient language to do mathematics is that of functions, or
operators. A function is a “law” f: X — Y that associates to any element/point z of some set X,
called domain of the function, a (unique!) element/point f(z) of some set Y (possibly different
from X'). We also use the notation

r—=Yy= f(l‘) ’

that suggests that a function is a “machine”, or “operator”, that produces an y out of any x.
The element y = f(z) € Y is called image of z € X, or also value of f at x if we are dealing
with numbers. The image of the subset A ¢ X is the set f(A) := {f(a) with a € A} c Y. In
particular, the range of the function f : X — Y is the set f(X) := {f(z) with z € X} c Y of
all its values. The restriction of the function f : X — Y to the subset A ¢ X is the function
fla:A—Y defined by f|, (a):= f(a).

The graph of the function f: X — Y is the subset

Graph(f) :=={(z,y) e X xY st. y=f(x)} c X xY

of the Cartesian product of X and Y.

The identity function idy : X — X is defined by idx(z) = z, and its graph is the diagonal
{(z,z) with z € X} c X x X.

The compositon of the functions f : X — Y and g : f(X) € Y — Z (in this temporal order!)
is the function go f : X — Z defined by (g o f)(x) := g(f(x)), that is, by the following sequence
of operations:

vy = f(r)—>z=g(y) =g9(f(r)).

A function f : X — Y is into if x # 2/ implies f(z) # f(2'), and therefore the image f(X)
is a “copy” of X inside Y. A function f: X — Y is onto if every y € Y is the image y = f(z)
of some z € X, ie. if Y = f(X). A function f : X — Y is a bijection/invertible if it is into and
onto, and therefore admits an inverse function f=1 :Y — X, which satisfies f~1(f(z)) = = and
f(f~Yy)) =y for all x € X and all y € Y. Of course, an injective functionf : X — Y may be
considered as an invertible function f: X — f(X) onto its image.

e Let f : N — N be the function defined by n — 2n. Find its image P := f(N). Find the
restriction g := f|, : I — Z of f to the subset O :={1,3,5,7,...} < N of odd numbers, and
its image g(I). The function f : N — f(N) is invertible?

e Is it true that f o g is always equal to g o f7 Never?

Graphs of real values functions, curves. In this section, we deal with “real functions of a
real variable”, that is, functions f : X < R — R defined in subsets, typically intervals, X < R.
Their graphs are “curves” in the Cartesian plane z-y.

Monotone functions. A real valued function of a real variable is (strictly) (increasing if x < '
implies f(z) < f(z'), and (strictly) decreasing if x < a’ implies f(z) > f(z'). In both cases, it is
said (strictly) monotone. A monotone function from an interval X — R to its image f(X) c R is
invertible.

e Draw the graphs of

3 -3z |z] T —2 |z — 1] |3z + 5| |z — 1| £ |z — 2]
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Linear functions. The simplest relation between two observables, say x and y, is proportional-
ity:
Y= Ax
for some non-zero A € R, which we also abbreviate as yocz. The graph of the function f(z) = Az
is a line through the origin, and A is its slope. Slightly more general is a affine dependence
Y=+«

(which gives back a proportionality if the independent variable z is substituted by the new variable
2’ =z + a/)\). The parameter A is still the slope of the graph of g(z) = Az + «, and « is the value
of the function for x = 0, i.e. the intersection of the graph with the y-axis. In implicit form, a
linear relation is given by the law

ar +by =c,

which is the Cartesian equation of a generic line in the plane z-y (including vertical lines x = ¢,
which describe no relation at all!).

e Show that the substitution =’ = ax + b transforms the law y = Az +a into a law y = Nz’ +a/,
and compute the new parameters \' and o/.

e Show that the substitution 3’ = az + b transforms the law y = Az +« into a law 3y’ = Nz + o/,
and compute the new parameters \ e o’'.

e Find the linear relation between z and y knowing that y(3) = 2 and y(1) = 5.

e.g. Hubble law. In 1929, Hubble'” discovered the velocity-distance relation
v=Hd

of distant galaxies, suggesting the expansion of our Universe. A recent estimation of the Hubble
constant gives the value H = 73.8 + 2.4 (km/s)/Mpc.

+1000KM
500KM
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E Z
o
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] e 2
] .:
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o W¥PARSECS 2210* PARSECS
FIGURE 1 k

Velocity-Distance Relation among Extra-Galactic Nebulae.
Picture from the original paper by Hubble.

e.g. Celsius, Fahrenheit and Kelvin degrees. Temperature may be measured in Celsius
(C), Fahrenheit (F') or Kelvin (K) degrees, and

F=18-C+32 K =(F+459.67)/1.8

e Find the relation between Kelvin and Celsius degrees, and the ratio between one degree
Kelvin and one degree Fahrenheit.

e Find the Celsius degrees of the cosmic background radiation, estimated around 3K.

17E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, Proc. N. A. S. 15
(1929), 168-173.
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Powers and polynomials. A (real) polynomial of degree n is a linear combination

p(z) = apz"™ + ap_12" "+ -+ arx + ag

of integer non-negative powers of z, with “coefficients” ag,a1,...,a, € R, and a, # 0. A root of
the polynomial p(x) is a number r such that p(r) = 0. A polynomial of degree n > 1 with roots
21,22, ... %zp is proportional to the “monic” polynomial

(r—2)(x—2)...(x—2p)=2" — (1 + 22+ -+ 2z)2" -+ (2122...2,)

A polynomial of degree n has n complex roots (some or all of which may coincide!), but a number
k < n of real roots (which may be zero!).

Graphs of two cubic polynomials

e Draw the graphs of

z? (x +1)? z? -1 z3 NI 232 r+2?
e Give examples of polynomials with roots 1, 2 and 3.
e Give examples of real polynomials without real roots.

Rational functions. Quotients of polynomials like

p(x)  apa" +...a17 + ag
q(x)  bpx™ + -+ bz + by

defined outside the real roots of the denominator g(x), are called rational functions.

Cycles. Many natural phenomena are periodic, or “quasi-periodic”. A function f(t) of a real
variable t is said periodic if

fE+T) = f(t)

for all “times” ¢ € R and some minimal 7" > 0 called period (of the function f). The parameter

w:= 1/T is then called frequency (it measures how many time a given value f(¢) recurs each unit
of time).

e If f(¢) has period 3 and g(¢) has period 5, find the periods of the functions
2/t +8)+2  f(7t)  f(O  g(t/9)  F@E)+glt)  f(t)-9(t)

e What is the frequency of friday 13th’s?
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Trigonometric functions. The most important periodic functions (using which we may approx-
imate all reasonable periodic functions with arbitrary precision!) are the “trigonometric functions”
sine and cosine. If @ denotes the length of the arc between the point (0, 1) and the point (z, y) along
the unit circle S? := {(x,y) € R?t.q. 22+ y? = 1} of the Cartesian plane, then the coordinates of
the final point are z = cos# and y = sinf. By Pythagora’s theorem,

‘ (cosf)? + (sinf)? =1 ‘

Sine and cosine are periodic functions, with period equal to the length of the unit circle, which
is 27. Both are bounded between +1. In particular, cosd = 0 iff § = 7/2 + nr with n € Z, and
sin@ = 0 iff § = nxw, with n € Z. Sine e cosine satisfy the “sum and difference formulas”

’ cos(f £ ¢) = cos() cos(¢p) F sin(P) sin(¢) sin(f £ ¢) = cos() sin(¢) + sin(9) cos(9) . ‘

Also useful is the tangent function, defined by tan@ := (sin8)/(cos ), for values of 0 # 7/2 + nm,
with n € Z.

The restriction sin : [—7/2,7/2] — [—1, 1] is increasing, and therefore admits an inverse func-
tion, arcsin : [—1,1] — [—m/2,7/2]. The restriction cos : [0,7] — [—1,1] is decreasing, and
therefore admits an inverse function, arccos : [—1,1] — [0, 7].

Verify that the functions ¢ — sin(wt) and ¢ — cos(wt) are periodic with period 27/w, and
therefore frequency v = w/(27).

Draw the graphs of
sin(f + 7/2) cos(f) + cos(26) sin(#) - sin(10 - 6) 6 -sind

Verify that
o 14 cos(20)

2

o 1 —cos(20)

(cos ) 5

(sin )

Compute
sin(arcsin(—1/2)) arcsin(sin(77/6)) cos(arccos(v/3/2)) arccos(cos(—m/3))

Exponentials and logarithms. Given a base b > 0, it is possible to exten its fractional powers
b(P/9) to irrational values of the exponent, and therefore define an ezponential function

z — b

for all z € R (a true definition will be given later!). The exponential satisfies

O = b b= 1 B0 =1

In particular, it is always positive, i.e. b* > 0. If the base is b > 1,

’ lim, ., b* =0 e lim,_, o 0" = oo‘

When b # 1, the exponential x — b is a monotone function (increasing if b > 1, decreasing if
0 < b < 1). Its inverse function (defined for positive numbers!) is called base b logarithm, and
denoted by log, : Ry — R. Thus,

logyy == sse y=0b"

The base 10 logarithm is also called simply log := log;, by engineers. The logarithm satisfies the
properties

’ log, 1 =0 log, zy = logy, « + log, y log,(1/x) = —log, = ‘

[logy(x/y) = log,# —logyy  log,a¥ = ylog, |

Cjanging the base ...
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e Compute
27 34 572 10%0 x 1027

log, 16 logs0.3  logy, 10000  log,,0.00000001

e.g. pH. The concentration of H3O" is measured in logarithmic scale, using the

pH := —log; [H307]

e.g. Apparent luminosity of stars. The apparent luminosity of stars is a function
m = mgy — 2.5 - log,o(F/Fo)

of the flow F' (in a given frequency interval), where Fy and my are certain reference values.
Logarithmic and semi-logarithmic scales.
Other elementary functions?

Limits. Let f: X < R — R be a real valued function of a real variable, and let a € R be an
accumulation point of its domain X (i.e., a point such that there exists a sequence (z,,) of points
of X different from a such that x,, — a, that is, a point such that any interval (a — &,a + ¢€)
with e > 0 contains points of X other than a). For example, X may contain a union of intervals
(b,a) v (a,c), or an interval like (b,a) or (a,c). The number A is the limit of f when z — a,
notation lim,_,, f(z) = A (or lim, ,,+ f(z) = Aif X = (b,a) or X = (a, c), respectively), if for
any “precision” € > 0 there exists a “tolerance” § > 0 such that an error 0 < |z — a| < 0, with
x € X, implies an error |f(z) — A| < & (observe that the actual value of f(a), if any, is irrelevant!).
Limits obey the following algebraic rules:

’limx_,a f(z) =F and lim, ,,g9(z) =G = lim,,f(z)tg(z)=F+ G‘

’hmwﬂa f(z) =F and lim, ,,g9(x) =G = lim,,, f(z) g(x)=F- G‘

lim, o f(z) = F and lim, o g(x) =G = lim, ., f(2)/g(z) = F/G (i G #0)]

A useful principle to compute limits is the following

’g(m) < f(z) < h(z) and limg_qg(x) =lim, . h(z) = A = lim,,, f(z) = A‘

e Compute

. . a? —1 . || I 3z3 —5x + 1

im im im — im —

-3~ T — z—1 . — 1 0+ T =0 53 4+ 22
sinz tan 6

lim V142 lim lim - sin(1/x) lim ——
z—8 z—0 x z—0 6—r/a 1l — cos
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Continuous functions. A real valued function of a real variable f : X ¢ R — R is continuous
at the point a € X (the point @ must belong to the domain!) if for any “precision” £ > 0 there exists
a “tolerance” ¢ > 0 such that an error |x — a| < §, with z € X, implies an error |f(z) — f(a)| < e
(that is, the image of an interval of radius § centered at a belongs to an interval of radius e
centered at f(a)). In particular, when a is not an isolated point of X (i.e. if there exists no
interval I = (a —¢€,a + €) with € > 0 such that X n I = {a}), a function is continuous at a € X iff
lim, ., f(z) = f(a). A continuous function is a function which is continuous at all points of its
domain.

Powers, polynomials, trigonometric functions, exponentials and logarithms are continuous func-
tions in their natural domains. Sums f(z) £ g(x), products f(x) - g(z) and quotients f(x)/g(zx)
(where g(z) # 0) of continuous functions are continuous functions. A composition (g o f)(z) =
g(f(z)) of two continuous functions f(x) and g(y) is a continuous function too.

Intermediate value theorem. A continuous function that takes positive (or negative) value
f(e) > 0 at some point ¢ of its domain, remains positive (or negative) in some neighborhood
(¢ — d,¢ + 9) of the point ¢. This is obvious taking, for example, € = |f(c)|/2 in the definition of
continuity at ¢. A consequence of this “stability of sign principle” and of the supremum axiom of
the real line (the completeness axiom) is

Theorem 9.1 (Bolzano). If a continuous function f : [a,b] — R takes values f(a) and f(b) with
opposite signs (i.e. f(a)- f(b) <0) then there exists a point ¢ €]a, b where f(c) =0

Proof. Indeed, assume that f(a) < 0 and f(b) > 0 (the other case being analogous). The set
A ={z € a,b], st. f(z) <0} is not-empty, since it contains a, and bounded from above, since
b is an upper bound. Let ¢ = sup A. The value f(¢) cannot be negative neither positive, for
otherwise the function would be negative or positive in a whole neighborhood of ¢, and in both
cases ¢ could not be the supremum of A. Thus, f(c) must be equal to zero. O

A consequence is the

Theorem 9.2 (Intermediate value theorem). A continuous function f : [a,b] — R assumes all the
values in the interval between f(a) and f(b), that is, if f(a) < C < f(b), orif f(b) < C < f(a),
then there exists a point c €]a,b[ where f(c) = C.

Proof. Just apply the Bolzano theorem to the continuous function f(z) — C. O

e Show that it is possible to solve 2° — x + 3 = 0 in the interval [—2, —1].

e Show that there exists a number z in the interval [0, /2] such that cosz = x .

Discontinuous functions. Discontinuous functions which are useful in engineering and physics
are the integer part/floor, defined by

[t] ;=max{ne€eZ st. n<t},
and the unit jump at 7, defined by

uT(t):z{O ift<r

1 ift>r

e Draw the graphs of
fAy=t—=[t]  1—uo(t)

0 if [t] is even t— [t] if [t] is even
1) = { 1 if [t] is odd 1) = { 14 [t] -t if [t] is odd
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Extrema. Uma funcio continua f : [a,b] — R definida num intervalo fechado e limitado possui
(pelo menos) um minimo e um méximo.

e Determine minimos e méximos de (1 — z) no intervalo [0, 1].
e Determine minimos e méximos de |z — 1| — |z — 2| no intervalo [0, 3].

e Dé exemplos de fungdes continuas definidas em (0,00) ou em (0,1) sem mdximos nem
minimos.
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10 Discrete-time models and iterations

ref: [EKO05, HK03]

e.g. Transformacgao logistica. Um modelo mais realista da dindmica de uma populagdo num
meio ambiente limitado é

Pn+1 = )\Pn(l_Pn/M)
onde P, > 0 é a populagao no tempo n, e a contante M > 0 é a maior populagao suportada pelo
meio ambiente (observe que P,;1 < 0 quando P,, > M, o que pode ser interpretado como “ex-
tin¢ao” no tempo n+1). A substituicdo z,, = P,/M transforma a lei acima na forma adimensional

Tnl = Axn(l - xn)a

chamada transformacao logistica'®. Se 0 < X < 4, a transformagao logistica fy(z) := A\z(1 — x)
envia o intervalo unitdrio no intervalo unitdrio, i.e. fx : [0,1] — [0,1].

Graficos da transformagao logistica f,\|[0,1] quando A =05, A =2, A=3e A =4.
Os ponto estacionérios sdo o estado trivial 0 e
A—1

T="""

A

desde que A = 1. Um applet Java com simulagoes do sistema estd no meu bestiario.

Discuta e interprete o comportamento das solugoes para valores do parametro 0 < A < 1.
Discuta e interprete o comportamento das solugdes para valores do parametro 1 < A < 3. Observe
os fenémenos que acontecem ao variar o parametro A entre 3 e 4. O que acontece quando A > 4 7

Modelos discretos. Um sistema dinamico com tempo discreto é definido por uma equagao/lei
recursiva

T = F(@a), (10.1)
onde xz,, € X denota o estado (posi¢ao, populagéo, concentracao, temperatura, ...) do sistema no
tempo n € Ny :={0,1,2,3,...} (segundos, horas, meses, anos, ...). O espaco dos estados pode ser
um intervalo X R da recta real, um domfnio X < R? do espaco euclidiano de dimensao d, ou um
conjunto mais exético. A dinamica é portanto determinada por uma transformacdo f : X — X do
espago dos estados em si mismo.

As trajetorias do sistema dindmico sdo as sucessoes (T, )neN,

xg —  x1:=f(zg) — x2:i=f(x1) — ... > zppri=flzn) — L

definidas a partir de uma condig¢do/estado inicial xg € X usando a recursao (10.1). A imagem de
uma trajetéria, o conjunto O(xo) := {xg, z1, z2,...} < X, é dito drbita do estado inicial xg.

Equilibrios e solugoes periddicas. As solugoes estaciondrias, ou de equilibrio, sdo as tra-
jetoérias constantes x,, = ¢ para todos os tempos n € Ny, onde o estado estaciondrio, ou de equilibrio,
ce X é um “ponto fixo” da transformacao f : X — X, ou seja, um ponto tal que

fle) =c.

As solugées periddicas sdo as trajetérias (z,) tais que zn4, = x, para todos os tempos n e
algum tempo minimal p > 1, dito periodo. Portanto, uma o6rbita periédica é um conjunto finito
{zo,x1,...,2p_1} = X de pontos que sdo permutados pela transformagéo f.

