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Abstract

This is not a book! These are notes written for personal use while preparing lectures
on “Análise Matemática” for student of BIOQ in the a.y. 2011/12, and then “Tópicos de
Matemática EC” for students of CIEAMB and GEOLOG in the a.y. 20012/13 and 2013/14,
and finally also for BA in the present a.y. They are rather informal and certainly contain
mistakes. I tried to be as synthetic as I could, without missing the observations that I consider
important.

I probably will not lecture all I wrote, and did not write all I plan to lecture. So, I included
empty or sketched paragraphs, about material that I think should/could be lectured within
the same course.

References contain some introductory manuals that I like, some classics, and other books
where I have learnt things in the past century. My favorite manuals are [Ba79] (for its examples
and its informal style) and [Ap69] (for its rigor and simplicity). Besides, good material and
further references can easily be found in the web, for example in Scholarpedia , in Wikipedia
or in the MIT OpenCoureWare.

It would be nice to have time and places to do simulations, using some of the software at
our disposal in laboratories: this includes proprietary software like Mathematica R©8 , Matlab
and Maple , or open software like Maxima and GeoGebra . Occasionally, we may also use some
c++ code and Java applets. Some applets are in the bestiario in my web page, and everything
about the course may be found in my page

http://w3.math.uminho.pt/~scosentino/teaching/tm_BA_CIEAMB_GEOLOG_2013-14.html

Pictures were made with Grapher on my MacBook, or taken from Wikipedia, or produced
with Matlab or Mathematica R©8 . Sections about linear algebra (matrices, linear systems,
determinants . . . ) are still missing.

This work is licensed under a
Creative Commons Attribution-ShareAlike 3.0 Unported License.
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Notations

e.g. means EXEMPLI GRATIA, that is, “for example”, and is used to introduce important or
(I hope!) interesting examples.

ex: means “exercise”, to be solved in training classes.
ref: means “references”, places where you can find and study what follows inside each section.
red paragraphs are technical definitions, axioms or theorems which you may skip if you are

not interested in proofs (but, of course, most following facts depend on them!).
QED or the symbol , means QUOD ERAT DEMOSTRANDUM, and indicates the end of

a proof.
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1 Numbers

ref: [Ap69, Ba79, RHB06, Wae91]

The language of philosophy. “. . . Signor Sarsi, la cosa non istà cos̀ı. La filosofia è scritta
in questo grandissimo libro che continuamente ci sta aperto innanzi agli occhi (io dico l’universo),
ma non si può intendere se prima non s’impara a intender la lingua, e conoscer i caratteri, ne’
quali è scritto. Egli è scritto in lingua matematica, e i caratteri son triangoli, cerchi, ed altre figure
geometriche, senza i quali mezi è impossibile a intenderne umanamente parola; senza questi è un
aggirarsi vanamente per un oscuro laberinto.” 1

Counting and measuring. We count finite collections of similar objects (as fingers in our hand,
years, molecules in a mole of gas, baryons in the Universe) using the numbers

1, 2, 3, 4, 5, . . . , 33, . . . , 6ˆ 1023, . . . , 1080, . . .

We may “sum” 33 goats and 66 goats, to get a flock of 33` 66 “ 99 goats. Also, we may need a
surface of 23 ˆ 23 “ 529 square meters to build our pyramid with side of 23 meters. Conversely,
we may sell 2 of our 99 goats and stay with the remaining flock of 99´ 2 “ 97 goats. Or we may
store the visible mass „ 4ˆ 1041 kg of the Milky Way into „ p4ˆ 1041q{p2ˆ 1030q “ 2ˆ 1011 stars
of the same size of our Sun (estimated to be „ 2ˆ 1030 kg).

Peano axioms for the natural numbers. We use the notation N :“ t1, 2, 3, 4, 5, . . . u for the
set of natural numbers. In order to be able to prove something, it is convenient to define N by a
(minimal) set of “axioms”, and this is what Giuseppe Peano 2 did back in 1889:

N1 any natural n P N has a “successor” n` P N (which, a posteriori, we think as n`1), different
from n, and no two different naturals have the same successor;

N2 there is an element, called “one” and denoted by 1 P N, which is not the successor of any
natural;

N3 (induction principle) a subset A Ă N which contains 1 and such that n P A implies n` P A
is the whole N.

The third axiom is the key to prove that certain statements about numbers are valid for all naturals
(since we humans have no time to check for all of them!). It is also the property that makes possible
recursive definitions, as we’ll see soon.

Once accepted the axioms, we set 2 :“ 1`, 3 :“ 2`, 4 :“ 3`, . . . and so on (but of course any

other list of symbols, as B, e, c . . . would do).

Sum and product. We define sums inductively, starting from n ` 1 :“ n`, and setting n `
pm`q :“ pn `mq`. The sum of two numbers represents a cardinality of an union. For example,
3` 4 “ 7 means

‚ ‚ ‚ ` ‚ ‚ ‚ ‚ “ ‚ ‚ ‚ ‚ ‚ ‚ ‚

We define products inductively, starting from n ¨ 1 “ n, and setting n ¨ pm`q :“ n ¨m` n. Thus,
d ¨ a is the sum of d times a, i.e. a` a` ¨ ¨ ¨ ` a

loooooooomoooooooon

d times

, and actually represents an “area”. For example,

4 ¨ 3 “ 12 means

‚ ‚ ‚ ‚ ˆ
‚
‚
‚
“

‚ ‚ ‚ ‚
‚ ‚ ‚ ‚
‚ ‚ ‚ ‚

If a ` b “ c, we say that b is the difference between c and a, and write b “ c ´ a. Thus, for
example, 7 “ 13´ 6.

If q ¨ r “ p, we say that r is the ratio between p and q, and write r “ p
q or p{q. Thus, for

example, 3 “ 21{7.

1Galileo Galilei, Il Saggiatore, 1623.
2G. Peano, Arithmetices principia, nova methodo exposita, 1889.
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e.g. Triangular numbers. The sum of the first n naturals is given by the formula

1` 2` 3` ¨ ¨ ¨ ` pn´ 1q ` n “
npn` 1q

2
,

which you may conjecture summing the last with the first numbers (hence n ` 1), then the last
and the first of what remain (again n´ 1` 2 “ n` 1), and so on, up to a total of n{2 such pairs,
or, following the Greeks, observing the following picture (red bullets form the “gnomon”) :

‚ ‚
‚ ‚

‚
‚ ‚

‚ ‚ ‚

‚
‚ ‚

‚ ‚ ‚
‚ ‚ ‚ ‚

‚
‚ ‚

‚ ‚ ‚
‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚

. . .

If you are not satisfied with that, you check the formula for n “ 1 (this gives 1 “ 1 ¨2{2), assume it
holds for n, sum the next term, which is n`1, and verifies that npn`1q{2`pn`1q “ pn`1qpn`2q{2.

ex: Square numbers and . . . Show that the sum of the first n odd numbers is

1` 3` 5` 7` ¨ ¨ ¨ ` p2n´ 1q “ n ¨ n

(i.e. n2, but we have not introduced this notation yet!), as the following picture suggests (again,
red bullets form the “gnomon”):

‚ ‚ ‚
‚ ‚

‚ ‚ ‚
‚ ‚ ‚
‚ ‚ ‚

‚ ‚ ‚ ‚
‚ ‚ ‚ ‚
‚ ‚ ‚ ‚
‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚
‚ ‚ ‚ ‚ ‚
‚ ‚ ‚ ‚ ‚
‚ ‚ ‚ ‚ ‚
‚ ‚ ‚ ‚ ‚

. . .

and guess a formula for the sum of the first n even numbers

2` 4` 6` ¨ ¨ ¨ ` 2n “ ?

Well-ordering principle. We may define an order in N saying that n ă m (“n is smaller than
m”) if there exists x P N such that n` x “ m. We say that n ď m (“n is not greater than m”) if
n ă m or n “ m. This relation is stable under sums and products: if n ď m then also

n` x ď m` x and n ¨ x ď m ¨ x

for all x P N. It is clear that 1 is the “smallest” of all the numbers, i.e. 1 ď x for all x P N. The
induction principle N3 is equivalent to the statement that any subset of the naturals has a smallest
element:

WO (well-ordering principle) every subset A Ă N has a first element (or minimum), i.e. an
element a P A such that a ď x for all x P A.

Integers. It turns out (but this took quite a large time to mankind!) that even elementary
problems are solved with much easy if we enlarge our numbers allowing negative numbers, like
´237, hence a zero number, that we denote 0. The set thus obtained is the set of integer numbers

Z :“ t . . . ,´3,´2,´1, 0, 1, 2, 3, . . . u .

(from the german zahlen = numbers) The two operations, ` and ˆ (but we’d rather use “dots”
for multiplication, like in 7 ¨ 3 “ 21, or even nothing when there is no possible confusion, like in
ab “ a ¨ b) are then characterized (i.e. defined!) by the following properties:

R1 (associativity of both ` and ˆ) px` yq ` z “ x` py ` zq px ¨ yq ¨ z “ x ¨ py ¨ zq

R2 (comutativity of both ` and ˆ) x` y “ y ` x x ¨ y “ y ¨ x

R3 (exisistence of neutral elements 0 and 1) x` 0 “ 0 x ¨ 1 “ x

R4 (existence of the opposite for `) @x there exists ´x such that x` p´xq “ 0

R5 (distributive law) x ¨ py ` zq “ x ¨ y ` x ¨ z

Mathematicians call a set with two such operations defined a commutative ring.
It is plain that all primary school arithmetical rules may be derived from these properties/axioms

(but you should try to prove them by yourself!). In particular, you may derive the useful rule

a` x “ a` y ñ x “ y .
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Repeated sums and products. It is useful to have a short notation for repeated sums

N
ÿ

n“1

xn :“ x1 ` x2 ` ¨ ¨ ¨ ` xN

and products
N
ź

n“1

xn :“ x1 ¨ x2 ¨ ¨ ¨ ¨ ¨ xN

This is possible thanks to the associativity of both sums and products. The product of the first
n naturals is ubiquitous when counting cardinalities, and deserves a name: it is called n factorial,
and denoted by

n! :“ 1 ¨ 2 ¨ 3 ¨ ¨ ¨ ¨ ¨ pn´ 1q ¨ n .

Powers. It is convenient to have a short notation for repeated products of a fixed number. For
example, the product x ¨ x is said “x squared”, and denoted by x2 (for, if x ą 0, it is the area of a
square with side x). Similarly, x ¨ x ¨ x is said “cube of x”, and denoted by x3 (if x ą 0, it is the
volume of a cube with side x). For integer n “ 1, 2, 3, . . . , the n-th power of the (rational) number
x is defined by

xn :“ x ¨ x ¨ . . . ¨ x
looooooomooooooon

n times

(to be pedant, recursively according to x1 :“ x and xn`1 :“ xn ¨ x for n ě 1). It is useful to set
x0 :“ 1.

Clock arithmetics. Less obvious is that there exist other commutative rings. For any integer
n ě 2, we may equip the quotient Z{nZ :“ tk ` nZ , with k P Zu « t0, 1, . . . , n ´ 1u with the
obvious ring structure inherited from Z. Thus,

pa` nZq ` pb` nZq “ a` b` nZ and pa` nZq ¨ pb` nZq “ a ¨ b` nZ .

Combinatorial calculus. Let K « t1, 2, . . . , ku and N « t1, 2, . . . , nu be finite sets with car-
dinalities k and n, respectively. The cardinality of their Cartesian product is |K ˆ N | “ k ¨ n.
The cardinality of the space NK :“ tfunctions K Ñ Nu, isomorphic to the Cartesian product
Nk :“ N ˆN ˆ ¨ ¨ ¨ ˆN

loooooooooomoooooooooon

k vezes

is

ˇ

ˇNK
ˇ

ˇ “ nk

The cardinality of the space Dn
k :“ tinjective functions K Ñ Nu is

|Dn
k | “ n ¨ pn´ 1q ¨ ... ¨ pn´ k ` 1q “

n!

pn´ kq!

provided k ď n, where we define 0! “ 1. In particular, the cardinality of the space Dn
n of permu-

tations of N is
|Dn

n| “ n!

The cardinality of the space Cnk :“ tsubsets K Ă N with |K| “ ku, with k ď n, is

|Cnk | “

ˆ

n

k

˙

:“
n!

k!pn´ kq!

since Cnk « Dn
k modulo Dk

k (two injective functions K Ñ N define the same subset K Ă N , their
image, off they differ by a permutation of K).
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Division, factorization and primes. We say that the number a divides (or is a divisor of) the
number b, and we write a | b, if there exists a d P N such that ad “ b. If a does not divides b, we
write a - b. Given any p ď q, either p|q, so that q “ dp for some d P N, or there exist a unique
d P N and a unique “rest” 0 ă r ă q such that

q “ dp` r .

We say that a natural number p is prime if it is not divided by any other natural but 1 and itself.
Thus, 2, 3, 5, 7, 11, 13, . . . are primes. It is a fundamental fact of arithmetic (and should be
proved, of course!) that any natural n can be uniquely factorized (up to order!) into prime factors,
i.e. written as n “ pn1

1 pn2
2 . . . pnkk for some primes pi and exponents ni P N. Thus, primes are the

building blocks with which all naturals are constructed.
Here is Proposition 20 of Book IX of the Elements by Euclid:

OÉ prÀtoi �rijmoÈ pleÐous eÊË pantäs toÜ protejèntos pl jous pr¸twn �rijmoÐ 3

or, in modern language,

Theorem 1.1. (Euclid’s theorem) The set of prime numbers is not finite.

Indeed, following Euclid, assume that p1, p2, . . . , pn are all the primes. We could take their
product and sum one, i.e. form the number x “ p1p2 . . . pn ` 1, and observe that x is not divisible
by any of the pk, since the rest of the division is always 1. Since x is larger than any of the pk, it
must have a prime divisor larger than all of them.

Even and odd. The smallest prime number is 2, and it divides the set of natural numbers into
two classes: the even numbers, 2, 4, 6, 8, . . . and the odd numbers, 1, 3, 5, 7, . . . .

Greatest common divisor and smallest common multiple. If d divides both a and b, it
also divides their difference b´a. This observation gives rise to the Euclid algorithm to find pa, bq.

e.g. Magicicadas. Prime numbers may be selected by Nature as survival strategies. One
example (popularized by Stephen J. Gould in [Gou77]) is that of Magicicada. They spend 13 or 17
years, depending on the species, under the ground as nimphs, and then get out for the few weeks
or months of adult life (to mate, have offspring, and die).

A 17-year cicada, or Magicicada (from Wikipedia).

e.g. Proportions. If the recipe of a cake for 4 persons uses 6 eggs, and if you need the same
cake for 12 guests, you must use x “ 6

4 ¨ 12 eggs. That is, you must solve the “proportion”

6 : 4 “ x : 12 .

3 “Prime numbers are more than any assigned multitude of prime numbers” [Euclid, Elements, Book IX, Propo-
sition 20].

http://en.wikipedia.org/wiki/Cicada
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Rationals and the four operations. We may form quotients p{q of integer numbers (the
denominator q not being 0), and define their sum and product as

a

b
`
c

d
:“

ad` bc

bd
and

a

b
¨
c

d
:“

ca

bd

In addition to the properties of a commutative ring, axioms R1-R5, the set of fractions also satisfies
the following axiom

F6 (existence of the inverse for ˆ) @x ‰ 0 there exists x´1 such that x ¨ x´1 “ 1

Indeed, the inverse of a non-zero fraction p{q is simply q{p. The set of fractions is called rational
field, and denoted by Q.

An important consequence of F6 is the rule

λx “ λy and λ ‰ 0 ñ x “ y .

Order. The field of rationals is an ordered field, i.e. may be “ordered”. This means that we may
define a subset Q` :“ tp{qwith p, q P Nu of positive rationals satisfying the “axioms of order”

O1 0 R Q`,

O2 if a, b P Q`, then also a` b P Q` and a ¨ b P Q`,

O3 @x ‰ 0, either x P Q` or ´x P Q`.

We then define Q´ :“ QzpQ`Yt0uq, the set of negative rationals. We say that a ă b if there exists
a c P Q` such that a` c “ b. We say that a ą b if b ă a. In particular, all a P Q`, as for example
1, are a ą 0, and all b P Q´ are b ă 0. We also say that a ď b is a ă b or a “ b, and then that
a ě b if a ď b. Clearly,

a ă b ñ a` c ă b` c

and also
a ă b and c ă d ñ a` c ă b` d

Moreover,

a ă b ñ

"

ad ă bd if d ą 0
ad ą bd if d ă 0

In particular,
a ă b ñ ´b ă ´a

Also, if ab ą 0, then a and b are either both positive or both negative. Finally,

a ‰ 0 ñ a ¨ a ą 0

i.e. squares of non-zero numbers are positive.

ex: Bernoulli inequality. For any n “ 1, 2, 3, . . . and any x ą ´1

p1` xqn ě 1` nx

Prove it using indutction.

Absolute value and distance. The absolute value (or modulus) of a number x is

|x|. :“ maxtx,´xu “

"

x se x ě 0
´x se x ă 0

.

The distance between x and y is then defined as distpx, yq :“ |x´ y|. Thus, the distance between
x and y is zero iff x ‰ y, and we have the triangle inequalities

|x` y| ď |x| ` |y| that is, distpx, yq ď distpx, zq ` distpy, zq .
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Negative powers. For x ‰ 0, we also define negative powers according to

x´n :“
1

xn

for n “ 1, 2, 3, . . . . Then, for all n,m P Z, and all x ‰ 0, we have

xn ¨ xm “ xn`m .

We observe that for even n, the n-th power of any number x ‰ 0 is xn ą 0.

Useful formulas. The square of a binomial is

pa˘ bq2 “ a2 ˘ 2ab` b2

Also,
pa` bqpa´ bq “ a2 ´ b2

Less obvious is that one can give a formula for the n-th power of a binomial. This has been found
by Newton, and is

pa` bqn “
n
ÿ

k“0

ˆ

n

k

˙

akbn´k

where the binomial coefficient is defined as

ˆ

n

k

˙

:“
n!

k! pn´ kq!

ex: Show that if n2 is even then also n is even.

ex: Find and prove a formula for the sum of the cubes of the first n numbers

13 ` 23 ` 33 ` ¨ ¨ ¨ ` n3 “ ?

e.g. Surface area to volume ratio and shapes. The volume and the surface area of an
organism depend on the linear dimension L according to V “ vL3 and S “ sL2, where v and s are
certain constants that depend on the shape. For example, in a (ideal!) spherical cell, V “ 4

3π ¨ L
3

and S “ 4π ¨ L2. There follows that the surface area to volume ratio is

S : V “ r ¨ L´1

(and in particular decreases as the linear dimension increases). Nature selected a huge variety of
shapes, hence of values of the constant r “ s{v.4

(from Life at the Edge of Reef and Wikipedia)

For example, the “sahuaro” cactus (Carnegiea gigantea), from the Sonora desert of Mexico, optimize
their surface area to volume ratio, hence minimize transpiration, assuming a cylindrical shape.

4K. Schmidt-Nielson, Scaling: Why is Animal Size so Important? Cambridge University Press, 1984.

http://www.edge-of-reef.com/
http://en.wikipedia.org/wiki/Image:Axolotl.jpg
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e.g. Gulliver in Liliput. “. . . the Emperor stipulates to allow me a quantity of meat and drink
sufficient for the support of 1728 Lilliputians. Some time after, asking a friend at court how they
came to fix on that determinate number, he told me that his Majesty’s mathematicians, having
taken the height of my body by the help of a quadrant, and finding it to exceed theirs in the
proportion of twelve to one, they concluded, from the similarity of their bodies, that mine must
contain at least 1728 of theirs, and consequently would require as much food as was necessary to
support that number of Lilliputians.”. 5

Decimal notation. Since we have 10 fingers, we like powers of 10, as 100, 1000, . . . 1000000,
. . . , to the point that they also deserve their own names (hundreds, thousands, . . . , millions, . . . ).

We decided to represent numbers using a “decimal” positional notation. This means that we
chose 10 symbols to represent the first 9 numbers and the “zero” number, as

t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u ,

and then write numbers as

367, 89 :“ 3 ¨ 102 ` 6 ¨ 10` 7` 8 ¨
1

10
` 9 ¨

1

102

All finite decimal expansions represent fractions (just multiply by a convenient power of 10). Some
fractions do not terminate, and give rise to infinite periodic decimal expansions. Actually, rationals
are exactly those real numbers that admit periodic (possibly finite) decimal expansions.

ex: Compute the following decimal expansions

1{20 3{4 5{100 1{3 1{7 1{9 1{111

First degree equations. In a field, like the rationals (or, as you will see, the reals), we are able
to solve a first degree equation like

ax` b “ 0

(as usual, the notation above means that we are given the numbers a and b, and we want to find
possible values for the “unknown” x). Indeed, we simply put b on the right hand side, multiplying
by ´1, and then divide by a (the case a “ 0 being trivial: it is no equation at all!). The solutions,
which is obviously unique, is

x “ ´b{a .

Percentage. A popular way to express ratios is using percentages: p% means p{100. For exam-
ple, the 25% of a mass of 60 kg is 60 ¨ p25{100q “ 15 kg. Other popular expressions are “increase or
decrease of some percentage”. For example, a 20% increase means a factor p1`20{100q multiplying
the the given initial quantity.

ex:

• An increment of 20% followed by a farther increment of 20% correspond to a single increment
of 40% or not?

• Does the order of increments matter? That is, an increment of 20% followed by an increment
of 30% is the same thing as an increment of 30% followed by an increment of 20%?

• [Ba79] 1.3.2.

5Jonathan Swift, Travels into Several Remote Nations of the World. In Four Parts. By Lemuel Gulliver, First
a Surgeon, and then a Captain of several Ships, 1726.
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e.g. Composite interests. Assume your bank pays to yo an interest of p% each year. If you
deposit a capital of x0 euros, you’ll get a gain of x0 ¨ p{100 after one year, and therefore a total
capital of x1 “ x0 ¨ p1` p{100q. The second year, the interest will be calculated on the capital x1,
thus leading to a total capital of x2 “ x1 ¨ p1` p{100q “ x0 ¨ p1` p{100q2. The total capital after
n years is therefore

xn “ x0 ¨
´

1`
p

100

¯n
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2 Real line

e.g. Pythagora’s theorem. Take a rigth triangle, set to 1 the length of the hypotenuse, and
call α and β the lengths of the other sides. The altitude from the vertex opposed to the hypotenuse
divides the latter into two pieces of lengths α2 and β2, because they are sides of right triangles
similar to the first one, having hypotenuses the two sides of length α and β, respectively. Therefore,

α2 ` β2 “ 1 .

For example, the diagonal ` of a square with unit side satisfies 1 ` 1 “ `2, i.e. it is what we call?
2.

e.g. Babylonians-Heron method to compute square roots. Consider the problem to
find the side ` of a square given its area a ą 0, that is, the number which we modern call
` “

?
a. A method, described by Heron of Alexandria 6, but most probably already known to

the Babylonians 7 8, consists in constructing recursively rectangles with fixed area a and sides
which are nearer and nearer. If x1 and y1 are the base and the height of the first rectangle (chosen
arbitrarily!), and therefore x1y1 “ a, then the second rectangle has for base the arithmetic mean
x2 “ px1`y1q{2 and consequently height y2 “ a{x2, the third rectangle has for base the arithmetic
mean x3 “ px2 ` y2q{2, . . . and so on. The recursive equation for the basis is

xn`1 “
1

2

ˆ

xn `
a

xn

˙

.

Observe that if the area a and the initial conjecture x1 are rationals, then all the xn are rationals
too.

The algorithm converges, and quite fast. Consider, for example, a “ 2, so that we are looking for?
2. We could, as the Babylonians, start from an initial guess x1 “ 3{2 for

?
2 (since 12 ă 2 ă 22),

and find

x2 “
17

12
» 1.41666666666 x3 “

577

408
» 1.41421568627 x4 “

665857

470832
» 1.41421356237

As you see, the sequence stabilizes quite fast.
As a first attempt to explain this miracle, we could start looking at the recursive equations for

the bases and the heights of the rectangles:

xn`1 “
xn ` yn

2
1{yn`1 “

1{xn ` 1{yn
2

(so, the next height is the “harmonic mean” of the base and height). We see that the xn’s and the
yn’s form decreasing and increasing sequences, respectively (disregarding the first guess, of course),
namely

y2 ď y3 ď ¨ ¨ ¨ ď yn ď . . . ď xn ď ¨ ¨ ¨ ď x3 ď x2 ,

The real root is somewhere between, namely yn ď
?
a ď xn. Hence, we have an explicit control of

the error: the difference between xn (or yn) and the real value of
?
a is not greater than |xn´ yn|.

A computation shows that the lengths of those intervals, the differences εn “ xn ´ yn satisfy the
recursion

εn`1 ă
1

2
¨ εn

So, and initial “error” ε1 ď 1 (an easy achievement, since we easily recognize squares of integers)
reduces to at least εn ď 2´n after n iterations. The true error is actually much smaller. Indeed,
in our example we may compute

ε2 “
17

12
´ 2

12

17
“

1

204
» 0.005 and ε3 “

577

408
´ 2

408

577
“

1

235416
» 0.000004

So that the first improved guess x2 has already one correct decimal, and the second, x3 has already
four correct decimals!

6 Heron of Alexandria, Metrica, Book I.
7Carl B. Boyer, A history of mathematics, John Wiley & Sons, 1968.
8O. Neugebauer, The exact sciences in antiquity, Dover, 1969.
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ex: Of course, more important is the “relative error”, which may be estimated as |xn´
?
a|{
?
a »

εn{yn

ex: Heron formula. According to Heron formula, the area of a triangle with sides a, b e c,
hence semi-perimeter s “ pa` b` cq{2, is given by

a

sps´ aqps´ bqps´ cq

Estimate the area of a triangle with sides 7, 8 e 9.

ex: Estimate
?

13 with an error ă 0.01 or ă 0.001 (without using your machine!).

ex: How many iterations are necessary to get the first n correct decimals of
?

2 using the
babylonians-Heron method?

ex: A0, A1, . . . , A4 paper. Find the ratio λ :“ b{a of the sides of a rectangle such that
cutting it along the middle of the longer side, say b, you get two rectangles, with sides b{2 and a,
similar to the original.

Irrationals. What Babylonians didn’t suspect is that if you start with a rational guess for
?

2,
you get an infinite sequence of rational approximations, but the process never stops. This is due
to

Theorem 2.1. (Pythagoras theorem) There is no rational number whose square is equal to 2
(i.e. the square root of 2 is not rational).