18Robert M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459-467.


http://java.com/
http://w3.math.uminho.pt/~scosentino/bestiario/logistic.html
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help:  As we already know, Mathematica®8 may compute and plot trajectories of, for example,
the logistic map 2,41 = 3.7z, (1 — z,), with initial condition xy = 0.33, with the instructions

RecurrenceTable[{x[n + 1] == 3.7 x[n] (1- x[n]), x[0] == 0.33}, x, {n, 0, 100}]
ListPlot[%, PlotRange -> All]

help: Trajectories may be obtained with Maxima using the “evolution” command, as

(%i1) load("dynamics")$
(%12) evolution(3.7*x*x(1-x), 0, 100);

Trajetorias convergentes. Se uma trajectéria (z,,) é convergente e se a transformacao f : X —
X é continua, entao o limite xo = lim,,_, o x, é um estado estacionario, pois

flaw) = f ( lim zn) = lim f(z,)= lm z,4; = 24 .
n—00 n—00 n—a0

Solving a problem by recursion. The above is a most useful idea in mathematics. If we are
looking for a solution of some “equation” g(x) = y, we may try to rewrite it in the form f(x) =z
(in a naive way summing x — y to both sides, or in some other clever way as we will encounter
later), so that we are really looking for a fixed point of a transformation f : X — X. Then, we
may try to decide if some trajectory of the recurrence z,+1 = f(x,) converges. If this happens,
the limit x, is one of the solutions we were after.

Limits and continuity in Euclidean spaces. Limits may be defined for sequences in any
metric space (X,d), simply replacing |z, — a| with the distance dist(z,,a). A metric space is a
set X equipped with a metric, a symmetric non-negative function dist : X x X — [0, 00) which is
non-degenerate, i.e. dist(z,y) = 0 iff © = y, and which satisfies the “triangular inequality”

dist(x,y) < dist(z, z) + dist(z,y) for any z,y,z € X .

This is the case of the Euclidean space R?, the linear space of vectors z = (z1,... ,Zq) equipped
with the Euclidean distance dist(z,y) := |« — y|, where the Euclidean norm is |z| := 4/{z,y) and
the Euclidean inner product is {z,y) := z1y1 + - - + Zq¥a-

A function/map f : X — Y between two metric spaces (X, distx) and (Y, disty) is continuous
if whenever x,, — x in X we also have f(z,) — f(z) in Y (that is, we are allowed to exchange
limits with the map). Equivalently, if for any € X and any “precision” £ > 0 there exists an
allowed “error” § > 0 such that distx (z,z’) < ¢ implies disty (f(x), f(z')) < e.

help:  The RSolve command of Mathematica finds analytic solutions of recurrent sequations/systems,
if possible.

help:  The Nest command of Mathematica also does iterations.

Anilise grafica. Se o espaco dos estados é um intervalo X < R, as trajetérias podem ser
observadas no plano z-y esbocando o caminho poligonal (cobweb plot)


http://www.wolfram.com/mathematica/
http://maxima.sourceforge.net/
http://reference.wolfram.com/mathematica/tutorial/SolvingRecurrenceEquations.html
http://www.wolfram.com/
http://reference.wolfram.com/mathematica/tutorial/ApplyingFunctionsRepeatedly.html
http://www.wolfram.com/
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(fﬂo,%) — ($0,$1) — (551,361) — (551,362) — ($2,$2) — (562,103) = ...

entre o grafico da transformagéo, y = f(x), e a diagonal, y = x.
help:  You may find a GeoGebra code and the derived applet in my web page.

help:  With Mathematica®8 , you may plot the graphs of both the map y = f(z) and the
identity y = = with the “Plot” command

Plot[{3.7 x (1 - %), x}, {x, 0, 1}]

and get

help: A cobweb plot with Maxima is obtained with the “staircase” commands, as

(%i1) load("dynamics")$
(%12) staircase(3*x*(1-x), 0, 10, [x, 0, 11);

Estude as trajetérias (ou seja, determine os estados de equilibrio, as trajetérias periddicas, e
o comportamento assimptdtico de algumas das outras trajetdrias) dos sistemas dindmicos definidos
pelas seguintes transformacoes do intervalo

f@)=3e @) =7r  f@)=-=
fl@)=3x+1 fl@)=2x-7 f(x)z%erE)
fa)=l-al  fa)=a’- @)=


http://www.geogebra.org/cms/
http://w3.math.uminho.pt/~scosentino/teaching/am_BIOQ_2011-12/GeoGebraApplets/Logistic.ggb
http://w3.math.uminho.pt/~scosentino/teaching/am_BIOQ_2011-12.html
http://www.wolfram.com/mathematica/
http://maxima.sourceforge.net/
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e.g. Equilibrio de Hardy-Weinberg. Considere a transmissao hereditdria de um gene com
dois alelos, A e a. Sejam Py, Qo € Zo =1 — (Py + Qo) as frequéncias dos genétipos AA, aa e Aa,
respectivamente, numa dada populagao inicial. Entao as probabilidades de ter o alelo A ou a na
formagao de um gameta sao

1 1
p0:P0+§Z0 e QO:1—p0:Q0+§Zo7

respectivamente. Na fecundacdo, logo na primeira geracao, teremos os genotipos AA, aa e Aa com
probabilidades/frequéncias

P =p3, Qi=q5 e Z1 = 2poqo ,

respectivamente. Sucessivamente, as probabilidades de ter os alelos A ou a na formacao de um
gameta na primeira geragao sao

1 1
p1:P1+§Zl e Q1=Q1+§Zl.

respectivamente. Mas p; = p3+pogo = Po € ¢1 = ¢3 +pogo = qo- Consequentemente, as frequéncias
dos trés gendtipos na segunda geragao serao

Py =pi =Dy, Q=q=Q1 e Zy =2p1q1 = 21

Ou seja, a distribuicao dos trés genétipos atinge um valor estacionario a partir da primeira geracao
(Hardy""- Weinberg®® equilibrium/principle/law) This is a physically interesting dynamical system
with (mathematically) trivial dynamics.

e.g. Selegcao natural, modelo de Fisher, Wright e Haldane. Um modelo simples de selecao
natural, proposto por Ronald Fisher?!, Sewall Wright?? e John Burdon Haldane??, considera apenas
um gene com dois alelos, A e a. A vantagem ou desvantagem competitiva dos diferentes genétipos,
AA, Aa e aa, é modelada por coeficientes de “sucesso biol6gico” (fitness), daa, daa € daa, que
determinam as diferentes taxas de sobrevivéncia, e portanto de reprodugao. Sejam 0 < p, <1 e
qn = 1—p, as frequéncias dos alelos A e a, respetivamente, na n-ésima geracao. Entao a frequéncia
do alelo A na (n + 1)-ésima geracgéo é dada por

ap? + Pndn
ap? + 2pngn + Bg2

Pn+1 =

onde a = ¢pa4/P4aa > 0e = daa/Paa > 0.
As solugoes estacionarias sao as solugoes triviais 0 e 1, e, quando « e 3 sdo os dois superiores
ou os dois inferiores a 1,
18 —1]

o= 1]+ 8= 1]

Quando @ < 1 < B ou 8 < 1 < a, na populagao assimptdtica apenas sobrevive o alelo
favorecido.

p:

19G.H. Hardy, Mendelian proportions in a mixed population, Science 28 (1908), 49-50.

20 W. Weinberg, Uber den Nachweis der Vererbung beim Menschen, Jahreshefte des Vereins fir vaterldndische
Neturkunde in Wiirttemberg 64 (1908), 368-382.

21R.A. Fisher, Genetical Theory of Natural Selection, Clarendon Press, 1930.

223, Wright, Evolution in Mendelian populations, Genetics 16 (1931), 97-159.

23].B.S. Haldane, A Mathematical Theory of Natural and Artificial Selection (1924-1934). J.B.S. Haldane, The
effect of variation on fitness, Am. Nat. 71 (1937), 337-349.
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a<l<p b<l<a

Quando o > 1 e 8 > 1 (ou seja, os gendtipos AA e aa tém uma vantagem competitiva em
relagdo ao gendtipo Aa), o estado estacionério p é instdvel, e pequenas perturbagoes zo = pt e do
equilibrio produzem comportamentos assimptoticos diferentes, a extin¢do de A ou a extincao de
a, dependendo do sinal de te (disruptive selection).

Quando a < 1 e 8 < 1 (ou seja, o gendtipo Aa é o favorecido), o estado estaciondrio P é estével,
e portanto os dois alelos convivem na populagio assimptética (heterosis).

A 3 5 < o 3 > 5 s - u 5 . n 5 > 3 2
< o o o [ o o o o o o o o o o o o o

Disruptive selection: 1 < a < 3. Heterosis: a < < 1.

e.g. Hénon map. The Hénon map** is the recursive map of the plane

{ an:l—l—yn—ax%

Yn+1 = an
Depending on the values of its parameters, its trajectories show regular, “intermittent” or “chaotic”
behavior. If you choose the parameters a ~ 1.4 and 8 ~ 0.3, you see the “Hénon attractor”.

help:  With Mathematica®8 , you may use the commands

RecurrenceTable[{x[n + 1] == y[n] + 1 - 1.4 x[n]"2,
y[n + 1] == 0.3 x[n], x[0] == 0.6, y[0] == 0.2},
{x, y}, {n, 1, 1000}] // Short

ListPlot[%, PlotRange -> All]

to get the following picture of the “Hendn attractor”.

s
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24M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 69-77.


http://www.wolfram.com/mathematica/
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help:  Two-dimensional orbits may be obtained with Maxima using the “evolution2d” command,
as

(%i1) load("dynamics")$

(%i2) f: 1+y+1.4*x"2$

(%1i3) g: 0.3*x$

(%i4) evolution2d([f,gl, [x,yl, [0,6, 0.2], 1000, [style,dots]);

e.g. Cigarras periddicas. As cigarras passam quase toda a vida, um periédo de 1 < ¢ < 17
anos (dependendo da espécie), no chdo como ninfas, e depois saem durante as poucas semanas ou
meses de vida adulta (acasalar, pdr ovos e morrer). Se os predadores tém ciclos de vida de py anos,
a escolha de ¢ que minimiza os encontros é um numero primo diferente dos pi’s. As magicidada
(uma cigarra americana) saem da terra cada 13 ou 17 anos, aproximadamente sincronizadas em
diferentes lugares do continente. Modelos matematicos que sugerem “expligoes” do fenémeno,
descrito por Stephen Jay Gould em [Gou77], foram propostos a partir dos anos ‘70 27 20 27,
A game on prime number and cicadas is in Marcus du Sautoy’s page Music of the primes.

Orbit diagram. Consider a family of transformations

Tny1 = f)x(xn) 5

depending on a parameter A\. The behavior of a typical orbit may change as A changes. An
interesting picture is obtained if we plot the parameter A\, within some interval, versus a typical
orbit of fy, say {100, Z101,---,Z200} starting from a random initial point zg.

1.0

0.8 o . o
0‘6 _"77/""7""”7 - ;\\\
X : h I -

0.4

02 -

0.0 T T T T T T T T T
24 26 28 30 32

Orbit diagram for the logistic family (from the Wikipedia).

help: A orbit diagram with Maxima is obtained with the “orbits” command, as

(%11) load("dynamics")$
(%12) orbits(a*xx(1-x), 0, 10, 100, [a, 0, 4], [style, dots]);

25F.C. Hoppensteadt and J.B. Keller, Syncronization of Periodical Cicada Emergences, Sciences, New Series, 194
(1976), 335-337.

26R.M. May, Periodical cicadas, Nature, 277 (1979), 347-349.

27E. Goles, O. Schulz and M. Markus, Prime number selection of cycles in a predator-prey mode, Complexity 6
(2001), 33-38.


http://maxima.sourceforge.net/
http://www.musicoftheprimes.com/games/cicada/
http://en.wikipedia.org/wiki/Bifurcation_diagram
http://maxima.sourceforge.net/
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11 Derivative

ref:  [Ap69, RHBO6)

Slope. We pose the problem to find, actually to “define”, the slope of the graph of a real valued
function f(x) at some point zg of its domain. For x # xg, we may compute the slope of the straight
line passing through the points (xq, f(z¢)) and (z, f(x)) of the Cartesian plane z-y, which is equal

to the quotient
f(@) = f(xo)

T — X
We define the slope of f at xy as the limit, whenever it exists, of the above ratio when =z — =z,
namely
) = tim L =S@0) (11.1)

Tr—T0 €T — xo

We observe that a linear function f(z) = Ax + a has constant slope equal to f'(zg) = A. In
particular, a constant function f(x) = a has zero slope f/(zp) = 0 everywhere.

Mean and instantaneous velocity. When the the independent variable is a “time” ¢, and the
function r(t) represents a “position/distance” at different times, the quotient

represents the mean velocity between the times ¢ and tg. The limit

v(tp) := lim M.

11.2
t—to t—1p ( )

is therefore the (instantaneous) velocity at time t.

e.g. Movimento rectilineo uniforme. A lei do movimento rectilineo uniforme num referencial
inercial é
q(t) = go + vot,

onde q(t) = (x(t),y(t), 2(t)) denota a posicao no tempo t, vg € R? a velocidade e gy € R a posicao
inicial.

e Determine a velocidade média no intervalo de tempos entre t e t+¢, e a velocidade instantanea

no tempo ¢.
e Determine a lei hordria de uma particula que viaja com velocidade de 3 m/s e que no instante

t = 10 s estd na posi¢do ¢(10) = 10 m. Quando estava na origem?

e.g. Aquiles e a tartaruga. Aquiles (or Usain Bolt?) comega a correr com velocidade de 10
m/s em direcgdo de uma tartaruga que a sua vez foge com velocidade de 0.1 m/s. A distancia
inicial entre Aquiles e a tartaruga é de 100 m.

e Determine quanto tempo demora Aquiles a percorrer 1/2, 1/2 4+ 1/4, 1/2+1/4+1/8, ..., da
distancia inicial, e passado quanto tempo chega ao ponto onde estava inicialmente a tartaruga.

e Determine a distancia d(t) entre Aquiles e a tartaruga no tempo t.

e Aquiles alcanca a tartaruga? Se sim, em quanto tempo?
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e.g. Queda livre. A queda livre de uma particula préxima da superficie terrestre é modelada
pela lei horaria

1
z(t) = zo + vot — ith,

onde z(t) denota a altura da particula no tempo ¢, zp é a altura inicial,vy é velocidade inicial, e
g ~ 980 cm/s? é a aceleracdo da gravidade préximo da superficie terrestre.

e Determine a velocidade média
2(t1) — z(to)
t —to

no intervalo de tempos entre tyg = t e t1 = t+¢, e a velocidade (instantanea), ou seja, o limite

Etoil =

L a(tre) —z(t)
v(t) i= lim —————

e Determine a aceleragao da particula, ou seja, o limite

o w(t+e) —u(t)
at) =l =—————

e Uma pedra é deixada cair do topo da torre de Pisa, que tem ~ 56 metros de altura, com
velocidade inicial nula. Calcule a altura da pedra apés 1 segundo, o tempo necessério para a
pedra atingir o chao e a sua velocidade no instante do impacto.

e Com que velocidade inicial deve uma pedra ser atirada para cima de forma a atingir a altura
de 20 metros, relativamente ao ponto inicial?

e Com que velocidade inicial deve uma pedra ser atirada para cima de forma a voltar de novo
ao ponto de partida ao fim de 10 segundos?

Derivative. Let f: I — R be areal valued function defined in some open interval I = (a,b) < R.
The function f is differentiable at the point x € I if there exists the limit
f/(z) == lim flzte)— flz) 7 (11.3)
e—0 £
called derivative of f at xz. Equivalently, the function f is differentiable at the point x if there
exists a number A, called derivative of f at  and denoted by A = f/(z), such that for all sufficiently
small “variations” € we may write

flx4+e)—flx)=A-e+7r(e) (11.4)
where the “remainder” r(e) satisfies
tim ") _ g (11.5)
e—0 ¢

Thus, the derivative A = f/(z) is the “slope” of the best linear approximation
flx+e)~ flx)+ ¢ (11.6)

to the function f near the point . Geometrically, this is as well the tangent line at the graph
Gr:={(z,f(x), veI} cR?of f at the point (z, f(x)).

Taking the limit as ¢ — 0 in (11.4), we see that f(x +¢) — f(z). Thus, a function which is
differentiable at z is also continuous at x.

A function f: I — R is differentiable if it admits a derivative f’(x) at all points z € I.

Successive derivatives. If f: I — R admits derivatives for all z in its domain, we may regard
the derivative f’ as a function, say f’ : I — R, hence try to compute its derivative. The derivative of
the derivative of f is called second derivative of f, and denoted by f” := (f’)’. In the same manner
we may define the successive derivatives f”, f” and so on (i.e. inductively as f*+1) .= (f(®))"),
whenever they exist.



11 DERIVATIVE 48

Leibniz’ notation. We may write y = f(z), hence denote by dy := f(z+dz)— f(z) the variation
of y due to a variation éx of . Then the derivative is the limit
fle+déx)— flz) .. Oy _dy

lim = lim =
62—0 ox sx—0 Ox dx

This is Leibniz’” notation for derivatives. The definition (11.4) then reads éy = Adx + r(dx), with
r(dz)/éx — 0 as dz — 0.

The second derivative is then 32732’, the third Z%{, and so on.

Observe that if we rescale both variables as £ = Az and § = py, with A > 0 and g > 0, then
the derivatives change according to

dy pdy PPy op dPy d'y  podhy

di M dx dz2 A2 da? dik Nk dgk

This explain the different use of the exponents in Leibniz’ notation.

Derivative as velocity, Newton/physicists’ notation. When the independent variable has
the meaning of “time”, hence is denoted by ¢t € I < R, a function t — x(t) represents a trajectory,
or a time law, the way some observable called x is changing in time. Its time derivative is then
denoted using a “dot”, as

. dx

&=
and referred to as a velocity v := &, or “time variation” (newton called it “fluxione”) The second
derivative a := Z is also meaningful, and it is called acceleration. Very few (not to say none!)

physical phenomena require the use of higher order time derivatives.

Calcule as derivadas f/(z) e f”(x) de cada uma das seguintes funcdes f(x) nos pontos onde
existem.

fla)=22-3  fl@)=2 fl@)=la] flz)=

Derivatives of elementary functions. It is clear that the derivative of a constant function
flx) = cis f'(x) = 0. Moreover, in high school you learn to derive positive integer powers,
(x™) = na™~!, and the trigonometric functions sin’ = cos and cos’ = — sin.

Use the binomial formula to prove the above formula for the derivative of powers.

help:  With Mathematica®8 , you may define a function f(z) = e —22 cos(3z) with
flx_] := Exp[-x"2] Cos[3 x]

and then derive with a “prime”, as

£ [x]

to get

—2e " cos(3z) — 3¢ sin(3z)

Algebra of derivatives. It is clear that the derivative is linear, namely

AN =Af" and  (ft+g) =f+4 (11.7)

whenever f and g are differentiable functions (defined in a common interval) and A € R is an
arbitrary constant.

The product f-g of two differentiable functions f and g is also differentiable, and its derivative
is given by Leibniz’ rule

(fo) =fg+fg (11.8)


http://www.wolfram.com/mathematica/
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Indeed, let y = f(x) and z = g(z). A small variation dz induces variations oy := f(z + dz) — f(x)
and 6z := g(z + dz) — g(x). Summing and subtracting y - (z + §z) to the variation of f - g below,
we get

(y+d0y) (z+02) —yz B (y+0y) - (z+062)—y-(z+62)+y-(2+d2) —yz
ox B ox
oy 0z
= %-(z+6z)+y-£
dy e
dx—0 dx z ) dr

since dz — 0 (because g is continuous).
The quotient f/g of two differentiable functions f and g is also differentiable where the denom-
inator is g(z) # 0, and its derivative is given by the formula
_flg—fg

(f/9) = 7 (11.9)

To see this, we first compute the derivative of 1/g(z) at a point where g(x) # 0. If z = g(x) and
0z = g(x + 0x) — g(z), then

1/g(x +dx) — 1/g(x) 1 2 —(2+102) _ldz
ox (24 0z2) -2 oz el Ty

Finally, we apply Leibniz’ rule to the product f(z) - (1/g(x)), to get (11.9).

Calcule a derivada f/(z) de cada uma das seguintes fungdes f(x) nos pontos onde podem
ser definidas.

f(z) =3z f(z) = zsin(x) fz) =17
fx)=2®=3z+1  fa)=+vzx  fl&)=a"'—a®8

W=7 @)=ty f@-
n\r) = Sin(x) sec\r) = L cosec\r) = L
tan(z) cos(x) (@) cos() () sin(z)

Calcule as derivadas P’(0), P”(0), P"(0), ..., P(™(0), P*1)(0), de um polinémio

P(z) =ap + a1z + asx® + ...+ apa™ .

Estime os seguintes valores, usando a aproximagao linear f(z +¢) ~ f(z) + f'(z) - €.

1

Sln(OOl) V 1.1 COS(TF — 003) m

Chain rule. Let g: I c R — Rand f:J c R — R be differentiable functions, with f(I) < J,
so that we may form the composition (f o g) : I — R, the function z — f(g(x)). If both f and g
are differentiable, then f o g also is differentiable, and its derivative is given by the chain rule

(fog)(z)=f(g(z)) g'(z). (11.10)
Here Leibniz’ notation is particularly meaningful. If y = g(x) and z = f(y) = f(g(z)), then
d: _dz dy
de dy dx

That is, you may act as if you could divide by “dy”.
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For the proof, we use Leibniz’ notation again. For small dz, we define the corresponding
variations 0y = g(z + 0z) — g(x), hence dz = f(y + dy) — f(y). By (11.4), there exists a function
e(e), which converges to 0 when € — 0, such that

dz
0z = @-&j—l—e(éy)-éy

for sufficiently small éy. Consequently,

oz  (dz oy dz dy
Sx (dy +e(6y)> sz 70 dy dw

since 0y — 0 when dx — 0.

Calcule a derivada f’(x) de cada uma das seguintes fungoes f(z) nos pontos onde podem
ser definidas.

f(z) = cos(x?) flz) =+2x -1 f(z) = sin (vz)

= (sin(z))? x) = sin(cos(z® gg:w
f(x) = (sin(z)) f(x) (cos(z”))  f(x) NG

Derivatives of inverse function. Let f: I < R — R be one-to-one function onto J = f(I),
and let h : J — I be its inverse, so that hA(f(z)) = x for all z € I and f(h(y)) =y for all y € J. If
f is differentiable at « € I and h is continuous at y = f(z), then h is differentiable at y if and only
if f'(x) # 0, and if this is the case, its derivative is

, B 1
W) = FaaT (11.11)

Indeed, if h is differentiable at y, we may apply the chain rule to h(f(z)) = x to get h'(y)- f'(x) = 1,
hence (11.11) whenever f'(z) # 0. Conversely, given a variation 0y, let dx = h(y + 0y) — h(y) be
the corresponding variation of x. Since h is continuous at y, x — 0 whenever dy — 0. Therefore,

b _ (o) )™
Sy \oz 0220\

provided f’(z) # 0.

e Show that the derivative of 21/, for z > 0 and n = 1,2,3,..., is 2at/m~L.
e Calcue as derivadas das seguintes fungoes nos pontos onde podem ser definidas.

f(z) = arcsin(x) f(z) = arccos(x) f(z) = arctan(x)
e Calcule a derivada da fungdo inversa de f(z) = = + 2 no ponto y = 0.

Taxas de variagao. Determine a taxa de variacao

° %, onde A é a drea de uma circunferéncia e r o seu raio,

° %, onde V' é o volume de uma bola e r o seu raio,

%’ onde V' é o volume de um cubo e ¢ o seu lado.
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e.g. Growth of a spherical cell. A spherical cell grows absorbing raw material (necessary for
its metabolism) from its surface, hence at a rate aS proportional to the surface S. On the other
hand, the rate of raw material necessary for the metabolism is proportional to the volume V of
the cell, say V. Therefore, the cell can survive only when SV < «a.S, i.e until its surface area
to volume ratio (SA:V) ratio S/V is grater than some lower limit 5/a. The SA:V of a sphere of
radius r is 3/r, therefore the limit size of the cell is 7 ~ 3a/p. '

If the density p is assumed constant, then the mass pV of the cell grows according to pV = aS.
If r denotes the radius of the cell, we get p4nr?r = adrr?, ie.

T=a/p

and therefore the radius increases linearly with time ¢ according to r(t) = 7(0) + (a/p) - t. Corre-
spondingly, the SA:V ratio decreases as S/V ~ 3/r(t), until a certain limit 3/7 when the incoming
material can no longer support the cell metabolism.

Derivative and growth. A differentiable function f(z) is striclty increasing in intervals where
f'(z) > 0, strictly decreasing in intervals where f’(z) < 0, and constant in intervals where its
derivative vanishes. Consequently, if ¢ is a local maximum or minimum of a differentiable function
f defined in a neighborhood (¢ — €,¢ + €) of ¢, then ¢ is a critical point of f, i.e. a point where

#(c) = 0.

e Esboce os graficos das seguintes fungoes, definidas em oportunos dominios.

f(x)=1—%2 f(a:)=x+% f(x)=1+a?+%2
1
f(x):m fl@) = (@ =1)(z—2)(z - 3)
f(z) = —sin(z) f(z) = sin(z) + sin(2z) fx) = smx(w)

e Mostre que, entre todos os rectangulos de perimetro P fixado, o quadrado é o que tem area
maior.

e Mostre que, dados n ntmeros ai,as, ..., a,, 0 valor de £ que minimiza a soma dos “erros
quadraticos”
(2 —a1)’ + (z—a2)® + ... + (x —ayn)’
é a média aritmética
ay+az+...+an
- .

a =

Mean value theorem and inequality. Let f : [a,b] — R be a continuous function with
f(a) = f(b), and assume that f differentiable in (a,b). By Weierstrass theorem, the function
attains its maximum and minimum values, say M and m, respectively. If both are attained at the
endpoints, then the function is constant and its derivative is everywhere zero at c(a,b). If, on the
other side, its maximum or its minimum is attained at an internal point ¢ € (a,b), then this must
be a critical point. Therefore, there always exists a point ¢ € (a,b) where f’'(¢) = 0. This is called
Rolle’s theorem. More generally,

Theorem 11.1 (Mean value theorem). If f : [a,b] — R is a continuous function which is
differentiable in (a,b), then there is a point c € (a,b) where

f) = f(a) = f'(c)-(b—a).

) : f(0)—f(a)
Proof. Apply Rolle’s theorem to the function f(a) + —5—-=x. O
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In particular, if f/(z) = 0 for all ¢ € (a,b), then f(b) = f(a). Thus, a function with zero
derivative for all points in an interval is constant. More interesting (and physically obvious!) is
that a bound on the derivative implies a bound on the displacement: if | f'(c)| < A for all ¢ € (a, b),
then we have the inequality

1f () = fla)f < A-|b—al.

e Mostre que, se f(z) é um polinémio de segundo grau, entdo a recta que une os pontos (a, f(a))

7 N , s 1: +b
e (b, f(b)) é paralela a recta tangente ao grafico de f no ponto médio %32.

e Mostre que para todos os x e y

|sin(z) —sin(y)| < |z -y

e Mostre que para todos 0 <y < x

He-y) <2 -yt <"z - y)

ny
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12 Aproximation

ref: [Ap69, Li06, RHBO6]
Interpolation. (see Klein)

Polynomial approximation. The value f(a) is the best constant approximation

f(x) ~ f(a)

to a continuous function f(z) near the point a, in the sense that the “error” e(x—a) := f(x)— f(a)
goes to e(e) — 0ase := x—a — 0. The derivative f'(a) is the slope of the best linear approximation

f(@) = fla) + f'(a)(z — a)

to a differentiable function f(z) near the point a, since by the very definition of derivative the
“error” e(x —a) := f(z) — f(a) — f'(a)(x — a) is so small that e(¢)/e — 0 as ¢ — 0.

If f has n derivatives at the point a, we may as well look for the polynomial of degree < n
which best approximate f(x) for small € = 2 — a, hoping to get better approximations. After all,
the only functions that human beings and machines can compute are polynomials (since we only
can do finite sums and multiplications), and we need means to estimate the other functions which,
we believe, describe Nature.

The key observation is the following: a n-times differentiable function e(e) satisfies lim._, e(¢)/e™ =
0 iff its value and its first n derivatives vanish at zero, i.e. ¢*)(0) = 0 for all k = 0,1,...,n (this
is not trivial, and is a consequence of the mean value theorem, see [Li06]). If we apply this to the
error r(z — a) = f(x) — P(x — a), where P is any polynomial of degree < n, we see that the error
goes to zero as r(e)/e" —._, 0 if and only if P is the Taylor polynomial (of the function f at the
point a)

f"(a) f"(a)

P.(z —a) :=f(a)+f’(a)-(sc—a)+T-(x—a)2+T~(x—a)3+-~-+

) (g
/ ()(x_a)n

n!

If, moreover, the derivative f(™ is continuos in the closed interval [a,z] (if a < z, or [z,a] if z < a)
and f"*1(y) exists for all y € (a, ), then there is a point ¢ € (a, ) such that the error is

en(e) = fla+e)— Pu(e) = M&”“

(n+1)!
ie.
fx) = fla) + f'(a)(x —a) + @(z —a)?+ ..+ f(’;)!(a) (z—a)" + f((::_l)l()c') (z —a)" !

This generalizes the mean value theorem.
Integral formula for the error.

e.g. The exponential. We already saw that the exponential is the function defined by the
power series

a0 xn
exp(z) := Z —-
= n!

If we limit the sum to finite degree n, we obtain a sequence of polynomial approximations

1 1
expr~1l+a+ -2+ —a® 4+ + —a"
2 6 n!
This is what a machine computes when asked to produce e”, once chosen an n so large that the
successive terms give no appreciable difference to the sum.
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10 05 05 10

Taylor polynomials of the exponential near a = 0, with degrees n = 0,1,2,3,4.

e.g. Trigonometric functions. The Taylor polynomials of the trigonometric functions cos and
sin centered at 0 start with
1 1 1, 1

cos(x):l—ixz—kﬂx‘l—&-... and sin(z) ~x — —2° + —a° + ...

2 ﬂf2

ez:1+x+%+... log(1+x):x—?+...
23
sin(z) ~x — — + ... cos(z) ~1— —a? + ..
6 2
e ¢ determine estas outras
1 1
— ~1+x+.. Vitr~14+—-x+..
1—=x 2
log(1 4 %) ~ ... sin(re™") ~ ...

e Aproxime e, e estime o erro na sua aproximagao, usando os polinémios de Taylor

2 n
T _ T T
e =1+z+ or Tt + rp(x)

(observe que 1 < e” < 3 no intervalo z € [0, 1]).

Contraction principle. A contraction of an interval X < R is a transformation f : X — X
such that there exists a constant 0 < A < 1 (strictly smaller than one!) such that

[f(@) = F@) <A fa = 2] (12.1)

for all z, 2’ € X (this definition extends to a generic metric space (X, dist) if we replace the absolute
value of the difference with the distance). For example, a differentiable transformation f : X — X
of a (closed) interval X < R such that |f/'(z)| < A < 1 for all z € X is a contraction, since, by the
mean value theorem,

[f(@) = fWI = 1f'(e)- (x =yl < A-]z —yl.

where ¢ is some point between x and y. Observe that a contraction is (uniformly) continuous, since
for any |z —y| < d = /X we have |f(z) — f(y)| < A -0 <e.

Proposition 12.1. (Contraction principle, or Banach fixed point theorem) A contraction
f:X — X of a closed interval X < R (or a complete metric space) has one and only one fized
point p. Moreover, all trajectories defined recursively by xn+1 = f(x) given an arbitrary initial
condition xg € X converge exponentially fast to the fixed point p.
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Indeed, let o € X and let (x,) be its trajectory, so that z,1 = f(z,). If we iterate (12.1),
we see that |x,41 — 2x| < A¥ - |2y — 20]. Using k times the triangular inequality, and then the
convergence of the geometric series of ratio A\, we see that

k—1 k—1 )
|xn+k - xn‘ < Z |xn+j+1 - ‘Tn+j| < |£C1 - x0| : Z )‘n+]
7=0 7=0
o] ] A"
< ‘$1—£U0|-)\R-ZAJ<7'|(E1—x0|.
PP

Therefore, (x,) is a Cauchy (or fundamental) sequence. The limit p = lim,_, x, exists because
X is a closed interval, and is a fixed point of f because

f) = f(lim z,) = lim f(z,) = lim 2,41 =p,

by the continuity of f. Uniqueness of the fixed point is obvious, since if p and p’ are both fixed
points, then [p—p'| = |f(p) — f (@) | < A+ |p —p'| with A < 1, and therefore |p — p’| = 0. On the
other side, iteration of (12.1) implies that |z, — p| < A™ - |zg — p|, so that the convergence z,, — p
is exponential.

The last assertion suggests therefore a practical method to find, actually approximate, the fixed
point: follow a trajectory!

Estabilidade dos estados estacionarios. Seja T um estado estacionario da equagao recursiva

Tny1 = f(‘rn)

ou seja, um ponto tal que f(T) = T. Se a transformagao f(z) é diferencidvel, o principio das
contracoes permite decidir sobre a estabilidade do estado estacionéario.

Se |f/(Z)] < 1, entdo o ponto fixo é atrativo. Existe uma vizinhanga B = [T — ¢,T + ] de p tal
que a restrigdo f|p : B — B é uma contragdo, e T é o seu Unico ponto fixo. As trajetérias de todo
o ponto z suficientemente préximo de Z (ou seja, em B) convergem exponencialmente para T, ou
seja T, — .

Se |f'(Z)| > 1, ent@o o ponto fixo é repulsivo: as trajetérias de todo o ponto xy # T numa
vizinhanca suficientemente pequena de T saem da vizinhanca em tempo finito.

Se f/(Z) = 0, o ponto fixo T é dito super-atrativo. Usando o polinémio de Taylor de grau 1 com
resto, vé-se que, se x( estd numa vizinhanga suficientemente pequena de T, entao a trajetéria de
o converge para o ponto fixo T e a velocidade de convergéncia é “quadratica”’, ou seja,

|Tpy1 —T| < B |70 *f|2

onde  é uma constante.

e Estude a natureza dos pontos fixos das seguintes transformagoes
f(z) = ax f(z) = ax® f(z) = ax + B2?
ao variar os parametros.

e Digite 0.1 na sua maquina de calcular, e pressione repetidamente a tecla “cos”. O que
acontece?

e Estude a natureza do ponto fixo nao trivial do modelo logistico
Tpt1 = Apn(1 —xp)
ao variar o parametro \.

e Estude a natureza do ponto fixo no método de Heron para determinar a raiz quadrada de

a > 0, dado pela iteracao
1 a
Tpn+1 = 5 | Tn + — .
2 Ty
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e.g. Newton-Raphson iterative scheme. Finding 1/a means solving the polynomial equation
22 —a = 0. What about finding roots of a generic polynomial p(x) € R[z] ?
Newton’s idea consists in improving an initial guess z using the root of the linear approximation

p(z) ~ p(xo)+p'(x0)(x—1x0), which is 1 = xo—p(z0)/p'(zo). This amounts to the iterative scheme

I JC7))
Tn+l = Tn p,(xn) . (122)

If the trajectory converges, i.e. &, — Ty, and if p'(z4) # 0, then clearly the limit x4 is a root
of p. On the other hand, if ¢ is a root where p’(c) # 0, then c is a super-attractive fixed point of
the map x — f(z); =z — p(z)/p’(z). Therefore, an initial guess xg sufficiently near ¢ will produce
a trajectory (x,) which converges to ¢ (quadratically fast, i.e. such that |2, —c| < B |2, — c|?
for some constant 5 > 0).

a.se. 42.79)

/ .83, -7.69)

Search for a root of 3 — 2z — 5 using Newton iterations.

help:  Mathematica®8 search for a root of an equation like 7 — 132° + 9 = 0 (or even more
complicated equations, involving transcendental functions!) using the Newton iterative scheme
starting with the initial guess zg = 10 with the instruction

FindRoot [x°7 - 13 x°5 + 9 == 0, {x, 10}]
{x -> 3.6035}
Exercicios.
e Use Newton method to solve Newton’s problem, i.e. find the roots of 23 — 2z — 5.

e Show that Newton method to solve 22 — a = 0 corresponds to babylonian-Heron iterative
scheme.

e Use o método de Newton para aproximar a “razdo”, a raiz positiva de 22> — z — 1. Then,
compare with the babylonian-Heron method (i.e., estimate v/5, then sum 1 and divide by 2).

e Write and implement Newton method to find n-th roots, i.e. to solve ™ — a = 0.
e Utilize o método de Newton para estimar raizes de

224142 P | 2P +z+1 22 -92,-5
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e.g. Newton’s fractals. Em 1879 Cayley observou que o método pode ser utilizado também
para aproximar rafzes complexas de polindmios p(z) € C[z]. A receita consiste em iterar a fungao
racional

O problema é decidir quando, ou seja para quais valores da conjetura inicial zg, a sucessao (z,),
com zn41 = f(zn), converge para uma raiz de p(z). As bacias de atragdo das diferentes raizes
desenham padroes surprendentes no plano complexo

Basins of attraction of the three roots of 223 — 2z + 2 in the complex plane.
(from http://en.wikipedia.org/wiki/Newton_fractal).