Indeed, assume that such a rational p{q exists, and assume it is reduced. Squaring we get
pp{qq2 “ 2, that is, p2 “ 2q2. Therefore, p2 is divisible by 2, hence by 22 (because the factorization
of a square must contain even exponents). But this implies the existence of an integer r such
that 22r “ 2q2, hence also q2 is divisible by 2, contrary to our hypothesis that the fraction was
reduced.

It is clear that the same proof work with other square roots.

The real line. Pythagoras theorem suggests the need to enlarge the set Q of rational numbers
and get the “reals” R. This is done by admitting a new axiom, in addition to the axioms of field
and order. This is a rather technical point, but it amounts to saying that the reals “have no holes”,
and may be thought as a continuous line of points. Thus, once fixed an origin, called 0, a “positive”
direction (typically pointing to the right) and a unit of measure (like meter, or feet, . . . , fixing the
point called 1), any real number x P R corresponds to one and only one point on our line, the one
at a distance |x| from 0, on the right if x ą 0 or on the left, if x ă 0.

The supremum axiom. First, we need some terminology. A upper bound (limite superior) of
a set A is any number M such that a ď M for any a P A. If a upper bound of A belongs to A
(and therefore is the unique one belonging to A!), than it is called a maximum of A, and denoted
maxA. Similarly, a lower bound (limite inferior) of a set A is any number m such that m ď a for
any a P A. A lower bound which belongs to A itself is called minimum of A, and denoted minA.

Clearly, a set may have no upper and/or lower bound. A set of numbers A is bounded from
above if it admits an upper bound, and bounded from below if it admits a lower bound. It is called
bounded if it admits both upper and lower bounds (i.e. if there exists a number K such that
|a| ď K for any a P A). It may also happens that a set is bounded above and/or below without
having maximum and/or minimum.

We define the supremum of A, notation supA, as the smallest of all the upper bounds of A.
This means that M “ supA if a ď M for all a P M , and if no b ă M is an upper bound for
A. Similarly, we define the infimum of A, notation inf A, as the largest of all lower bounds. Both
supremum and infimum, if they exist, are clearly unique.

This is the final axiom, to be added to the field and order axioms, which entirely defines the
real line:
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S1 (the supremum axiom) Any not-empty subset A Ă R of the real line which is bounded from
above has a supremum.

Of course, also any not-empty subset B Ă R which is bounded from below has a infimum (just
reverse the signs of the numbers forming the set). The real line is the unique (up to isomorphism!)
ordered and complete field, i.e. is characterized by the axioms R1-R5, F6, O1-O3 and S1.

e.g. Existence of the square root of two. So, for example, consider the set of decreasing
rationals ¨ ¨ ¨ ď xn ď ¨ ¨ ¨ ď x3 ď x2 obtained by the Heron method as basis of rectangles of area
equal to 2. Since they all satisfy x2n ą 2, they admits an infimum, say a, which clearly satisfies
a2 ě 2. Similarly, the heights y2 ď y3 ď ¨ ¨ ¨ ď yn ď . . . satisfy y2n ă 2, and therefore their
supremum b satisfies b2 ď 2. But the difference |xn ´ yn| is arbitrarily small, since it is bounded
by 1{2n. There follows that a “ b and therefore a2 “ 2.

ex: Find examples of unbounded sets, and of bounded sets with no maximum or minimum.

Archimedean property of real numbers. A first consequence of the supremum axiom is that
the set of natural numbers N Ă R is unbounded from above (if it were bounded it would have a
supremum s “ supN, but then there would exist some natural n ą s´1, and we could find another
natural n` “ n`1 ą s, contradicting the assumption that s is a upper bound for N). There follows
that any real x P R is strictly less than some natural n (and therefore of all its successors). Now,
take any positive real number ε ą 0. We claim that for any x P R we can find an integer n P N so
large that

n ¨ ε ą x ,

for otherwise x{ε would be an upper bound for N. This property of numbers, that “multiples of a
given positive quantity (no matter how small) may be as large as we want”, is called Archimedean
property.

Intervals. The set of numbers a ă x ă b is called interval pa, bq, the set of numbers a ă x ď b
is called interval pa, bs, . . . and so on. It is also useful to use the symbols ˘8 to denote intervals
like pa,8q, the set of numbers x ą a, . . .

ex:

• [Ba79] 1.6.1., 1.6.2., 1.6.3., 1.6.4.

• Solve (i.e., find the value/s or interval/s of x)

3x´ 1 ą x` 5 |x| “ 9 |x´ 1| “ 2

x2 ď 4 px´ 1q2 ą 1 |x| ă 100

|x´ 3| ď 2 |7x´ 2| “ 3 px´ 1qpx´ 2qpx´ 3q ą 0

Radicals and fractional powers. The square root of a non-negative number x ě 0 is the unique
non-negative y :“

?
x :“ x1{2 such that y2 “ x (the side of a square with area x). The cubic root

of a non-negative number x ě 0 is the unique non-negative y :“ n
?
x :“ x1{3 such that y3 “ x (the

side of a cube with volume x). In general, the n-th root of a non-negative number x ě 0 is the
unique non-negative y :“ n

?
x :“ x1{n such that yn “ x.

Similarly, we define “fractional powers” of non-negative numbers x ě 0 as follows: for n,m P Z,
with m ‰ 0, we define xn{m as the unique y ě 0 such that ym “ xn. Therefore, the rules

xa ¨ xb “ xa`b pxaqb “ xab xa ¨ ya “ pxyqa

hold for all positive x, y ą 0 and all rationals a, b P Q.
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e.g. Babilonians’ problems with areas and perimeters Besides square roots, typical prob-
lems considered by Babilonians were those involving rectangles. For example: find the sides a
and b of a rectangle given its area A “ ab and its perimeter, or, equivalently, its semi-perimeter
P “ a ` b. Using our modern language, we see that both sides a and b solve a quadratic equa-
tion, namely x2 ` A “ Px. Observe that this means “finding the intersection between the line
x` y “ P and the hyperbole xy “ A”. A recursive method 9 may be devised writing the problem
as xpx´ P q `A “ 0, and therefore trying to solve simultaneously

x “ P ´
A

x
and x “

A

P ´ x
.

Solving a quadratic equation. We pose the problem to solve the quadratic equation

ax2 ` bx` c “ 0

where, of course, a ‰ 0 (for otherwise the equation would not be quadratic!). We divide the l.h.s.
by a ‰ 0, and “complete the square”, as

x2 ` pb{aqx` c{a “ x2 ` 2pb{2aqx` pb{2aq2 ´ pb{2aq2 ` c{a

“ px` b{2aq2 ´ b2{4a2 ` c{a

This is zero when
px` b{2aq2 “ pb2 ´ 4acq{4a2

Taking the square root, we see that two possible values of x are given by the well known resolvent
fórmula

x˘ “
´b˘

?
b2 ´ 4ac

2a

In particular, we get two real solutions when the discriminant ∆ :“ b2 ´ 4ac is ∆ ą 0, one real
solution (to be interpreted as two coincident solutions!) when ∆ “ 0, and no real solutions (but
two complex conjugate solutions z˘ “ p´b˘ i

a

|∆|q{p2aq) when ∆ ă 0.

ex:

• Solve

x2 ´ x´ 1 “ 0 x2 ` 3x “ 0 3x2 ´ 6x` 2 “ 0 x2 ` 6x` 9 “ 0

• Find a quadratic polynomial with roots 2 and ´7.

• Find the sum and the product of the solutions of x2 ´ 5x` 6 “ 0.

• Find the interval defined by x2 ă x` 1.

Means. The arithmetic mean of the numbers a and b is a`b
2 . The geometric mean of the positive

numbers a and b is
?
ab (the side of a square with area equal to the area of the rectangle with sides

a and b).

• Show that the arithmetic mean between two positive numbers is never smaller that their
geometric mean (compute the difference between the squares of both means)

9E.L. Lima, Matemática e Ensino, Gradiva, 2004.



2 REAL LINE 16

Scientific notation. Se um observável chamado x é observado/medido n vezes, e se x1, x2, x3, . . . , xn
são os valores obtidos nas n observações, é natural estimar o “valor verdadeiro” de x com a média
aritmética

x :“ 1
n

řn
k“1 xk “

1
n px1 ` x2 ` ¨ ¨ ¨ ` xnq

Umas medidas da dispersão dos dados são o desvio quadrático médio

S2 :“ 1
n

řn
k“1pxk ´ xq

2

e o desvio padrão (standard deviation, ou standard uncertainty) S :“
?
S2. Se n é grande, é

razoável esperar que o valor verdadeiro esteja no intervalo

x˘ pS{
?
nq

com grande probabilidade. O “erro relativo” pS{
?
nq{x indica a quantidade dos d́ıgitos significa-

tivos, ou seja confiáveis, na estimação de x. Por exemplo, uma tabela das constantes da f́ısica tem
este valor da constante de gravitação de Newton:

G “ 6.673p10q ˆ 10´11m3kg´1s´2 with relative standard uncertainty 1.5ˆ 10´3

Isto quer dizer que, embora a média observada seja 6.67310ˆ10´11m3kg´1s´2, só podemos confiar
nos primeiros três d́ıgitos decimais deste valor, e portanto escreverG » 6.673ˆ10´11. Os algarismos
significativos são apenas os primeiros 4, ou seja, 6.673, e o expoente ´3 é a ordem de grandeza
de G (no sistema mks).

• A média aritmética x é o valor de a que minimiza a soma

px1 ´ aq
2
` px2 ´ aq

2
` ¨ ¨ ¨ ` pxn ´ aq

2

dos quadrados dos “desvios” nas distintas observações.

• Transforme em notação cient́ıfica os seguintes dados (de Wikipedia):
a massa de um eletrão » 0.00000000000000000000000000000091093822 kg,
a massa da Terra » 5973600000000000000000000 kg.
a circunferência da Terra » 40000000 m.

• [Ba79] 1.10.8, 1.10.9., 1.10.10., 1.10.12., 1.10.12., 1.10.14, 1.10.15, 1.10.16. 1.10.21., 1.10.22.
e 1.10.23.

http://en.wikipedia.org/wiki/Scientific_notation
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3 Euclidean spaces

A reta real. Fixada uma origem (ou seja, um ponto 0), um unidade de medida e uma orientação
(ou seja, uma direção “positiva”), é possivel representar cada ponto de uma reta/linha com um
número real x P R. Vice-versa, ao número x P R corresponde o ponto da reta posto a distância?
x2 da origem, na direção positiva se x ą 0 e negativa se x ă 0.

O plano cartesiano. O plano cartesiano10 R2 :“ RˆR é o conjunto dos pontos r “ px, yq, com
x, y P R. A origem é o ponto 0 :“ p0, 0q. O ponto r “ px, yq pode ser pensado como o vetor (i.e.
o segmento orientado) entre a origem p0, 0q e o ponto px, yq. A soma dos vetores r “ px, yq e
r1 “ px1, y1q é o vetor

r` r1 :“ px` x1, y ` y1q ,

que representa a diagonal do paralelogramo de lados r e r1. O produto do número/escalar λ P R
pelo vetor r “ px, yq é o vetor

λr :“ pλx, λyq

que representa uma dilatação/contração (e uma inversão se λ ă 0) de razão λ do vetor r. Cada
vetor pode ser representado de maneira única como soma

r “ px, yq “ xi` yj ,

onde i :“ p1, 0q e j :“ p0, 1q denotam os vetores da base canónica.
Lugares geométricos (pontos, retas, circumferências, parábolas, . . . ) podem ser descritos/definidos

por equações algébricas, ditas “equações cartesianas”.

• Descreva as coordenadas cartesianas dos pontos da reta que passa por p1, 2q e p´1, 3q.

• Descreva as coordenadas cartesianas do triângulo de vértices p0, 0q, p1, 0q e p0, 2q.

• Esboce os lugares geométricos definidos pelas equações

xy “ 1 y “ 2x´ 7 px` 1q2 ` py ´ 3q2 “ 9 x´ 2y2 “ 3

e.g. O espaço, o espaço-tempo e o espaço de fases da f́ısica newtoniana. O espaço
onde acontece a f́ısica newtoniana é o espaço 3-dimensional R3 :“ R ˆ R ˆ R. A posição de uma
part́ıcula num referencial inercial é um vetor

r “ px, y, zq :“ xi` yj` zk P R3

onde i :“ p1, 0, 0q, j :“ p0, 1, 0q e k :“ p0, 0, 1q denotam os vetores da base canónica.
A lei horária/trajetória, de uma part́ıcula é uma função t ÞÑ rptq que associa a cada tempo

t P I Ă R a posição rptq “ pxptq, yptq, zptqq P R3 da part́ıcula no instante t. A velocidade da
part́ıcula no instante t é o vetor vptq :“ 9rptq “ p 9xptq, 9yptq, 9zptqq. A aceleração da part́ıcula no
instante t é o vetor aptq :“ 9vptq “ :rptq “ p:xptq, :yptq, :zptqq, determinado pela equação de Newton11

maptq “ Fprptqq

onde F : R3 Ñ R3 é um campo de forças e m ą 0 a massa da part́ıcula.
O espaço-tempo12 da f́ısica newtoniana é o produto cartesiano R ˆ R3 « R4, o espaço dos

eventos pt, x, y, zq P R4, onde r “ px, y, zq P R3 representa uma posição num referencial inercial, e
t P R é o tempo absoluto.

O estado de uma part́ıcula, a informação necessária e suficiente para determinar a trajetória
futura (e passada), é um ponto pr,pq P R3 ˆ R3 “ R6 do espaço dos estados/de fases , onde r é a
posição e p :“ mv é o momento (linear).

10René Descartes, La Géométrie [em Discourse de la Méthode, 1637].
11Isaac Newton, PhilosophiæNaturalis Principia Mathematica, 1687.
12“Cette maniére de considérer les quantités de trois dimensions est aussi exacte que l’autre, car les lettres

peuvent toujours être regardées comme représentant des nombres rationnels ou non. J’ai dit plus haut qu’il n’était
pas possible de concevoir plus de trois dimensions. Un homme d’esprit de ma connaaisance croit qu’on pourrait
cependant regarder la durée comme une quatriéme dimension, et que le produit temps par la solidité serait en
qualque maniére un produit de quatre dimensions; cette idée peut être contestée, mais elle a, ce me semble, quelque
mérite, quand ce ne serait que celui de la nouveauté.” [Jean-le-Rond D’Alembert, Encyclopédie, Vol. 4, 1754.]
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• Determine a “dimensão” do espaço de fases de um sistema composto por 8 planetas (como,
por exemplo, Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano, Netuno) e de um
sistema composto por 6ˆ 1023 moléculas.

e.g. Reações qúımicas. O estado de uma reação qúımica

aA` bB ` cC ` . . . Ñ xX ` yY ` zZ ` . . .

entre os n reagentes A, B, C, . . . e os m produtos X, Y , Z, . . . é descrito usando as concentrações
rAs, rBs, rCs, . . . , rXs, rY s, rZs, . . . , e portanto n`m números (entre 0 e 1).

Spaces and coordinates. The space where we think we live in is the 3-dimensional space R3.
This means that we need 3 numbers, for example the Cartesian coordinates x, y and z in a fixed
reference frame, to uniquely define/indicate the position of a planet at a given time. A rattlesnake
in the Sonora desert thinks she lives in a plane, since she need just two coordinates, say x and y,
to say her friend where she lives. Similarly, a chemist who is describing a reaction like

A` 2B ` 3C Ô 4D ` 5E ` 6F ` 7G

needs 7 numbers, the concentrations a “ rAs, b “ rBs, . . . , g “ rGs of the seven reagents, to
describe to his collegues the state of the reaction at a given time.

O espaço vetorial Rn. O espaço vetorial real de dimensão n é o espaço

Rn :“ Rˆ Rˆ ¨ ¨ ¨ ˆ R
looooooooomooooooooon

n vezes

das n-uplas x “ px1, x2, . . . , xnq de números reais, ditas vetores ou pontos, munido das operações
adição : Rn ˆ Rn Ñ Rn , definida por

x,y ÞÑ x` y :“ px1 ` y1, x2 ` y2, . . . , xn ` ynq

e multiplicação por um escalar : Rˆ Rn Ñ Rn , definida por

λ,x ÞÑ λx :“ pλx1, λx2, . . . , λxnq

O vetor nulo/origem é o vetor 0 :“ p0, 0, . . . , 0q, tal que x` 0 “ x para todo x P Rn. O simétrico
do vetor x “ px1, x2, . . . , xnq é o vetor ´x :“ p´x1,´x2, . . . ,´xnq, tal que x ` p´xq “ 0. Isto
justifica a notação x´ y :“ x` p´yq.

A “combinação linear” dos vetores v1, v2, . . . , vk P Rn com “coeficientes” λ1, λ2, . . . , λk P R
é o vetor

k
ÿ

i“1

λivi :“ λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λkvk .

A base canónica de Rn é o conjunto ordenado dos vetores

e1 “ p1, 0, . . . , 0q e2 “ p0, 1, 0, . . . , 0q . . . en “ p0, . . . , 0, 1q

assim que cada vetor x “ px1, x2, . . . , xnq P Rn é uma combinação linear única

x “ x1e1 ` x2e2 ` ¨ ¨ ¨ ` xnen

dos vetores da base canónica. O número xk é chamado k-ésima coordenada do vetor x. Outra
notação usada nos manuais para os vetores é ~x.

As coordenadas no plano Euclidiano ou no espaço 3-dimensional são também denotadas, con-
forme a tradição, por r “ px, yq “ x i` y j P R2 ou r “ px, y, zq “ x i` y j` z k P R3.
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Euclidean spaces according Descartes. O produto interno Euclidiano em Rn, denotado por
xx,yy ou x ¨ y, é

xx,yy :“ x1y1 ` x2y2 ` ¨ ¨ ¨ ` xnyn ,

e a norma Euclidiana é
}x} :“

a

xx,xy .

Dois vetores x e y são ditos ortogonais se xx,yy “ 0. A desigualdade de Schwarz diz que

| xx,yy | ď }x} ¨ }y} .

(para provar a desigualdade no caso não trivial em que x ‰ 0 e y ‰ 0, basta definir u “ x{}x}
e v “ y{}y}, e observar que 0 ď }u ˘ v}2 “ 2p1 ˘ xu,vyq, donde ´1 ď xu,vy ď 1). O ângulo
θ P r0, πs entre os vetores não nulos x e y é definido pela identidade xx,yy “ }x} ¨ }y} ¨ cospθq. A
distância Euclidiana entre os pontos x,y P Rn é definida por

dpx,yq :“ }x´ y} .

Em particular, o comprimento do vetor x, a distância entre x e 0, é dado pelo teorema de Pitágoras

dpx, 0q “ }x} “
b

x21 ` ¨ ¨ ¨ ` x
2
n .

A desigualdade de Schwarz implica a desigualdade do triângulo

dpx,yq ď dpx, zq ` dpz,yq

(para provar a desigualdade, calcule }x` y}2 e use a desigualdade de Schwarz).
A bola aberta de centro a P Rn e raio r ą 0 é o conjunto Brpaq :“ tx P Rn s.t. }x´a} ă ru. Um

subconjunto A Ă Rn é aberto em Rn se cada seu ponto a P A é o centro de uma bola Bεpaq Ă A,
com ε ą 0 suficientemente pequeno.

Lines and planes. A reta que passa pelo ponto a P Rn na direção do vetor não nulo v P Rn é

a` rvs :“ ta` tv com t P Ru .

A reta perpendicular/normal ao vetor não nulo n P R2 que passa pelo ponto a P R2 é

a` rnsK :“ tx P R2 t.q. xx´ a,ny “ 0u

O plano gerado pelos vectores linearmente independentes v e w que passa pelo ponto a P Rn é

a` rv,ws :“ ta` tv ` sw com pt, sq P R2u

O plano ortogonal/perpendicular/normal ao vetor não nulo n P R3 que passa pelo ponto a P R3 é

a` rnsK :“ tx P R3 t.q. xx´ a,ny “ 0u

(n é dito vector normal ao plano).

Trigonometric functions.

Coordenadas polares. As coordenadas polares pρ, θq, com ρ P R` e θ P r0, 2πr, no plano estão
definidas por

x “ ρ cospθq
y “ ρ sinpθq

onde x e y são as coordenadas cartesianas de R2. Em particular, ρ “
a

x2 ` y2 é a norma do vetor
px, yq.
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4 Linear transformations and matrizes

STILL MISSING
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5 Linear systems

STILL MISSING
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6 Area, volume and determinants

STILL MISSING
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7 Eigenvalues and eigenvectors

STILL MISSING
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8 Sequences and series

ref: [Ap69] [EK05]

e.g. Fibonacci numbers. Consider the following problem, posed by Leonardo Pisano (a.k.a.
Fibonacci, namely “filius Bonacci”) in his Liber Abaci, 1202:

Quot paria cuniculorum in uno anno ex uno pario germinentur.
Quidam posuit unum par cuniculorum in quodam loco, qui erat undique pariete circun-
datus, ut sciret, quot ex eo paria germinarentur in uno anno: cum natura eorum sit
per singulum mensem aliud par germinare; et in secundo mense ab eorum nativitate
germinant.13

Let us denote by fn the number of pairs (of rabbits) in the n-th month. It is clear that the number
fn`1 ´ fn of pairs of newborns in the pn ` 1q-th month is equal to the number of adult pairs in
the n-th month, which is fn´1. Therefore, we may write

fn`1 “ fn ` fn´1 , (8.1)

This is a law that recursively determine the values of fn given certain initial values f0 and f1.
Natural initial conditions are f0 “ f1 “ 1 (corresponding to Fibonacci’s problem if the initial

pair is made of newborn rabbits). The sequence grows quite fast, as you can see,

1, 1, 2 , 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584 , . . .

and the numbers soon become astronomically large. For example, after 10 years we get (assuming
rabbits do not die or get murdered!)

f120 » 8.67ˆ 1024 ,

larger than the Avogadro number!

help: An applet which computes the sequence is in my bestiario.

help: A Java or c++ recursive definition could be

int Fib(int n)

{

if (n==0) return 1;

else if (n==1) return 1;

else return Fib(n-1) + Fib(n-2);

}

e.g. Duplicação de células. As experiências mostram que a população de uma colónia de
bactérias, num peŕıodo de tempo em que podemos considerar ilimitado o nutrimento e desprezáveis
as toxinas produzidas, duplica-se em cada tempo caracteŕıstico τ ą 0. Assim, uma população inicial
de N0 células, dá origem a uma população de N1 “ 2N0 células passado o tempo τ , N2 “ 4N0

células passado o tempo 2τ , . . . , de
Nn “ 2nN0

células passado o tempo nτ . A lei recursiva que produz esta sucessão é

Nn`1 “ 2Nn .

Por exemplo, uma única célula dá origem a 1024 células passado um tempo nτ dado por 2n “ 1024,
ou seja, nτ “ plog2 1024q ¨ τ “ 10 ¨ τ .

13Quantos pares de coelhos podem ser gerados por um par em um ano.
Alguém tem um par de coelhos, em um lugar inteiramente fechado, para descobrir quantos pares de coelhos podem
ser gerados deste par em um ano: por natureza, cada par de coelhos gera cada mês outro par, e começa a procrear
a partir do segundo mês após o nascimento.

http://w3.math.uminho.pt/~scosentino/bestiario/fibonacci.html
http://w3.math.uminho.pt/~scosentino/salbestiario.html
http://java.com/
http://www.cplusplus.com/
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Sequences. A (real valued) sequence is a collection pxnqnPN0
of (real) numbers xn P R, indexed

(hence ordered) by a non-negative integer n P N0 :“ t0, 1, 2, 3, . . . u. We may think of the index n
as “time”, and therefore at the n-th term xn as the value of some “observable” (something that
we may observe, i.e. measure) x at time n. Clearly, we may as well define sequences with values
in an arbitrary set X, for example in the Euclidean space Rd.

Sequences may be defined as functions are. Indeed, a sequence with values in the set X is
nothing but a function x : N0 Ñ X, disguised by the notation xn :“ xpnq or xrns. A second
possibility is some recursive law

xn`1 “ fpx0, x1, . . . , xnq

prescribing the value of xn`1 given the (past) values of x0, x1, . . . , xn. A third possibility, is using
some property that the successive terms must have.

e.g. Discrete-time signals. Engineers (in digital signal processing) think at sequences as
discrete-time “signals”, and use the notation xrns for the value of the signal x at “sample” n,
which corresponds to a physical time t “ nτ , which is an integer multiple of a “sampling time”
τ ą 0. Of course, one may also imagine a signal xrns which is defined for all samples n P Z, past
and future.

e.g. Arithmetic progression. An arithmetic progression

xn “ a` nb

which may also be defined using the recursion xn`1 “ xn`b, with initial term x0 “ a. It represents
the successive positions of a walk starting at a with step b.

e.g. The primes sequence. The sequence

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

whose generic term is the n-th prime number pn. It is not clear what the recursive law could be.14

Limits. We say that the real sequence pxnq converges to some limit a P R, and we write
limnÑ8 xn “ a or simply xn Ñ a (as n Ñ 8), if for any “precision” ε ą 0 there exists a
time n such that |xn ´ a| ă ε for all times n ě n. This means that the values xn are within an
arbitrarily small neighborhood of a as long as the time n is sufficiently large.

The basic fact about limits in the real line R is that monotone (non-decreasing or non-increasing,
i.e. satisfying xn`1 ě xn or xn`1 ď xn, for any n, respectively) bounded (i.e. such that |xn| ďM
for some M ą 0 and all n) sequences of real numbers do admit limit. For example, the limit of a
bounded increasing sequence is simply the supremum of the set of values.

We also use the notation xn Ñ ˘8 to say that given an arbitrarily large K ą 0 we can find a
time n such that ˘xn ą K for all times n ě n.

Of course, there exist sequences which do not admit limits in either senses. These are, for
example, oscillating sequences, as xn “ p´1qn. We’ll encounter sequences with much more wild
behavior.

Fundamental sequences. A sequence pxnq is said fundamental, or Cauchy sequence, if for any
precision ε ą 0 there exists a time n such that

|xn ´ xm| ă ε

for all times n,m ą n. Fundamental sequences are clearly bounded. It is obvious that a convergent
sequence is fundamental (a triangular argument, since both xn and xm are ε{2-near to the limit for
sufficiently large n and m). A similar triangular argument shows that a fundamental sequence with
a convergent subsequence is itself convergent. Less obvious is that any fundamental sequence in R is
convergent. Indeed, let Xn :“ txk with k ě nu. It is clear that the Xn are bounded, and therefore

14This is not the place to talk about it, but if you find it intriguing, you may take a look at the wonderful book
by Marcus du Sautoy, The music of primes, Harper-Collins, 2003 [A música dos números primos, Zahar, 2008].

http://www.musicoftheprimes.com/
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by the supremum axiom there exist the numbers an :“ inf Xn. But the sequence panq is bounded
and not decreasing, and therefore there exists a “ limnÑ8 an (indeed, a “ sup tan with n P Nu).
It is then easy to construct subsequences of pxnq which converge to a, and this implies that pxnq
itself is convergent to a.

Thus, we may know that a sequence is convergent without knowing its limit! In general,
convergence of all fundamental sequences is taken as a definition of (sequential) completeness of a
metric space.

Geometric progression. The most important sequence is the geometric progression, defined
starting from an initial term x0 “ a using the recursion

xn`1 “ λxn .

Thus, the sequence is

x0 “ a x1 “ aλ x2 “ aλ2 . . . xn “ aλn . . .

The parameter λ (which may be real or complex) is called ratio, since it is the ratio xn`1{xn
between successive terms of the sequence.

If |λ| ă 1, it follows from Bernoulli inequality, applied to x “ 1{|λ| ´ 1 ą 0, that |λ|´n “
p1` xqn ě 1` nx ą nx, and therefore 0 ă |λ|n ă 1{pnxq. Thus, the geometric sequence converges
to zero when |λ| ă 1. It is constant, hence trivially convergent, when λ “ 1. It also follows from
Bernoulli inequality (taking 1` x “ |λ|) that |λn| Ñ 8 as nÑ8 whenever |λ| ą 1.

ex: Show that the term xn of a geometric progression is equal to the geometric mean
?
xn`1xn´1

of its neighbors.

Computing limits. Observe that xn Ñ a is equivalent to xn ´ aÑ 0. Therefore, we only need
to understand how to “prove” that some sequence converges to zero, i.e. is “infinitesimal”.

One possibility is to “compare” the sequence pxnq under investigation with a sequence with
known behavior, as for example the geometric progression. Indeed, if |xn| ď yn for all n sufficiently
large, then yn Ñ 0 implies xn Ñ 0 too. More generally, if a sequence is bounded between two
convergent sequences with common limit, then the first sequence too is convergent to the same
limit, i.e.

yn ď xn ď zn and yn Ñ a , zn Ñ a ñ xn Ñ a

In particular, the product of a bounded sequence times an infinitesimal one is infinitesimal too, i.e.

xn Ñ 0 e |yn| ďM ñ xn ¨ yn Ñ 0

Algebra of limits. Limits are linear, namely,

xn Ñ a and yn Ñ b ñ xn ` yn Ñ a` b and λxn Ñ λa

and behave nicely under multiplication and division, namely,

xn Ñ a and yn Ñ b ñ xn ¨ yn Ñ ab and xn{yn Ñ a{b pprovided b ‰ 0q

ex:

• Compute the limits when nÑ8 of the following sequences, or show that they do not exist.

1

n

p´1qn

n
p´1qn 2´n 3n p´2qn

10n2 ` 11

n3 ` n

n` 1

7n´ 3

9n6 ´ n3

7n6 ` 1023n5 ´ 3

3n` 1

n´ 2
¨

2n` 1

6n´ 3

sinpnq

n

sinp1{nq

n

sinn

cosn

?
n` 1´

?
n
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Subsequences and sequential compactness. A subsequence of a sequence pxnq is a sequence
pxniq obtained selecting only the values xni of the original sequence, where i ÞÑ ni is an increasing
map N0 Ñ N0.

The basic fact (that closed and bounded sets of the real line are sequentially compact) is that
any bounded sequence admits a convergent subsequence.

Limsup and liminf. Sometimes we are only interested in a rough estimate of the growth of a
sequence pxnq. The “limsup” is the limit

lim sup
nÑ8

xn :“ lim
nÑ8

an P RY t8u

of the non-increasing sequence an :“ suptxn, xn`1, xn`2, . . . u. The “liminf” is the limit

lim inf
nÑ8

xn :“ lim
nÑ8

bn P RY t´8u

of the non-decreasing sequence bn :“ inftxn, xn`1, xn`2, . . . u.

e.g. Tempo de meia-vida. O decaimento de uma substância radioactiva pode ser caracterizado
pelo “tempo de meia-vida” τ , passado o qual aproximadamente metade dos núcleos inicialmente
presentes terá decaido (dentro de uma amostra suficientemente grande). Se qn denota a quantidade
de substância radioactiva presente no instante nτ , com n “ 0, 1, 2, . . . , então

qn`1 “
1
2 qn .

Portanto a quantidade de substância radioactiva no instante nτ é qn “ q02´n, enquanto o produto
do decaimento é q0 ´ qn “ q0p1´ 2´nq. Observe que qn Ñ 0 quando nÑ8.

Se a radiação solar produz núcleos radioactivos a uma taxa constante α ą 0 (i.e. α núcleos
cada tempo τ), a quantidade de núcleos radioactivos no instante nτ é dada pela lei recursiva

qn`1 “
1
2qn ` α . (8.2)

Um equiĺıbrio é posśıvel quando a quantidade inicial q0 é igual a q :“ 2α, pois então q1 “ α`α “ q0,
q2 “ α` α “ q1 “ q0, e assim a seguir, qn “ q para todos os n P N.

O que acontece se q0 ‰ q ? A equação recursiva diz que

q1 “ 1
2q0 ` α

q2 “ 1
4q0 `

1
2α` α

q3 “ 1
8q0 `

1
4α`

1
2α` α

...

qn “ 1
2n q0 `

`

1
2n´1 ` ¨ ¨ ¨ `

1
8 `

1
4 `

1
2 ` 1

˘

α

A primeira parcela q0{2
n`1 Ñ 0 quando n Ñ 8, ou seja, o futuro é independente da condição

inicial q0. A segunda parcela tem limite 2α quando nÑ 8 (uma prova está no parágrafo sobre a
série geométrica!).

Uma fórmula (aparentemente) mais simples para os qn pode ser obtida usando a substituição
xn :“ qn ´ q, onde q “ 2α é a solução estacionária. De facto,

xn`1 “ qn`1 ´ 2α

“ 1
2qn ` α´ 2α (usando a (8.2))

“ 1
2 xn ,

ou seja, a diferênça entre qn e q é uma progressão geométrica de razão 1{2. Portanto xn “ x02´n,
donde

qn “ 2α` pq0 ´ 2αq ¨ 2´n .

É interessante observar que xn Ñ 0, e de consequência qn Ñ q, quando n Ñ 8. Ou seja, a
quantidade de substância radioactiva converge para o valor estacionário, independentemente do
valor inicial.
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ex: O tempo de meia-vida do radiocarbono 14C é τ » 5730 anos. Mostre como datar um fóssil,
sabendo que a proporção de 14C num ser vivente é conhecida.15

e.g. Crescimento exponencial. O crescimento exponencial de uma população num meio am-
biente ilimitado é modelado pela equação recursiva

pn`1 “ λpn ,

onde pn representa a população no tempo n, dada uma certa população inicial p0. Um significado
do parâmetro λ é o seguinte: em cada unidade de tempo o incremento pn`1 ´ pn da população é
igual a soma de uma parcela αpn, onde α ą 0 é um coeficiênte de fertilidade, e uma parcela ´βpn,
onde β ą 0 é um coeficiênte de mortalidade.

Se a uma população que cresce segundo o modelo exponencial, é adicionada ou retirada uma
certa quantidade β em cada unidade de tempo, o modelo é

pn`1 “ λpn ` β ,

onde β é um parâmetro positivo ou negativo.

ex: Determine a solução estacionária de pn`1 “ λpn ` β, e a solução com condição inicial
p0 arbitrária (considere a substituição xn “ pn ´ p, onde p é a solução estacionária). Para quais
valores dos parâmetros λ e β as soluções pn convergem para a solução estacionária quando o tempo
nÑ8?

help: An applet with the simulations is in exponentialgrowth.

help: A Java or c++ cycle could be

for (int i = 0, i < n, i++)

{

population = lambda * population + beta;

}

e.g. Growth of Fibonacci numbers. We want to understand how fast do Fibonacci numbers
grow. We call qn :“ fn`1{fnthe quotients between successive Fibonacci numbers. They satisfy the
recursive law

qn`1 “ 1` 1{qn (8.3)

which is an immediate consequence of (8.1). An applet with the sequence is in fibonacci. We
compute:

1 , 2 , 3{2 “ 1.5 , 5{3 » 1.66666 , 8{5 “ 1.6 , 13{8 “ 1.625 , 21{13 » 1.61538 , . . .

It turns out that the sequence of the qn converge, namely qn Ñ φ as nÑ8. Taking limits in the
recursive equation qn`1 “ 1 ` 1{qn we see that φ “ 1 ` 1{φ, so that φ is a root (positive) of the
polynomial x2 ´ x´ 1, i.e.

φ “
1`

?
5

2
» 1.6180339887498948482 . . .

Hence, for large values of n we may approximate Fibonacci law as

fn`1 « φfn ,

an exponential growth with rate φ. In particular, we expect fn „ φn.
The limit φ is a famous irrational, the Greeks’ ratio/proportion. As described by Euclid16:

15J.R. Arnold and W.F. Libby, Age determinations by Radiocarbon Content: Checks with Samples of Known
Ages, Sciences 110 (1949), 1127-1151.

16Euclid, Elements, Book VI, Definition 3.

http://w3.math.uminho.pt/~scosentino/bestiario/exponentialgrowth.html
http://w3.math.uminho.pt/~scosentino/bestiario/fibonacci.html
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“A straight line is said to have been cut in extreme and mean ratio when, as the whole
line is to the greater segment, so is the greater to the less.”

If a is the greater part and b the less of a line of lenght a` b, Euclid’s requirement is

a` b

a
“
a

b

There follows that the ratio φ “ a{b satisfies 1 ` 1{φ “ φ. This division of an interval is used in
Book IV of the Elements to construct a regular pentagon.

Extreme and mean ratio, and regular pentagon.

(from http://en.wikipedia.org/wiki/Golden_ratio)

e.g. Invenção do xadrez. Dizem que o sábio hindu Sissa inventou o jogo do xadrez e o ofreceu
ao rei de Pérsia. Ao rei, que o convidou a escolher uma recompensa, pediu um grão de arroz (ou
era trigo?) para o primeiro quadrado do tabuleiro, o dobro, ou seja, dois grãos, para o segundo
quadrado, o dobro, ou seja, quatro grãos, pelo terceiro quadrado, e assim a seguir até o último dos
quadrados do tabuleiro. O rei riu-se, num primeiro instante, mas . . . a recompensa é

1` 2` 4` 8` ¨ ¨ ¨ ` 263 » 1.84ˆ 1019

(see (8.6) below) grãos de arroz.
Se 1 Kg de arroz contém « 30000 grãos, isto significa algo como 6.13ˆ 1011 toneladas de arroz

(which you may want to compare with People’s Republic of China’s production in 2008, which has
been, according to FAO, about 1.93ˆ 108 metric tons!).

Sums. Given a sequence pxnq, one may compute the partial sums

Xn :“
n
ÿ

k“0

xk “ x1 ` x2 ` x3 ` ¨ ¨ ¨ ` xn

The partial sums are then obtained from the xn’s by the recurrence

Xn`1 “ Xn ` xn`1 ,

given the initial value X0 “ x0. Conversely, the original sequence is obtained from its sum
computing a sort of “discrete (backward) derivative”

xn “ p∆´xqn :“ Xn ´Xn´1 ,

where, of course, we must start with X´1 “ 0.
Let pxnq and pynq be two sequences, and pXnq and pYnq be their partial sums. Rearranging

the terms in the partial sums of the product sequence xnyn, we discover the Abel transforma-
tion/formula

n
ÿ

k“0

xkyk “ x0y0 `
n
ÿ

k“1

xkpYk ´ Yk´1q

“ x0y0 ´ x1Y0 `
n´1
ÿ

k“1

pxk ´ xk`1qYk ` xnYn

“ xnYn ´
n´1
ÿ

k“0

pxk`1 ´ xkqYk

(8.4)

http://en.wikipedia.org/wiki/Golden_ratio
http://faostat.fao.org/site/339/default.aspx
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If we then substitute xk with its partial sum Xk in Abel’s formula (8.4), we get the summation by
parts formula

n
ÿ

k“0

Xkyk “ XnYn ´
n
ÿ

k“1

xkYk´1 (8.5)

Asymptotic averages.
1

n` 1
Xn “

x0 ` x1 ` ¨ ¨ ¨ ` xn
n` 1

Series. A series is a formal infinite sum

“
8
ÿ

n“0

xn “ x0 ` x1 ` x2 ` x3 ` . . . ” ,

where the xn P R are elements of some given real (or complex) sequence. If the sequence pXnq of
partial sums, defined as Xn :“

řn
k“0 xk (which are honest numbers) converges to some limit, say

limnÑ8Xn “ s, then we say the series is convergent (or summable), and that its sum is

8
ÿ

n“0

xn :“ s .

A series
ř

n xn is absolutely convergent if the series
ř

n |xn|, formed with the absolute values of
its terms, is convergent. Of course, absolute convergence is stronger than mere convergence.

A series which is not absolutely convergent is quite a delicate object, since rearrangements of
its terms may produce convergence to any real number (including infinite): i.e. the order matters!

[Ap69]

e.g. Arithmetic series. The partial sums of an arithmetic sequence xn “ a` nb is

N
ÿ

n“1

xn “ Na`
NpN ` 1q

2
b “

N

2
pxN ` x1q .

In particular, the series diverges, unless a “ b “ 0.

e.g. Harmonic series. The harmonic series is the formal inifinite sum of the inverses of all
natural numbers:

1`
1

2
`

1

3
`

1

4
`

1

5
` . . .

It is not convergent, since, if we . . . to be completed!

Geometric series. A identidade

p1` λ` λ2 ` λ3 ` ...` λnqpλ´ 1q “ λn`1 ´ 1

(just multiply, and observe that all terms but the first and the last do cancel) mostra que, se λ ‰ 1,
a soma dos primeiros n` 1 termos da progressão geométrica (com a “ 1) é

1` λ` λ2 ` λ3 ` ¨ ¨ ¨ ` λn “
λn`1 ´ 1

λ´ 1
(8.6)

Em particular, quando |λ| ă 1, a série geométrica
ř8

n“0 λ
n é (absolutamente) convergente, e a sua

soma é

1` λ` λ2 ` λ3 ` ¨ ¨ ¨ ` λn ` ¨ ¨ ¨ “
1

1´ λ
. (8.7)
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e.g. Dichotomy paradox. Using the above formula (8.7) for the sum of the geometric series,
you may try to convince Zeno that

1{2` 1{4` 1{8` 1{16` 1{32` ¨ ¨ ¨ “ 1 .

e.g. Decimal expansions. Also, you may convince yourself that 0.99999 . . . , which by definition
is the sum of the series

0.99999 . . . “
9

10
`

9

100
`

9

1000
`

9

10000
` . . . ,

is not “almost one” or “a bit less than one”, as somebody says, but actually equal to

0.99999 . . . “
9

10

ˆ

1`
1

10
`

1

100
`

1

100
` . . .

˙

“
9

10
¨

1

1´ 1
10

“ 1 .

Moreover, you may learn how to recognize rational numbers as 0.33333 . . . or 1.285714285714 . . .
from their (eventually) periodic expansion. Indeed, a real number is rational if and only if its base
10 (or any other base d ě 2) expansion is eventually periodic.

ex: Diga se a seguintes séries são convergentes, e, se for o caso, calcule a soma.

1` 1{2` 1{4` 1{8` 1{16` . . . 1` 10` 100` 1000` . . . 1` 1{10` 1{100` 1{1000` . . .

8
ÿ

n“0

p4{5qn 9{10` 9{100` 9{1000` . . . 0.3333 . . . 0.123

Convergence tests. Deciding convergence or divergence of a series is not easy. The only tool
at our disposal is comparison with known series, and essentially the only known non-trivial series
is the geometric one. Comparison means the obvious observation that 0 ď xn ď yn for any n
sufficiently large implies the following two conclusions:

ř

n yn ă 8 ñ
ř

n xn ă 8, and
ř

n xn “
8 ñ

ř

n yn “ 8.
Now, if |xn| ď C λn for some constant C ą 0 and any n sufficiently large, then the partial

sums of the series
ř

n xn are bounded by a constant times the partial sums of the geometric series
ř

n λ
n, therefore the series

ř

n xn is absolutely convergent whenever |λ| ă 1. This happens when

• lim supnÑ8 |xn|
1{n ă 1 (root test)

• or when lim supnÑ8 |xn`1{xn| ă 1 (ratio test).

[Ap69]

e.g. The exponential. Take xn “ tn{n!. The series

expptq :“
ÿ

ně0

tn

n!

“ 1` t`
t2

2
`
t3

6
`
t4

24
` . . .

is absolutely convergent for any t P R (for example, by the ratio test). Therefore, it defines a
function exp : R Ñ R, which we call exponential, and also denote by et, if the Neper constant is
defined by e :“ expp1q, i.e.

e :“ 1` 1`
1

2
`

1

6
`

1

24
` . . .

» 2, 7182818284590452353602874 . . .

http://en.wikipedia.org/wiki/Zeno's_paradoxes#The_dichotomy_paradox
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Comparing the coefficients of the power series and using the binomial formula, one may show
that the exponential “sends sums into products”, namely

et`s “ etes

for any t, s P R. Consequently, e´t “ petq´1, and in particular et is never zero.

Conditional convergence and rearrangements. A series which is convergent but not ab-
solutely convergent is called conditionally convergent. The standard example is the alternating
harmonic series

ř

np´1qn{n. According to the Riemann rearrangement theorem, given any num-
ber a P RYt˘8u, it is possible to rearrange the terms of a conditionally convergent series

ř

n xn,
i.e. to find a permutation σ : NÑ N of the naturals, and get a series

ř

n xσpnq which converges to
the desired a. Thus, a conditionally convergent series may simulate all convergent series!



9 ELEMENTARY FUNCTIONS 33

9 Elementary functions

Functions. It turns out that a convenient language to do mathematics is that of functions, or
operators. A function is a “law” f : X Ñ Y that associates to any element/point x of some set X,
called domain of the function, a (unique!) element/point fpxq of some set Y (possibly different
from X). We also use the notation

x ÞÑ y “ fpxq ,

that suggests that a function is a “machine”, or “operator”, that produces an y out of any x.
The element y “ fpxq P Y is called image of x P X, or also value of f at x if we are dealing
with numbers. The image of the subset A Ă X is the set fpAq :“ tfpaq with a P Au Ă Y . In
particular, the range of the function f : X Ñ Y is the set fpXq :“ tfpxq with x P Xu Ă Y of
all its values. The restriction of the function f : X Ñ Y to the subset A Ă X is the function
f |A : AÑ Y defined by f |A paq :“ fpaq.

The graph of the function f : X Ñ Y is the subset

Graphpfq :“ tpx, yq P X ˆ Y s.t. y “ fpxqu Ă X ˆ Y

of the Cartesian product of X and Y .
The identity function idX : X Ñ X is defined by idXpxq “ x, and its graph is the diagonal

tpx, xq with x P Xu Ă X ˆX.
The compositon of the functions f : X Ñ Y and g : fpXq Ă Y Ñ Z (in this temporal order!)

is the function g ˝ f : X Ñ Z defined by pg ˝ fqpxq :“ gpfpxqq, that is, by the following sequence
of operations:

x ÞÑ y “ fpxq ÞÑ z “ gpyq “ gpfpxqq .

A function f : X Ñ Y is into if x ‰ x1 implies fpxq ‰ fpx1q, and therefore the image fpXq
is a “copy” of X inside Y . A function f : X Ñ Y is onto if every y P Y is the image y “ fpxq
of some x P X, i.e. if Y “ fpXq. A function f : X Ñ Y is a bijection/invertible if it is into and
onto, and therefore admits an inverse function f´1 : Y Ñ X, which satisfies f´1pfpxqq “ x and
fpf´1pyqq “ y for all x P X and all y P Y . Of course, an injective functionf : X Ñ Y may be
considered as an invertible function f : X Ñ fpXq onto its image.

ex:

• Let f : N Ñ N be the function defined by n ÞÑ 2n. Find its image P :“ fpNq. Find the
restriction g :“ f |I : I Ñ Z of f to the subset O :“ t1, 3, 5, 7, . . . u Ă N of odd numbers, and
its image gpIq. The function f : NÑ fpNq is invertible?

• Is it true that f ˝ g is always equal to g ˝ f? Never?

Graphs of real values functions, curves. In this section, we deal with “real functions of a
real variable”, that is, functions f : X Ă R Ñ R defined in subsets, typically intervals, X Ă R.
Their graphs are “curves” in the Cartesian plane x-y.

Monotone functions. A real valued function of a real variable is (strictly) (increasing if x ă x1

implies fpxq ă fpx1q, and (strictly) decreasing if x ă x1 implies fpxq ą fpx1q. In both cases, it is
said (strictly) monotone. A monotone function from an interval X Ă R to its image fpXq Ă R is
invertible.

ex:

• Draw the graphs of

3 ´ 3x |x| x´ 2 |x´ 1| |3x` 5| |x´ 1| ˘ |x´ 2|
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Linear functions. The simplest relation between two observables, say x and y, is proportional-
ity:

y “ λx

for some non-zero λ P R, which we also abbreviate as y9x. The graph of the function fpxq “ λx
is a line through the origin, and λ is its slope. Slightly more general is a affine dependence

y “ λx` α

(which gives back a proportionality if the independent variable x is substituted by the new variable
x1 “ x`α{λ). The parameter λ is still the slope of the graph of gpxq “ λx`α, and α is the value
of the function for x “ 0, i.e. the intersection of the graph with the y-axis. In implicit form, a
linear relation is given by the law

ax` by “ c ,

which is the Cartesian equation of a generic line in the plane x-y (including vertical lines x “ c,
which describe no relation at all!).

ex:

• Show that the substitution x1 “ ax`b transforms the law y “ λx`α into a law y “ λ1x1`α1,
and compute the new parameters λ1 and α1.

• Show that the substitution y1 “ ax`b transforms the law y “ λx`α into a law y1 “ λ1x`α1,
and compute the new parameters λ1 e α1.

• Find the linear relation between x and y knowing that yp3q “ 2 and yp1q “ 5.

e.g. Hubble law. In 1929, Hubble17 discovered the velocity-distance relation

v “ Hd

of distant galaxies, suggesting the expansion of our Universe. A recent estimation of the Hubble
constant gives the value H “ 73.8˘ 2.4 (km/s)/Mpc.

Picture from the original paper by Hubble.

e.g. Celsius, Fahrenheit and Kelvin degrees. Temperature may be measured in Celsius
(C), Fahrenheit pF ) or Kelvin (K) degrees, and

F “ 1.8 ¨ C ` 32 K “ pF ` 459.67q{1.8

• Find the relation between Kelvin and Celsius degrees, and the ratio between one degree
Kelvin and one degree Fahrenheit.

• Find the Celsius degrees of the cosmic background radiation, estimated around 3K.

17E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, Proc. N. A. S. 15
(1929), 168-173.
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Powers and polynomials. A (real) polynomial of degree n is a linear combination

ppxq “ anx
n ` an´1x

n´1 ` ¨ ¨ ¨ ` a1x` a0

of integer non-negative powers of x, with “coefficients” a0, a1, . . . , an P R, and an ‰ 0. A root of
the polynomial ppxq is a number r such that pprq “ 0. A polynomial of degree n ě 1 with roots
z1, z2, . . . zn is proportional to the “monic” polynomial

px´ z1qpx´ z2q . . . px´ znq “ xn ´ pz1 ` z2 ` ¨ ¨ ¨ ` znqx
n´1 ` ¨ ¨ ¨ ` pz1z2 . . . znq

A polynomial of degree n has n complex roots (some or all of which may coincide!), but a number
k ď n of real roots (which may be zero!).

Graphs of two cubic polynomials

• Draw the graphs of

x2 px` 1q2 x2 ´ 1 x3
?
x x2{3 x3{2 x˘ x3

• Give examples of polynomials with roots 1, 2 and 3.

• Give examples of real polynomials without real roots.

Rational functions. Quotients of polynomials like

ppxq

qpxq
“

anx
n ` . . . a1x` a0

bnxm ` ¨ ¨ ¨ ` b1x` b0

defined outside the real roots of the denominator qpxq, are called rational functions.

Cycles. Many natural phenomena are periodic, or “quasi-periodic”. A function fptq of a real
variable t is said periodic if

fpt` T q “ fptq

for all “times” t P R and some minimal T ą 0 called period (of the function f). The parameter
ω :“ 1{T is then called frequency (it measures how many time a given value fptq recurs each unit
of time).

ex:

• If fptq has period 3 and gptq has period 5, find the periods of the functions

2fpt` 8q ` 2 fp7tq fptq2 gpt{9q fptq ` gptq fptq ¨ gptq

• What is the frequency of friday 13th’s?
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Trigonometric functions. The most important periodic functions (using which we may approx-
imate all reasonable periodic functions with arbitrary precision!) are the “trigonometric functions”
sine and cosine. If θ denotes the length of the arc between the point p0, 1q and the point px, yq along
the unit circle S2 :“ tpx, yq P R2 t.q. x2 ` y2 “ 1u of the Cartesian plane, then the coordinates of
the final point are x “ cos θ and y “ sin θ. By Pythagora’s theorem,

pcos θq2 ` psin θq2 “ 1

Sine and cosine are periodic functions, with period equal to the length of the unit circle, which
is 2π. Both are bounded between ˘1. In particular, cos θ “ 0 iff θ “ π{2 ` nπ with n P Z, and
sin θ “ 0 iff θ “ nπ, with n P Z. Sine e cosine satisfy the “sum and difference formulas”

cospθ ˘ φq “ cospθq cospφq ¯ sinpθq sinpφq sinpθ ˘ φq “ cospθq sinpφq ˘ sinpθq cospφq .

Also useful is the tangent function, defined by tan θ :“ psin θq{pcos θq, for values of θ ‰ π{2` nπ,
with n P Z.

The restriction sin : r´π{2, π{2s Ñ r´1, 1s is increasing, and therefore admits an inverse func-
tion, arcsin : r´1, 1s Ñ r´π{2, π{2s. The restriction cos : r0, πs Ñ r´1, 1s is decreasing, and
therefore admits an inverse function, arccos : r´1, 1s Ñ r0, πs.

ex:

• Verify that the functions t ÞÑ sinpωtq and t ÞÑ cospωtq are periodic with period 2π{ω, and
therefore frequency ν “ ω{p2πq.

• Draw the graphs of

sinpθ ˘ π{2q cospθq ` cosp2θq sinpθq ¨ sinp10 ¨ θq θ ¨ sin θ

• Verify that

pcos θq2 “
1` cosp2θq

2
psin θq2 “

1´ cosp2θq

2

• Compute

sinparcsinp´1{2qq arcsinpsinp7π{6qq cosparccosp
?