Iteracao de funcgoes racionais na esfera de Riemann. E natural considerar iteragoes de
funcdes racionais f(z) € C(z) arbitrarias (os endomorfismos da esfera de Riemann C = C u {o0}),
e querer descrever as trajecdrias definidas pela equagao recursiva z,+1 = f(zn).

O exemplo mais estudado consiste nas iteragoes da familia de polinémios quadraticos

f(2) =z2+c

ao variar o parametro ¢ € C. A sua beleza foi intuida por Gaston Julia?® e Pierre Fatou?” no
principio do século XX, desvendada com o auxilio dos computadores modernos por Benoit Madel-
brot, e estudada por uma multiddo de excelentes mateméticos (como Adrian Douady, Dennis
Sullivan, John Milnor, Misha Lyubich, Jean-Christophe Yoccoz, Curtis McMullen, ...) a partir
dos anos ‘80 do século passado.

Nice pictures. Em baixo, estd uma imagem que nos tempos de Julia e Fatou apenas era possivel
ver com uns olhos mateméticos bem afinados (um applet Java que produz a figura estd no meu
bestiario). O lago de coragbes vermelhos a esquerda, chamado Mandelbrot set, consiste nos valores
do parametro complexo ¢ tais que a 6rbita do ponto critico zy = 0 permanece limitada. A regiao
cinzenta a direita, chamada filled-in Julia set, consiste no conjunto das condigoes iniciais zy cuja
6rbita é limitada. As outras cores (que permitem ver os conjuntos “invisiveis” de Cantor) séo
escolhidas dependendo da velocidade com que as trajectérias z, fogem para o infinito.

28@G. Julia, Mémoire sur I'iteration des fonctions rationnelles, Journal de Mathématiques Pures et Appliquées, 8
(1918), 47-245.

29P. Fatou, Sur les substitutions rationnelles, Comptes Rendus de I’Académie des Sciences de Paris, 164 (1917)
806-808, and 165 (1917), 992-995.


http://en.wikipedia.org/wiki/Newton_fractal
http://w3.math.uminho.pt/~scosentino/salbestiario.html
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Mandelbrot set filled-in Julia set

Mandelbrot set (left) and Julia set of the polynomial 22 + ¢, with ¢ ~ —0.7645 — 7 - 0.1595 (right).
(from http://w3.math.uminho.pt/~scosentino/bestiario/julia.html)


http://w3.math.uminho.pt/~scosentino/bestiario/julia.html
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13 Area and integration

The problem posed by Newton equation. If you derive twice a trajectory t — q(t) € R3,
you get the velocity v(t) := ¢(¢) and then then acceleration a(t) := §(t). Physicists know the
acceleration of a particle in an inertial frame, it is proportional to the force, according to Newton
equation

mi = F(g.4,t).

Therefore, they have the problem to deduce the trajectory from its second derivative.

Work. The work done by a constant force field F' to move a particle from the position gg to the
position ¢;, hence a distance dq¢ = g1 — qo, is W = F' - §q. If we make a path through the points qq,
q1, - -, Qn, With increments dqr = qr — qx—1, and assume that the force is piece-wise constant, we
are led to an expression

W = F(q1)-0q1 + F(q2) - 6q2 + -+ + F(qn) - 6qn -

This is a sum of signed areas (i.e. positive or negative depending on the sign of the force) of
rectangles with bases dgj and heights F'(gy). If we plot the graph of F(gq), this is the signed area of
the region bounded by such a graph, the g-axis, and the vertical lines qg and ¢,,. For a generic force
F(q), say continuous, it is natural to call work such an area, and pose the problem to compute it.

e.g. Area of a parabolic segment according to Eudoxo and Arquimedes. O método
de exaustao, utilizado por Eudoxo e Arquimedes, para calcular a drea de uma figura geométrica
consiste em aproximar a regiao com reunioes de figuras simples, como rectangulos e triangulos.
Por exemplo, a area do “segmento parabdlico”

A={(z,y)eR? t.q 0<x<1e0<y<z?},

pode ser aproximada dividindo o intervalo [0, 1] em n subintervalos de comprimento 1/n, e obser-

vando que drea(A) é superior & soma s, (A) das dreas dos rectangulos de bases [£, 1] e alturas
(k/n)?, e inferior & soma S,,(A) das 4reas dos rectangulos de bases [£, £1] ¢ alturas ((k + 1)/n)?,
onde k =0,1,2,....,n — 1. Ou seja,
n—1 kQ n k2
> 5 = sn(A) < drea(A) < Sp(A4) = > —
k=0 k=1
e Mostre que a diferenca S,,(A) — s,(A4) — 0 quando n — 0.
e Use a identidade 5 )
P24+ 0
2Bt =

para mostrar que, quando n — 00, as aproximagoes s, (A4) e S,(A) convergem para 1/3.

Riemann integral. Let f : [a,b] — R be a bounded function. We want to define the signed
area between the graph of y = f(z), the x-axis (i.e. y = 0), and the vertical lines z = ¢ and x = b.
For example, if f(z) = 0, this is the area
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area ({(z,y) eR? t.q. a<z<be 0<y< f(x)}) ,

The strategy is to approximate the area from below and from above, namely fill and cover the
region by unions of rectangles with smaller and smaller bases.

A partition of the interval [a,b] is a finite collection P < [a,b] of points (that we may order
according to their natural order) a = zg < 1 < x93 < -+ < xp < Tg41 < -+ < T, = b dividing the
interval in a finite number (in this case n) of subintervals [z, xg41] of lengths dzy 1= x4 — 2.
Given a partition P, we denote by mj and M, the minimum and the maximum of f in the
subinterval [z, 1], respectively, hence define the lower sum and the upper sum of f w.r.t. the
partition P as

n—1 n—1
s(f; P) = ka-(Sxk and S(f; P) := ZMk-éxk,
k=0 k=0

respectively. It is clear that the signed area (as the work, if f represents a force) we are trying
to compute should be somewhere between s(f; P) < “area” < S(f; P). It is also clear that if we
“refine” the partition P, i.e. if we define a partition P’ containing more points than P (hence
P < P’ as subsets of [a,b]), then s(f;P) < s(f;P’) and S(f; P') < S(f;P). In particular, we
always have the inequality s(f; P) < S(f; Q) for all partitions P and @ (just consider the common
refinement P U ) and use the previous observations).

We say that the bounded function f is (Riemann) integrable in the interval [a, b] if there exists
a unique number A such that s(f; P) < A < S(f;Q) for all partitions P and Q. Equivalently,
if supp s(f; P) = A = infp S(f; P) (if you know what sup and inf are). Equivalently, if for any
precision € > 0 one may find two partitions P and @ such that S(f;Q) — s(f; P) < ¢, hence a
partition R (for example R = P u Q) such that S(f; R) — s(f;R) < e. If this happens, we call
such number “integral of f in [a,b]”, and denote it as

A Lbf(:o dz .

About the notation. The notation SZ f(z) dz reminds you that the integral should be thought
as a sort of limit of the finite sums ), f(xx)-0z as the partition gets finer, i.e. as the maximal |0z]
goes to zero. Actually, the notation, to be compared with Leibniz notation dy/dz for derivatives, is
useful to state and remind some recipes to compute integrals, as will appear clear in the following.

Also, the variable z inside the integral may be replaced by any other symbol, so that you
can also write SZ f(t)dt, or SZ f() ds, or SZ f (%) d»=>, ...or whatever you want. The only
forbidden symbols are those that you already used somewhere else: so, for example, you should
avoid to write § f(b) db.

Integrability of continuous and monotone functions. Which functions are Riemann inte-
grable? The final answer is somehow technical. Here, you may be satisfied with knowing that
continuous (or also piece-wise continuous) or monotone functions are.

Theorem 13.1. Any continuos function f(x) in a closed and bounded interval [a,b] is integrable.

Proof. Indeed, a continuous function in a closed and bounded (i.e. compact) interval is uniformly
continuous. In particular, for any € > 0 there exists a § > 0 such that |z — /| < ¢ implies
|f(z) — f(z")] <e/(b—a). Consequently, if P is a partition of [a,b] into n subintervals of lengths
|zp+1 — x| < 6 for all k, we see that S(f,P) —s(f,P)<n-d-¢/(b—a)<e. O
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It is clear that also a function f : [a,b] — R with a finite number of discontinuities and finite
limits on both sides is integrable (just repeating the argument in any closed subinterval where it
is continuous).

Theorem 13.2. Any monotone function f(zx) in a closed and bounded interval [a,b] is integrable.

Proof. Assume that f(z) is non-decreasing (otherwise take —f(z)), and take any ¢ > 0. If P
is a partition of [a,b] into n subintervals of lengths |zr11 — @k < ¢/(f(b) — f(a)), then, since
my = f(z) and My = f(xg41), we see that

n—1
S(f,P)—s(f,P) < m;(f(xlwrl) — f(zr)) < e,
because the above sum is telescopic and equal to f(b) — f(a). O

Elementary properties. The following elementary properties of the integral are obvious for

integrals of constant functions, namely for areas of rectangles. But the Riemann integral is defined

using rectangles, so it is not surprising that they continue to hold for all integrable functions. You

may want to draw pictures to understand their meanings and to convince yourself of their validity.
It is clear that the integral is linear, namely

b

Jb (f(z) + g(z))dz = Lb f(z)dz + f g(x)dx (13.1)

a a

and , .
f A fx)de = )\-J f(z)dx . (13.2)

for all integrable function f(x) and g(x) and all constants A € R. It is clear that

b c b
J f(x)d:z:zf f(z:)derJ flx)dz, (13.3)
whenever a < ¢ < b. If we define "
J f(x)dx:=0,

and

a b

J f(z)dx := —J f(z)dx,
b a

then formula (13.3) holds for all a, b, ¢, independently of their order. The integral, being a signed
area, behaves well under translations and dilatations of the independent variable, namely:

b b+c
J fl@)de = flz—c)dx (13.4)
a a+c
for all ce R, and
Ab b
f(z/A)de = )\J f(z)dx (13.5)
Aa a
for all A > 0. The integral is monotone:
b b
f(z) <g(x) Vzela,b] = J f(z)dx < J g(x)dz. (13.6)

In particular,

b b
Jf(x)dm<f ()| de. (13.7)
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Finally, it can be (crudely) estimated from below and from above by the signed areas of two
rectangles (the one which is contained and the one which contains the figure we are computing the
area of) according to

m< f(x) <M V€ [a,b] = m-(b—a) éfb flx)de <M -(b—a). (13.8)

An interesting consequence is the

Theorem 13.3 (Mean value theorem). If f : [a,b] — R is a continuous function, then there is a
point ¢ € [a,b] such that

b
j f(@)dz = £(c)- (b—a).

Indeed, let m and M be the minimum and maximum of f(x) in the interval [a, b], respectively.
From (13.8), we see that there exists some value m < d < M such that SZ f@)de =d-(b—a). By
continuity (i.e. Bolzano theorem 9.1), there exists a point ¢ € [a,b] where f(c) = d.

Observe that the value

b
10 = s | f@do

must be thought as an average of the values f(z) for a < < b (the signed height of a rectangle
with base b — a and area SZ f(z) dx).

Compute the following integrals drawing a picture and using the elementary formulas for

areas.
1 2 10 3
f 3dz J 7dx J rdx J (—2z) dx
0 -2 1 —2

fz | da f(ssx %) da FS (11 — 2) do

) —33
n+1 T x?
J [z] dz *° f Ttdt J (1—t)dt

0 6 x

Derivative of an integral. Here is Newton’s and Leibniz’ discovery:

Theorem 13.4 (fundamental theorem of calculus). Let f(x) be a continuous function defined in
some interval I < R. Given a point a € I, define the function F(x) as the integral

)= [ s,

for x e I. Then F(z) is differentiable, and its derivative is F'(x) = f(z), i.e

& ([ rwa) = .

Proof. Indeed, the difference F(z + §) — F(x) is equal to the integral S;Hé f(t) dt. Therefore,

. o . x40
F(x + 5()5 F(x) — f(z) = %L (f(t) — f(z))dt. (13.9)

If f is continuous at the point = (just at the point a!), for any ¢ > 0 there exists § > 0 such that
|t — 2| < ¢ implies | f(t) — f(x)] < e. Therefore, for such small § > 0, the r.h.s. of (13.9) above is
bounded by } - -8 = e. Consequently, (F(z + 6) — F(z))/§ — f(z) when § — 0. O

30 [z] denotes the “integer part of z”, i.e. the unique integer n € Z such that n < z < n + 1.
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Logarithm and exponential. The logarithm is the function log : R, — R defined by the

integral
T dt
log(z) :=| —.
1 t
By the fundamental theorem of calculus 13.4, the derivative is

1
log'(x) = —

so that the logarithm is strictly increasing. It is clear that log(1) = 0. Moreover, for any x,y > 0

1t h it

Jwydt T dt f””ydt T dt Yds
—=| =+ —=| —+]| —,

z 1t Jos

(using (13.5) in the second integral above), therefore

log(zy) = log(z) + log(y) . (13.10)
Also, for any = > 0
J\I/w @ B 1 @ - T %
ot s s
(using (13.5)), therefore
log(1/x) = —log(x). (13.11)

In particular, log(x) — o when x — o0, and log(z) — —o0 when 2 — 0. Thus, log(R) = R.

The ezponential is the inverse function of the logarithm, the function exp : R — R, such that
exp(logz) = x for all z € Ry and log(exp(y)) = y for all y € R. In particular, exp(0) = 1. The
value exp(z) is also denoted by e*, where e = exp(1), hence log(e) = 1. The derivative of the
exponential is

exp’(z) = exp(z) .
From (13.10) we get
exp(z + y) = exp(z) exp(y) (13.12)

for all z,y € R, and from (13.11) we get
exp(—z) = 1/exp(z) (13.13)

for all z € R.

-

Graphs of the logarithm (blue) and the exponential (red).

[ 1P

Primitives and integration. A differentiable function F'(x) is called a primitive (“a” primitive,
and not “the” primitive!) of the continuous function f(z) if

F(x) = f(z)

for any z in a common interval of definition. Leibniz’ notation for a primitive of f(z) is { f(z) dz.
Thus, for example, log(z) is a primitive of 1/x, and e® is a primitive of e* itself.



13 AREA AND INTEGRATION 64

We already know a primitive of a continuous function f(z), this is G(z) = § f(t) dt, according
to theorem 13.4. If F(x) is any other primitive of the same function f(z), then the difference
F(z) — G(x) has zero derivatives, hence is constant by the mean value theorem. Therefore, there
is some constant ¢ € R such that F(z) = G(x) + ¢ for any z (in some domain). In particular, if we
take z = a and then x = b, we see that F(a) = c and F(b) = G(b) + ¢, so that G(b) = F(b) — F(a).
Therefore, we may state the following recipe to compute integrals, known as Barrow formula:

Theorem 13.5 (Barrow). If F(z) is any primitive of f(x), then
Jb f(z)da = [F(2)]} := F(b) — F(a). (13.14)
Thus, to any derivative thatayou know there corresponds an integral that you can compute.
Compute the following primitives.
Jdm Jx2dx J%dw J\/ﬁdz

J(xQ — 2z + 5)dx Jsin(@)d@ J (cos(ra) — 22%) da jf/;;

J‘ db J‘ dx J dx
cos?(0) 1+ 22 V1 — 22

Compute the following integrals.

e

f(x—l)da: f11(1—|x|)dx Owﬁda: J cos(z)dx

0 -7

2 ‘IT/2 2 1 5 ) _
J Va2da J sin(2z)dx —du J (11/3 _ xl/o) da
-3 1 T 3

—T

5 2m 1
J (14 399z — 2?) da f | sin(x)|dx J (33 — 112)%° da
-5 0 ~1

3 log 2 2
d—x J e“dx J du J e*ldx
2 T log 1 x—1 1
T 1
J263‘”dx f e dx J.idm
0 z(l—x)

Compute the derivative of

Fz) - r% Plz) - fm sn(t)dt  F(z) f - )t

0

Compute the area of the planar region bounded by the curves

y=x2> e y=21°, com(<zr<1
y=sin(z) e y=—sin(x), comO0<z <7
y:arl/?’ e y:xl/Q, comO0<zx<1

e.g. Potential energy and work. Let f(z) be a continuous force field, defined in an interval
of the real line. Any function V(x) such that V'(x) = —f(x) (i.e. minus a primitive of f(x)) is
called potential energy. Theorem 13.5 says that the work done when displacing a particle from a
to b is

b
W(a—b) - f F@)dz = V(a) - V(b).

thus equal to the difference between the potential energies of the initial and the final points.
Observe that in dimension one all (continuous) forces are conservative! Indeed, any — § f(t) dt is
a potential.
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Substitutions. Let F(x) be a primitive of the continuous function f: I - R. If g: I > Risa
continuous function, then by (13.14)

g(b)
J 1)y = Plgt) = Flg(a).

If, moreover, g is differentiable, by the chain rule F(g(x)) is a primitive of f(g(z)) ¢'(x), hence by
(13.14) again, the r.h.s. above is also equal to

b
F(g(b)) - F(g(a) = f F(9(x)) ¢/ (x) da

Therefore, we may state the following recipe to transform one integral into another, hopefully
simpler, integral: the “substitution” y = g(x), with dy = ¢'(x)dx (this means dy/dz = ¢'(x)),
transforms f(g(x)) ¢’'(z) dx into f(y) dy, so that

g(b)
f floleDg @ = | sy (13.15)

e.g. For example, the substitution y = z2, with dy = 2zdz, sends

2

b b2 b2 a
) 1 -
f;ve”“zdx:ff eydyzie €
a 2 Ju2 2

Compute
1
f ze® dx fde cos() d ftan(&)d@
0 x A/5 + 2sin(6

2 . 1/2
322 cos(2?)dx f sin(v'z) dx J Ldaz
f (=) 7 NG —12 V1 — 2?2

log 2 T :
sin(w)d f - d f € d f SIH(\/E) d
Cos(T)e X X —aX X
f () JJ2—1 log1 \/1+e$ \/5

Integration by parts. Let f and g be two differentiable functions. The derivative of the product
fgis (fg) = f'g + fg'. Therefore, by (13.14),

b b b
f F@)d (@)dz = [f(@)g(@)]’ - f F(2)g(x)da (13.16)

This is useful when the integral on the left seems difficult, but the one on the right is simple.

e.g. For example, from (zsinz)’ = sinx + x cosz, we get

J 2 cos(x) dz — zsinT — Jsin(w) do — 2 sin(z) + cos(z).

Calcule

J et de f sin(log(z)) do flog

0

Jx sin(z) dx fx2 sin(z) dx Je sin(x
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Compute
! 1
J ze® dx dex Lw)d@ J-tan(ﬁ)dé'
0 T A/5 + 25sin(6)
log 2 T
sin(x T ¢
JCOS(I’)@ ( )d,r dez og 1 ﬁdx

help: Mathematica®8 computes primitives as

Integrate[1/ Sin[2 x], x]
-(1/2) LoglCos[x]] + 1/2 Logl[Sin[x]]

or (definite) integrals as

Integrate[x”2 - Sin[x], {x, 0, 3}]
8 + Cos[3]

The problem of computing integrals. Unlike computing derivatives, computing integrals is
not a mechanical process. It rather resembles the job of Mr. Poirot, consisting in finding and
analyzing clues that will eventually show (one of) the right path to the solution. It may also
happens that no known method or primitive comes into ones mind, and indeed that the primitive
of a given function cannot be expressed in terms of presently known functions. When this happens,
the solution for physicists and engineers is to approximate the integral with some computational
device (and many methods and techniques are available). Then, we may also give a name to the
primitive (as we have done for the primitive of 1/z, the “logarithm”), if it is recurrent and we
judge it useful.

e.g. Velocity/acceleration + initial conditions = time law) If we know the velocity
v(t) = ¢(t) of a particle (moving in one dimension) and its initial condition ¢(0), we may find its
trajectory as

If we know the acceleration a(t) = v(¢) and the initial velocity v(0), we may integrate once to get

v(t) = v(0) + f a(s)ds,

0

and then integrate once again to get the trajectory ¢(t) as above.

e.g. Work of a perfect gas.  The work done by a perfect gas expanding from an initial volume
Vo to a final volume V; is given by the integral of the pressure p(V')

1%
W = p(V)dV .
Vo

If the pressure is mantained constant, this is simply W = p- (V5 — Vp). If the expansion occurs at
constant temperature T', we get from the equation of state pV = nRT (here n is the number of
moles, R ~ 8.314 x 107 J/K mol, and T the absolute temperature)

Vi qv
W = nRTJ v = nRT log(V1/Vp) .
Vo


http://www.wolfram.com/mathematica/
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Improper integrals. It is useful to integrate a function in an infinite domain like [a,o0), the
definition being

LOO f(z)dz := lim LK f(z)dx,

K—w

or in a domain (a, b] bounded by a point a where the function is not defined, the definition being

b b
dx = li dx .
|| sz =t [ sy
These limits are called improper integrals.

e.g. Gaussian and error function. An irgnportant function in many areas of mathematics and
applied sciences is the Gaussian g(x) := e~®" (and its variations, obtained by a linear change of
coordinates, or multidimensional ones). One knows that the improper integral

® 2
f e dr =7

—00

(we’ll compute it later), thus ﬁeﬁ is a probability distribution, indeed a most fundamental one.

A primitive of the Gaussian cannot be computed in terms of elementary functions (polynomials,
trigonometric, exponential, ...), hence deserves a name. It is called error function, and usually

normalized according to
2 (% 2
erf(z) := —J el dt.
V7 Jo

Thus, erf(x) — +1 as z — +o0.
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Primitives
f(@) = F'(x) §f(z)de = F(x)
fly() ¢ (x) §fy(@)y' (z) de = § f(y) dy
f(@)g'(z) §f(@)g'(x) do = f(x)g(x) — § ' (x)g(x) dx
constantes A Adx = Az
( ) S
(poténcias, o # —1) e Sz de = 7zt
(logaritmo) 1/x § 9 = log |z|
(exponencial) e” fe¥ dr = e”
(seno) sin(x) {sin(z) do = — cos(z)
(coseno) cos(z) § cos(z) da = sin(z)
(tangente) COS%(w) S#z@ = tan(z)
(cotangente) Sinzl(m) Ssufl?# = —cotan(z)
(arco cujo seno) 11_962 § \/% = arcsin(x)
(arco cuja tangente) ﬁ 119;2 = arctan(z)

(exponencial x seno)
(exponencial x coseno)
(coseno x coseno, n? # m?)
(seno x seno, n? # m?)
(seno x coseno, n? # m?)
(z x coseno, n # 0)

(z x seno, n # 0)

(¥ x coseno, n # 0)

(x* x seno, n # 0)

€% sin(Ba)
€27 cos(Bz)
cos(nz) cos(mz)
sin(na) sin(ma)
sin(na) cos(ma)
z cos(na)
2 sin(na)

x¥ cos(nz)

z¥ sin(nz)

§ cos(nz) cos(mz)

§ 2% cos(nz) dz =

Seo‘z sin(Bz) dr = ™ (a Sinfﬂﬁgf cos(Bx))

e*” (acos(Bx)+Bsin(Bz))
a?+p2

§ e cos(Bx) dx =

_ sin((n+m)x) sin((n—m)x)
dr = 2(n+m) + 2(n—m)

Foin () sin(ma) do = — =) —
Jsin(nz) cos(ma) do — —<5fEel — st
SJ? COS(nx) dxr = Coiggz) + msir;l(nm)

Sm sin(nz) de = Sinég”?) o zcoi(nm)

z* sin(nz)

- — % § 21 sin(nz)dz

§2* sin(nx) do = 2l cos(na) & § b1 cos(nx)dx

n
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14 Ordinary differential equations

e.g. Free particle. The trajectory t — q(t) € R? of a free particle of mass m in an inertial
frame is modeled by the Newton equation

p (mv) =0, i.e., if m is constant, ma=0,

where v(t) := ¢(t) denotes the velocity and a(t) := §(t) denotes the acceleration of the particle. In
particular, the linear momentum p := muv is a constant of the motion (i.e. %p = 0), in accordance
with Galileo’s principle of inertia or Newton’s first law">!.

The solutions of Newton equation are the affine lines

q(t) = s + vt

where s,v € R? are arbitrary vectors, the initial position and the initial velocity.
Thus, for example, the trajectory of a free particle starting at ¢(0) = (3,2,1) with velocity
q(0) = (1,2,3) is q(t) = (3,2,1) + (1,2,3)t.

e.g. Free fall near the Earth surface. The Newton equation

qu;
R

mz~—G

models the free fall of a particle of mass m near the Earth surface. Here z(t) is the height of the
particle at time ¢ (measured from some reference height, e.g. the sea level), G ~ 6.67 m3 kg~! s72
is the gravitational constant, Mg and Rg are the mass and radius of the Earth, respectively. We
are assuming that z « Rg. Since inertial and gravitational masses are (experimentally) equal, the
mass m cancels out and we get the equation

=y,

where g := GMQ;/R%3 ~ 9.8 m s72 is the the gravitational acceleration near the Earth surface,
independent on the falling object!

A function with constant second derivative equal to —g is —gt?/2. But it is not the unique
solution. We may add to it any function with zero second derivative, that is any constant s and
any linear function vt. This means that also any

2(t) = s + vt — %th
is a solution of our Newton equation, for any s and any v. The first arbitrary constant s is the
initial height 2(0) (and this physically corresponds to the homogeneity of space: Newtonian physics
is independent on the place where the laboratory is placed). The second arbitrary constant v is the
initial velocity 2(0) (and this physically corresponds to Galilean invariance: we cannot distinguish
between two inertial laboratories moving at constant speed one from each other).

The moral is that the Newton equation alone does not have a “unique” solution. It has a whole
“family of solutions”, depending on two parameters s and v. On the other side, once we fix the
initial position z(0) and the initial velocity 2(0), the solution turns out to be unique (we’ll prove
it soon! meanwhile, you may try to prove that the difference of any two solutions with the same
initial conditions is constant and equal to zero). In other words, once known the initial “state”
of the particle, i.e. its position and its velocity, the Newton equation uniquely determines the
“future” and “past” history of the particle.

e.g. A differential equation for the exponential function. Consider the first order ODE

=2

31 “Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus
impressis cogitur statum illum mutare” [Isaac Newton, Philosophiae Naturalis Principia Mathematica, 1687.]
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where & denotes the derivative of z(¢) w.r.t. the real variable ¢.
An obvious solution is z(t) = 0. Besides, computation shows that the exponential function e
satisfies the equation. Indeed, the (natural) exponential is defined by the power series

t

n 2 3

t t
D=3 — =14t+—=—4—+...
exp(t) Z py +1t+ 2 + 5 +
n=0
(remember that 0! = 1), which converges uniformly in any bounded interval. You may check,

deriving the power series term by term, that exp’ = exp.

But we can multiply it by any constant b and still get a solution, hence any function z(t) = be
satisfies the above identity. If we set ¢t = 0, we notice that b is the value of x(0).

We claim that x(t) = xpe! is the “unique” solution of the differential equation & = z with
initial data x(0) = xo. Indeed, let y(¢) be any other solution. Since the exponential is never zero,
we can divide by e! and define the function h(t) = y(t)e~t. Deriving we get

t

h=G—y)et.

But y solves the equation, hence the first derivative of & is everywhere zero. By the mean value
theorem h is a constant function, and, since y(0) = xo too, its value at the origin is h(0) =
y(0)e™® = x(. This implies that y(t) is indeed equal to z(t).

Equagées diferenciais ordinarias. Uma equacdo diferencial ordindria (EDO) de primeira or-
dem (resolivel para a derivada) é uma lei

& =uv(t,x)

para a trajectéria t — x(t) € R de um sistema dindmico, onde & = % denota a derivada do
observével 2 em ordem ao tempo t, e v(t,z) é um campo de dire¢ées dado (ou seja, uma recta
com declive v(t, x) para cada ponto (¢,z)). Uma solucdo da EDO é uma fungao t — x(t) tal que
Z(t) = v(t, z(t)) para cada tempo ¢ num certo intervalo, ou seja, uma fungio cujo grafico é tangente
ao campo de dire¢oes em cada ponto (¢, z(¢)) do grafico. Se o campo v(¢, x) é suficientemente regular
(por exemplo, diferencidvel), para cada ponto (¢g, zg) passa uma tnica solu¢do com condigao inicial

x(t()) = Xy-.

PREEEERRERE v r el

Slope fields and some solutions of & = sin(t) — x and of & = (1 — z).
A fungdo x(t) = 3 é solucdo da equacio diferencial t# — 3z = 0 ? E a funcio z(t) =0 ?

Simple ODEs. The simplest case occurs when the velocity field v does not depend on the phase
space variable x, so the equation is
z =w(t),

where v(t) is some given function of time. This just says that z is a primitive of v, and the
fundamental theorem of calculus (i.e. Leibniz and/or Newton’s discovery) tells us how to compute
such a primitive: just integrate the function v from some initial time ¢y up to a final time ¢.
Indeed, provided v is a continuous function, the derivative of SIO v(s)ds at the point t is v(t). This
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explains the current use of the expression “integrate” a differential equation instead of “solving” a
differential equation, as well as the meaning of Newton’s quoted anagram.

Primitives are not unique, but are defined modulo an additive constant. This arbitrary constant
can be matched with the initial condition, so that the solution of & = v(¢) with initial condition

$(t0) =X is
t

x(t) = zo + J v(s)ds.
to
Here you may observe that this class of ODEs have “symmetries”. The line field does not
depend on z, hence slopes of solutions are the same along horizontal lines (¢ = constant) in the
extended phase space. There follows that any translate ¢(t) + ¢ of a solution ¢(¢) is still a solution.
This is but a geometrical interpretation of the arbitrary constant in the primitive of v.

Newtonian motion in a time dependent force field. @ The one-dimensional motion of
a particle of mass m subject to a time-dependent force F(t) is modeled by the Newton equation

mi = F(t).

Call v = z the velocity of the particle, and derive the first order ODE satisfied by the velocity
v. Solve the equation for the velocity, given a force F(t) = Fpsin(yt) and an initial condition
v(0) = vg. Use the above solution v(¢) to find the trajectory x(¢) of the particle, given an initial
position z(0) = xo.

Rockets. Se um foguetdo (no espago vazio, sem forgas gravitacionais!) expulsa combustivel
a uma velocidade relativa constante —V e a uma taxa constante m = —a, entao a sua trajectéria
num referencial inercial (uni-dimensional) é modelada pela equagdo de Newton

ﬁ(mv)=a(V—v), ou seja , mo +mo = a(V —v).
Resolva a EDO m = —« para a massa do foguetao, com massa inicial m(0) = mg, e substitua o
resultado na equagao de Newton, obtendo

. aV
=
mo — ot

(valida se 0 < t < mg/a). Calcule a trajectéria do foguetdo com velocidade inicial v(0) = vy
e posicao inicial ¢(0) = 0, vdlida para tempos t inferiores ao tempo necessério para acabar o

combustivel.

Autonomous ODEs. A first order ODE of the form
& =v(x),

where the velocity field v does not depend on time, is called autonomous. Most fundamental
equations of physics (those describing closed systems, without external forces) can be written as
autonomous first order ODEs, and this corresponds to time-invariance of physical laws.

Here you may notice symmetries again. The line field v of an autonomous equation is constant
along vertical lines (z = constant) of the extended phase space. Hence any translate o(t + s) of
a solution ¢(t) is still a solution. This is the manifestation of time-invariance of a law codified by
an autonomous ODE. This also implies that there is no loss of generality in restricting to initial
value problems with initial time tq = 0.

Equilibrium solutions.  First, we observe that an autonomous equation may admit constant
solutions. Indeed, if xqg is a singular point of the vector field v, i.e. a point where v(zo) = 0, then
the constant function

x(t) = xo

obviously solves the equation. Such solutions, which do not change with time, are called equilibrium,
or stationary, solutions.
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Solutions near non-singular points. Let zqg be a non-singular point of the velocity field
v(x), i.e. a point xyg where v(zg) # 0. We want to solve & = v(z) with initial condition z (o) = zo.
First, rewrite the equation dx/dt = v(z) formally as “dx/v(z) = dt” (multiply by dt and divide by
v(z), so that all 2’s are on the left and all ¢’s are on the right). Instead of trying to make sense to
this last expression (which is possible, of course, and here you can appreciate the beauty of Leibniz’
notation dx/dt for derivatives!), observe that it is suggesting that {dz/v(xz) = {dt. Now assume
that the velocity field v is continuous and let J = (z_,z) be the maximal interval containing
where v is different from zero. Integrating, from zy to = € J on the left and from ¢y to ¢ on the
right, we obtain a differentiable function x — t(x) defined as

t(I) 7t0 = JZ ’U(?Z)

for any z € J. Now, observe that the derivative dt/dx is equal to 1/v. Since, by continuity, 1/v does
not change its sign in J, our ¢(z) is a strictly monotone continuously differentiable function. We can
invoke the inverse function theorem and conclude that the function t(z) is invertible. This prove
that the above relation defines actually a continuously differentiable function ¢ — x(t) in some
interval I = t(J) of times around ¢p. Finally, you may want to check that the function ¢ — x(t)
solves the Cauchy problem: just compute the derivative (using the inverse function theorem),

) = 1/ ()

= (@),

and check the initial condition. Observe that the function ¢(x) — ¢y has then the interpretation of
the “time needed to go from zy to z”.
At the end of the story, if you are lucky enough and know how to invert the function ¢(x), you’ll

get an explicit solution as
x(t) = F~ 1 (t —to + F(x)) ,

where F' is any primitive of 1/v. Close inspection of the above reasoning shows that the local
solution you’ve found is indeed the unique one. Namely, we have the following

Proposition 14.1. (Existence and uniqueness theorem for autonomous ODEs near a
non-singular point) Let v(x) be a continuous velocity field and let xg be a point where v(xq) # 0.
Then there exist one and only one solution of & = v(x) with initial condition x(ty) = x¢ in some
sufficiently small interval I around to. Moreover, the solution z(t) is given implicitly by

T d t
[fe
Zo U(y) to
defined in some small interval J around xq.

On the failure of uniqueness near singular points. The interval I = ¢(J) where the
solution is defined need not be the entire real line: solutions may reach the boundary of J, i.e. one
of the singular points x4+ of the velocity field, in finite time. Since singular points are themselves
equilibrium solutions, this imply that solutions of the initial value problem at singular points may
not be unique, under such mild conditions (continuity) for the velocity field. Picard’s theorem
prescribes stronger regularity conditions on v under which the initial value problem admits unique
solutions for any initial condition in the extended phase space.

e.g. Two solutions with the same initial condition! Both the curves z(t) = 0 and
x(t) = 3 solve the equation

i = 323
with initial condition 2:(0) = 0. The problem here is that the velocity field v(z) = 32%3, although
continuous, is not differentiable and not even Lipschitz at the origin. You may notice that the
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solution starting, for example, at x¢ = 1 reaches (or better comes from) the singular point x_ =0
in finite time, since

0
1
t(x_) —t(zo) = fgy_”?’dy
1

= 1.

help: O Mathematica® pode resolver analiticamente equagoes diferenciais. Por exemplo,

DSolve[x’[t] + 2 x[t] == Sin[t], x[t], t]
{{x[t] -> E~(-2 t) C[1] + 1/5 (-Cos[t] + 2 Sin[t]1)}}

e.g. Radioactive decay. Radioactive matter (such as *C or 238U) decay according to the law
N = —N

where N () denotes the number of nuclei (assumed large so that the law of large number applies),
and 1/ is the mean life, the average time life of one single nucleus. The solution with initial
condition N(0) = Ny > 0 is

N(t) = Nge P

In particular, the initial quantity is reduced to one half after a time 7' = (log 2)/8, called half-life.
For example, 14C has an average time of 1/ ~ 8033 years.
If cosmic radiation produces '4C in Earth’s atmosphere at a rate «, then the quantity of 4C
in the atmosphere follows a law _
N =—-0N +a.

The equilibrium is N = a/f. The difference z(t) = N(t) — N follows the law & = —fx, hence
z(t) = 2(0)e~P, and therefore

N(t) =N+ (N(©0)—N)e .

In particular, N(t) — N as t — o0, independently from the initial condition N(0).