3{2qq arccospcosp´π{3qq

Exponentials and logarithms. Given a base b ą 0, it is possible to exten its fractional powers
bpp{qq to irrational values of the exponent, and therefore define an exponential function

x ÞÑ bx

for all x P R (a true definition will be given later!). The exponential satisfies

bxby “ bx`y b´x “ 1{bx b0 “ 1

In particular, it is always positive, i.e. bx ą 0. If the base is b ą 1,

limxÑ´8 b
x “ 0 e limxÑ8 b

x “ 8

When b ‰ 1, the exponential x ÞÑ bx is a monotone function (increasing if b ą 1, decreasing if
0 ă b ă 1). Its inverse function (defined for positive numbers!) is called base b logarithm, and
denoted by logb : R` Ñ R. Thus,

logb y “ x sse y “ bx

The base 10 logarithm is also called simply log :“ log10 by engineers. The logarithm satisfies the
properties

logb 1 “ 0 logb xy “ logb x` logb y logbp1{xq “ ´ logb x

logbpx{yq “ logb x´ logb y logb x
y “ y logb x

Cjanging the base . . .
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ex:

• Compute
27 34 5´2 1080 ˆ 10´27

log2 16 log3 0.3 log10 10000 log10 0.00000001

e.g. pH. The concentration of H3O` is measured in logarithmic scale, using the

pH :“ ´ log10rH3O`s

e.g. Apparent luminosity of stars. The apparent luminosity of stars is a function

m “ m0 ´ 2.5 ¨ log10pF {F0q

of the flow F (in a given frequency interval), where F0 and m0 are certain reference values.

Logarithmic and semi-logarithmic scales.

Other elementary functions?

Limits. Let f : X Ă R Ñ R be a real valued function of a real variable, and let a P R be an
accumulation point of its domain X (i.e., a point such that there exists a sequence pxnq of points
of X different from a such that xn Ñ a, that is, a point such that any interval pa ´ ε, a ` εq
with ε ą 0 contains points of X other than a). For example, X may contain a union of intervals
pb, aq Y pa, cq, or an interval like pb, aq or pa, cq. The number A is the limit of f when x Ñ a,
notation limxÑa fpxq “ A (or limxÑa˘ fpxq “ A if X “ pb, aq or X “ pa, cq, respectively), if for
any “precision” ε ą 0 there exists a “tolerance” δ ą 0 such that an error 0 ă |x ´ a| ă δ, with
x P X, implies an error |fpxq´A| ă ε (observe that the actual value of fpaq, if any, is irrelevant!).

Limits obey the following algebraic rules:

limxÑa fpxq “ F and limxÑa gpxq “ G ñ limxÑa fpxq ˘ gpxq “ F `G

limxÑa fpxq “ F and limxÑa gpxq “ G ñ limxÑa fpxq ¨ gpxq “ F ¨G

limxÑa fpxq “ F and limxÑa gpxq “ G ñ limxÑa fpxq{gpxq “ F {G p if G ‰ 0q

A useful principle to compute limits is the following

gpxq ď fpxq ď hpxq and limxÑa gpxq “ limxÑa hpxq “ A ñ limxÑa fpxq “ A

ex:

• Compute

lim
xÑ3´

7

x´ 3
lim
xÑ1

x2 ´ 1

x´ 1
lim
xÑ0`

|x|

x
lim
xÑ8

3x3 ´ 5x` 1

5x3 ` 2x2

lim
xÑ8

?
1` x lim

xÑ0

sinx

x
lim
xÑ0

x ¨ sinp1{xq lim
θÑπ{4

tan θ

1´ cos θ
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Continuous functions. A real valued function of a real variable f : X Ă RÑ R is continuous
at the point a P X (the point a must belong to the domain!) if for any “precision” ε ą 0 there exists
a “tolerance” δ ą 0 such that an error |x´ a| ă δ, with x P X, implies an error |fpxq ´ fpaq| ă ε
(that is, the image of an interval of radius δ centered at a belongs to an interval of radius ε
centered at fpaq). In particular, when a is not an isolated point of X (i.e. if there exists no
interval I “ pa´ ε, a` εq with ε ą 0 such that X X I “ tau), a function is continuous at a P X iff
limxÑa fpxq “ fpaq. A continuous function is a function which is continuous at all points of its
domain.

Powers, polynomials, trigonometric functions, exponentials and logarithms are continuous func-
tions in their natural domains. Sums fpxq ˘ gpxq, products fpxq ¨ gpxq and quotients fpxq{gpxq
(where gpxq ‰ 0) of continuous functions are continuous functions. A composition pg ˝ fqpxq “
gpfpxqq of two continuous functions fpxq and gpyq is a continuous function too.

Intermediate value theorem. A continuous function that takes positive (or negative) value
fpcq ą 0 at some point c of its domain, remains positive (or negative) in some neighborhood
pc ´ δ, c ` δq of the point c. This is obvious taking, for example, ε “ |fpcq|{2 in the definition of
continuity at c. A consequence of this “stability of sign principle” and of the supremum axiom of
the real line (the completeness axiom) is

Theorem 9.1 (Bolzano). If a continuous function f : ra, bs Ñ R takes values fpaq and fpbq with
opposite signs (i.e. fpaq ¨ fpbq ă 0) then there exists a point c Psa, br where fpcq “ 0

Proof. Indeed, assume that fpaq ă 0 and fpbq ą 0 (the other case being analogous). The set
A “ tx P ra, bs , s.t. fpxq ă 0u is not-empty, since it contains a, and bounded from above, since
b is an upper bound. Let c “ supA. The value fpcq cannot be negative neither positive, for
otherwise the function would be negative or positive in a whole neighborhood of c, and in both
cases c could not be the supremum of A. Thus, fpcq must be equal to zero.

A consequence is the

Theorem 9.2 (Intermediate value theorem). A continuous function f : ra, bs Ñ R assumes all the
values in the interval between fpaq and fpbq, that is, if fpaq ă C ă fpbq, or if fpbq ă C ă fpaq,
then there exists a point c Psa, br where fpcq “ C.

Proof. Just apply the Bolzano theorem to the continuous function fpxq ´ C.

ex:

• Show that it is possible to solve x3 ´ x` 3 “ 0 in the interval r´2,´1s.

• Show that there exists a number x in the interval r0, π{2s such that cosx “ x .

Discontinuous functions. Discontinuous functions which are useful in engineering and physics
are the integer part/floor, defined by

rts :“ max tn P Z s.t. n ď tu ,

and the unit jump at τ , defined by

uτ ptq :“

"

0 if t ă τ
1 if t ě τ

.

• Draw the graphs of
fptq “ t´ rts 1´ u0ptq

fptq “

"

0 if rts is even
1 if rts is odd

fptq “

"

t´ rts if rts is even
1` rts ´ t if rts is odd
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Extrema. Uma função cont́ınua f : ra, bs Ñ R definida num intervalo fechado e limitado possui
(pelo menos) um mı́nimo e um máximo.

• Determine mı́nimos e máximos de xp1´ xq no intervalo r0, 1s.

• Determine mı́nimos e máximos de |x´ 1| ´ |x´ 2| no intervalo r0, 3s.

• Dê exemplos de funções cont́ınuas definidas em p0,8q ou em p0, 1q sem máximos nem
mı́nimos.
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10 Discrete-time models and iterations

ref: [EK05, HK03]

e.g. Transformação loǵıstica. Um modelo mais realista da dinâmica de uma população num
meio ambiente limitado é

Pn`1 “ λPn p1´ Pn{Mq

onde Pn ě 0 é a população no tempo n, e a contante M ą 0 é a maior população suportada pelo
meio ambiente (observe que Pn`1 ă 0 quando Pn ą M , o que pode ser interpretado como “ex-
tinção” no tempo n`1). A substituição xn “ Pn{M transforma a lei acima na forma adimensional

xn`1 “ λxnp1´ xnq ,

chamada transformação loǵıstica18. Se 0 ď λ ď 4, a transformação loǵıstica fλpxq :“ λxp1 ´ xq
envia o intervalo unitário no intervalo unitário, i.e. fλ : r0, 1s Ñ r0, 1s.
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Gráficos da transformação loǵıstica fλ|r0,1s quando λ “ 0.5, λ “ 2, λ “ 3 e λ “ 4.

Os ponto estacionários são o estado trivial 0 e

x “
λ´ 1

λ

desde que λ ě 1. Um applet Java com simulações do sistema está no meu bestiario.

ex: Discuta e interprete o comportamento das soluções para valores do parâmetro 0 ă λ ď 1.
Discuta e interprete o comportamento das soluções para valores do parâmetro 1 ă λ ď 3. Observe
os fenómenos que acontecem ao variar o parâmetro λ entre 3 e 4. O que acontece quando λ ą 4 ?

Modelos discretos. Um sistema dinâmico com tempo discreto é definido por uma equação/lei
recursiva

xn`1 “ fpxnq , (10.1)

onde xn P X denota o estado (posição, população, concentração, temperatura, ...) do sistema no
tempo n P N0 :“ t0, 1, 2, 3, . . . u (segundos, horas, meses, anos, ...). O espaço dos estados pode ser
um intervalo X Ă R da recta real, um domı́nio X Ă Rd do espaço euclidiano de dimensão d, ou um
conjunto mais exótico. A dinâmica é portanto determinada por uma transformação f : X Ñ X do
espaço dos estados em si mismo.

As trajetórias do sistema dinâmico são as sucessões pxnqnPN0 ,

x0 ÞÑ x1 :“ fpx0q ÞÑ x2 :“ fpx1q ÞÑ . . . ÞÑ xn`1 :“ fpxnq ÞÑ . . . ,

definidas a partir de uma condição/estado inicial x0 P X usando a recursão (10.1). A imagem de
uma trajetória, o conjunto Opx0q :“ tx0, x1, x2, . . . u Ă X, é dito órbita do estado inicial x0.

Equiĺıbrios e soluções periódicas. As soluções estacionárias, ou de equiĺıbrio, são as tra-
jetórias constantes xn “ c para todos os tempos n P N0, onde o estado estacionário, ou de equiĺıbrio,
c P X é um “ponto fixo” da transformação f : X Ñ X, ou seja, um ponto tal que

fpcq “ c .

As soluções periódicas são as trajetórias pxnq tais que xn`p “ xn para todos os tempos n e
algum tempo minimal p ě 1, dito peŕıodo. Portanto, uma órbita periódica é um conjunto finito
tx0, x1, . . . , xp´1u Ă X de pontos que são permutados pela transformação f .

18Robert M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459-467.

http://java.com/
http://w3.math.uminho.pt/~scosentino/bestiario/logistic.html
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help: As we already know, Mathematica R©8 may compute and plot trajectories of, for example,
the logistic map xn`1 “ 3.7xnp1´ xnq, with initial condition x0 “ 0.33, with the instructions

RecurrenceTable[{x[n + 1] == 3.7 x[n] (1- x[n]), x[0] == 0.33}, x, {n, 0, 100}]

ListPlot[%, PlotRange -> All]
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help: Trajectories may be obtained with Maxima using the “evolution” command, as

(%i1) load("dynamics")$

(%i2) evolution(3.7*x*(1-x), 0, 100);

Trajetórias convergentes. Se uma trajectória pxnq é convergente e se a transformação f : X Ñ

X é cont́ınua, então o limite x8 “ limnÑ8 xn é um estado estacionário, pois

fpx8q “ f
´

lim
nÑ8

xn

¯

“ lim
nÑ8

fpxnq “ lim
nÑ8

xn`1 “ x8 .

Solving a problem by recursion. The above is a most useful idea in mathematics. If we are
looking for a solution of some “equation” gpxq “ y, we may try to rewrite it in the form fpxq “ x
(in a naive way summing x ´ y to both sides, or in some other clever way as we will encounter
later), so that we are really looking for a fixed point of a transformation f : X Ñ X. Then, we
may try to decide if some trajectory of the recurrence xn`1 “ fpxnq converges. If this happens,
the limit x8 is one of the solutions we were after.

Limits and continuity in Euclidean spaces. Limits may be defined for sequences in any
metric space pX, dq, simply replacing |xn ´ a| with the distance distpxn, aq. A metric space is a
set X equipped with a metric, a symmetric non-negative function dist : X ˆX Ñ r0,8q which is
non-degenerate, i.e. distpx, yq “ 0 iff x “ y, and which satisfies the “triangular inequality”

distpx, yq ď distpx, zq ` distpz, yq for any x, y, z P X .

This is the case of the Euclidean space Rd, the linear space of vectors x “ px1, . . . , xdq equipped
with the Euclidean distance distpx, yq :“ }x´ y}, where the Euclidean norm is }x} :“

a

xx, yy and
the Euclidean inner product is xx, yy :“ x1y1 ` ¨ ¨ ¨ ` xdyd.

A function/map f : X Ñ Y between two metric spaces pX,distXq and pY,distY q is continuous
if whenever xn Ñ x in X we also have fpxnq Ñ fpxq in Y (that is, we are allowed to exchange
limits with the map). Equivalently, if for any x P X and any “precision” ε ą 0 there exists an
allowed “error” δ ą 0 such that distXpx, x

1q ă δ implies distY pfpxq, fpx
1qq ă ε.

help: The RSolve command of Mathematica finds analytic solutions of recurrent sequations/systems,
if possible.

help: The Nest command of Mathematica also does iterations.

Análise gráfica. Se o espaço dos estados é um intervalo X Ă R, as trajetórias podem ser
observadas no plano x-y esboçando o caminho poligonal (cobweb plot)

http://www.wolfram.com/mathematica/
http://maxima.sourceforge.net/
http://reference.wolfram.com/mathematica/tutorial/SolvingRecurrenceEquations.html
http://www.wolfram.com/
http://reference.wolfram.com/mathematica/tutorial/ApplyingFunctionsRepeatedly.html
http://www.wolfram.com/
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px0, x0q ÞÑ px0, x1q ÞÑ px1, x1q ÞÑ px1, x2q ÞÑ px2, x2q ÞÑ px2, x3q ÞÑ ...

entre o gráfico da transformação, y “ fpxq, e a diagonal, y “ x.

help: You may find a GeoGebra code and the derived applet in my web page.

help: With Mathematica R©8 , you may plot the graphs of both the map y “ fpxq and the
identity y “ x with the “Plot” command

Plot[{3.7 x (1 - x), x}, {x, 0, 1}]

and get

0.2 0.4 0.6 0.8 1.0
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0.4

0.6

0.8

1.0

help: A cobweb plot with Maxima is obtained with the “staircase” commands, as

(%i1) load("dynamics")$

(%i2) staircase(3*x*(1-x), 0, 10, [x, 0, 1]);

ex: Estude as trajetórias (ou seja, determine os estados de equiĺıbrio, as trajetórias periódicas, e
o comportamento assimptótico de algumas das outras trajetórias) dos sistemas dinâmicos definidos
pelas seguintes transformações do intervalo

fpxq “
1

3
x fpxq “ 7x fpxq “ ´x

fpxq “ 3x` 1 fpxq “ 2x´ 7 fpxq “
1

2
x` 5

fpxq “ |1´ x| fpxq “ x2 ´
1

4
fpxq “ x2 ´ 2

fpxq “ x3 fpxq “ ´x3 fpxq “ x1{3

fpxq “ x´ x3 fpxq “ x` x3

http://www.geogebra.org/cms/
http://w3.math.uminho.pt/~scosentino/teaching/am_BIOQ_2011-12/GeoGebraApplets/Logistic.ggb
http://w3.math.uminho.pt/~scosentino/teaching/am_BIOQ_2011-12.html
http://www.wolfram.com/mathematica/
http://maxima.sourceforge.net/
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e.g. Equiĺıbrio de Hardy-Weinberg. Considere a transmissão hereditária de um gene com
dois alelos, A e a. Sejam P0, Q0 e Z0 “ 1´ pP0 `Q0q as frequências dos genótipos AA, aa e Aa,
respectivamente, numa dada população inicial. Então as probabilidades de ter o alelo A ou a na
formação de um gameta são

p0 “ P0 `
1

2
Z0 e q0 “ 1´ p0 “ Q0 `

1

2
Z0 ,

respectivamente. Na fecundação, logo na primeira geração, teremos os genótipos AA, aa e Aa com
probabilidades/frequências

P1 “ p20 , Q1 “ q20 e Z1 “ 2p0q0 ,

respectivamente. Sucessivamente, as probabilidades de ter os alelos A ou a na formação de um
gameta na primeira geração são

p1 “ P1 `
1

2
Z1 e q1 “ Q1 `

1

2
Z1 .

respectivamente. Mas p1 “ p20`p0q0 “ p0 e q1 “ q20`p0q0 “ q0. Consequentemente, as frequências
dos três genótipos na segunda geração serão

P2 “ p21 “ P1 , Q2 “ q21 “ Q1 e Z2 “ 2p1q1 “ Z1 .

Ou seja, a distribuição dos três genótipos atinge um valor estacionário a partir da primeira geração
(Hardy19-Weinberg20 equilibrium/principle/law) This is a physically interesting dynamical system
with (mathematically) trivial dynamics.

e.g. Seleção natural, modelo de Fisher, Wright e Haldane. Um modelo simples de seleção
natural, proposto por Ronald Fisher21, Sewall Wright22 e John Burdon Haldane23, considera apenas
um gene com dois alelos, A e a. A vantagem ou desvantagem competitiva dos diferentes genótipos,
AA, Aa e aa, é modelada por coeficientes de “sucesso biológico” (fitness), φAA, φAa e φaa, que
determinam as diferentes taxas de sobrevivência, e portanto de reprodução. Sejam 0 ď pn ď 1 e
qn “ 1´pn as frequências dos alelos A e a, respetivamente, na n-ésima geração. Então a frequência
do alelo A na pn` 1q-ésima geração é dada por

pn`1 “
αp2n ` pnqn

αp2n ` 2pnqn ` βq2n

onde α “ φAA{φAa ą 0 e β “ φaa{φAa ą 0.
As soluções estacionárias são as soluções triviais 0 e 1, e, quando α e β são os dois superiores

ou os dois inferiores a 1,

p “
|β ´ 1|

|α´ 1| ` |β ´ 1|
.

Quando α ă 1 ă β ou β ă 1 ă α, na população assimptótica apenas sobrevive o alelo
favorecido.

19G.H. Hardy, Mendelian proportions in a mixed population, Science 28 (1908), 49-50.
20 W. Weinberg, Über den Nachweis der Vererbung beim Menschen, Jahreshefte des Vereins für vaterländische

Neturkunde in Württemberg 64 (1908), 368-382.
21R.A. Fisher, Genetical Theory of Natural Selection, Clarendon Press, 1930.
22S. Wright, Evolution in Mendelian populations, Genetics 16 (1931), 97-159.
23J.B.S. Haldane, A Mathematical Theory of Natural and Artificial Selection (1924-1934). J.B.S. Haldane, The

effect of variation on fitness, Am. Nat. 71 (1937), 337-349.
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α ă 1 ă β β ă 1 ă α

Quando α ą 1 e β ą 1 (ou seja, os genótipos AA e aa têm uma vantagem competitiva em
relação ao genótipo Aa), o estado estacionário p é instável, e pequenas perturbações x0 “ p˘ ε do
equiĺıbrio produzem comportamentos assimptóticos diferentes, a extinção de A ou a extinção de
a, dependendo do sinal de ˘ε (disruptive selection).

Quando α ă 1 e β ă 1 (ou seja, o genótipo Aa é o favorecido), o estado estacionário p é estável,
e portanto os dois alelos convivem na população assimptótica (heterosis).
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Disruptive selection: 1 ă α ă β . Heterosis: α ă β ă 1.

e.g. Hénon map. The Hénon map24 is the recursive map of the plane
"

xn`1 “ 1` yn ´ αx
2
n

yn`1 “ βxn

Depending on the values of its parameters, its trajectories show regular, “intermittent” or “chaotic”
behavior. If you choose the parameters α » 1.4 and β » 0.3, you see the “Hénon attractor”.

help: With Mathematica R©8 , you may use the commands

RecurrenceTable[{x[n + 1] == y[n] + 1 - 1.4 x[n]^2,

y[n + 1] == 0.3 x[n], x[0] == 0.6, y[0] == 0.2},

{x, y}, {n, 1, 1000}] // Short

ListPlot[%, PlotRange -> All]

to get the following picture of the “Henón attractor”.

-1.0 -0.5 0.5 1.0

-0.4

-0.2

0.2

0.4

24M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 69-77.

http://www.wolfram.com/mathematica/
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help: Two-dimensional orbits may be obtained with Maxima using the “evolution2d” command,
as

(%i1) load("dynamics")$

(%i2) f: 1+y+1.4*x^2$

(%i3) g: 0.3*x$

(%i4) evolution2d([f,g], [x,y], [0,6, 0.2], 1000, [style,dots]);

e.g. Cigarras periódicas. As cigarras passam quase toda a vida, um periódo de 1 ď c ď 17
anos (dependendo da espécie), no chão como ninfas, e depois saem durante as poucas semanas ou
meses de vida adulta (acasalar, pôr ovos e morrer). Se os predadores têm ciclos de vida de pk anos,
a escolha de c que minimiza os encontros é um número primo diferente dos pk’s. As magicidada
(uma cigarra americana) saem da terra cada 13 ou 17 anos, aproximadamente sincronizadas em
diferentes lugares do continente. Modelos matemáticos que sugerem “explições” do fenómeno,
descrito por Stephen Jay Gould em [Gou77], foram propostos a partir dos anos ‘70 25 26 27.

A game on prime number and cicadas is in Marcus du Sautoy’s page Music of the primes.

Orbit diagram. Consider a family of transformations

xn`1 “ fλpxnq ,

depending on a parameter λ. The behavior of a typical orbit may change as λ changes. An
interesting picture is obtained if we plot the parameter λ, within some interval, versus a typical
orbit of fλ, say tx100, x101, . . . , x200u starting from a random initial point x0.

Orbit diagram for the logistic family (from the Wikipedia).

help: A orbit diagram with Maxima is obtained with the “orbits” command, as

(%i1) load("dynamics")$

(%i2) orbits(a*x*(1-x), 0, 10, 100, [a, 0, 4], [style, dots]);

25F.C. Hoppensteadt and J.B. Keller, Syncronization of Periodical Cicada Emergences, Sciences, New Series, 194
(1976), 335-337.

26R.M. May, Periodical cicadas, Nature, 277 (1979), 347-349.
27E. Goles, O. Schulz and M. Markus, Prime number selection of cycles in a predator-prey mode, Complexity 6

(2001), 33-38.

http://maxima.sourceforge.net/
http://www.musicoftheprimes.com/games/cicada/
http://en.wikipedia.org/wiki/Bifurcation_diagram
http://maxima.sourceforge.net/
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11 Derivative

ref: [Ap69, RHB06]

Slope. We pose the problem to find, actually to “define”, the slope of the graph of a real valued
function fpxq at some point x0 of its domain. For x ‰ x0, we may compute the slope of the straight
line passing through the points px0, fpx0qq and px, fpxqq of the Cartesian plane x-y, which is equal
to the quotient

fpxq ´ fpx0q

x´ x0

We define the slope of f at x0 as the limit, whenever it exists, of the above ratio when x Ñ x0,
namely

f 1px0q :“ lim
xÑx0

fpxq ´ fpx0q

x´ x0
. (11.1)

We observe that a linear function fpxq “ λx ` a has constant slope equal to f 1px0q “ λ. In
particular, a constant function fpxq “ a has zero slope f 1px0q “ 0 everywhere.

Mean and instantaneous velocity. When the the independent variable is a “time” t, and the
function rptq represents a “position/distance” at different times, the quotient

rptq ´ rpt0q

t´ t0

represents the mean velocity between the times t and t0. The limit

vpt0q :“ lim
tÑt0

rptq ´ rpt0q

t´ t0
. (11.2)

is therefore the (instantaneous) velocity at time t0.

e.g. Movimento rectiĺıneo uniforme. A lei do movimento rectiĺıneo uniforme num referencial
inercial é

qptq “ q0 ` v0t ,

onde qptq “ pxptq, yptq, zptqq denota a posição no tempo t, v0 P R3 a velocidade e q0 P R3 a posição
inicial.

• Determine a velocidade média no intervalo de tempos entre t e t`ε, e a velocidade instantânea
no tempo t.

• Determine a lei horária de uma part́ıcula que viaja com velocidade de 3 m/s e que no instante
t “ 10 s está na posição qp10q “ 10 m. Quando estava na origem?

e.g. Aquiles e a tartaruga. Aquiles (or Usain Bolt?) começa a correr com velocidade de 10
m/s em direcção de uma tartaruga que a sua vez foge com velocidade de 0.1 m/s. A distância
inicial entre Aquiles e a tartaruga é de 100 m.

• Determine quanto tempo demora Aquiles a percorrer 1{2, 1{2` 1{4, 1{2` 1{4` 1{8, ..., da
distância inicial, e passado quanto tempo chega ao ponto onde estava inicialmente a tartaruga.

• Determine a distância dptq entre Aquiles e a tartaruga no tempo t.

• Aquiles alcança a tartaruga? Se sim, em quanto tempo?
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e.g. Queda livre. A queda livre de uma part́ıcula próxima da superf́ıcie terrestre é modelada
pela lei horária

zptq “ z0 ` v0t´
1

2
gt2 ,

onde zptq denota a altura da part́ıcula no tempo t, z0 é a altura inicial,v0 é velocidade inicial, e
g » 980 cm/s2 é a aceleração da gravidade próximo da superf́ıcie terrestre.

• Determine a velocidade média

vt0,t1 :“
zpt1q ´ zpt0q

t1 ´ t0

no intervalo de tempos entre t0 “ t e t1 “ t`ε, e a velocidade (instantânea), ou seja, o limite

vptq :“ lim
εÑ0

zpt` εq ´ zptq

ε

• Determine a aceleração da part́ıcula, ou seja, o limite

aptq :“ lim
εÑ0

vpt` εq ´ vptq

ε

• Uma pedra é deixada cair do topo da torre de Pisa, que tem » 56 metros de altura, com
velocidade inicial nula. Calcule a altura da pedra após 1 segundo, o tempo necessário para a
pedra atingir o chão e a sua velocidade no instante do impacto.

• Com que velocidade inicial deve uma pedra ser atirada para cima de forma a atingir a altura
de 20 metros, relativamente ao ponto inicial?

• Com que velocidade inicial deve uma pedra ser atirada para cima de forma a voltar de novo
ao ponto de partida ao fim de 10 segundos?

Derivative. Let f : I Ñ R be a real valued function defined in some open interval I “ pa, bq Ă R.
The function f is differentiable at the point x P I if there exists the limit

f 1pxq :“ lim
εÑ0

fpx` εq ´ fpxq

ε
, (11.3)

called derivative of f at x. Equivalently, the function f is differentiable at the point x if there
exists a number λ, called derivative of f at x and denoted by λ “ f 1pxq, such that for all sufficiently
small “variations” ε we may write

fpx` εq ´ fpxq “ λ ¨ ε` rpεq (11.4)

where the “remainder” rpεq satisfies

lim
εÑ0

rpεq

ε
“ 0 (11.5)

Thus, the derivative λ “ f 1pxq is the “slope” of the best linear approximation

fpx` εq » fpxq ` λ ¨ ε (11.6)

to the function f near the point x. Geometrically, this is as well the tangent line at the graph
Gf :“ tpx, fpxq , x P Iu Ă R2 of f at the point px, fpxqq.

Taking the limit as ε Ñ 0 in (11.4), we see that fpx ` εq Ñ fpxq. Thus, a function which is
differentiable at x is also continuous at x.

A function f : I Ñ R is differentiable if it admits a derivative f 1pxq at all points x P I.

Successive derivatives. If f : I Ñ R admits derivatives for all x in its domain, we may regard
the derivative f 1 as a function, say f 1 : I Ñ R, hence try to compute its derivative. The derivative of
the derivative of f is called second derivative of f , and denoted by f2 :“ pf 1q1. In the same manner
we may define the successive derivatives f3, f4 and so on (i.e. inductively as f pk`1q :“ pf pkqq1),
whenever they exist.
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Leibniz’ notation. We may write y “ fpxq, hence denote by δy :“ fpx`δxq´fpxq the variation
of y due to a variation δx of x. Then the derivative is the limit

lim
δxÑ0

fpx` δxq ´ fpxq

δx
“ lim
δxÑ0

δy

δx
:“

dy

dx

This is Leibniz’ notation for derivatives. The definition (11.4) then reads δy “ λδx ` rpδxq, with
rpδxq{δxÑ 0 as δxÑ 0.

The second derivative is then d2y
dx2 , the third d3y

dx3 , and so on.
Observe that if we rescale both variables as x̃ “ λx and ỹ “ µy, with λ ą 0 and µ ą 0, then

the derivatives change according to

dỹ

dx̃
“
µ

λ

dy

dx

d2ỹ

dx̃2
“

µ

λ2
d2y

dx2
. . .

dkỹ

dx̃k
“

µ

λk
dky

dxk

This explain the different use of the exponents in Leibniz’ notation.

Derivative as velocity, Newton/physicists’ notation. When the independent variable has
the meaning of “time”, hence is denoted by t P I Ă R, a function t ÞÑ xptq represents a trajectory,
or a time law, the way some observable called x is changing in time. Its time derivative is then
denoted using a “dot”, as

9x :“
dx

dt

and referred to as a velocity v :“ 9x, or “time variation” (newton called it “fluxione”) The second
derivative a :“ :x is also meaningful, and it is called acceleration. Very few (not to say none!)
physical phenomena require the use of higher order time derivatives.

ex: Calcule as derivadas f 1pxq e f2pxq de cada uma das seguintes funções fpxq nos pontos onde
existem.

fpxq “ 2x´ 3 fpxq “ x2 fpxq “ |x| fpxq “

" x
|x| se x ‰ 0

0 se x “ 0

Derivatives of elementary functions. It is clear that the derivative of a constant function
fpxq “ c is f 1pxq “ 0. Moreover, in high school you learn to derive positive integer powers,
pxnq1 “ nxn´1, and the trigonometric functions sin1 “ cos and cos1 “ ´ sin.

ex: Use the binomial formula to prove the above formula for the derivative of powers.

help: With Mathematica R©8 , you may define a function fpxq “ e ´x2 cosp3xq with

f[x_] := Exp[-x^2] Cos[3 x]

and then derive with a “prime”, as

f’[x]

to get

´2e´x
2

x cosp3xq ´ 3e´x
2

sinp3xq

Algebra of derivatives. It is clear that the derivative is linear, namely

pλfq1 “ λf 1 and pf ` gq1 “ f 1 ` g1 (11.7)

whenever f and g are differentiable functions (defined in a common interval) and λ P R is an
arbitrary constant.

The product f ¨ g of two differentiable functions f and g is also differentiable, and its derivative
is given by Leibniz’ rule

pfgq1 “ f 1g ` fg1 (11.8)

http://www.wolfram.com/mathematica/
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Indeed, let y “ fpxq and z “ gpxq. A small variation δx induces variations δy :“ fpx` δxq ´ fpxq
and δz :“ gpx` δxq ´ gpxq. Summing and subtracting y ¨ pz ` δzq to the variation of f ¨ g below,
we get

py ` δyq ¨ pz ` δzq ´ yz

δx
“

py ` δyq ¨ pz ` δzq ´ y ¨ pz ` δzq ` y ¨ pz ` δzq ´ yz

δx

“
δy

δx
¨ pz ` δzq ` y ¨

δz

δx

ÑδxÑ0
dy

dx
¨ z ` y ¨

dz

dx

since δz Ñ 0 (because g is continuous).
The quotient f{g of two differentiable functions f and g is also differentiable where the denom-

inator is gpxq ‰ 0, and its derivative is given by the formula

pf{gq1 “
f 1g ´ fg1

g2
. (11.9)

To see this, we first compute the derivative of 1{gpxq at a point where gpxq ‰ 0. If z “ gpxq and
δz “ gpx` δxq ´ gpxq, then

1{gpx` δxq ´ 1{gpxq

δx
“

1

pz ` δzq ¨ z
¨
z ´ pz ` δzq

δx
ÑδxÑ0 ´

1

z2
dz

dx
.

Finally, we apply Leibniz’ rule to the product fpxq ¨ p1{gpxqq, to get (11.9).

ex: Calcule a derivada f 1pxq de cada uma das seguintes funções fpxq nos pontos onde podem
ser definidas.

fpxq “ 3x fpxq “ x sinpxq fpxq “ 17

fpxq “ x3 ´ 3x` 1 fpxq “
?
x fpxq “ x´1 ´ x5{3

fpxq “
1

x
fpxq “

x´ 1

x3 ` 2
fpxq “

1
?
x

tanpxq “
sinpxq

cospxq
secpxq “

1

cospxq
cosecpxq “

1

sinpxq

ex: Calcule as derivadas P 1p0q, P 2p0q, P3p0q, ..., P pnqp0q, P pn`1qp0q, de um polinómio

P pxq “ a0 ` a1x` a2x
2 ` ...` anx

n .

ex: Estime os seguintes valores, usando a aproximação linear fpx` εq » fpxq ` f 1pxq ¨ ε.

sinp0.01q
?

1.1 cospπ ´ 0.03q
1

1` 0.001

Chain rule. Let g : I Ă R Ñ R and f : J Ă R Ñ R be differentiable functions, with fpIq Ă J ,
so that we may form the composition pf ˝ gq : I Ñ R, the function x ÞÑ fpgpxqq. If both f and g
are differentiable, then f ˝ g also is differentiable, and its derivative is given by the chain rule

pf ˝ gq1pxq “ f 1pgpxqq ¨ g1pxq . (11.10)

Here Leibniz’ notation is particularly meaningful. If y “ gpxq and z “ fpyq “ fpgpxqq, then

dz

dx
“
dz

dy
¨
dy

dx

That is, you may act as if you could divide by “dy”.
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For the proof, we use Leibniz’ notation again. For small δx, we define the corresponding
variations δy “ gpx` δxq ´ gpxq, hence δz “ fpy ` δyq ´ fpyq. By (11.4), there exists a function
epεq, which converges to 0 when εÑ 0, such that

δz “
dz

dy
¨ δy ` epδyq ¨ δy

for sufficiently small δy. Consequently,

δz

δx
“

ˆ

dz

dy
` epδyq

˙

¨
δy

δx
ÑδxÑ0

dz

dy
¨
dy

dx

since δy Ñ 0 when δxÑ 0.

ex: Calcule a derivada f 1pxq de cada uma das seguintes funções fpxq nos pontos onde podem
ser definidas.

fpxq “ cospx2q fpxq “
?

2x´ 1 fpxq “ sin
`?
x
˘

fpxq “ psinpxqq
2

fpxq “ sinpcospx3qq fpxq “
cosp2xq ´ x

?
x

Derivatives of inverse function. Let f : I Ă R Ñ R be one-to-one function onto J “ fpIq,
and let h : J Ñ I be its inverse, so that hpfpxqq “ x for all x P I and fphpyqq “ y for all y P J . If
f is differentiable at x P I and h is continuous at y “ fpxq, then h is differentiable at y if and only
if f 1pxq ‰ 0, and if this is the case, its derivative is

h1pyq “
1

f 1phpyqq
. (11.11)

Indeed, if h is differentiable at y, we may apply the chain rule to hpfpxqq “ x to get h1pyq¨f 1pxq “ 1,
hence (11.11) whenever f 1pxq ‰ 0. Conversely, given a variation δy, let δx “ hpy ` δyq ´ hpyq be
the corresponding variation of x. Since h is continuous at y, δxÑ 0 whenever δy Ñ 0. Therefore,

δx

δy
“

ˆ

δy

δx

˙´1

ÑδxÑ0

ˆ

dy

dx

˙´1

provided f 1pxq ‰ 0.

ex:

• Show that the derivative of x1{n, for x ą 0 and n “ 1, 2, 3, . . . , is 1
nx

1{n´1.

• Calcue as derivadas das seguintes funções nos pontos onde podem ser definidas.

fpxq “ arcsinpxq fpxq “ arccospxq fpxq “ arctanpxq

• Calcule a derivada da função inversa de fpxq “ x` x3 no ponto y “ 0.

ex: Taxas de variação. Determine a taxa de variação

• dA
dr , onde A é a área de uma circunferência e r o seu raio,

• dV
dr , onde V é o volume de uma bola e r o seu raio,

• dV
d` , onde V é o volume de um cubo e ` o seu lado.
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e.g. Growth of a spherical cell. A spherical cell grows absorbing raw material (necessary for
its metabolism) from its surface, hence at a rate αS proportional to the surface S. On the other
hand, the rate of raw material necessary for the metabolism is proportional to the volume V of
the cell, say βV . Therefore, the cell can survive only when βV ď αS, i.e until its surface area
to volume ratio (SA:V) ratio S{V is grater than some lower limit β{α. The SA:V of a sphere of
radius r is 3{r, therefore the limit size of the cell is r » 3α{β.

If the density ρ is assumed constant, then the mass ρV of the cell grows according to ρ 9V “ αS.
If r denotes the radius of the cell, we get ρ 4πr2 9r “ α 4πr2, i.e.

9r “ α{ρ

and therefore the radius increases linearly with time t according to rptq “ rp0q ` pα{ρq ¨ t. Corre-
spondingly, the SA:V ratio decreases as S{V » 3{rptq, until a certain limit 3{r when the incoming
material can no longer support the cell metabolism.

Derivative and growth. A differentiable function fpxq is striclty increasing in intervals where
f 1pxq ą 0, strictly decreasing in intervals where f 1pxq ă 0, and constant in intervals where its
derivative vanishes. Consequently, if c is a local maximum or minimum of a differentiable function
f defined in a neighborhood pc ´ ε, c ` εq of c, then c is a critical point of f , i.e. a point where
f 1pcq “ 0.

ex:

• Esboce os gráficos das seguintes funções, definidas em oportunos domı́nios.

fpxq “ 1´
x2

2
fpxq “ x`

1

x
fpxq “ 1` x`

x2

2

fpxq “
1

px´ 1qpx´ 2q
fpxq “ px´ 1qpx´ 2qpx´ 3q

fpxq “ x´ sinpxq fpxq “ sinpxq ` sinp2xq fpxq “
sinpxq

x

• Mostre que, entre todos os rectângulos de peŕımetro P fixado, o quadrado é o que tem área
maior.

• Mostre que, dados n números a1, a2, ..., an, o valor de x que minimiza a soma dos “erros
quadráticos”

px´ a1q
2
` px´ a2q

2
` ...` px´ anq

2

é a média aritmética

a “
a1 ` a2 ` ...` an

n
.

Mean value theorem and inequality. Let f : ra, bs Ñ R be a continuous function with
fpaq “ fpbq, and assume that f differentiable in pa, bq. By Weierstrass theorem, the function
attains its maximum and minimum values, say M and m, respectively. If both are attained at the
endpoints, then the function is constant and its derivative is everywhere zero at cpa, bq. If, on the
other side, its maximum or its minimum is attained at an internal point c P pa, bq, then this must
be a critical point. Therefore, there always exists a point c P pa, bq where f 1pcq “ 0. This is called
Rolle’s theorem. More generally,

Theorem 11.1 (Mean value theorem). If f : ra, bs Ñ R is a continuous function which is
differentiable in pa, bq, then there is a point c P pa, bq where

fpbq ´ fpaq “ f 1pcq ¨ pb´ aq .

Proof. Apply Rolle’s theorem to the function fpaq ` fpbq´fpaq
b´a x.
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In particular, if f 1pxq “ 0 for all c P pa, bq, then fpbq “ fpaq. Thus, a function with zero
derivative for all points in an interval is constant. More interesting (and physically obvious!) is
that a bound on the derivative implies a bound on the displacement: if |f 1pcq| ď λ for all c P pa, bq,
then we have the inequality

|fpbq ´ fpaq| ď λ ¨ |b´ a| .

ex:

• Mostre que, se fpxq é um polinómio de segundo grau, então a recta que une os pontos pa, fpaqq
e pb, fpbqq é paralela à recta tangente ao gráfico de f no ponto médio a`b

2 .

• Mostre que para todos os x e y

| sinpxq ´ sinpyq| ď |x´ y|

• Mostre que para todos 0 ă y ď x

nyn´1px´ yq ď xn ´ yn ď nxn´1px´ yq
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12 Aproximation

ref: [Ap69, Li06, RHB06]

Interpolation. (see Klein)

Polynomial approximation. The value fpaq is the best constant approximation

fpxq » fpaq

to a continuous function fpxq near the point a, in the sense that the “error” epx´aq :“ fpxq´fpaq
goes to epεq Ñ 0 as ε :“ x´aÑ 0. The derivative f 1paq is the slope of the best linear approximation

fpxq » fpaq ` f 1paqpx´ aq

to a differentiable function fpxq near the point a, since by the very definition of derivative the
“error” epx´ aq :“ fpxq ´ fpaq ´ f 1paqpx´ aq is so small that epεq{εÑ 0 as εÑ 0.

If f has n derivatives at the point a, we may as well look for the polynomial of degree ď n
which best approximate fpxq for small ε “ x´ a, hoping to get better approximations. After all,
the only functions that human beings and machines can compute are polynomials (since we only
can do finite sums and multiplications), and we need means to estimate the other functions which,
we believe, describe Nature.

The key observation is the following: a n-times differentiable function epεq satisfies limεÑ0 epεq{ε
n “

0 iff its value and its first n derivatives vanish at zero, i.e. epkqp0q “ 0 for all k “ 0, 1, . . . , n (this
is not trivial, and is a consequence of the mean value theorem, see [Li06]). If we apply this to the
error rpx´ aq “ fpxq ´ P px´ aq, where P is any polynomial of degree ď n, we see that the error
goes to zero as rpεq{εn ÑεÑ0 0 if and only if P is the Taylor polynomial (of the function f at the
point a)

Pnpx´ aq :“ fpaq ` f 1paq ¨ px´ aq `
f2paq

2
¨ px´ aq2 `

f3paq

6
¨ px´ aq3 ` ¨ ¨ ¨ `

f pnqpaq

n!
¨ px´ aqn .

If, moreover, the derivative f pnq is continuos in the closed interval ra, xs (if a ă x, or rx, as if x ă a)
and fn`1pyq exists for all y P pa, xq, then there is a point c P pa, xq such that the error is

enpεq :“ fpa` εq ´ Pnpεq “
f pn`1qpcq

pn` 1q!
εn`1

i.e.

fpxq “ fpaq ` f 1paqpx´ aq `
f2paq

2
px´ aq2 ` ...`

f pnqpaq

n!
px´ aqn `

f pn`1qpcq

pn` 1q!
px´ aqn`1

This generalizes the mean value theorem.

Integral formula for the error.

e.g. The exponential. We already saw that the exponential is the function defined by the
power series

exppxq :“
8
ÿ

n“0

xn

n!
.

If we limit the sum to finite degree n, we obtain a sequence of polynomial approximations

expx » 1` x`
1

2
x2 `

1

6
x3 ` ¨ ¨ ¨ `

1

n!
xn .

This is what a machine computes when asked to produce ex, once chosen an n so large that the
successive terms give no appreciable difference to the sum.
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Taylor polynomials of the exponential near a “ 0, with degrees n “ 0, 1, 2, 3, 4.

e.g. Trigonometric functions. The Taylor polynomials of the trigonometric functions cos and
sin centered at 0 start with

cospxq » 1´
1

2
x2 `

1

24
x4 ` . . . and sinpxq » x´

1

6
x3 `

1

120
x5 ` . . .

ex:

• Prove as seguintes aproximações, validas para x suficientemente pequeno,

ex » 1` x`
x2

2
` ... logp1` xq » x´

x2

2
` ...

sinpxq » x´
x3

6
` ... cospxq » 1´

1

2
x2 ` ...

• e determine estas outras

1

1´ x
» 1` x` ...

?
1` x » 1`

1

2
x` ...

logp1` x2q » ... sinpπe´xq » ...

• Aproxime e, e estime o erro na sua aproximação, usando os polinómios de Taylor

ex “ 1` x`
x2

2!
` ...`

xn

n!
` rnpxq

(observe que 1 ď ex ď 3 no intervalo x P r0, 1s).

Contraction principle. A contraction of an interval X Ă R is a transformation f : X Ñ X
such that there exists a constant 0 ď λ ă 1 (strictly smaller than one!) such that

|fpxq ´ fpx1q| ď λ ¨ |x´ x1| (12.1)

for all x, x1 P X (this definition extends to a generic metric space pX,distq if we replace the absolute
value of the difference with the distance). For example, a differentiable transformation f : X Ñ X
of a (closed) interval X Ă R such that |f 1pxq| ď λ ă 1 for all x P X is a contraction, since, by the
mean value theorem,

|fpxq ´ fpyq| “ |f 1pcq ¨ px´ yq| ď λ ¨ |x´ y| .

where c is some point between x and y. Observe that a contraction is (uniformly) continuous, since
for any |x´ y| ă δ “ ε{λ we have |fpxq ´ fpyq| ă λ ¨ δ ă ε.

Proposition 12.1. (Contraction principle, or Banach fixed point theorem) A contraction
f : X Ñ X of a closed interval X Ă R (or a complete metric space) has one and only one fixed
point p. Moreover, all trajectories defined recursively by xn`1 “ fpxnq given an arbitrary initial
condition x0 P X converge exponentially fast to the fixed point p.
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Indeed, let x0 P X and let pxnq be its trajectory, so that xn`1 “ fpxnq. If we iterate (12.1),
we see that |xk`1 ´ xk| ď λk ¨ |x1 ´ x0|. Using k times the triangular inequality, and then the
convergence of the geometric series of ratio λ, we see that

|xn`k ´ xn| ď

k´1
ÿ

j“0

|xn`j`1 ´ xn`j | ď |x1 ´ x0| ¨
k´1
ÿ

j“0

λn`j

ď |x1 ´ x0| ¨ λ
n ¨

8
ÿ

j“0

λj ď
λn

1´ λ
¨ |x1 ´ x0| .

Therefore, pxnq is a Cauchy (or fundamental) sequence. The limit p “ limnÑ8 xn exists because
X is a closed interval, and is a fixed point of f because

fppq “ fp lim
nÑ8

xnq “ lim
nÑ8

fpxnq “ lim
nÑ8

xn`1 “ p ,

by the continuity of f . Uniqueness of the fixed point is obvious, since if p and p1 are both fixed
points, then |p´ p1| “ |f ppq ´ f pp1q | ď λ ¨ |p´ p1| with λ ă 1, and therefore |p´ p1| “ 0. On the
other side, iteration of (12.1) implies that |xn ´ p| ď λn ¨ |x0 ´ p|, so that the convergence xn Ñ p
is exponential.

The last assertion suggests therefore a practical method to find, actually approximate, the fixed
point: follow a trajectory!

Estabilidade dos estados estacionários. Seja x um estado estacionário da equação recursiva

xn`1 “ fpxnq

ou seja, um ponto tal que fpxq “ x. Se a transformação fpxq é diferenciável, o pŕıncipio das
contrações permite decidir sobre a estabilidade do estado estacionário.

Se |f 1pxq| ă 1, então o ponto fixo é atrativo. Existe uma vizinhança B “ rx´ ε, x` εs de p tal
que a restrição f |B : B Ñ B é uma contração, e x é o seu único ponto fixo. As trajetórias de todo
o ponto x0 suficientemente próximo de x (ou seja, em B) convergem exponencialmente para x, ou
seja xn Ñ x.

Se |f 1pxq| ą 1, então o ponto fixo é repulsivo: as trajetórias de todo o ponto x0 ‰ x numa
vizinhança suficientemente pequena de x saem da vizinhança em tempo finito.

Se f 1pxq “ 0, o ponto fixo x é dito super-atrativo. Usando o polinómio de Taylor de grau 1 com
resto, vê-se que, se x0 está numa vizinhança suficientemente pequena de x, então a trajetória de
x0 converge para o ponto fixo x e a velocidade de convergência é “quadrática”, ou seja,

|xn`1 ´ x| ď β ¨ |xn ´ x|
2

onde β é uma constante.

ex:

• Estude a natureza dos pontos fixos das seguintes transformações

fpxq “ αx fpxq “ αx3 fpxq “ αx` βx2

ao variar os parâmetros.

• Digite 0.1 na sua máquina de calcular, e pressione repetidamente a tecla “cos”. O que
acontece?

• Estude a natureza do ponto fixo não trivial do modelo loǵıstico

xn`1 “ λxnp1´ xnq

ao variar o parâmetro λ.

• Estude a natureza do ponto fixo no método de Heron para determinar a raiz quadrada de
a ą 0, dado pela iteração

xn`1 “
1

2

ˆ

xn `
a

xn

˙

.
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e.g. Newton-Raphson iterative scheme. Finding
?
a means solving the polynomial equation

z2 ´ a “ 0. What about finding roots of a generic polynomial ppxq P Rrxs ?
Newton’s idea consists in improving an initial guess x0 using the root of the linear approximation

ppxq » ppx0q`p
1px0qpx´x0q, which is x1 “ x0´ppx0q{p

1px0q. This amounts to the iterative scheme

xn`1 “ xn ´
ppxnq

p1pxnq
. (12.2)

If the trajectory converges, i.e. xn Ñ x8, and if p1px8q ‰ 0, then clearly the limit x8 is a root
of p. On the other hand, if c is a root where p1pcq ‰ 0, then c is a super-attractive fixed point of
the map x ÞÑ fpxq;“ x´ ppxq{p1pxq. Therefore, an initial guess x0 sufficiently near c will produce
a trajectory pxnq which converges to c (quadratically fast, i.e. such that |xn`1 ´ c| ď β ¨ |xn ´ c|

2

for some constant β ą 0).

Search for a root of x3 ´ 2x´ 5 using Newton iterations.

help: Mathematica R©8 search for a root of an equation like x7 ´ 13x5 ` 9 “ 0 (or even more
complicated equations, involving transcendental functions!) using the Newton iterative scheme
starting with the initial guess x0 “ 10 with the instruction

FindRoot [x^7 - 13 x^5 + 9 == 0, {x, 10}]

{x -> 3.6035}

ex: Exerćıcios.

• Use Newton method to solve Newton’s problem, i.e. find the roots of x3 ´ 2x´ 5.

• Show that Newton method to solve x2 ´ a “ 0 corresponds to babylonian-Heron iterative
scheme.

• Use o método de Newton para aproximar a “razão”, a raiz positiva de x2 ´ x ´ 1. Then,
compare with the babylonian-Heron method (i.e., estimate

?
5, then sum 1 and divide by 2).

• Write and implement Newton method to find n-th roots, i.e. to solve xn ´ a “ 0.

• Utilize o método de Newton para estimar raizes de

z2 ` 1` z z3 ´ z ´ 1 z5 ` z ` 1 z3 ´ 2z ´ 5

http://www.wolfram.com/mathematica/
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e.g. Newton’s fractals. Em 1879 Cayley observou que o método pode ser utilizado também
para aproximar ráızes complexas de polinómios ppzq P Crzs. A receita consiste em iterar a função
racional

fpzq “ z ´
ppzq

p1pzq

O problema é decidir quando, ou seja para quais valores da conjetura inicial z0, a sucessão pznq,
com zn`1 “ fpznq, converge para uma raiz de ppzq. As bacias de atração das diferentes raizes
desenham padrões surprendentes no plano complexo

Basins of attraction of the three roots of 2z3 ´ 2z ` 2 in the complex plane.

(from http://en.wikipedia.org/wiki/Newton_fractal).

Iteração de funções racionais na esfera de Riemann. É natural considerar iterações de
funções racionais fpzq P Cpzq arbitrárias (os endomorfismos da esfera de Riemann C “ CY t8u),
e querer descrever as trajecórias definidas pela equação recursiva zn`1 “ fpznq.

O exemplo mais estudado consiste nas iterações da famı́lia de polinómios quadráticos

fpzq “ z2 ` c

ao variar o parâmetro c P C. A sua beleza foi intuida por Gaston Julia28 e Pierre Fatou29 no
prinćıpio do século XX, desvendada com o aux́ılio dos computadores modernos por Benôıt Madel-
brot, e estudada por uma multidão de excelentes matemáticos (como Adrian Douady, Dennis
Sullivan, John Milnor, Misha Lyubich, Jean-Christophe Yoccoz, Curtis McMullen, . . . ) a partir
dos anos ‘80 do século passado.

Nice pictures. Em baixo, está uma imagem que nos tempos de Julia e Fatou apenas era posśıvel
ver com uns olhos matemáticos bem afinados (um applet Java que produz a figura está no meu
bestiario). O laço de corações vermelhos à esquerda, chamado Mandelbrot set, consiste nos valores
do parâmetro complexo c tais que a órbita do ponto cŕıtico z0 “ 0 permanece limitada. A região
cinzenta à direita, chamada filled-in Julia set, consiste no conjunto das condições iniciais z0 cuja
órbita é limitada. As outras côres (que permitem ver os conjuntos “inviśıveis” de Cantor) são
escolhidas dependendo da velocidade com que as trajectórias zn fogem para o infinito.

28G. Julia, Mémoire sur l’iteration des fonctions rationnelles, Journal de Mathématiques Pures et Appliquées, 8
(1918), 47-245.

29P. Fatou, Sur les substitutions rationnelles, Comptes Rendus de l’Académie des Sciences de Paris, 164 (1917)
806-808, and 165 (1917), 992-995.

http://en.wikipedia.org/wiki/Newton_fractal
http://w3.math.uminho.pt/~scosentino/salbestiario.html
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Mandelbrot set (left) and Julia set of the polynomial z2 ` c, with c » ´0.7645´ i ¨ 0.1595 (right).