VU VW UV V0 Y O UV U W W W W O N W R

AN SN

Direction field and some solutions of = —2x + 1.

e.g. Exponential growth. The growth of a population in a (virtually) unlimited medium is
modeled by .
N = AN

where N(t) denotes the population size at time ¢, and A > 0 is some growth rate. The solution is

an exponential growth like
N(t) = N(0)eM.

If we retire aportion of the population at constant rate a > 0, we get

N =\N—a


http://www.wolfram.com/mathematica/
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Now the stationary solution is N = a/), and the general solution
N(t) =N + (N(0) — N) e.

Now, the non-constant solutions diverge or disappear.

Direction field and some solutions of & = 2x — 1.

e.g. Logistic equation. A more realistic model of the growth of a population in a limited
environment is the logistic equation>?

N = AN(1— N/M)

where A > 0 and the number M > 0 is a maximal population. Observe that N ~ AN when N « M,
and that N — 0 when N — M. It is convenient to define the relative population z(t) := N(t)/M,
which satisfies the adimensional logistic equation

T =Ax(l —x).

Equilibrium solutions are x = 0 e x = 1. To find solutions with initial condition z(0) = z¢ # 0,1,

we may integrate
T d t
J 7y - f ds ’
w¥d=y)  Jo

using the identity

The result is
- (xg—1)

- (x—1)

which may be solved for x(t), giving, when 0 < z¢ < 1,

1
=) = 1+ (i — 1) e~ At .
To

\\\\\\.\\Q\.\.\\\.\\\\\\.\\\.\\

~

log

-

\\\\\\\\\\\\\\\\\ AN

32Pjerre Francois Verhulst, Notice sur la loi que la population pursuit dans son accroissement, Correspondance
mathématique et physique 10 (1838), 113-121.
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Campo de diregoes e solugoes da equagao logistica.

e.g. Super-exponential growth. Um outro modelo de dindmica populacional em meio ilimi-
tado é )
N =aN?

onde a > 0. A solucgéo com condicao inicial N(0) = Ny > 0 é

1

N = 1/No—at

Observe que as solucoes nao estao definidas para todos os tempos: este modelo prevé uma catédstrofe
(populagéo infinita) apés um intervalo de tempo finito (o tempo ¢ = 1/(aNy)) !

Campo de direcoes e solucoes da equacao & = z2.

Separable ODEs. A first order ODE & = v(t, ) is said separable when the velocity field v is a
product of a function which only depends on ¢ and another function which only depends on x. So
it has the form

_ f@)

g(t)
for some known functions f and g. We assume that both f and g are continuous functions on
some intervals of the phase space and the real line, respectively, and that g(¢) does not vanishes.
Observe that both simple ODEs like & = v(t) and autonomous ODEs like & = v(z) fall in this
class.

If xg is a zero of f, then x(t) = x¢ is an equilibrium solution. The recipe to find other solutions
is known as “separation of variables”. Take point z¢ where f(z¢) # 0, and an initial time ¢y, where
g(to) # 0. Choose a maximal interval J containing zo where f is different from zero, rewrite the
equation formally as “dx/f(x) = dt/g(t)”, and then integrate from z( to x € J the r.h.s. and from

to to t the Lh.s. You’ll get
Tody f ds
xo f(y) to g(S) ’
As we did for autonomous equations, we can see that any continuously differentiable solution

t — x(t) of the equation passing through the non-singular point (o, ) must satisfy the above
relation, as long as x is sufficiently near to zg.

e.g. Solve z = ta3.
An obvious solution is the equilibrium solution x(t) = 0. For a positive initial condition
x(ty) = mp > 0, rewrite the equation as dz/x3 = tdt and integrate

T t
f d—ng sds
zoy to

1/a% — 1/ak = > — 12,

for x > 0. You’ll find
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and, solving for x, the solution
1

NG Ve

defined for times ¢ in the interval [t| < 4/t3 + 1/22. In the same way you’ll find solutions with
negative initial condition xy < 0.

z(t) =

Linear first order ODEs. A first order linear differential equation is a differential equation
which can be written in the “canonical form”

T+ p(t)z =q(t), (14.1)

where the coefficients p and ¢ are (known) functions of the real variable ¢ defined in some interval

I ¢ R. We assume that both p and ¢ are continuous functions, and we look for solutions ¢ — x(t)

defined on I. Eventually we will want to solve the problem with some initial condition x(tg) = zo.
The equation

g+ p(t)y =0 (14.2)

is said the homogeneous equation associated with the general, hence non-homogeneous, equation
(14.1) above. The word “homogeneous” is due to the fact that any constant multiple A - y(¢) of
a solution y of (14.2) is again a solution. Also, any linear combination (with real coefficients)
ay1 (t) + bya(t) of solutions y; (t) and ya(t) of the homogeneous equation (14.2) is still a solution of
the homogeneous equation. This means that the space of solutions of the homogeneous equation
is a linear space, actually a one-dimensional vector space ‘H =~ R, as a consequence of the following
proposition 14.2.

Also interesting is that the difference y(t) = x1(t) —x2(t) of any two solutions x1(¢) and z2(t) of
the non-homogeneous equation (14.1) is a solution of the associated homogeneous equation (14.2),
hence belongs to the linear space H. Therefore, the space of solutions of the non-homogeneous
equation (14.1) is an affine space x + H, where z(t) is any (particular) solution of (14.1).

Solutions of the homogeneous equation are obtained separating the variables, and are given by
the following

Proposition 14.2. (Existence and uniqueness theorem for homogeneous first order
linear ODESs) Let p be a continuous function on some interval of the real line. Then the unique
solution of the homogeneous equation y + p(t)y = 0 with initial condition y(to) = yo is given by

y(t) = yoe Yo T

In particular, the space of solutions of the homogeneous equation (14.2) is a real vector space of
dimension one.

Indeed, let z(t) be a second solution of the Cauchy problem above, and define
h(t) = Z(t)eS:O p(s)ds '

Its value for tq is yo. Its derivative is

h(t) = Mo P (3(1) 1 p(6)2(1))

Since z is supposed to solve the equation, the derivative of & is equal to zero for any ¢ in the chosen
interval, and the mean value theorem says that then h(t) is constant and equal to yo. There follows
that z(¢) is indeed equal to our solution y(t).

e.g. Solve ti — 2z = 0 for t € (0,00) with initial condition x(¢p) = xo.
If zp = 0, the solution is the equilibrium solution z(¢) = 0. If xg > 0, write the equation as

dx/x = 2dt/t, integrate
T t
| vt = | 2ass,
o to
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for positive x, obtain
log x — log 2o = log(t?) — log (t%) ,

and solve it for z, the solution being

z(t) = (zo/t3) 2.

Finally observe that this formula gives the solutions for any initial condition zy.

Back to the non-homogeneous equation. To solve the non-homogeneous equation
&+ p(t)r =q(t),
we use the following trick, a first and elementary instance of a much more general method named

“variation of parameters” (or, sometimes, with the oxymoron “variation of constants”). We already

know that any function proportional to e~ §aP(9)ds golves the homogeneous equation. We look for
a solution of the non-homogeneous equation having the form

z(t) = de” fig p()ds ,

but, instead of treating the parameter A as a constant, we allow it to depend on ¢. Putting our
guess into the non-homogeneous equation, we get

d 782 p(s)ds 7S: p(s)ds
= (AW T %) g peape " — (1),
Computing the derivative, we get

At)e™ Yo PO _ e IT T L p i\ e T g(p),

the two terms containing p(t) do cancel, and we are left with

t

At)e Yo PO _ g(p)

This can be solved for A (because exponentials are never zero), and integration gives

t
A(t) = A(to) _|_J St p(u)duq(s)ds

to

for some constant A(tg) equal to the value of z(tg) (this depends on our choice for y(¢), such that
y(tg) = 1). Finally, we get a solution

o(t) = Mt)e S P

and you may check that it has initial value z(tg) = . Since the difference of any two solutions
of the general equation is a solution of the associated homogeneous equation, and since (as follows
from the uniqueness theorem above) the only solution of the homogeneous equation with initial
condition z(tg) = 0 is the zero solution, we just proved the following

Proposition 14.3. (Existence and uniqueness theorem for first order linear ODEs) Let p
and q be continuous functions in some interval I. Then the unique solution of the linear differential
equation & + p(t)x = q(t) with indtial condition x(ty) = xo for tg € I is given by

t t S
J,‘(t) — e Sto p(u)du (xO _|_J‘ eS{,O P(u)duq(s)ds) )
t

0

Suggestion. Perhaps, instead of fixing the unpleasant formula in the above theorem, you could
simply remember the strategy used to derive it: find one non-trivial solution y(t) of the associated
homogeneous equation (which is separable!), and then make the conjecture z(t) = A(t)y(t) for
some other unknown function A(¢). You'll get a simple differential equation for A, and integration
gives you the solution.
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e.g. Solve t& — 2z =t for t € (0,00) with initial condition z(ty) = xo.

You already know that the solution of the associated homogeneous equation ty’ — 2y = 0 with
initial condition y(to) = 1 is y(t) = t?/t3. Make the conjecture z(t) = A(t)t?/t2, insert your guess
into the non-homogeneous equation, and get

A=t2)12.
Integrate and find
A(t) = Ato) = to — t5/t,
and, since A(tg) = z(tp), finally find the solution

Determine a solucao geral das EDOs lineares de primeira ordem

2& — 62 = e* T+2r=t &+ a/t? =1/t T+ tr =12

definidas em oportunos intervalos da recta real.

Resolva os seguintes problemas nos intervalos indicados:

2t

2t -3z =e te(—w,0) com z(0)=1

3t te(—oo,00) com z(l) =2

T+x=c¢
ti —a = t3 te (0,00) com z(1) =3
&+ te =t te(—ow,0) com z(0) =0

dr/df + rtan @ = cosf te(—n/2,7/2) comr(0) =1

e.g. Free fall with friction. Friction may be modeled as a force —kv proportional and contrary
to velocity, where k > 0 is a friction coefficient (which depends on the shape of the falling body,
and on many other things!). Therefore, free fall near the Earth’s surface may be modeled by the
Newton equation

mv = —kv —mg

This is a linear ODE for the velocity, whose solution is

gm —(k/m gm
o(t) = L= 4 e (/m! (U(O) - T) .

In particular, the velocity is asymptotic to the equilibrium value © = gm/k.

e.g. Circuito RL. A corrente I(t) num circuito RL, de resisténcia R e indutancia L, é deter-
minada pela EDO )
LI+RI=V

onde V(t) é a tensdo que alimenta o circuito.
e Escreva a solucao geral como fungéo da corrente inicial I(0) = Iy.

e Resolva a equagdo para um circuito alimentado com tensao constante V(t) = E. Esboce a
representacao grafica de algumas das solucoes e diga o que acontece para grandes intervalos
de tempo.

e Resolva a equagao para um circuito alimentado com uma tensao alternada V' (t) = E sin(wt).
Se nado conseguir, mostre que a solu¢do com I(0) = 0 tem a forma

I(t) = B sin (wt — ) Ewl Tt
NiZEwa 2

+ =5 —573¢ *©
R? + w?L?
onde a é uma constante que depende de w, L e R.
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e.g. Lei do arrefecimento de Newton. Numa primeira aproximagao, a temperatura 7'(¢) no
instante ¢ de um corpo num meio ambiente cuja temperatura no instante ¢ é M (t) segue a lei do

arrefecimento de Newton .
T=—-k(T—-M())

onde k é uma constante positiva (que depende do material do corpo).

e Escreva a solugdo T'(t) como fungiao da temperatura inicial T(0) = Ty e de M(s) com 0 <
s <t

e Resolva a equagdo quando a temperatura do meio ambiente é mantida constante M (t) = M.
Esboce a representacao gréfica de algumas das solugoes e diga o que acontece para grandes
intervalos de tempo.

e Uma chédvena de café, com temperatura inicial de 100°C, é colocada numa sala cuja tem-
peratura é de 20°C. Sabendo que o café atinge uma temperatura de 60°C em 10 minutos,
determine a constante k£ do café e o tempo necesséario para o café atingir a temperatura de
40°C.
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15 Curves

Caminhos. Um caminho em R™ é uma fungao c: I — R™,

t—c (t) = (Cl (t) , C2 (t) y ey Cn (t)) )

definida num intervalo I < R. Se ¢ é uma func¢do continua (ou seja, se as suas coordenadas
cp: I >R, comk =1,2,...,n,sdo fungdes continuas), o caminho é dito continuo e a sua imagem,
o subconjunto ¢ (I) := {c(t), com ¢t € I} c R", é dita curva. Se I = [a,b] é um intervalo fechado
e c(a) = c(b), entao c é dito caminho fechado, ou lago.

Por exemplo, um caminho no plano R? ou no espaco R?, é uma funcéo

tor(t) = (z(t),y(t) eR*  ou  ter(t) = (2(t),y(t),2(t) € R

definida num intervalo (de tempos) t € I < R.

O parametro t € I tem a interpretagao de um “tempo”, o espago R" a interpretacao dos possiveis
“estados” de um sistema fisico (a posi¢do e o momento de um planeta, as concentragdes dos n
reagentes de uma reagdo quimica, ...). Assim, o caminho ¢ — c () representa uma “trajetéria”,
ou “lei hordria”, uma lei que determina o estado ¢ (t) do sistema em cada tempo t € I. A curva
c(I), o conjunto dos estados pelos quais passa a trajetoria, é dita “6rbita” do sistema.

e.g. Retas e segmentos. A reta que passa pelo ponto a € R (no tempo 0) na diregao do vetor
nao nulo v € R™ é o caminho
t—a+tv com teR.

O segmento que une os pontos a e b de R™ é, por exemplo, o caminho

t—a+(b—a)t com te[0,1].

Space filling curves! As strange as it may look, a generic continuous path may be much different
from the idea we have in mind when drawing a curve in our blackboard. This was discovered by
Giuseppe Peano, who shocked the mathematical community back in 1890 exhibiting a continuous
image of the unit interval [0, 1] which covered the entire unit square [0, 1] x [0, 1]. More amazingly,
you may want to know that the “obvious” statement that a closed curve without self-intersections
divides the plane in two “pieces” requires a very long and delicate proof!, and deserves the name
of Jordan curve theorem.

Caminhos diferencidveis. Dado o caminho ¢ : I — R"™, o vetor (c(t + &) — c(t)) /e representa
a velocidade média entre os “tempos” t + ¢ e t. O caminho ¢é dito diferencidvel no ponto t € I

quando existe o limite
c(t+e)—c(t)

c (t) :=1i

W=t
O vetor %(t) := ¢ (t) e R™ é dito derivade do caminho ¢ no ponto ¢, ou velocidade do caminho ¢
no tempo ¢.

A diferenciabilidade do caminho em ¢, ou seja a existéncia do limite ¢(t), é equivalente &
diferenciabilidade das n fungdes reais t — ¢ (t) em ¢, onde k = 1,2,...,n. A derivada ¢(t) é
portanto um vetor de coordenadas ¢ (t) = (¢1 (£),¢é2 (8) , ..., & (2)).

O caminho ¢ : I — X é dito diferencidvel quando é diferenciavel para todo tempo ¢ € I.

Se t — c(t) = (c1(t),ca(t),...,cn(t)) € R™ é um caminho diferencidvel, entdo a sua derivada
¢: I — R™ é também um caminho, e faz sentido definir as derivadas sucessivas, como

ode o _d(dy . de d(dc
Todt’ Tde2 T de \dt )’ Tods T dt \ di2 )

Em particular, a primeira derivada v(¢) := ¢(t) é dita “velocidade”, a sua norma v(t) := |v(¢)|
“velocidade escalar”, e a segunda derivada a(t) := v(t) = €(t) é dita “aceleracao”.
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As curvas (et cos(3t), ! sin(3t)), (,sin(1/t)), e (2cos(t),sin(—t).

Reparametrizatons. A curve, seen as a subset of some R", may have different paramerizations.
Namely, if ¢ : I — R"™ is a continuous path, and ¢ : J — I, sending s +— t(s), is a continuous
function from the interval J onto the interval I, then the composition co ¢ : s — c(t(s)) is a
continuous path from J onto the same curve ¢(I). If both the path ¢ and the reparametrization ¢
are differentiable, the velocity of the path s — c(t(s)) is e (¢(s)) - 4.
e.g. Uniform circular motion. Uniform circular motion in the Euclidean plane is described
by the path
t— r(t) = (Rcos(wt), Rsin(wt)) .

Here R > 0 is a fixed radius, and w > 0 is an angular velocity. Indeed, the trajectory describes a
circle {z? + y? = R?} of radius R around the origin. The velocity is

_dr

v(t) = a(t) = (—Rwsin(wt), Rw cos(wt)) ,

and the acceleration is

a(t) = %(t) = (—Rw? cos(wt), —Rw?sin(wt)) .

In particular, {a(t),v(t)) = 0, i.e. the acceleration is orthogonal to the velocity, and it is directed
towards the center of the orbit, since a(t) = —w?r(t). The quotient between the scalar velocity

v(t) = |v(t)|| = Rw and the radius of the circle is the angular velocity w.

e.g. Epicycles. According to Aristotle and Plato, “all movements are combinations of circular
uniform motions”. This idea is at the basis of the cosmology of Hipparchus and Ptolemy, as
transmitted to us in the Almagest. “Fixed” stars describe circles in the sky. “Wandering” (i.e.
planets, from the greek mhavitng) stars describe a circle (epicycle) around a circle, which again
describe a circle around a circle, ..., which describes a circle around a first circle (deferent).

help: Mathematica®8 plots parametric curves. For example, the command

ParametricPlot[{Cos[t] + 0.1 Cos[20 t], Sin[t] + 0.1 Sin[20 t]}, {t, O, 2 Pi}]

produces the following pictures of an epicycle

et

9_/
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e.g. Cusps. Differentiability depends on the parametrization of the path, i.e. on the time law,
and not on the curve! For example, the path ¢t — (t3,¢2), with t € [—1,1], describe the cusp
y3 = 22 in the plane. Nevertheless, it is differentiable, and its velocity is the path t — (3t2,2t).

The apparent singularity at ¢ = 0 is reached with zero velocity!

The cusp t — (3,1?) and its velocity.

ex: Esboce as seguintes curvas no plano, e calcule velocidade e aceleragao, nos pontos onde
podem ser definidas.

r(t) = (t,t°) comteR, r(t) = (£2,¢%) comteR,
r(t) = (t,|t|) comte[-1,1], r(t) = (cosf,sind) com 0 € [0,27] ,
r(t) = (t,[t]) comte[-2,2], r(t) = (¢,sin(1/t)) com t e ]0,00] .