(from http://w3.math.uminho.pt/~scosentino/bestiario/julia.html)

http://w3.math.uminho.pt/~scosentino/bestiario/julia.html
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13 Area and integration

The problem posed by Newton equation. If you derive twice a trajectory t ÞÑ qptq P R3,
you get the velocity vptq :“ 9qptq and then then acceleration aptq :“ :qptq. Physicists know the
acceleration of a particle in an inertial frame, it is proportional to the force, according to Newton
equation

m:q “ F pq, 9q, tq .

Therefore, they have the problem to deduce the trajectory from its second derivative.

Work. The work done by a constant force field F to move a particle from the position q0 to the
position q1, hence a distance δq “ q1´ q0, is W “ F ¨ δq. If we make a path through the points q0,
q1, . . . , qn, with increments δqk “ qk ´ qk´1, and assume that the force is piece-wise constant, we
are led to an expression

W “ F pq1q ¨ δq1 ` F pq2q ¨ δq2 ` ¨ ¨ ¨ ` F pqnq ¨ δqn .

This is a sum of signed areas (i.e. positive or negative depending on the sign of the force) of
rectangles with bases δqk and heights F pqkq. If we plot the graph of F pqq, this is the signed area of
the region bounded by such a graph, the q-axis, and the vertical lines q0 and qn. For a generic force
F pqq, say continuous, it is natural to call work such an area, and pose the problem to compute it.

e.g. Area of a parabolic segment according to Eudoxo and Arquimedes. O método
de exaustão, utilizado por Eudoxo e Arquimedes, para calcular a área de uma figura geométrica
consiste em aproximar a região com reuniões de figuras simples, como rectângulos e triângulos.
Por exemplo, a área do “segmento parabólico”

A “ tpx, yq P R2 t.q. 0 ď x ď 1 e 0 ď y ď x2u,

pode ser aproximada dividindo o intervalo r0, 1s em n subintervalos de comprimento 1{n, e obser-
vando que áreapAq é superior à soma snpAq das áreas dos rectângulos de bases r kn ,

k`1
n s e alturas

pk{nq2, e inferior à soma SnpAq das áreas dos rectângulos de bases r kn ,
k`1
n s e alturas ppk` 1q{nq2,

onde k “ 0, 1, 2, ..., n´ 1. Ou seja,

n´1
ÿ

k“0

k2

n3
“ snpAq ď áreapAq ď SnpAq “

n
ÿ

k“1

k2

n3

• Mostre que a diferença SnpAq ´ snpAq Ñ 0 quando nÑ8.

• Use a identidade

12 ` 22 ` 32 ` ...` n2 “
n3

3
`
n2

2
`
n

6

para mostrar que, quando nÑ8, as aproximações snpAq e SnpAq convergem para 1{3.

Riemann integral. Let f : ra, bs Ñ R be a bounded function. We want to define the signed
area between the graph of y “ fpxq, the x-axis (i.e. y “ 0), and the vertical lines x “ a and x “ b.
For example, if fpxq ě 0, this is the area
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a b

area
`

tpx, yq P R2 t.q. a ď x ď b e 0 ď y ď fpxqu
˘

,

The strategy is to approximate the area from below and from above, namely fill and cover the
region by unions of rectangles with smaller and smaller bases.

A partition of the interval ra, bs is a finite collection P Ă ra, bs of points (that we may order
according to their natural order) a “ x0 ă x1 ă x2 ă ¨ ¨ ¨ ă xk ă xk`1 ă ¨ ¨ ¨ ă xn “ b dividing the
interval in a finite number (in this case n) of subintervals rxk, xk`1s of lengths δxk :“ xk`1 ´ xk.
Given a partition P , we denote by mk and Mk the minimum and the maximum of f in the
subinterval rxk, xk`1s, respectively, hence define the lower sum and the upper sum of f w.r.t. the
partition P as

spf ;P q :“
n´1
ÿ

k“0

mk ¨ δxk and Spf ;P q :“
n´1
ÿ

k“0

Mk ¨ δxk ,

respectively. It is clear that the signed area (as the work, if f represents a force) we are trying
to compute should be somewhere between spf ;P q ď “area” ď Spf ;P q. It is also clear that if we
“refine” the partition P , i.e. if we define a partition P 1 containing more points than P (hence
P Ă P 1 as subsets of ra, bs), then spf ;P q ď spf ;P 1q and Spf ;P 1q ď Spf ;P q. In particular, we
always have the inequality spf ;P q ď Spf ;Qq for all partitions P and Q (just consider the common
refinement P YQ and use the previous observations).

We say that the bounded function f is (Riemann) integrable in the interval ra, bs if there exists
a unique number A such that spf ;P q ď A ď Spf ;Qq for all partitions P and Q. Equivalently,
if supP spf ;P q “ A “ infP Spf ;P q (if you know what sup and inf are). Equivalently, if for any
precision ε ą 0 one may find two partitions P and Q such that Spf ;Qq ´ spf ;P q ă ε, hence a
partition R (for example R “ P Y Q) such that Spf ;Rq ´ spf ;Rq ă ε. If this happens, we call
such number “integral of f in ra, bs”, and denote it as

A :“

ż b

a

fpxq dx .

About the notation. The notation
şb

a
fpxq dx reminds you that the integral should be thought

as a sort of limit of the finite sums
ř

k fpxkq¨δxk as the partition gets finer, i.e. as the maximal |δxk|
goes to zero. Actually, the notation, to be compared with Leibniz notation dy{dx for derivatives, is
useful to state and remind some recipes to compute integrals, as will appear clear in the following.

Also, the variable x inside the integral may be replaced by any other symbol, so that you

can also write
şb

a
fptq dt, or

şb

a
fp♣q d♣, or

şb

a
f pgq dg, . . . or whatever you want. The only

forbidden symbols are those that you already used somewhere else: so, for example, you should

avoid to write
şb

a
fpbq db.

Integrability of continuous and monotone functions. Which functions are Riemann inte-
grable? The final answer is somehow technical. Here, you may be satisfied with knowing that
continuous (or also piece-wise continuous) or monotone functions are.

Theorem 13.1. Any continuos function fpxq in a closed and bounded interval ra, bs is integrable.

Proof. Indeed, a continuous function in a closed and bounded (i.e. compact) interval is uniformly
continuous. In particular, for any ε ą 0 there exists a δ ą 0 such that |x ´ x1| ă δ implies
|fpxq ´ fpx1q| ď ε{pb´ aq. Consequently, if P is a partition of ra, bs into n subintervals of lengths
|xk`1 ´ xk| ă δ for all k, we see that Spf, P q ´ spf, P q ď n ¨ δ ¨ ε{pb´ aq ď ε.
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It is clear that also a function f : ra, bs Ñ R with a finite number of discontinuities and finite
limits on both sides is integrable (just repeating the argument in any closed subinterval where it
is continuous).

Theorem 13.2. Any monotone function fpxq in a closed and bounded interval ra, bs is integrable.

Proof. Assume that fpxq is non-decreasing (otherwise take ´fpxq), and take any ε ą 0. If P
is a partition of ra, bs into n subintervals of lengths |xk`1 ´ xk| ď ε{pfpbq ´ fpaqq, then, since
mk “ fpxkq and Mk “ fpxk`1q, we see that

Spf, P q ´ spf, P q ď
ε

fpbq ´ fpaq

n´1
ÿ

k“0

pfpxk`1q ´ fpxkqq ď ε ,

because the above sum is telescopic and equal to fpbq ´ fpaq.

Elementary properties. The following elementary properties of the integral are obvious for
integrals of constant functions, namely for areas of rectangles. But the Riemann integral is defined
using rectangles, so it is not surprising that they continue to hold for all integrable functions. You
may want to draw pictures to understand their meanings and to convince yourself of their validity.

It is clear that the integral is linear, namely

ż b

a

pfpxq ` gpxqq dx “

ż b

a

fpxq dx`

ż b

a

gpxq dx (13.1)

and
ż b

a

λ ¨ fpxq dx “ λ ¨

ż b

a

fpxq dx . (13.2)

for all integrable function fpxq and gpxq and all constants λ P R. It is clear that

ż b

a

fpxq dx “

ż c

a

fpxq dx`

ż b

c

fpxq dx , (13.3)

whenever a ă c ă b. If we define
ż a

a

fpxq dx :“ 0 ,

and
ż a

b

fpxq dx :“ ´

ż b

a

fpxq dx ,

then formula (13.3) holds for all a, b, c, independently of their order. The integral, being a signed
area, behaves well under translations and dilatations of the independent variable, namely:

ż b

a

fpxq dx “

ż b`c

a`c

fpx´ cq dx (13.4)

for all c P R, and
ż λb

λa

f px{λq dx “ λ

ż b

a

fpxq dx (13.5)

for all λ ą 0. The integral is monotone:

fpxq ď gpxq @x P ra, bs ñ

ż b

a

fpxq dx ď

ż b

a

gpxq dx . (13.6)

In particular,
ż b

a

fpxq dx ď

ż b

a

|fpxq| dx . (13.7)
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Finally, it can be (crudely) estimated from below and from above by the signed areas of two
rectangles (the one which is contained and the one which contains the figure we are computing the
area of) according to

m ď fpxq ďM @x P ra, bs ñ m ¨ pb´ aq ď

ż b

a

fpxqdx ďM ¨ pb´ aq . (13.8)

An interesting consequence is the

Theorem 13.3 (Mean value theorem). If f : ra, bs Ñ R is a continuous function, then there is a
point c P ra, bs such that

ż b

a

fpxq dx “ fpcq ¨ pb´ aq .

Indeed, let m and M be the minimum and maximum of fpxq in the interval ra, bs, respectively.

From (13.8), we see that there exists some value m ď d ďM such that
şb

a
fpxq dx “ d ¨ pb´ aq. By

continuity (i.e. Bolzano theorem 9.1), there exists a point c P ra, bs where fpcq “ d.
Observe that the value

fpcq “
1

b´ a
¨

ż b

a

fpxq dx

must be thought as an average of the values fpxq for a ď x ď b (the signed height of a rectangle

with base b´ a and area
şb

a
fpxq dx).

ex: Compute the following integrals drawing a picture and using the elementary formulas for
areas.

ż 1

0

3dx

ż 2

´2

7 dx

ż 10

1

x dx

ż 3

´2

p´2xq dx

ż 2

´2

|x| dx

ż 3

0

p5x´ 2q dx

ż 33

´33

p11´ xq dx

ż n`1

0

rxs dx 30

ż x

6

7t dt

ż x2

x

p1´ tq dt

Derivative of an integral. Here is Newton’s and Leibniz’ discovery:

Theorem 13.4 (fundamental theorem of calculus). Let fpxq be a continuous function defined in
some interval I Ă R. Given a point a P I, define the function F pxq as the integral

F pxq :“

ż x

a

fptq dt ,

for x P I. Then F pxq is differentiable, and its derivative is F 1pxq “ fpxq, i.e

d

dx

ˆ
ż x

a

fptq dt

˙

“ fpxq .

Proof. Indeed, the difference F px` δq ´ F pxq is equal to the integral
şx`δ

x
fptq dt. Therefore,

F px` δq ´ F pxq

δ
´ fpxq “

1

δ

ż x`δ

x

pfptq ´ fpxqq dt . (13.9)

If f is continuous at the point x (just at the point x!), for any ε ą 0 there exists δ ą 0 such that
|t´ x| ă δ implies |fptq ´ fpxq| ă ε. Therefore, for such small δ ą 0, the r.h.s. of (13.9) above is
bounded by 1

δ ¨ ε ¨ δ “ ε. Consequently, pF px` δq ´ F pxqq{δ Ñ fpxq when δ Ñ 0.

30rxs denotes the “integer part of x”, i.e. the unique integer n P Z such that n ď x ă n` 1.
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Logarithm and exponential. The logarithm is the function log : R` Ñ R defined by the
integral

logpxq :“

ż x

1

dt

t
.

By the fundamental theorem of calculus 13.4, the derivative is

log1pxq “
1

x

so that the logarithm is strictly increasing. It is clear that logp1q “ 0. Moreover, for any x, y ą 0

ż xy

1

dt

t
“

ż x

1

dt

t
`

ż xy

x

dt

t
“

ż x

1

dt

t
`

ż y

1

ds

s
,

(using (13.5) in the second integral above), therefore

logpxyq “ logpxq ` logpyq . (13.10)

Also, for any x ą 0
ż 1{x

1

dt

t
“

ż 1

x

ds

s
“ ´

ż x

1

ds

s

(using (13.5)), therefore
logp1{xq “ ´ logpxq . (13.11)

In particular, logpxq Ñ 8 when xÑ8, and logpxq Ñ ´8 when xÑ 0. Thus, logpR`q “ R.
The exponential is the inverse function of the logarithm, the function exp : RÑ R` such that

expplog xq “ x for all x P R` and logpexppyqq “ y for all y P R. In particular, expp0q “ 1. The
value exppxq is also denoted by ex, where e “ expp1q, hence logpeq “ 1. The derivative of the
exponential is

exp1pxq “ exppxq .

From (13.10) we get
exppx` yq “ exppxq exppyq (13.12)

for all x, y P R, and from (13.11) we get

expp´xq “ 1{ exppxq (13.13)

for all x P R.

Graphs of the logarithm (blue) and the exponential (red).

Primitives and integration. A differentiable function F pxq is called a primitive (“a” primitive,
and not “the” primitive!) of the continuous function fpxq if

F 1pxq “ fpxq

for any x in a common interval of definition. Leibniz’ notation for a primitive of fpxq is
ş

fpxq dx.
Thus, for example, logpxq is a primitive of 1{x, and ex is a primitive of ex itself.
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We already know a primitive of a continuous function fpxq, this is Gpxq “
şx

a
fptq dt, according

to theorem 13.4. If F pxq is any other primitive of the same function fpxq, then the difference
F pxq ´Gpxq has zero derivatives, hence is constant by the mean value theorem. Therefore, there
is some constant c P R such that F pxq “ Gpxq ` c for any x (in some domain). In particular, if we
take x “ a and then x “ b, we see that F paq “ c and F pbq “ Gpbq` c, so that Gpbq “ F pbq´F paq.
Therefore, we may state the following recipe to compute integrals, known as Barrow formula:

Theorem 13.5 (Barrow). If F pxq is any primitive of fpxq, then
ż b

a

fpxq dx “ rF pxqs
b
a :“ F pbq ´ F paq . (13.14)

Thus, to any derivative that you know there corresponds an integral that you can compute.

ex: Compute the following primitives.
ż

dx

ż

x2dx

ż

1

x3
dx

ż

?
2x´ 1dx

ż

px2 ´ 2x` 5qdx

ż

sinpθqdθ

ż

`

cospπxq ´ 2x3
˘

dx

ż

dx
?
x

ż

dθ

cos2pθq

ż

dx

1` x2

ż

dx
?

1´ x2

ex: Compute the following integrals.
ż 3

0

px´ 1qdx

ż 1

´1

p1´ |x|qdx

ż 10

0

?
xdx

ż π

´π

cospxqdx

ż 2

´3

?
x2dx

ż π{2

´π

sinp2xqdx

ż 2

1

1

x2
dx

ż 5

3

´

x1{3 ´ x1{5
¯

dx

ż 5

´5

`

1` 399x´ x2
˘

dx

ż 2π

0

| sinpxq|dx

ż 1

´1

p33´ 11xq
66
dx

ż 3

2

dx

x

ż log 2

log 1

exdx

ż

dx

x´ 1

ż 2

1

ex´1dx

ż

2e3xdx

ż 7

0

e´xdx

ż

1

xp1´ xq
dx

ex: Compute the derivative of

F pxq “

ż x

0

dt

1` t2
F pxq “

ż x2

0

sinptqdt F pxq “

ż x3

2x

pt´ t2qdt

ex: Compute the area of the planar region bounded by the curves

y “ x2 e y “ x3 , com 0 ď x ď 1

y “ sinpxq e y “ ´ sinpxq , com 0 ď x ď π

y “ x1{3 e y “ x1{2 , com 0 ď x ď 1

e.g. Potential energy and work. Let fpxq be a continuous force field, defined in an interval
of the real line. Any function V pxq such that V 1pxq “ ´fpxq (i.e. minus a primitive of fpxq) is
called potential energy. Theorem 13.5 says that the work done when displacing a particle from a
to b is

W paÑ bq “

ż b

a

fpxq dx “ V paq ´ V pbq .

thus equal to the difference between the potential energies of the initial and the final points.
Observe that in dimension one all (continuous) forces are conservative! Indeed, any ´

şx

a
fptq dt is

a potential.
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Substitutions. Let F pxq be a primitive of the continuous function f : I Ñ R. If g : I Ñ R is a
continuous function, then by (13.14)

ż gpbq

gpaq

fpyq dy “ F pgpbqq ´ F pgpaqq .

If, moreover, g is differentiable, by the chain rule F pgpxqq is a primitive of fpgpxqq g1pxq, hence by
(13.14) again, the r.h.s. above is also equal to

F pgpbqq ´ F pgpaqq “

ż b

a

fpgpxqq g1pxq dx .

Therefore, we may state the following recipe to transform one integral into another, hopefully
simpler, integral: the “substitution” y “ gpxq, with dy “ g1pxqdx (this means dy{dx “ g1pxq),
transforms fpgpxqq g1pxq dx into fpyq dy, so that

ż b

a

fpgpxqq g1pxq dx “

ż gpbq

gpaq

fpyq dy (13.15)

e.g. For example, the substitution y “ x2, with dy “ 2xdx, sends

ż b

a

xex
2

dx “
1

2

ż b2

a2
ey dy “

eb
2

´ ea
2

2

ex: Compute

ż 1

0

xex
2

dx

ż

cosplog xq

x
dx

ż

cospθq
a

5` 2 sinpθq
dθ

ż

tanpθqdθ

ż

3x2 cospx3qdx

ż 2π

π

sinp
?
xq

?
x

dx

ż 1{2

´1{2

x
?

1´ x2
dx

ż

cospxqesinpxqdx

ż

x

x2 ´ 1
dx

ż log 2

log 1

ex
?

1` ex
dx

ż

sinp
?
xq

?
x

dx

Integration by parts. Let f and g be two differentiable functions. The derivative of the product
fg is pfgq1 “ f 1g ` fg1. Therefore, by (13.14),

ż b

a

fpxqg1pxqdx “ rfpxqgpxqs
b
a ´

ż b

a

f 1pxqgpxqdx . (13.16)

This is useful when the integral on the left seems difficult, but the one on the right is simple.

e.g. For example, from px sinxq1 “ sinx` x cosx, we get

ż

x cospxq dx “ x sinx´

ż

sinpxq dx “ x sinpxq ` cospxq .

ex: Calcule
ż 1

0

xe´x dx

ż

sinplogpxqq dx

ż e3

1

logpxq dx

ż

x sinpxq dx

ż

x2 sinpxq dx

ż

ex sinpxq dx
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ex: Compute

ż 1

0

xex
2

dx

ż

cosplog xq

x
dx

ż

cospθq
a

5` 2 sinpθq
dθ

ż

tanpθqdθ

ż

cospxqesinpxqdx

ż

x

x2 ´ 1
dx

ż log 2

log 1

ex
?

1` ex
dx

help: Mathematica R©8 computes primitives as

Integrate[1/ Sin[2 x], x]

-(1/2) Log[Cos[x]] + 1/2 Log[Sin[x]]

or (definite) integrals as

Integrate[x^2 - Sin[x], {x, 0, 3}]

8 + Cos[3]

The problem of computing integrals. Unlike computing derivatives, computing integrals is
not a mechanical process. It rather resembles the job of Mr. Poirot, consisting in finding and
analyzing clues that will eventually show (one of) the right path to the solution. It may also
happens that no known method or primitive comes into ones mind, and indeed that the primitive
of a given function cannot be expressed in terms of presently known functions. When this happens,
the solution for physicists and engineers is to approximate the integral with some computational
device (and many methods and techniques are available). Then, we may also give a name to the
primitive (as we have done for the primitive of 1{x, the “logarithm”), if it is recurrent and we
judge it useful.

e.g. Velocity/acceleration + initial conditions ñ time law) If we know the velocity
vptq “ 9qptq of a particle (moving in one dimension) and its initial condition qp0q, we may find its
trajectory as

qptq “ qp0q `

ż t

0

vpsq ds .

If we know the acceleration aptq “ 9vptq and the initial velocity vp0q, we may integrate once to get

vptq “ vp0q `

ż t

0

apsq ds ,

and then integrate once again to get the trajectory qptq as above.

e.g. Work of a perfect gas. The work done by a perfect gas expanding from an initial volume
V0 to a final volume V1 is given by the integral of the pressure ppV q

W “

ż V1

V0

ppV q dV .

If the pressure is mantained constant, this is simply W “ p ¨ pV1 ´ V0q. If the expansion occurs at
constant temperature T , we get from the equation of state pV “ nRT (here n is the number of
moles, R » 8.314ˆ 107 J/K mol, and T the absolute temperature)

W “ nRT

ż V1

V0

dV

V
“ nRT logpV1{V0q .

http://www.wolfram.com/mathematica/
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Improper integrals. It is useful to integrate a function in an infinite domain like ra,8q, the
definition being

ż 8

a

fpxq dx :“ lim
KÑ8

ż K

a

fpxq dx ,

or in a domain pa, bs bounded by a point a where the function is not defined, the definition being

ż b

a`

fpxq dx :“ lim
εŒ0

ż b

a`ε

fpxq dx .

These limits are called improper integrals.

e.g. Gaussian and error function. An important function in many areas of mathematics and
applied sciences is the Gaussian gpxq :“ e´x

2

(and its variations, obtained by a linear change of
coordinates, or multidimensional ones). One knows that the improper integral

ż 8

´8

e´x
2

dx “
?
π

(we’ll compute it later), thus 1?
π
ex

2

is a probability distribution, indeed a most fundamental one.

A primitive of the Gaussian cannot be computed in terms of elementary functions (polynomials,
trigonometric, exponential, . . . ), hence deserves a name. It is called error function, and usually
normalized according to

erfpxq :“
2
?
π

ż x

0

et
2

dt .

Thus, erfpxq Ñ ˘1 as xÑ ˘8.
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Primitives

(function) (“a” primitive)

fpxq “ F 1pxq
ş

fpxq dx “ F pxq

(por substituição) fpypxqq y1pxq
ş

fpypxqqy1pxq dx “
ş

fpyq dy

(por partes) fpxqg1pxq
ş

fpxqg1pxq dx “ fpxqgpxq ´
ş

f 1pxqgpxq dx

(constantes) λ
ş

λ dx “ λx

(potências, α ‰ ´1) xα
ş

xα dx “ 1
α`1x

α`1

(logaritmo) 1{x
ş

dx
x “ log |x|

(exponencial) ex
ş

ex dx “ ex

(seno) sinpxq
ş

sinpxq dx “ ´ cospxq

(coseno) cospxq
ş

cospxq dx “ sinpxq

(tangente) 1
cos2pxq

ş

dx
cos2pxq “ tanpxq

(cotangente) 1
sin2pxq

ş

dx
sin2pxq

“ ´cotanpxq

(arco cujo seno) 1?
1´x2

ş

dx?
1´x2 “ arcsinpxq

(arco cuja tangente) 1
1`x2

ş

dx
1`x2 “ arctanpxq

(exponencial ˆ seno) eαx sinpβxq
ş

eαx sinpβxq dx “ eαxpα sinpβxq´β cospβxqq
α2`β2

(exponencial ˆ coseno) eαx cospβxq
ş

eαx cospβxq dx “ eαxpα cospβxq`β sinpβxqq
α2`β2

(coseno ˆ coseno, n2 ‰ m2) cospnxq cospmxq
ş

cospnxq cospmxq dx “ sinppn`mqxq
2pn`mq `

sinppn´mqxq
2pn´mq

(seno ˆ seno, n2 ‰ m2) sinpnxq sinpmxq
ş

sinpnxq sinpmxq dx “ ´ sinppn`mqxq
2pn`mq ´

sinppn´mqxq
2pn´mq

(seno ˆ coseno, n2 ‰ m2) sinpnxq cospmxq
ş

sinpnxq cospmxq dx “ ´ cosppn`mqxq
2pn`mq ´

cosppn´mqxq
2pn´mq

(x ˆ coseno, n ‰ 0) x cospnxq
ş

x cospnxq dx “ cospnxq
n2 `

x sinpnxq
n

(x ˆ seno, n ‰ 0) x sinpnxq
ş

x sinpnxq dx “ sinpnxq
n2 ´

x cospnxq
n

(xk ˆ coseno, n ‰ 0) xk cospnxq
ş

xk cospnxq dx “ xk sinpnxq
n ´ k

n

ş

xk´1 sinpnxqdx

(xk ˆ seno, n ‰ 0) xk sinpnxq
ş

xk sinpnxq dx “ ´xk cospnxq
n ` k

n

ş

xk´1 cospnxqdx
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14 Ordinary differential equations

e.g. Free particle. The trajectory t ÞÑ qptq P R3 of a free particle of mass m in an inertial
frame is modeled by the Newton equation

d

dt
pmvq “ 0 , i.e., if m is constant, ma “ 0 ,

where vptq :“ 9qptq denotes the velocity and aptq :“ :qptq denotes the acceleration of the particle. In
particular, the linear momentum p :“ mv is a constant of the motion (i.e. d

dtp “ 0), in accordance
with Galileo’s principle of inertia or Newton’s first law31.

The solutions of Newton equation are the affine lines

qptq “ s` vt ,

where s, v P R3 are arbitrary vectors, the initial position and the initial velocity.
Thus, for example, the trajectory of a free particle starting at qp0q “ p3, 2, 1q with velocity

9qp0q “ p1, 2, 3q is qptq “ p3, 2, 1q ` p1, 2, 3qt.

e.g. Free fall near the Earth surface. The Newton equation

m:z » ´G
mMC

R2
C

models the free fall of a particle of mass m near the Earth surface. Here zptq is the height of the
particle at time t (measured from some reference height, e.g. the sea level), G » 6.67 m3 kg´1 s´2

is the gravitational constant, MC and RC are the mass and radius of the Earth, respectively. We
are assuming that z ! RC. Since inertial and gravitational masses are (experimentally) equal, the
mass m cancels out and we get the equation

:z “ g ,

where g :“ GMC{R
2
C » 9.8 m s´2 is the the gravitational acceleration near the Earth surface,

independent on the falling object!
A function with constant second derivative equal to ´g is ´gt2{2. But it is not the unique

solution. We may add to it any function with zero second derivative, that is any constant s and
any linear function vt. This means that also any

zptq “ s` vt´
1

2
gt2

is a solution of our Newton equation, for any s and any v. The first arbitrary constant s is the
initial height zp0q (and this physically corresponds to the homogeneity of space: Newtonian physics
is independent on the place where the laboratory is placed). The second arbitrary constant v is the
initial velocity 9zp0q (and this physically corresponds to Galilean invariance: we cannot distinguish
between two inertial laboratories moving at constant speed one from each other).