]

(t) = (|sin(5t)| cos(2t), | sin(5t)| sin(2t)) com ¢ € [0, 2] ,
r(t) = (cos(t) + 0.1 cos(17t),sin(t) + 0.1sin(17¢)) com ¢ € [0, 27].

ex:  Verifique que a trajetéria
t—r(t) = (acost,bsint) ,

comteR e a,b> 0, descreve a elipse 22/a? + 32/b% = 1.

ex:  Esboce a trajetéria
t — r(t) = (Rcost, Rsint,bt) ,

comteR e R, b> 0, descrita por uma particula em movimento numa hélice circular.

ex: Determine umas equacoes paramétricas para a pardbola x = 32 + 1 e para a hipérbole
22 —y? =1 com z > 0 (lembre a identidade cosh? # —sinh? § = 1 entre as funcées “hiperbdlicas”).

Smooth paths. A path is said of class C° if it is continuous, of class C! if its derivative is
continuous. Using induction, it is said of class C**+1 if its derivative is of class C*. It is said of class
C*® if it is of class C* for any k, namely if all its derivatives are continuous.

Trajectories of physics used to have so many derivatives as we want (simply because most
physical laws are written in terms of derivatives!), and we’ll refer to them as “smooth”, without
specifying their regularity. Meanwhile, you must keep in mind that there are continuous paths
which are nowhere differentiable. Actually, as shown by Weierstrass, almost all continuous paths
are like that! They play a role in models of phenomena like the Brownian motion or turbolence

e.g. Espiral logaritmica. A recurrent pattern in Nature is the logarithmic spiral.
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It is defined in polar coordinates, r and 6, by the law
r=c-\ ,

for some constants ¢ > 0 and A > 0. We may parametrize the angle as t — 6(t) = wt, for some
angular velocity w > 0. Then, the logarithmic spiral is the curve drown by the path

t > (Ae™*" cos(wt), Ae™* sin(wt)) .

Theorem 15.1. (Teorema do valor médio) Seja c : [a,b] — R™ um caminho continuo, difer-
encidvel em Ja,b[ e com derivada limitada por

le@] < K

para todo t € |a,b[. Entdo
le(®) —cla)| < K-|b—al.

De fato, o teorema do valor médio aplicado & funcao real ¢ — {(c (¢t),c (b) — ¢ (a)), implica que
existe um tempo ¢ € Ja, b[ tal que

le (0) = c(a)]* = (& (F) ¢ (b) —c(a))- (b—a) .
Pela desigualdade de Cauchy-Schwarz
le(®) —c(@)]* < K-[c®) —c(a)]-|b—al,

e portanto, ou |c (b) —c(a)| =0, ou |c(b) —c(a)| < K - |b—al.

Comprimento de uma curva. The length of the segment between the vectors x € R™ and
y € R™, the curve Xy := {x + ty, t € [0,1]} is, by definition, the norm of the vector y — x, namely

(xy) == [y —x].

If ¢ : [a,b] — R™ is a path made of straight segments between the points x,, = ¢(t,) and x,,41 =
c(tn+1), given the sequence of times a = tg < t1 < ...ty < tpe1 < ...txy = b, it is natural to
define its length as the sum 3" |c(fns1) — c(t,)|. Therefore, a natural definition of length of
a continuous path c : [a,b] — R™ is

N—-1

Ue) i=sup Y fe(tnsr) —clta)l,

n=0

where the “sup” is taken over all finite partitions a = tg < t; < ...t < tpe1 < ...ty = b of
the time interval [a,b]. It is obvious from this definition that the length does not depend on the
parametrization of the path. The curve is called rectifiable when £(c) < co.

If we try to approximate a differentiable path c : [a,b] — R™ by a polygonal path between the
points c(¢x) and c(tx+1), we may observe that the length of the portion of the path between t;
and ty11 = tg + dt is, to a first approximation, ~ ||¢(t)| - dt. It turns out (but it is not obvious!)
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that the length of a differentiable curve may equivalently be computed/defined as the integral of

its scalar velocity:

b
(c) = f ()| dt

For example, a planar path like ¢ — r(t) = (x(¢),y(¢)), or a 3-dimensional path like ¢ — r(t) =
(z(t),y(t), 2(t)), with times ¢ € [a, b], have length

J V()2 +yt)2dt  or f N2+ ()2 + 2(t)2 dt.

Calcule o comprimento ...
do arco de circunferéncia 6 — (cos@,sinf) com 6 € [7/2,27] ,

. da espiral logaritmica t — (e ' cost,e 'sint) com ¢ € [0, 0 ,
do arco de pardbola t — (t,t2/2) com t € [0,1] (considere a susbtitui¢ao ¢ = sinh s).

Seja f(t) uma fungao real com derivada continua definida no

Comprimento de um grafico.
intervalo [a,b]. O grifico de f, o conjunto

Ty ={(t f(t)) e R? com te [a,b]} = R?,

é a imagem do caminho t — (¢, f(t)) com t € [a,b]. Em particular, o seu comprimento é

(T = qu/l TP dt.
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16 Scalar fields

Scalar fields. A scalar field is a real valued function f : X < R"™ — R defined in some domain
X < R™ We use both the notations f(x) = f(z1,22,...,z,) for the value of the field f at the
point x = (1, %2,...,%,) € R™.

Thus, a scalar field is a number f(x) attached to any point x € X. For example, the “coordinate
functions” x = (z1,xa,...,x,) — xp, for k = 1,2,...,n, are scalar fields, which give the values of
the different coordinates attached to a given point x € R".

A scalar field f : X ¢ R™ — R is said continuous at the point x € X if for any € > 0 there
exists 6 > 0 such that |y — x| < ¢ implies |f(y) — f(x)| < €. This is the same as saying that
f(x,) = f(x) for any sequence x,, — x. A scalar field f is said continuous if it is continuous at
all points x € X of its domain.

e.g. Temperature. The temperature of a ideal gas, as a function of the pressure P and the
volume V, is

1
T(P.V)= —=PV.

where n is the number of moles, and R ~ 8.314 x 107 J/K-mol. Curves with constant temperature
are hyperbolas PV = constant.

Level sets. Let f: X ¢ R™ — R be a scalar field, and X one of the values of f. The A-level set
of f is the subset
Ya = fH({A}) = {x € X such that f(x) =\} c X.

It may be one single point, or even all of X (if f is a constant function). For reasonable (i.e.
sufficiently smooth) fields and generic values A (in some precise meaning), it is a hypersurface, a
set of “dimension” n — 1 inside R™. The graph of f is the set

Gr={(x,\) e X xR t.q. f(x)=A}cX xR.
For example, if f(z,y) is a smooth scalar field defined in X < R?, then
3y = {(x,y) eXcR? tq. f(z,y) = )\}
is, for generic values of A, a level curve. The graph of f is the surface
Gri={(r,y,2) e X xR t.q. f(z,y) =2} cR>.

Of course, it is not easy to draw the graph of a function defined on R"™ when n > 3!

Curvas de nivel e grafico.

Esboce as curvas de nivel e os graficos das seguintes fungoes, nos dominios onde podem ser
definidas:

faey) =a+y  fey) =z @y =+2 [y =VT-22 2

fz,y) =log (2 + y) flz,y) = 2* —y? f(z,y) = sin (zy)
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e.g. Equacao de Van der Waals.

a
(P+W) (V—b)anT
onde b representa o efeito das dimensdes finitas das moléculas e a/V? o efeito das forcas moleculares
de coesao.

Directional and partial derivatives. Let f: X < R™ — R be a scalar field. Given any point
x € R", a non-zero vector v € R"™ defines a straight line ¢ — x + ¢tv passing through the point x at
time ¢ = 0 with velocity v. The directional derivative of the field f at the point x € X along the
direction of the vector v € R™ is the derivative of the real valued function ¢t — f(x +tv) computed
at time ¢ = 0, namely

of

ov

Another notation for the directional derivative is £y f(x) (called Lie derivative of the scalar field
f along the constant vector field v). Some authors reserve the name of directional derivative to
the case when v is a unit vector, i.e. when |v| = 1.

If we compute the directional derivative of f w.r.t. the direction v = ey, the k-th vector of the
canonical basis ej, e, ..., e, of R" we get the partial derivative of f at the point x with respect
to the variable xj, denoted as

d
(x) := %f(x +1tv) .

— Tim f(x +tey) — f(x) .
oxy, t—0 t
Thus, in order to compute the partial derivative ;wfk (x), you “freeze” all the remaining coordinates
r;, with i # k, to their values at the point x, and compute the usual derivative of the real valued
function ¢ — f(x1,...,Tk—1,t,Tk+1,.-.,Z,) at the point ¢ = xy.
For example, the partial derivatives of the scalar field f(z,y) defined in some domain of the
Cartesian plane R? with coordinates (z,y) are the limits
of fl@tey) — fzy)

aix(muy) zgl_{% c

0 _
and ai,c@’y):ii_%ﬂx’wi flay)

Higher order derivatives and smooth fields.  Partial derivatives of a scalar field are them-
selves scalar fields, so it make sense to compute their partial derivatives,

(AN F o (a
oy \ox ) oyox’ or \ oz )  ox2’
and so on.

A scalar field is said of class C° if it is continuous, of class C! if its partial derivatives are
continuous. Using induction, it is said of class Ck*1 if its partial derivatives are of class C*. It
is said of class C® if it is of class C* for any k, namely if all its partial derivatives exist and are
continuous. According to Schwarz theorem, if a scalar field f is of class C* in some domain, then
its partial derivatives up to order < k commute. Thus, for example,

*f o f

(%ci&xj B al‘jaﬂii

if the field f is of class C2.

Differentiable scalar fields. A scalar field f : X < R” — R is differentiable at the point x € X
if there exists a linear map L : R™ — R such that, for any v € R™ with sufficiently small norm,

fe+v) =f(x)+ L-v+e(v)
where the “error” e(v) is so small that

e(v)

m ——7 =
Ivi—o [[v]
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The linear map L is called differential of f at x, and denoted by df (x) (or also Df(x), or f'(x)).
Above, we used the notation L -v = Liv; + Lovs + - -+ + L,v, for the value of the linear map L
at the vector v.

It is clear that a linear map L as above, if it exists, must be unique. It also immediate to
see that a differentiable field is continuous, since both L -v — 0 and e(v) — 0, and consequently
f(x+v) = f(x), as |v] — 0.

If f is differentiable at x, its directional and partial derivatives may be computed as

2—5(){) =df(x) v and :—xfk(x) =df(x) - eg.
Therefore, the differential of a scalar field f : X < R™ — R at the point x € X is the linear form
df (x) : R™ — R given in coordinates by
_of af of

df (x) := p (x)dz1 + T@(X) dro + -+ E(X) dx,

where dzy, the differential of the coordinate function x — xj, is the linear form which takes the
vector v = (v1,va,...,v,) € R™ into the scalar dzy - v := vy.

Gradient. A convenient way to write the differential of a scalar field is the following. The
gradient of the scalar field f : X < R™ — R at the point x € X is the vector whose components
are the partial derivatives of f at x, namely

Vfix):= <(ii(x),§xj;(x)7,;ai(m)) )

An alternative notation, also used by physicists, is grad f(x).
In particular, the directional derivative of the differentiable field f along the direction of v € R"
at the point x is
of

(@) = a0 v = V160,
If v is a unit vector, i.e. |[v| = 1, then the Schwarz inequality says that

Vi1 < S0 < 190l

More precisely,
0
7y %) = [V )] - cos(9)
where 6 is the angle between V f(x) and v. Therefore, the directional derivative is the component
of v along the direction of the gradient V f(x) . In particular, the directional derivative is maximal
in the direction of the gradient, namely for v = Vf(x)/|Vf(x)|, and minimal in the opposite
direction, for v = =V f(x)/||Vf(x)||. Thus, the gradient points to the direction along which the
function increases most rapidly.
Computation of the gradient may be simplified using the following properties, easy consequences
of the corresponding properties of the derivative:

Vf=0 if f is constant
V(f+9)=Vf+Vf

V(fg)=fVg+gVf
V(f/9)=(gVf—[fVg) /g
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Vector fields. A vector field is a vector valued function F : X < R® — R¥ defined in some
domain X < R", with coordinates Fy(x), F5(z),..., Fx(x) which are k scalar fields. Continuity of
a vector field is defined component-wise. Thus, a vector field F is continuous if all its coordinates
F; are continuous scalar fields.

The gradient of a differentiable scalar field f : X < R™ — R, thought as a function Vf : X
R™ — R", sending = — V f(z), is an example (actually a most important one!) of a vector field.

A vector field F : X < R™ — R¥ is differentiable at the point x € X if there exists a linear
map L : R” — R¥ such that, for any v € R" with sufficiently small norm,

Fx+v)=Fx)+L-v+E(v)
where the error E(v) is so small that

E(v)

im —=* =
Ivi=o [ vl
The linear map L is called differential of F at x, and denoted by DF(x), or F/(x).
Thus, if F is differentiable at x, its directional and partial derivatives may be computed as

JF OF
a—v(x) = DF(x) v and

Therefore, the matrix which represents the differential DF(x) in the canonical basis of R™ and R¥
is the Jacobian matriz

a—xk(x) = DF(x)-eg.

oF;
al‘j

JF(x) := ( (x)) € Matyxn(R).

Differentiability classes. The existence of partial derivatives does not implies differentiability.
For example, the function f(z,y) equal to 1 for zy = 0 (i.e. on the two coordinate axis) and equal
to 0 for zy # 0 (i.e. outside the axis) does admit partial derivatives at the origin, but it is not even
continuous there. Even the existence of directional derivatives for all non-zero directions does not
implies differentiability.

More interesting is that the existence and continuity of all first partial derivatives in some
domain does implies differentiability. The class of real valued functions having continuous partial
derivatives inside the domain X < R is named the class of C!(X,R) functions.

Chain rule for scalar fields and paths. Let r: I c R — X < R™ be a differentiable path,
given explicitly by t — c(t) = (21(t), z2(t), ..., 2,(¢)), and let f: X < R™ — R be a differentiable
scalar field. The composite function foc : I — R (which is a real valued function of a real variable)
is differentiable and its derivative may be computed as

d .
SHe) = (V). e

- L) Do+ Ly 2+ 2L

dzn

COR0

Por exemplo, se t — r(t) = (z(t),y(t)) € R? é um caminho com velocidade v(t) = (z(t), y(t)),
e f(z,y) um campo escalar, entao

_of

d . of
ﬁf(r(t)) =(Vf(x(),v(t) = Ew (x(t)) - 2(t) + ==

o (x(0) ).

e.g. Linear field. Inner product by a fixed vector w € R? (or in any other R") defines a linear
scalar field according to f(r) = (w,r). One easily compute that

Vfilr)=w and therefore g—“f/(r) ={(w,Vv)

for any direction v € R? and any point r € R3. Level surfaces of f are the affine planes orthogonal
to the vector w # 0, namely

Yy = {x € R¥such that (w,x —a) =0} =a+w',

if a € ¥ is any point where f(a) = (w,ay = A.
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e.g. Norm and its powers. The norm may be viewed as a scalar field r — r := |r|. One
computes, for any k=1,...,n,

or () 22, Ty

= () = L

Oxy, 2/xy + a3+ a2 T

and consequently

r
\Y = -
) = -
for r # 0. The gradient of the N-th power f(r) = " is therefore
N—1 r
vf(r):NT VT:NW

In particular, for p(r) = |r|?,
dp
Vp(r) =2r and therefore a—(r) =2{r,v) .
v

for any direction v € R3. Observe that level surfaces of ¢(r) = 72 in R?® are the spheres ¥, = {x €
R3 such that |x|?> = A} of radius v/, for A = 0.

Thus, if a particle moves inside a fixed sphere, i.e. if t — r(t) is a path with constant |[r(¢)[? = A,
then (¥(t),r(t)) = 0, so that the velocity v(t) = ¥(¢) is orthogonal to the position vector r(t) at
every time .

Calcule as derivadas parciais de primeira e segunda ordem das seguintes fungoes, nos
dominios onde podem ser definidas:

flay) =~a2+y2  fla,y,2) =2 +y" +zay  flz,y) =log (2* + y°)
sin(z?)

fla,y) = ev'o8®
y

fla,y)=e™  flz,y) =

Calcule o gradiente das seguintes fungoes, nos dominios onde podem ser definidas:

flay) =va2+y2+ 22 flay) =2 —y*  flo,y) =sin(2® +1°)

flay) =V flayz) =ayz fla,y) = V08T

Calcule a derivada & f(r(t)) dos seguintes campos f(r) ao longo dos respetivos caminhos
t — r(t) nos tempos indicados.

floy) =2y —ay*  te (385 t=0,
flz,y) =zy t — (2¢' cos(t), 2¢" sin(t)) t=1,
flz,y,2) =22 +y*> + 22t (cos(t),sin(t),t) t=rm,

e.g. Gravitational field. @ The gravitational force field produced by a star of mass M placed

at the origin of R? is
r

I)?

where G ~ 6.670 x 10~® dina-cm?/gm?. It is the gradient of the gravitational potential

or) = 2L

F(r) = -GM

Mostre que o potencial Newtoniano o(r) = 1/|r| em R*\{(0,0,0)} satisfaz a equagdio de
Laplace
G 09 Op _
ox2  o0y? 022
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A temperatura do mar num ponto r = (x,y, 2) é dada por T(z,y, 2) = 23 — 2y + y22. Uma
sardinha encontra-se no ponto a = (3,2,1). Em que direcgao e sentido a sardinha tem de nadar
para arrefecer mais rapidamente?

Seja f(t) uma funcao real diferencidvel. Mostre que a funcao u(z,y) = f (zy) satisfaz a
equagao

ou ou 0
rT— —Yy— =
ox y&y
e que a fungao v(z,y) = f (x/y) satisfaz a equagao
ma—v + a—v =0
ox y(?y B

(aproximacao linear) Estime os seguintes valores, usando a aproximacao linear

0 0
[z +dz,y + dy) 2f(x,y)+§£($ay)'d$+&%(%y)'dy

log(1.01
2014/3.999 % 3./7.99v/36.01

e.g. Kinetic energy and conservative systems. Let t — r(t) € R? (or R?) the trajectory
of a particle of mass m > 0, v(t) = r(¢) its velocity and a(t) = v(t) = ¥(t) its acceleration. The
kinetic energy of the particle is

1
K = im HVH2 .

Its time variation is

& (5mIvO1) = tna.v(oy

Thus, if the particle is subject to a force F = m a which is orthogonal to the velocity (as a magnetic
force acting on a moving charged particle) then the kinetic energy is a constant of the motion.