The moral is that the Newton equation alone does not have a “unique” solution. It has a whole
“family of solutions”, depending on two parameters s and v. On the other side, once we fix the
initial position zp0q and the initial velocity 9zp0q, the solution turns out to be unique (we’ll prove
it soon! meanwhile, you may try to prove that the difference of any two solutions with the same
initial conditions is constant and equal to zero). In other words, once known the initial “state”
of the particle, i.e. its position and its velocity, the Newton equation uniquely determines the
“future” and “past” history of the particle.

e.g. A differential equation for the exponential function. Consider the first order ODE

9x “ x

31 “Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus
impressis cogitur statum illum mutare” [Isaac Newton, Philosophiae Naturalis Principia Mathematica, 1687.]
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where 9x denotes the derivative of xptq w.r.t. the real variable t.
An obvious solution is xptq “ 0. Besides, computation shows that the exponential function et

satisfies the equation. Indeed, the (natural) exponential is defined by the power series

expptq :“
ÿ

ně0

tn

n!
“ 1` t`

t2

2
`
t3

6
` . . .

(remember that 0! “ 1), which converges uniformly in any bounded interval. You may check,
deriving the power series term by term, that exp1 “ exp.

But we can multiply it by any constant b and still get a solution, hence any function xptq “ bet

satisfies the above identity. If we set t “ 0, we notice that b is the value of xp0q.
We claim that xptq “ x0e

t is the “unique” solution of the differential equation 9x “ x with
initial data xp0q “ x0. Indeed, let yptq be any other solution. Since the exponential is never zero,
we can divide by et and define the function hptq “ yptqe´t. Deriving we get

9h “ p 9y ´ yq e´t .

But y solves the equation, hence the first derivative of h is everywhere zero. By the mean value
theorem h is a constant function, and, since yp0q “ x0 too, its value at the origin is hp0q “
yp0qe´0 “ x0. This implies that yptq is indeed equal to xptq.

Equações diferenciais ordinárias. Uma equação diferencial ordinária (EDO) de primeira or-
dem (resolúvel para a derivada) é uma lei

9x “ vpt, xq

para a trajectória t ÞÑ xptq P R de um sistema dinâmico, onde 9x “ dx
dt denota a derivada do

observável x em ordem ao tempo t, e vpt, xq é um campo de direções dado (ou seja, uma recta
com declive vpt, xq para cada ponto pt, xq). Uma solução da EDO é uma função t ÞÑ xptq tal que
9xptq “ vpt, xptqq para cada tempo t num certo intervalo, ou seja, uma função cujo gráfico é tangente
ao campo de direções em cada ponto pt, xptqq do gráfico. Se o campo vpt, xq é suficientemente regular
(por exemplo, diferenciável), para cada ponto pt0, x0q passa uma única solução com condição inicial
xpt0q “ x0.

Slope fields and some solutions of 9x “ sinptq ´ x and of 9x “ xp1´ xq.

ex: A função xptq “ t3 é solução da equação diferencial t 9x´ 3x “ 0 ? E a função xptq “ 0 ?

Simple ODEs. The simplest case occurs when the velocity field v does not depend on the phase
space variable x, so the equation is

9x “ vptq ,

where vptq is some given function of time. This just says that x is a primitive of v, and the
fundamental theorem of calculus (i.e. Leibniz and/or Newton’s discovery) tells us how to compute
such a primitive: just integrate the function v from some initial time t0 up to a final time t.
Indeed, provided v is a continuous function, the derivative of

şt

t0
vpsqds at the point t is vptq. This
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explains the current use of the expression “integrate” a differential equation instead of “solving” a
differential equation, as well as the meaning of Newton’s quoted anagram.

Primitives are not unique, but are defined modulo an additive constant. This arbitrary constant
can be matched with the initial condition, so that the solution of 9x “ vptq with initial condition
xpt0q “ x0 is

xptq “ x0 `

ż t

t0

vpsqds .

Here you may observe that this class of ODEs have “symmetries”. The line field does not
depend on x, hence slopes of solutions are the same along horizontal lines (t “ constant) in the
extended phase space. There follows that any translate ϕptq`c of a solution ϕptq is still a solution.
This is but a geometrical interpretation of the arbitrary constant in the primitive of v.

ex: Newtonian motion in a time dependent force field. The one-dimensional motion of
a particle of mass m subject to a time-dependent force F ptq is modeled by the Newton equation

m:x “ F ptq .

Call v “ 9x the velocity of the particle, and derive the first order ODE satisfied by the velocity
v. Solve the equation for the velocity, given a force F ptq “ F0 sin pγtq and an initial condition
vp0q “ v0. Use the above solution vptq to find the trajectory xptq of the particle, given an initial
position xp0q “ x0.

ex: Rockets. Se um foguetão (no espaço vazio, sem forças gravitacionais!) expulsa combust́ıvel
a uma velocidade relativa constante ´V e a uma taxa constante 9m “ ´α, então a sua trajectória
num referencial inercial (uni-dimensional) é modelada pela equação de Newton

d

dt
pmvq “ αpV ´ vq , ou seja , 9mv `m 9v “ αpV ´ vq .

Resolva a EDO 9m “ ´α para a massa do foguetão, com massa inicial mp0q “ m0, e substitua o
resultado na equação de Newton, obtendo

9v “
αV

m0 ´ αt

(valida se 0 ď t ă m0{α). Calcule a trajectória do foguetão com velocidade inicial vp0q “ v0
e posição inicial qp0q “ 0, válida para tempos t inferiores ao tempo necessário para acabar o
combust́ıvel.

Autonomous ODEs. A first order ODE of the form

9x “ vpxq ,

where the velocity field v does not depend on time, is called autonomous. Most fundamental
equations of physics (those describing closed systems, without external forces) can be written as
autonomous first order ODEs, and this corresponds to time-invariance of physical laws.

Here you may notice symmetries again. The line field v of an autonomous equation is constant
along vertical lines (x “ constant) of the extended phase space. Hence any translate ϕpt ` sq of
a solution ϕptq is still a solution. This is the manifestation of time-invariance of a law codified by
an autonomous ODE. This also implies that there is no loss of generality in restricting to initial
value problems with initial time t0 “ 0.

Equilibrium solutions. First, we observe that an autonomous equation may admit constant
solutions. Indeed, if x0 is a singular point of the vector field v, i.e. a point where vpx0q “ 0, then
the constant function

xptq “ x0

obviously solves the equation. Such solutions, which do not change with time, are called equilibrium,
or stationary, solutions.
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Solutions near non-singular points. Let x0 be a non-singular point of the velocity field
vpxq, i.e. a point x0 where vpx0q ‰ 0. We want to solve 9x “ vpxq with initial condition xpt0q “ x0.
First, rewrite the equation dx{dt “ vpxq formally as “dx{vpxq “ dt” (multiply by dt and divide by
vpxq, so that all x’s are on the left and all t’s are on the right). Instead of trying to make sense to
this last expression (which is possible, of course, and here you can appreciate the beauty of Leibniz’
notation dx{dt for derivatives!), observe that it is suggesting that

ş

dx{vpxq “
ş

dt. Now assume
that the velocity field v is continuous and let J “ px´, x`q be the maximal interval containing x0
where v is different from zero. Integrating, from x0 to x P J on the left and from t0 to t on the
right, we obtain a differentiable function x ÞÑ tpxq defined as

tpxq ´ t0 “

ż x

x0

dy

vpyq

for any x P J . Now, observe that the derivative dt{dx is equal to 1{v. Since, by continuity, 1{v does
not change its sign in J , our tpxq is a strictly monotone continuously differentiable function. We can
invoke the inverse function theorem and conclude that the function tpxq is invertible. This prove
that the above relation defines actually a continuously differentiable function t ÞÑ xptq in some
interval I “ tpJq of times around t0. Finally, you may want to check that the function t ÞÑ xptq
solves the Cauchy problem: just compute the derivative (using the inverse function theorem),

9xptq “ 1{

ˆ

dt

dx
pxptqq

˙

“ vpxq ,

and check the initial condition. Observe that the function tpxq ´ t0 has then the interpretation of
the “time needed to go from x0 to x”.

At the end of the story, if you are lucky enough and know how to invert the function tpxq, you’ll
get an explicit solution as

xptq “ F´1 pt´ t0 ` F px0qq ,

where F is any primitive of 1{v. Close inspection of the above reasoning shows that the local
solution you’ve found is indeed the unique one. Namely, we have the following

Proposition 14.1. (Existence and uniqueness theorem for autonomous ODEs near a
non-singular point) Let vpxq be a continuous velocity field and let x0 be a point where vpx0q ‰ 0.
Then there exist one and only one solution of 9x “ vpxq with initial condition xpt0q “ x0 in some
sufficiently small interval I around t0. Moreover, the solution xptq is given implicitly by

ż x

x0

dy

vpyq
“

ż t

t0

ds ,

defined in some small interval J around x0.

On the failure of uniqueness near singular points. The interval I “ tpJq where the
solution is defined need not be the entire real line: solutions may reach the boundary of J , i.e. one
of the singular points x˘ of the velocity field, in finite time. Since singular points are themselves
equilibrium solutions, this imply that solutions of the initial value problem at singular points may
not be unique, under such mild conditions (continuity) for the velocity field. Picard’s theorem
prescribes stronger regularity conditions on v under which the initial value problem admits unique
solutions for any initial condition in the extended phase space.

e.g. Two solutions with the same initial condition! Both the curves xptq “ 0 and
xptq “ t3 solve the equation

9x “ 3x2{3

with initial condition xp0q “ 0. The problem here is that the velocity field vpxq “ 3x2{3, although
continuous, is not differentiable and not even Lipschitz at the origin. You may notice that the
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solution starting, for example, at x0 “ 1 reaches (or better comes from) the singular point x´ “ 0
in finite time, since

tpx´q ´ tpx0q “

ż 0

1

1

3
y´2{3dy

“ ´1 .

help: O MathematicaR© pode resolver analiticamente equações diferenciais. Por exemplo,

DSolve[x’[t] + 2 x[t] == Sin[t], x[t], t]

{{x[t] -> E^(-2 t) C[1] + 1/5 (-Cos[t] + 2 Sin[t])}}

e.g. Radioactive decay. Radioactive matter (such as 14C or 238U) decay according to the law

9N “ ´βN

where Nptq denotes the number of nuclei (assumed large so that the law of large number applies),
and 1{β is the mean life, the average time life of one single nucleus. The solution with initial
condition Np0q “ N0 ą 0 is

Nptq “ N0e
´βt

In particular, the initial quantity is reduced to one half after a time T “ plog 2q{β, called half-life.
For example, 14C has an average time of 1{β » 8033 years.

If cosmic radiation produces 14C in Earth’s atmosphere at a rate α, then the quantity of 14C
in the atmosphere follows a law

9N “ ´βN ` α .

The equilibrium is N “ α{β. The difference xptq “ Nptq ´ N follows the law 9x “ ´βx, hence
xptq “ xp0qe´βt, and therefore

Nptq “ N `
`

Np0q ´N
˘

e´βt .

In particular, Nptq Ñ N as tÑ8, independently from the initial condition Np0q.

Direction field and some solutions of 9x “ ´2x` 1.

e.g. Exponential growth. The growth of a population in a (virtually) unlimited medium is
modeled by

9N “ λN

where Nptq denotes the population size at time t, and λ ą 0 is some growth rate. The solution is
an exponential growth like

Nptq “ Np0qeλt .

If we retire aportion of the population at constant rate α ą 0, we get

9N “ λN ´ α

http://www.wolfram.com/mathematica/
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Now the stationary solution is N “ α{λ, and the general solution

Nptq “ N `
`

Np0q ´N
˘

eλt .

Now, the non-constant solutions diverge or disappear.

Direction field and some solutions of 9x “ 2x´ 1.

e.g. Logistic equation. A more realistic model of the growth of a population in a limited
environment is the logistic equation32

9N “ λNp1´N{Mq

where λ ą 0 and the number M ą 0 is a maximal population. Observe that 9N » λN when N !M ,
and that 9N Ñ 0 when N ÑM . It is convenient to define the relative population xptq :“ Nptq{M ,
which satisfies the adimensional logistic equation

9x “ λxp1´ xq .

Equilibrium solutions are x “ 0 e x “ 1. To find solutions with initial condition xp0q “ x0 ‰ 0, 1,
we may integrate

ż x

x0

dy

yp1´ yq
“

ż t

0

ds ,

using the identity
1

yp1´ yq
“

1

y
`

1

1´ y
.

The result is

log

ˇ

ˇ

ˇ

ˇ

x ¨ px0 ´ 1q

x0 ¨ px´ 1q

ˇ

ˇ

ˇ

ˇ

“ t

which may be solved for xptq, giving, when 0 ă x0 ă 1,

xptq “
1

1`
´

1
x0
´ 1

¯

e´λt
.

32Pierre François Verhulst, Notice sur la loi que la population pursuit dans son accroissement, Correspondance
mathématique et physique 10 (1838), 113-121.
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Campo de direções e soluções da equação loǵıstica.

e.g. Super-exponential growth. Um outro modelo de dinâmica populacional em meio ilimi-
tado é

9N “ αN2.

onde α ą 0. A solução com condição inicial Np0q “ N0 ą 0 é

Nptq “
1

1{N0 ´ αt
.

Observe que as soluções não estão definidas para todos os tempos: este modelo prevê uma catástrofe
(população infinita) após um intervalo de tempo finito (o tempo t “ 1{pαN0q) !

Campo de direções e soluções da equação 9x “ x2.

Separable ODEs. A first order ODE 9x “ vpt, xq is said separable when the velocity field v is a
product of a function which only depends on t and another function which only depends on x. So
it has the form

9x “
fpxq

gptq

for some known functions f and g. We assume that both f and g are continuous functions on
some intervals of the phase space and the real line, respectively, and that gptq does not vanishes.
Observe that both simple ODEs like 9x “ vptq and autonomous ODEs like 9x “ vpxq fall in this
class.

If x0 is a zero of f , then xptq “ x0 is an equilibrium solution. The recipe to find other solutions
is known as “separation of variables”. Take point x0 where fpx0q ‰ 0, and an initial time t0 where
gpt0q ‰ 0. Choose a maximal interval J containing x0 where f is different from zero, rewrite the
equation formally as “dx{fpxq “ dt{gptq”, and then integrate from x0 to x P J the r.h.s. and from
t0 to t the l.h.s. You’ll get

ż x

x0

dy

fpyq
“

ż t

t0

ds

gpsq
.

As we did for autonomous equations, we can see that any continuously differentiable solution
t ÞÑ xptq of the equation passing through the non-singular point pt0, x0q must satisfy the above
relation, as long as x is sufficiently near to x0.

e.g. Solve 9x “ tx3.
An obvious solution is the equilibrium solution xptq “ 0. For a positive initial condition

xpt0q “ x0 ą 0, rewrite the equation as dx{x3 “ tdt and integrate

ż x

x0

dy

y3
“

ż t

t0

sds

for x ą 0. You’ll find
1{x2 ´ 1{x20 “ t2 ´ t20 ,
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and, solving for x, the solution

xptq “
1

a

t20 ` 1{x20 ´ t
2
.

defined for times t in the interval |t| ă
a

t20 ` 1{x20. In the same way you’ll find solutions with
negative initial condition x0 ă 0.

Linear first order ODEs. A first order linear differential equation is a differential equation
which can be written in the “canonical form”

9x` pptqx “ qptq , (14.1)

where the coefficients p and q are (known) functions of the real variable t defined in some interval
I Ă R. We assume that both p and q are continuous functions, and we look for solutions t ÞÑ xptq
defined on I. Eventually we will want to solve the problem with some initial condition xpt0q “ x0.

The equation
9y ` pptqy “ 0 (14.2)

is said the homogeneous equation associated with the general, hence non-homogeneous, equation
(14.1) above. The word “homogeneous” is due to the fact that any constant multiple λ ¨ yptq of
a solution y of (14.2) is again a solution. Also, any linear combination (with real coefficients)
ay1ptq ` by2ptq of solutions y1ptq and y2ptq of the homogeneous equation (14.2) is still a solution of
the homogeneous equation. This means that the space of solutions of the homogeneous equation
is a linear space, actually a one-dimensional vector space H « R, as a consequence of the following
proposition 14.2.

Also interesting is that the difference yptq “ x1ptq´x2ptq of any two solutions x1ptq and x2ptq of
the non-homogeneous equation (14.1) is a solution of the associated homogeneous equation (14.2),
hence belongs to the linear space H. Therefore, the space of solutions of the non-homogeneous
equation (14.1) is an affine space x`H, where xptq is any (particular) solution of (14.1).

Solutions of the homogeneous equation are obtained separating the variables, and are given by
the following

Proposition 14.2. (Existence and uniqueness theorem for homogeneous first order
linear ODEs) Let p be a continuous function on some interval of the real line. Then the unique
solution of the homogeneous equation 9y ` pptqy “ 0 with initial condition ypt0q “ y0 is given by

yptq “ y0e
´

şt
t0
ppsqds

.

In particular, the space of solutions of the homogeneous equation (14.2) is a real vector space of
dimension one.

Indeed, let zptq be a second solution of the Cauchy problem above, and define

hptq “ zptqe
şt
t0
ppsqds

.

Its value for t0 is y0. Its derivative is

9hptq “ e
şt
t0
ppsqds

p 9zptq ` pptqzptqq .

Since z is supposed to solve the equation, the derivative of h is equal to zero for any t in the chosen
interval, and the mean value theorem says that then hptq is constant and equal to y0. There follows
that zptq is indeed equal to our solution yptq.

e.g. Solve t 9x´ 2x “ 0 for t P p0,8q with initial condition xpt0q “ x0.
If x0 “ 0, the solution is the equilibrium solution xptq “ 0. If x0 ą 0, write the equation as

dx{x “ 2dt{t, integrate
ż x

x0

dy{y “

ż t

t0

2ds{s ,
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for positive x, obtain
log x´ log x0 “ logpt2q ´ log

`

t20
˘

,

and solve it for x, the solution being

xptq “
`

x0{t
2
0

˘

t2 .

Finally observe that this formula gives the solutions for any initial condition x0.

Back to the non-homogeneous equation. To solve the non-homogeneous equation

9x` pptqx “ qptq ,

we use the following trick, a first and elementary instance of a much more general method named
“variation of parameters” (or, sometimes, with the oxymoron “variation of constants”). We already

know that any function proportional to e´
şt
a
ppsqds solves the homogeneous equation. We look for

a solution of the non-homogeneous equation having the form

xptq “ λe
´

şt
t0
ppsqds

,

but, instead of treating the parameter λ as a constant, we allow it to depend on t. Putting our
guess into the non-homogeneous equation, we get

d

dt

´

λptqe
´

şt
t0
ppsqds

¯

` pptqλptqe
´

şt
t0
ppsqds

“ qptq .

Computing the derivative, we get

9λptqe
´

şt
t0
ppsqds

´(((((((((
pptqλptqe

´
şt
t0
ppsqds

`(((((((((
pptqλptqe

´
şt
t0
ppsqds

“ qptq ,

the two terms containing pptq do cancel, and we are left with

9λptqe
´

şt
t0
ppsqds

“ qptq .

This can be solved for 9λ (because exponentials are never zero), and integration gives

λptq “ λpt0q `

ż t

t0

e
şs
t0
ppuqdu

qpsqds

for some constant λpt0q equal to the value of xpt0q (this depends on our choice for yptq, such that
ypt0q “ 1). Finally, we get a solution

xptq “ λptqe
´

şt
t0
ppsqds

,

and you may check that it has initial value xpt0q “ x0. Since the difference of any two solutions
of the general equation is a solution of the associated homogeneous equation, and since (as follows
from the uniqueness theorem above) the only solution of the homogeneous equation with initial
condition xpt0q “ 0 is the zero solution, we just proved the following

Proposition 14.3. (Existence and uniqueness theorem for first order linear ODEs) Let p
and q be continuous functions in some interval I. Then the unique solution of the linear differential
equation 9x` pptqx “ qptq with initial condition xpt0q “ x0 for t0 P I is given by

xptq “ e
´

şt
t0
ppuqdu

ˆ

x0 `

ż t

t0

e
şs
t0
ppuqdu

qpsqds

˙

.

Suggestion. Perhaps, instead of fixing the unpleasant formula in the above theorem, you could
simply remember the strategy used to derive it: find one non-trivial solution yptq of the associated
homogeneous equation (which is separable!), and then make the conjecture xptq “ λptqyptq for
some other unknown function λptq. You’ll get a simple differential equation for λ, and integration
gives you the solution.
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e.g. Solve t 9x´ 2x “ t for t P p0,8q with initial condition xpt0q “ x0.
You already know that the solution of the associated homogeneous equation ty1 ´ 2y “ 0 with

initial condition ypt0q “ 1 is yptq “ t2{t20. Make the conjecture xptq “ λptqt2{t20, insert your guess
into the non-homogeneous equation, and get

9λ “ t20{t
2 .

Integrate and find
λptq ´ λpt0q “ t0 ´ t

2
0{t ,

and, since λpt0q “ xpt0q, finally find the solution

xptq “
x0 ` t0
t20

t2 ´ t .

ex: Determine a solução geral das EDOs lineares de primeira ordem

2 9x´ 6x “ e2t 9x` 2x “ t 9x` x{t2 “ 1{t2 9x` tx “ t2

definidas em oportunos intervalos da recta real.

ex: Resolva os seguintes problemas nos intervalos indicados:

2 9x´ 3x “ e2t t P p´8,8q com xp0q “ 1

9x` x “ e3t t P p´8,8q com xp1q “ 2

t 9x´ x “ t3 t P p0,8q com xp1q “ 3

9x` tx “ t3 t P p´8,8q com xp0q “ 0

dr{dθ ` r tan θ “ cos θ t P p´π{2, π{2q com rp0q “ 1

e.g. Free fall with friction. Friction may be modeled as a force ´kv proportional and contrary
to velocity, where k ą 0 is a friction coefficient (which depends on the shape of the falling body,
and on many other things!). Therefore, free fall near the Earth’s surface may be modeled by the
Newton equation

m 9v “ ´kv ´mg

This is a linear ODE for the velocity, whose solution is

vptq “
gm

k
` e´pk{mqt

´

vp0q ´
gm

k

¯

.

In particular, the velocity is asymptotic to the equilibrium value v “ gm{k.

e.g. Circuito RL. A corrente Iptq num circuito RL, de resistência R e indutância L, é deter-
minada pela EDO

L 9I `RI “ V

onde V ptq é a tensão que alimenta o circuito.

• Escreva a solução geral como função da corrente inicial Ip0q “ I0.

• Resolva a equação para um circuito alimentado com tensão constante V ptq “ E. Esboce a
representação gráfica de algumas das soluções e diga o que acontece para grandes intervalos
de tempo.

• Resolva a equação para um circuito alimentado com uma tensão alternada V ptq “ E sinpωtq.
Se não conseguir, mostre que a solução com Ip0q “ 0 tem a forma

Iptq “
E

?
R2 ` ω2L2

sin pωt´ αq `
EωL

R2 ` ω2L2
e´

R
L t

onde α é uma constante que depende de ω, L e R.
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e.g. Lei do arrefecimento de Newton. Numa primeira aproximação, a temperatura T ptq no
instante t de um corpo num meio ambiente cuja temperatura no instante t é Mptq segue a lei do
arrefecimento de Newton

9T “ ´k pT ´Mptqq

onde k é uma constante positiva (que depende do material do corpo).

• Escreva a solução T ptq como função da temperatura inicial T p0q “ T0 e de Mpsq com 0 ď
s ď t.

• Resolva a equação quando a temperatura do meio ambiente é mantida constante Mptq “M .
Esboce a representação gráfica de algumas das soluções e diga o que acontece para grandes
intervalos de tempo.

• Uma chávena de café, com temperatura inicial de 100oC, é colocada numa sala cuja tem-
peratura é de 20oC. Sabendo que o café atinge uma temperatura de 60oC em 10 minutos,
determine a constante k do café e o tempo necessário para o café atingir a temperatura de
40oC.
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15 Curves

Caminhos. Um caminho em Rn é uma função c : I Ñ Rn,

t ÞÑ c ptq “ pc1 ptq , c2 ptq , ..., cn ptqq ,

definida num intervalo I Ă R. Se c é uma função continua (ou seja, se as suas coordenadas
ck : I Ñ R, com k “ 1, 2, . . . , n, são funções cont́ınuas), o caminho é dito cont́ınuo e a sua imagem,
o subconjunto c pIq :“ tcptq , com t P Iu Ă Rn, é dita curva. Se I “ ra, bs é um intervalo fechado
e cpaq “ cpbq, então c é dito caminho fechado, ou laço.

Por exemplo, um caminho no plano R2 ou no espaço R3, é uma função

t ÞÑ rptq “ pxptq, yptqq P R2 ou t ÞÑ rptq “ pxptq, yptq, zptqq P R3

definida num intervalo (de tempos) t P I Ă R.
O parâmetro t P I tem a interpretação de um “tempo”, o espaço Rn a interpretaçao dos posśıveis

“estados” de um sistema f́ısico (a posição e o momento de um planeta, as concentrações dos n
reagentes de uma reação qúımica, . . . ). Assim, o caminho t ÞÑ c ptq representa uma “trajetória”,
ou “lei horária”, uma lei que determina o estado c ptq do sistema em cada tempo t P I. A curva
c pIq, o conjunto dos estados pelos quais passa a trajetória, é dita “órbita” do sistema.

e.g. Retas e segmentos. A reta que passa pelo ponto a P Rn (no tempo 0) na direção do vetor
não nulo v P Rn é o caminho

t ÞÑ a` tv com t P R .

O segmento que une os pontos a e b de Rn é, por exemplo, o caminho

t ÞÑ a` pb´ aqt com t P r0, 1s .

Space filling curves! As strange as it may look, a generic continuous path may be much different
from the idea we have in mind when drawing a curve in our blackboard. This was discovered by
Giuseppe Peano, who shocked the mathematical community back in 1890 exhibiting a continuous
image of the unit interval r0, 1s which covered the entire unit square r0, 1sˆr0, 1s. More amazingly,
you may want to know that the “obvious” statement that a closed curve without self-intersections
divides the plane in two “pieces” requires a very long and delicate proof!, and deserves the name
of Jordan curve theorem.