A force field F(r) is said conservative if there exists a scalar field V (r), called potential, such
that F(r) = —VV(r). The name is justified by the fact that the (total) energy, defined as

1
E=K+V = §m|\v|\2 + V(r),

is a constant of the motion. Indeed

d

B (1), V(D)

(ma(t),v(t)) +{VV(r)(t),v(t))
{ma(t) —F,v(t)) =0

if the acceleration satisfies Newton equation F = ma.

Tangent space to a level set. Let X, be a non-empty level set of the differentiable scalar field
f: X cR"” >R, and x € X one of its points. If ¢ :] — g,e[— X, is any differentiable curve lying
entirely on the level set ¥ and passing through ¢(0) = x at time 0, then the composite function
t — f(c(t)) is constant and equal to A, and therefore, by the chain rule,

d .
0=~ fle@®) =<Vf(x)¢0)).
t=0
If the gradient of f at x is different from the zero vector, i.e. Vf(x) # 0, we deduce the the
space of all such velocities ¢(0), which we call tangent space to 3 at x, is the normal space to the
gradient of f at x.
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For example, If f(x,y, 2) is a scalar field defined in some X < R3, then the tangent plane to the
level surface ¥, at some point r is the affine plane orthogonal to the gradient V f(r) and passing
through the point r, namely

{v e R¥such that (Vf(r),v —r)=0}.
The Cartesian equation of such a plane is

T -0+ 2w w0+ Lo g -0

where v = (z,y,2) and r = (a,b, ¢).

Considere as seguintes fungoes:
flay) =2 +y*  flay)=2*—y*  flx,y) =2’

2 2
flay) =2y  flay) =" flay)=1-y-a’
fla,y,z) =2 +y* +2°  flay,2)=2"+y* 2" flry2)=2"+y"—2
Calcule o gradiente num ponto genérico onde estao definidas. Determine a recta/superficie tangente
a curva/superficie de nivel no ponto r = (1,1) (our = (1,1,1)).

Critical points and local extrema. Let f : X — R be a differentiable scalar field defined
in some domain X < R™. Critical points (or stationary points) of f are points a € X where the
differential (hence the gradient) vanishes, i.e. where

df(a) = 0.

Observe that this means that all partial derivatives vanish.

If f has a local maximum or minimum at some interior point a € X (as, for example, the
origin for f(x,y) = —x? — y? or f(x,y) = 2% + y?), then it must be a critical point, since the
directional derivative %(a) must vanishes there for any vector v € R™. The converse is, of course,
false already in dimension one. Critical points such that in any neighborhood B.(a) there exists
points x,y such that f(x) < f(a) < f(y) are said saddle points. The simplest example in the
plane is the origin for f(z,y) = zy.

To decide if a critical point a is indeed a local minimum or maximum we must look at least at
the second derivatives of f, namely its Hessian matriz

tessfa) = (2L (@)

8xi6xj

It follows from Schwarz theorem that, if f is of class C?, this is a symmetric matrix. But this
implies that Hessf(a) is diagonalizable, namely that there exist n linear independent eigenvectors
W1, ..., Wy, forming a base of R", and corresponding eigenvalues A1, ..., \,, such that

Hessf(a) - wi = A\pywy

Now, given any direction v = >;'_, vywy, Taylor formula for the restriction ¢ — g(t) = f (a + tv)
gives
g(t) = g(0) + Z M\evit? 4+ higher order terms.
i

There follows

Proposition 16.1. Let a € X be a critical point of a scalar field f : X < R®™ — R of class
C%. If all the eigenvalues of the Hessian matriz Hessf(a) are positive/negative then a is a local
minimum/mazimum of f. If the Hessian matriz has both positive and negative eigenvalues, then
a is a saddle point.

Observe also that if our scalar field is defined on the plane R?, then the Hessian matrix is two-
by-two matrix, and the task to detect its signature is much easier. In this case we can state the
recipe: a critical point of a scalar field f(z,y) is a local extremum iff the determinant det (Hessf(a))
is positive; moreover, the local extremum is a maximum/minimum iff one of the diagonal entries
of Hessf(a) is negative/positive.
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Compute critical points of the following fields, and decide if they are maxima, minima or
saddle points.

flay)=(x-1)y-2) flz,y)=2"+uy—3)° fly)=2"—y+7

flz,y) = x3y2 f(z,y = sin(z) cos(y) f(z,y) = €7I2,y2

e.g. Geometric center. Given N points x1, Xa, ..., Xy € R”, we may try to minimize the

sum
N

= > I —r?
k=1

of the square distances from a given point r. The minimum is attained for r equal to the (geometric)

center
Ly
X:i=— X
N k=1

e.g. Least squares. We measure n times an observable y in correspondence of another observ-
able x, obtaining the set of data

Z1, Y1, T2, Y2 o Tny Yn

We conjecture a law y = f(x,a), depending on certain parameters a = (a1,...,ax) € R¥, and pose
the problem to find the “best” values of the parameters that fit the experimental results. One
popular answer, called least square fitting, consists in choosing those values of the parameters that

minimize the sum
n
2
Z Yk — f(zg, a))

of the squares of the errors. In general, the condition VQ(a) = 0 being nonlinear, cannot be solved
by exact methods. Computational softwares, in particular statistics software, use to have routines
dedicated to estimate a solution.

The answer is easy when we conjecture a linear law y = o + Sz, In this case, computing the
partial derivatives 0Q/da and 0Q/03, we get the two equations

Z yr — (a+ Bxg)) =0 and Z yr — (. + Brg)) xp =0,

hence the system

BT+a=7

na+ B (o2, + nT’) =52 y +NTY
for o and 3, where we used the notations T = % (r1+20+ 4z, andy = % (y1+ya+ -+ yn)
for the mean values, and

3

j oy — T)? (sz> -

k=1

n n
T2y = O (@ — D)y —7) = (2 xkak) — nzry
k=1 k=1
for the covariances. After some rearrangement, we see that the critical point of Q(«, ), hence the
answer according to the least squares principle, is given by the recipe
—2
o
B =—Y and a=7y—pT.

62

T

It must be said that minima of Q(a) always exist, hence the method produces values of the
parameters for all laws we may conjecture, true or false! The actual value of the minimum, together
with some knowledge of the statistical errors in the data, gives a measure of the significance of the
result. You may learn more in any good manual on statistics.
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help:  With Mathematica®8 you may define your data and fit a line with the commands

{{100, 235}, {200, 337}, {300, 395}, {504, 451}, {600, 495}, {800, 534}, {1000, 574}%};
Fit[data, {1, x}, x]

data
line

and produce the picture

Show[ListPlot[data, PlotStyle -> Red], Plot[{line}, {x, 50, 1050}]1]

Na seguinte amostra, obtida por Galileo, foram registadas as coordenadas (altura = e
distancia y) da trajectéria de um objecto langado com uma forga horizontal,

x 100 200 300 450 600 800 1000
y 235 337 395 451 495 534 574

Ajuste uma recta.

Na seguinte tabela, colecionada por Jaques Cassini, foram registadas as obliquidades da
ecliptica (o angulo entre o plano equatorial da Terra e o seu plano orbital) (y + 23)° em diferentes

datas t,
t —140 —-140 390 880 1070 1300 1460

y 0.853 0.856 0.500 0.583 0.567 0.533 0.500

t 1500 1500 1570 1570 1600 1656 1672 1738
y 0473 0.488 0.499 0.525 0.517 0.484 0.482 0.472

Ajuste uma recta. Retire os dados anteriores ao ano 1500, e ajuste outra recta. Discuta o resultado.
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17 Continuous-time models and simulations

Systems of ordinary differential equations. Meaningful models of many physical, chemical,
biological ...systems are written in the language of systems of differential equations

x = v(t,x) (17.1)

where x(t) = (z1(¢), z2(t), ..., 2, (t)) € X < R™ is a vector of values of certain observables at time
t, and v(¢,x) is a given direction field in the extended phase space T' x X < R x R™.

e.g. Chemical reactions. The modern approach to the kinetics of chemical reactions is dis-
cussed in the article Chemical reaction kinetics of the Scholarpedia.

help: O campo vetorial do oscilador harmédnico com atrito pode ser desenhado, no Mathematica®,
usando a instrugao

VectorPlot[{y, -x + 0.5 y}, {x, -1, 1}, {y, -1, 1}]

O resultado é
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Simulations. It is in general hopeless to find “exact” solutions of systems of differential equa-
tions, as long as they are not linear. For this reason, we must content with making simulations.

Euler method. Considere o problema de simular as solugoes da EDO
x = v(t,x).
O método de Fuler consiste em utilizar recursivamente a aproximacao linear
x(t +dt) —x(t) ~ v(t,x)-dt,

dado um “passo” dt suficientemente pequeno. Portanto, a solugéo x(to+n-dt) com condigao inicial
x(tg) = Xo, é estimada pela sucessdo (z,) definida recursivamente por

Tn+1 = T + 'U(t'ruxn) . dtv (172)

onde t,, =ty +n - dt. Numa linguagem como c++ ou Java, o ciclo para obter uma aproximagao de
x(t), dado z(tg) = x, é

while (time < t)
{
x += v(time, x) * dt ;
time += dt ;

}


http://www.scholarpedia.org/article/Chemical_reaction_kinetics
http://www.scholarpedia.org
http://www.wolfram.com/mathematica/
http://www.cplusplus.com/
http://www.java.com/en/
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e.g. The exponential. Considere a equacao diferencial

r=2x
com condigdo inicial z(0) = 1. Mostre que, se o passo é dt = ¢, entdo o método de Euler fornece a
aproximagao

n
z(t) =~ (1 +¢)
onde n ~ t/e é o nimero de passos. Deduza que, no limite quando o passo ¢ — 0, as aproximagoes
convergem para a solucao ef, pois

t n
liH(l) (1+¢)7% = lim <1 + )
£—

n—o0 n

Método RK-4. O método de Runge-Kutta (de ordem) 4 para simular a solucao de
T =v(t,x) com condigdo inicial  z(tg) = xo
recursivamente por

consiste em escolher um “passo” dt, e aproximar x(tg + n - dt) com a sucessdo (x,) definida
)

Tpntl = Tp + % (Ifl + ng + 2]{}3 —+ k4)

onde t,, = tg + n - dt, e os coeficientes k1, ko, k3 e k4 sao definidos recursivamente por
ki = U(tnwrn) ke =v (tn + %,l’n + % : kl)

k3=v(tn+%,xn+%-k2)

ky = ’U(tn +dt,x, + dt - ks)
e Implemente um cédigo para simular sistemas de EDOs usando o método RK-4.
help:

O péndulo com atrito pode ser simulado, no Mathematica®™, usando as instrugoes
s = NDSolve[{x’[t] == y[t], y’[t] -Sin[x[t]] - 0.7 y[t],
x[0] == y[0] == 1}, {x, y}, {t, 20}]

ParametricPlot [Evaluate [{x[t], y[t]} /. s], {t, 0, 20}]
O resultado é

e.g. Péndulo matematico.
péndulo,

Considere a equagdo de Newton que modela as oscilagbes de um
onde w =

0 = —w?sin(h) — af .

g/l, g é a aceleragao gravitacional, £ o comprimento do péndulo, e a = 0 um coeficiente
de atrito. No espago de fase, de coordenadas 6 e p = 0, a equagao assume a forma do sistema

0=p
p = —w?sin(d) — ap

e Simule o sistema, e esboge as trajectérias e as curvas de fase.
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Retrato de fase do péndulo (sem e com atrito).

e.g. Oscilador harmoénico. As pequenas oscilacoes de um péndulo em torno da posicao de
equilibrio estavel 8 = 0 sao descrita pela equagao do oscilador harmdnico

onde w é a frequéncia caracteristica. No espacgo de fase, de coordenadas ¢ e p = ¢, a equagao
assume a forma do sistema

q' =p
p=—wq
As tsolug oes sao
q(t) = Asin (wt + ¢) ou Acos (wt + @) ,

onde a amplitude A e as fases ¢ e ¢ dependem dos dados iniciais ¢(0) = go e ¢(0) = vp. A energia

1 1
E(q,p) = 5192 - §w2q2

é uma constante do movimento, ou seja, %E (g(t),p(t)) = 0.

Retrato de fase do oscilador harménico.

e.g. Circuito LRC. A corrente I(t) num circuito RLC, de resisténcia R, indutincia L e
capacidade C, é determinada pela EDO

. .1 .
LI I+ =I=
+R +C Vv,

onde V (¢) é a tensdo que alimenta o circuito.
e Simule a corrente num circuito alimentado com uma tensao constante V(t) = V;.

e Simule a corrente num circuito alimentado com uma tensdo alternada V(t) = Vjsin(yt)
(compare com a equacdo das oscilagoes forcadas amortecidas).
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e.g. Oscilador de van der Pol. Considere o oscilador de van der Pol*
i—p(l—q")i+q=0
que modela a corrente num circuito com um elemento nao-linear.

e Simule o sistema e discuta o comportamento das solugbes ao variar o pardmetro p.
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Retrato de fase e trajectérias do oscilador de van der Pol.

e Simule o oscilador forgado
G—p(1—q¢*)q+q = Fysin(wt)

ao variar o parametro p e a frequéncia w.

e.g. Sistema de Lotka-Volterra. Considere o sistema de Lotka-Volterra

T =ax — bxy

y=—cy+dzy
Foi proposto por Vito Volterra** para modelar a competicio entre x presas e y predadores, e
por Alfred J. Lotka®® para modelar o comportamento ciclico de certas reaccoes quimicas, como o

esquema abstracto
A+ X —2X X+Y ->2Y Y ->B

Stationary solutions are found solving the system = 0 and y = 0. This gives the trivial solution
(0,0), and the point (¢/d, a/b). To understand the other solutions, one observes that the function

H(x,y) = dr + by — clogz —alogy

is a constant of the motion, i.e. 4 H(xz(t),y(t)) = 0. Therefore, orbits of the Lotka-Volterra system
are contained in the level curves H(z,y) = c.
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33B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review 1 (1920), 701-710
and 754-762. B. van der Pol and J. van der Mark, Frequency demultiplication, Nature 120 (1927), 363-364.

34Vito Volterra, Variazioni e fluttuazioni del numero d’individui in specie di animali conviventi, Mem. Acad.
Lincei 2 (1926), 31-113. Vito Volterra, Legons sur la Théorie Mathématique de la Lutte pour la Vie, Paris 1931.

35Alfred J. Lotka, J. Amer. Chem. Soc 27 (1920), 1595. Alfred J. Lotka, Elements of physical biology, Williams
& Wilkins Co. 1925.
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Phase portrait of the Lotka-Volterra system.

e.g. Rock-paper-scissor game. Consider the reaction
X+Y 32X v+z5%2v z+xboz

modeled by the system

& =x(vy — B2)
y =ylaz —yx)
£ =2(Bx — ay)

e.g. Double-negative feedback. The interplay between two mutually repressing genes is de-
scribed by the system?>°

Oti —
1+y~ z

y= lfx‘s -y

e.g. Brusselator. O Brusselator é um modelo autocatalitico proposto por Ilya Prigogine e
colaboradores®” que consiste na reaccio abstracta

A—- X B+X Y +C 2X+Y - 3X X —-D

e Simule o sistema
t=a—(B+1)x+2%y
j =Bz -y
para as concentragoes das espécies cataliticas X e Y, obtido quando as concentragoes [A] ~ a
e [B] ~ 3 sdo mantidas constantes.

e Simule o sistema

t=a—(b+ 1)z + 2%y
y:bx—x2y
b=—br+0

para as concentracoes de X, Y e B, obtido quando a concentracdo [A] ~ « é mantida
constante e B é injectado a uma velocidade constante v ~ 4.
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Rerato de fase do Brusselator.

36T.S. Gardner, C.R. Cantor and J.J. Collins, Construction of a genetic toggle switch in Escherichia coli, Nature
403 (2000) 339-342.

371. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems, J. Chem. Phys. 48 (1968),
1655-1700. P. Glansdorff and I. Prigogine, Thermodynamic theory of structure, stability and fluctuations, Wiley,
New York 1971. G. Nicolis and I. Prigogine, Self-organization in non-equilibrium chemical systems, Wiley, New
York 1977.
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e.g. Reacgao de Schnakenberg. Considere a reaccdo de Schnakenberg®
2X +Y - 3X A->Y X —>B

modelada pelo sistema
t=x%y—x+p
y=—2y+a

para as concentragbes x ~ [X] ey ~ [Y].

e Simule o sistema e discuta o comportamento das solugoes ao variar so parametros.
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Retrato de fase do sistema de Schnakenberg.

e.g. Oscilador bioquimico de Goodwin. Um modelo de interagoes proteinas-mRNA proposto
por Goodwin?? é
y 1
M=ip—a
P=M-p

onde M e P denotam as concentragoes relativas de mRNA e proteina, respectivamente.

e Simule o sistema e discuta o comportamento das solugoes ao variar so parametros.

Retrato de fase do sistema de Goodwin.

e Simule o sistema*’

I —=_1
M= —aM

P=M™— 3P

38]. Schnakenberg, Simple chemical reaction with limit cycle behavior, J. Theor. Biol. 81 (1979), 389-400.

39B.C. Goodwin, Temporal organization in cells, Academic Press, London/New York 1963. B.C. Goodwin,
Oscillatory behaviour in enzymatic control processes, Adv. Enzyme Regul. 3 (1965), 425-438.

40T, Scheper, D. Klinkenberg, C. Pennartz and J. van Pelt, A Mathematical Model for the Intracellular Cicardian
Rhythm Generator, J. Neuroscience 19 (1999), 40-47.
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e.g. Atrator de Lorenz. Considere o sistema de Lorenz*!
& =o(y—x)
y=z(p—2)—y
z=uxy— Pz

e Analize o comportamento assimptdtico das trajectdrias ao variar os pardmetros o, p e 3.

e Observe o comportamento das trajectérias quando o ~ 10, p ~ 28 e 5 ~ 8/3.

Atractor de Lorenz.

41E.N. Lorenz, Deterministic nonperiodic flow, J. Atmspheric Science 20 (1963), 130-141.
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