Caminhos diferenciáveis. Dado o caminho c : I Ñ Rn, o vetor pc pt` εq ´ c ptqq {ε representa
a velocidade média entre os “tempos” t ` ε e t. O caminho é dito diferenciável no ponto t P I
quando existe o limite

9c ptq :“ lim
εÑ0

c pt` εq ´ c ptq

ε
.

O vetor dc
dt ptq :“ 9c ptq P Rn é dito derivada do caminho c no ponto t, ou velocidade do caminho c

no tempo t.
A diferenciabilidade do caminho em t, ou seja a existência do limite 9cptq, é equivalente à

diferenciabilidade das n funções reais t ÞÑ ck ptq em t, onde k “ 1, 2, ..., n. A derivada 9cptq é
portanto um vetor de coordenadas 9c ptq “ p 9c1 ptq , 9c2 ptq , ..., 9cn ptqq.

O caminho c : I Ñ X é dito diferenciável quando é diferenciável para todo tempo t P I.
Se t ÞÑ cptq “ pc1ptq, c2ptq, . . . , cnptqq P Rn é um caminho diferenciável, então a sua derivada

9c : I Ñ Rn é também um caminho, e faz sentido definir as derivadas sucessivas, como

9c “
dc

dt
, :c “

d2c

dt2
:“

d

dt

ˆ

dc

dt

˙

, ;c “
d3c

dt3
:“

d

dt

ˆ

d2c

dt2

˙

, . . .

Em particular, a primeira derivada vptq :“ 9cptq é dita “velocidade”, a sua norma vptq :“ }vptq}
“velocidade escalar”, e a segunda derivada aptq :“ 9vptq “ :cptq é dita “aceleração”.
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As curvas pet cosp3tq, et sinp3tqq, pt, sinp1{tqq, e p2 cosptq, sinp´tq.

Reparametrizatons. A curve, seen as a subset of some Rn, may have different paramerizations.
Namely, if c : I Ñ Rn is a continuous path, and ϕ : J Ñ I, sending s ÞÑ tpsq, is a continuous
function from the interval J onto the interval I, then the composition c ˝ ϕ : s ÞÑ cptpsqq is a
continuous path from J onto the same curve cpIq. If both the path c and the reparametrization ϕ
are differentiable, the velocity of the path s ÞÑ cptpsqq is dc

dt ptpsqq ¨
dt
ds .

e.g. Uniform circular motion. Uniform circular motion in the Euclidean plane is described
by the path

t ÞÑ rptq “ pR cospωtq, R sinpωtqq .

Here R ą 0 is a fixed radius, and ω ą 0 is an angular velocity. Indeed, the trajectory describes a
circle tx2 ` y2 “ R2u of radius R around the origin. The velocity is

vptq “
dr

dt
ptq “ p´Rω sinpωtq, Rω cospωtqq ,

and the acceleration is

aptq “
d2r

dt2
ptq “

`

´Rω2 cospωtq,´Rω2 sinpωtq
˘

.

In particular, xaptq,vptqy “ 0, i.e. the acceleration is orthogonal to the velocity, and it is directed
towards the center of the orbit, since aptq “ ´ω2rptq. The quotient between the scalar velocity
vptq “ }vptq} “ Rω and the radius of the circle is the angular velocity ω.

e.g. Epicycles. According to Aristotle and Plato, “all movements are combinations of circular
uniform motions”. This idea is at the basis of the cosmology of Hipparchus and Ptolemy, as
transmitted to us in the Almagest. “Fixed” stars describe circles in the sky. “Wandering” (i.e.
planets, from the greek plan ths) stars describe a circle (epicycle) around a circle, which again
describe a circle around a circle, . . . , which describes a circle around a first circle (deferent).

help: Mathematica R©8 plots parametric curves. For example, the command

ParametricPlot[{Cos[t] + 0.1 Cos[20 t], Sin[t] + 0.1 Sin[20 t]}, {t, 0, 2 Pi}]

produces the following pictures of an epicycle

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

http://www.wolfram.com/mathematica/
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e.g. Cusps. Differentiability depends on the parametrization of the path, i.e. on the time law,
and not on the curve! For example, the path t ÞÑ pt3, t2q, with t P r´1, 1s, describe the cusp
y3 “ x2 in the plane. Nevertheless, it is differentiable, and its velocity is the path t ÞÑ p3t2, 2tq.
The apparent singularity at t “ 0 is reached with zero velocity!

The cusp t ÞÑ pt3, t2q and its velocity.

ex: Esboce as seguintes curvas no plano, e calcule velocidade e aceleração, nos pontos onde
podem ser definidas.

rptq “
`

t, t2
˘

com t P R , rptq “
`

t3, t2
˘

com t P R ,

rptq “ pt, |t|q com t P r´1, 1s , rptq “ pcos θ, sin θq com θ P r0, 2πs ,

rptq “ pt, rtsq com t P r´2, 2s , rptq “ pt, sinp1{tqq com t P s0,8r .

rptq “ p| sinp5tq| cosp2tq, | sinp5tq| sinp2tqq com t P r0, 2πs ,

rptq “ pcosptq ` 0.1 cosp17tq, sinptq ` 0.1 sinp17tqq com t P r0, 2πs .

ex: Verifique que a trajetória

t ÞÑ rptq “ pa cos t, b sin tq ,

com t P R e a, b ą 0, descreve a elipse x2{a2 ` y2{b2 “ 1.

ex: Esboce a trajetória
t ÞÑ rptq “ pR cos t, R sin t, btq ,

com t P R e R, b ą 0, descrita por uma part́ıcula em movimento numa hélice circular.

ex: Determine umas equações paramétricas para a parábola x “ y2 ` 1 e para a hipérbole
x2 ´ y2 “ 1 com x ą 0 (lembre a identidade cosh2 θ´ sinh2 θ “ 1 entre as funções “hiperbólicas”).

Smooth paths. A path is said of class C0 if it is continuous, of class C1 if its derivative is
continuous. Using induction, it is said of class Ck`1 if its derivative is of class Ck. It is said of class
C8 if it is of class Ck for any k, namely if all its derivatives are continuous.

Trajectories of physics used to have so many derivatives as we want (simply because most
physical laws are written in terms of derivatives!), and we’ll refer to them as “smooth”, without
specifying their regularity. Meanwhile, you must keep in mind that there are continuous paths
which are nowhere differentiable. Actually, as shown by Weierstrass, almost all continuous paths
are like that! They play a role in models of phenomena like the Brownian motion or turbolence
. . .

e.g. Espiral logaŕıtmica. A recurrent pattern in Nature is the logarithmic spiral.
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It is defined in polar coordinates, r and θ, by the law

r “ c ¨ λθ ,

for some constants c ą 0 and λ ą 0. We may parametrize the angle as t ÞÑ θptq “ ωt, for some
angular velocity ω ą 0. Then, the logarithmic spiral is the curve drown by the path

t ÞÑ pAe´αt cospωtq, Ae´αt sinpωtqq .

Theorem 15.1. (Teorema do valor médio) Seja c : ra, bs Ñ Rn um caminho cont́ınuo, difer-
enciável em sa, br e com derivada limitada por

} 9c ptq} ď K

para todo t P sa, br. Então
}c pbq ´ c paq} ď K ¨ |b´ a| .

De fato, o teorema do valor médio aplicado à função real t ÞÑ xc ptq , c pbq ´ c paqy, implica que
existe um tempo t P sa, br tal que

}c pbq ´ c paq}
2
“
@

9c
`

t
˘

, c pbq ´ c paq
D

¨ pb´ aq .

Pela desigualdade de Cauchy-Schwarz

}c pbq ´ c paq}
2
ď K ¨ }c pbq ´ c paq} ¨ |b´ a| ,

e portanto, ou }c pbq ´ c paq} “ 0, ou }c pbq ´ c paq} ď K ¨ |b´ a|.

Comprimento de uma curva. The length of the segment between the vectors x P Rn and
y P Rn, the curve xy :“ tx` ty , t P r0, 1su is, by definition, the norm of the vector y´ x, namely

`pxyq :“ }y ´ x} .

If c : ra, bs Ñ Rn is a path made of straight segments between the points xn “ cptnq and xn`1 “

cptn`1q, given the sequence of times a “ t0 ă t1 ă . . . tn ă tn`1 ă . . . tN “ b, it is natural to

define its length as the sum
řN´1
n“0 }cptn`1q ´ cptnq}. Therefore, a natural definition of length of

a continuous path c : ra, bs Ñ Rn is

`pcq :“ sup
N´1
ÿ

n“0

}cptn`1q ´ cptnq} ,

where the “sup” is taken over all finite partitions a “ t0 ă t1 ă . . . tn ă tn`1 ă . . . tN “ b of
the time interval ra, bs. It is obvious from this definition that the length does not depend on the
parametrization of the path. The curve is called rectifiable when `pcq ă 8.

If we try to approximate a differentiable path c : ra, bs Ñ Rn by a polygonal path between the
points cptkq and cptk`1q, we may observe that the length of the portion of the path between tk
and tk`1 “ tk ` dt is, to a first approximation, » } 9cptkq} ¨ dt. It turns out (but it is not obvious!)
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that the length of a differentiable curve may equivalently be computed/defined as the integral of
its scalar velocity:

`pcq “

ż b

a

} 9cptq} dt .

For example, a planar path like t ÞÑ rptq “ pxptq, yptqq, or a 3-dimensional path like t ÞÑ rptq “
pxptq, yptq, zptqq, with times t P ra, bs, have length

ż b

a

a

9xptq2 ` 9yptq2 dt or

ż b

a

a

9xptq2 ` 9yptq2 ` 9zptq2 dt .

ex: Calcule o comprimento ...
... do arco de circunferência θ ÞÑ pcos θ, sin θq com θ P rπ{2, 2πs ,
... da espiral logaŕıtmica t ÞÑ pe´t cos t, e´t sin tq com t P r0,8r ,
... do arco de parábola t ÞÑ

`

t, t2{2
˘

com t P r0, 1s (considere a susbtituição t “ sinh s).

Comprimento de um gráfico. Seja fptq uma função real com derivada cont́ınua definida no
intervalo ra, bs. O gráfico de f , o conjunto

Γf “
 

pt, fptqq P R2 com t P ra, bs
(

Ă R2 ,

é a imagem do caminho t ÞÑ pt, fptqq com t P ra, bs. Em particular, o seu comprimento é

` pΓf q “

ż b

a

a

1` f 1ptq2 dt .
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16 Scalar fields

Scalar fields. A scalar field is a real valued function f : X Ă Rn Ñ R defined in some domain
X Ă Rn. We use both the notations fpxq “ fpx1, x2, . . . , xnq for the value of the field f at the
point x “ px1, x2, . . . , xnq P Rn.

Thus, a scalar field is a number fpxq attached to any point x P X. For example, the “coordinate
functions” x “ px1, x2, . . . , xnq ÞÑ xk, for k “ 1, 2, . . . , n, are scalar fields, which give the values of
the different coordinates attached to a given point x P Rn.

A scalar field f : X Ă Rn Ñ R is said continuous at the point x P X if for any ε ą 0 there
exists δ ą 0 such that }y ´ x} ă δ implies |fpyq ´ fpxq| ă ε. This is the same as saying that
fpxnq Ñ fpxq for any sequence xn Ñ x. A scalar field f is said continuous if it is continuous at
all points x P X of its domain.

e.g. Temperature. The temperature of a ideal gas, as a function of the pressure P and the
volume V , is

T pP, V q “
1

nR
PV .

where n is the number of moles, and R » 8.314ˆ 107 J/K¨mol. Curves with constant temperature
are hyperbolas PV “ constant.

Level sets. Let f : X Ă Rn Ñ R be a scalar field, and λ one of the values of f . The λ-level set
of f is the subset

Σλ “ f´1ptλuq :“ tx P X such that fpxq “ λu Ă X .

It may be one single point, or even all of X (if f is a constant function). For reasonable (i.e.
sufficiently smooth) fields and generic values λ (in some precise meaning), it is a hypersurface, a
set of “dimension” n´ 1 inside Rn. The graph of f is the set

Gf :“ tpx, λq P X ˆ R t.q. fpxq “ λu Ă X ˆ R .

For example, if fpx, yq is a smooth scalar field defined in X Ă R2, then

Σλ :“
 

px, yq P X Ă R2 t.q. fpx, yq “ λ
(

is, for generic values of λ, a level curve. The graph of f is the surface

Gf :“ tpx, y, zq P X ˆ R t.q. fpx, yq “ zu Ă R3 .

Of course, it is not easy to draw the graph of a function defined on Rn when n ě 3 !

Curvas de ńıvel e gráfico.

ex: Esboce as curvas de ńıvel e os gráficos das seguintes funções, nos domı́nios onde podem ser
definidas:

fpx, yq “ x` y fpx, yq “ xy fpx, yq “ x2 ` 2y2 fpx, yq “
a

1´ x2 ´ y2

fpx, yq “ log
`

x2 ` y
˘

fpx, yq “ x2 ´ y2 fpx, yq “ sin pxyq
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e.g. Equação de Van der Waals.
´

P `
a

V 2

¯

pV ´ bq “ nRT

onde b representa o efeito das dimensões finitas das moléculas e a{V 2 o efeito das forças moleculares
de coesão.

Directional and partial derivatives. Let f : X Ă Rn Ñ R be a scalar field. Given any point
x P Rn, a non-zero vector v P Rn defines a straight line t ÞÑ x` tv passing through the point x at
time t “ 0 with velocity v. The directional derivative of the field f at the point x P X along the
direction of the vector v P Rn is the derivative of the real valued function t ÞÑ fpx` tvq computed
at time t “ 0, namely

Bf

Bv
pxq :“

d

dt
fpx` tvq

ˇ

ˇ

ˇ

ˇ

t“0

.

Another notation for the directional derivative is £vfpxq (called Lie derivative of the scalar field
f along the constant vector field v). Some authors reserve the name of directional derivative to
the case when v is a unit vector, i.e. when }v} “ 1.

If we compute the directional derivative of f w.r.t. the direction v “ ek, the k-th vector of the
canonical basis e1, e2, . . . , en of Rn, we get the partial derivative of f at the point x with respect
to the variable xk, denoted as

Bf

Bxk
pxq :“ lim

tÑ0

fpx` tekq ´ fpxq

t
.

Thus, in order to compute the partial derivative Bf
Bxk
pxq, you “freeze” all the remaining coordinates

xi, with i ‰ k, to their values at the point x, and compute the usual derivative of the real valued
function t ÞÑ fpx1, . . . , xk´1, t, xk`1, . . . , xnq at the point t “ xk.

For example, the partial derivatives of the scalar field fpx, yq defined in some domain of the
Cartesian plane R2 with coordinates px, yq are the limits

Bf

Bx
px, yq “ lim

εÑ0

fpx` ε, yq ´ fpx, yq

ε
and

Bf

By
px, yq “ lim

εÑ0

fpx, y ` εq ´ fpx, yq

ε
.

Higher order derivatives and smooth fields. Partial derivatives of a scalar field are them-
selves scalar fields, so it make sense to compute their partial derivatives,

B

By

ˆ

Bf

Bx

˙

“
B2f

ByBx
,

B

Bx

ˆ

Bf

Bx

˙

“
B2f

Bx2
, . . .

and so on.
A scalar field is said of class C0 if it is continuous, of class C1 if its partial derivatives are

continuous. Using induction, it is said of class Ck`1 if its partial derivatives are of class Ck. It
is said of class C8 if it is of class Ck for any k, namely if all its partial derivatives exist and are
continuous. According to Schwarz theorem, if a scalar field f is of class Ck in some domain, then
its partial derivatives up to order ď k commute. Thus, for example,

B2f

BxiBxj
“

B2f

BxjBxi

if the field f is of class C2.

Differentiable scalar fields. A scalar field f : X Ă Rn Ñ R is differentiable at the point x P X
if there exists a linear map L : Rn Ñ R such that, for any v P Rn with sufficiently small norm,

fpx` vq “ fpxq ` L ¨ v ` epvq

where the “error” epvq is so small that

lim
}v}Ñ0

epvq

}v}
“ 0 .
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The linear map L is called differential of f at x, and denoted by dfpxq (or also Dfpxq, or f 1pxq).
Above, we used the notation L ¨ v “ L1v1 ` L2v2 ` ¨ ¨ ¨ ` Lnvn for the value of the linear map L
at the vector v.

It is clear that a linear map L as above, if it exists, must be unique. It also immediate to
see that a differentiable field is continuous, since both L ¨ v Ñ 0 and epvq Ñ 0, and consequently
fpx` vq Ñ fpxq, as }v} Ñ 0.

If f is differentiable at x, its directional and partial derivatives may be computed as

Bf

Bv
pxq “ dfpxq ¨ v and

Bf

Bxk
pxq “ dfpxq ¨ ek .

Therefore, the differential of a scalar field f : X Ă Rn Ñ R at the point x P X is the linear form
dfpxq : Rn Ñ R given in coordinates by

dfpxq :“
Bf

Bx1
pxq dx1 `

Bf

Bx2
pxq dx2 ` ¨ ¨ ¨ `

Bf

Bxn
pxq dxn

where dxk, the differential of the coordinate function x ÞÑ xk, is the linear form which takes the
vector v “ pv1, v2, . . . , vnq P Rn into the scalar dxk ¨ v :“ vk.

Gradient. A convenient way to write the differential of a scalar field is the following. The
gradient of the scalar field f : X Ă Rn Ñ R at the point x P X is the vector whose components
are the partial derivatives of f at x, namely

∇fpxq :“

ˆ

Bf

Bx1
pxq,

Bf

Bx2
pxq, . . . ,

Bf

Bxn
pxq

˙

.

An alternative notation, also used by physicists, is grad fpxq.
In particular, the directional derivative of the differentiable field f along the direction of v P Rn

at the point x is
Bf

Bv
pxq “ dfpxq ¨ v “ x∇fpxq,vy .

If v is a unit vector, i.e. }v} “ 1, then the Schwarz inequality says that

´}∇fpxq} ď Bf

Bv
pxq ď }∇fpxq} .

More precisely,
Bf

Bv
pxq “ }∇fpxq} ¨ cospθq

where θ is the angle between ∇fpxq and v. Therefore, the directional derivative is the component
of v along the direction of the gradient ∇fpxq . In particular, the directional derivative is maximal
in the direction of the gradient, namely for v “ ∇fpxq{}∇fpxq}, and minimal in the opposite
direction, for v “ ´∇fpxq{}∇fpxq}. Thus, the gradient points to the direction along which the
function increases most rapidly.

Computation of the gradient may be simplified using the following properties, easy consequences
of the corresponding properties of the derivative:

∇f “ 0 if f is constant

∇pf ` gq “ ∇f `∇f

∇pfgq “ f ∇g ` g∇f

∇pf{gq “ pg∇f ´ f ∇gq {g2
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Vector fields. A vector field is a vector valued function F : X Ă Rn Ñ Rk defined in some
domain X Ă Rn, with coordinates F1pxq, F2pxq, . . . , Fkpxq which are k scalar fields. Continuity of
a vector field is defined component-wise. Thus, a vector field F is continuous if all its coordinates
Fi are continuous scalar fields.

The gradient of a differentiable scalar field f : X Ă Rn Ñ R, thought as a function ∇f : X Ă

Rn Ñ Rn, sending x ÞÑ ∇fpxq, is an example (actually a most important one!) of a vector field.
A vector field F : X Ă Rn Ñ Rk is differentiable at the point x P X if there exists a linear

map L : Rn Ñ Rk such that, for any v P Rn with sufficiently small norm,

Fpx` vq “ Fpxq ` L ¨ v `Epvq

where the error Epvq is so small that

lim
}v}Ñ0

Epvq

}v}
“ 0 .

The linear map L is called differential of F at x, and denoted by DFpxq, or F1pxq.
Thus, if F is differentiable at x, its directional and partial derivatives may be computed as

BF

Bv
pxq “ DFpxq ¨ v and

BF

Bxk
pxq “ DFpxq ¨ ek .

Therefore, the matrix which represents the differential DFpxq in the canonical basis of Rn and Rk
is the Jacobian matrix

JFpxq :“

ˆ

BFi
Bxj

pxq

˙

P MatkˆnpRq .

Differentiability classes. The existence of partial derivatives does not implies differentiability.
For example, the function fpx, yq equal to 1 for xy “ 0 (i.e. on the two coordinate axis) and equal
to 0 for xy ‰ 0 (i.e. outside the axis) does admit partial derivatives at the origin, but it is not even
continuous there. Even the existence of directional derivatives for all non-zero directions does not
implies differentiability.

More interesting is that the existence and continuity of all first partial derivatives in some
domain does implies differentiability. The class of real valued functions having continuous partial
derivatives inside the domain X Ă Rn is named the class of C1pX,Rq functions.

Chain rule for scalar fields and paths. Let r : I Ă R Ñ X Ă Rn be a differentiable path,
given explicitly by t ÞÑ cptq “ px1ptq, x2ptq, . . . , xnptqq, and let f : X Ă Rn Ñ R be a differentiable
scalar field. The composite function f ˝c : I Ñ R (which is a real valued function of a real variable)
is differentiable and its derivative may be computed as

d

dt
fpcptqq “ x∇fpcptqq, 9cptqy

“
Bf

Bx1
pcptqq ¨

dx1
dt
ptq `

Bf

Bx2
pcptqq ¨

dx2
dt
ptq ` ¨ ¨ ¨ `

Bf

Bxn
pcptqq ¨

dxn
dt
ptq

Por exemplo, se t ÞÑ rptq “ pxptq, yptqq P R2 é um caminho com velocidade vptq “ p 9xptq, 9yptqq,
e fpx, yq um campo escalar, então

d

dt
fprptqq “ x∇fprptqq,vptqy “ Bf

Bx
prptqq ¨ 9xptq `

Bf

By
prptqq ¨ 9yptq .

e.g. Linear field. Inner product by a fixed vector w P R3 (or in any other Rn) defines a linear
scalar field according to fprq “ xw, ry. One easily compute that

∇fprq “ w and therefore
Bf

Bv
prq “ xw,vy

for any direction v P R3 and any point r P R3. Level surfaces of f are the affine planes orthogonal
to the vector w ‰ 0, namely

Σλ “ tx P R3 such that xw,x´ ay “ 0u “ a`wK ,

if a P Σλ is any point where fpaq “ xw,ay “ λ.
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e.g. Norm and its powers. The norm may be viewed as a scalar field r ÞÑ r :“ }r}. One
computes, for any k “ 1, . . . , n,

Br

Bxk
prq “

2xk

2
a

x1 ` x22 ` ¨ ¨ ¨ ` x
2
n

“
xk
r
,

and consequently

∇rprq “ r

r

for r ‰ 0. The gradient of the N -th power fprq “ rN is therefore

∇fprq “ NrN´1∇r “ N
r

r2´N
.

In particular, for ϕprq “ }r}2,

∇ϕprq “ 2r and therefore
Bϕ

Bv
prq “ 2 xr,vy .

for any direction v P R3. Observe that level surfaces of ϕprq “ r2 in R3 are the spheres Σλ “ tx P
R3 such that }x}2 “ λu of radius

?
λ, for λ ě 0.

Thus, if a particle moves inside a fixed sphere, i.e. if t ÞÑ rptq is a path with constant }rptq}2 “ λ,
then x 9rptq, rptqy “ 0, so that the velocity vptq “ 9rptq is orthogonal to the position vector rptq at
every time t.

ex: Calcule as derivadas parciais de primeira e segunda ordem das seguintes funções, nos
domı́nios onde podem ser definidas:

fpx, yq “
a

x2 ` y2 fpx, y, zq “ x3 ` y2 ` zxy fpx, yq “ log
`

x2 ` y2
˘

fpx, yq “ ex`y fpx, yq “
sinpx2q

y
fpx, yq “ ey log x

ex: Calcule o gradiente das seguintes funções, nos domı́nios onde podem ser definidas:

fpx, yq “
a

x2 ` y2 ` z2 fpx, yq “ x2 ´ y2 fpx, yq “ sin
`

x2 ` y2
˘

fpx, yq “ e´x
2
´y2 fpx, y, zq “ xyz fpx, yq “ ey log x

ex: Calcule a derivada d
dtfprptqq dos seguintes campos fprq ao longo dos respetivos caminhos

t ÞÑ rptq nos tempos indicados.

fpx, yq “ x3y ´ xy2 t ÞÑ pt2, t3q t “ 0 ,

fpx, yq “ xy t ÞÑ p2et cosptq, 2et sinptqq t “ 1 ,

fpx, y, zq “ x2 ` y2 ` z2 t ÞÑ pcosptq, sinptq, tq t “ π ,

e.g. Gravitational field. The gravitational force field produced by a star of mass M placed
at the origin of R3 is

Fprq “ ´GM
r

}r}3

where G » 6.670ˆ 10´8 dina-cm2/gm2. It is the gradient of the gravitational potential

ϕprq “
GM

}r}
.

ex: Mostre que o potencial Newtoniano ϕprq “ 1{}r} em R3ztp0, 0, 0qu satisfaz a equação de
Laplace

Bϕ

Bx2
`
Bϕ

By2
`
Bϕ

Bz2
“ 0 .
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ex: A temperatura do mar num ponto r “ px, y, zq é dada por T px, y, zq “ x3´xy` yz2. Uma
sardinha encontra-se no ponto a “ p3, 2, 1q. Em que direcção e sentido a sardinha tem de nadar
para arrefecer mais rapidamente?

ex: Seja fptq uma função real diferenciável. Mostre que a função upx, yq “ f pxyq satisfaz a
equação

x
Bu

Bx
´ y

Bu

By
“ 0

e que a função vpx, yq “ f px{yq satisfaz a equação

x
Bv

Bx
` y

Bv

By
“ 0

ex: (aproximação linear) Estime os seguintes valores, usando a aproximação linear

fpx` dx, y ` dyq » fpx, yq `
Bf

Bx
px, yq ¨ dx`

Bf

By
px, yq ¨ dy

e0.01
?

3.999
logp1.01q

1` 0.001
3
?

7.99
?

36.01

e.g. Kinetic energy and conservative systems. Let t Ñ rptq P R2 (or R3) the trajectory
of a particle of mass m ą 0, vptq “ 9rptq its velocity and aptq “ 9vptq “ :rptq its acceleration. The
kinetic energy of the particle is

K :“
1

2
m }v}2 .

Its time variation is
d

dt

ˆ

1

2
m }vptq}2

˙

“ xmaptq,vptqy .

Thus, if the particle is subject to a force F “ ma which is orthogonal to the velocity (as a magnetic
force acting on a moving charged particle) then the kinetic energy is a constant of the motion.

A force field Fprq is said conservative if there exists a scalar field V prq, called potential, such
that Fprq “ ´∇V prq. The name is justified by the fact that the (total) energy, defined as

E :“ K ` V “
1

2
m }v}2 ` V prq ,

is a constant of the motion. Indeed

d

dt
Eprptq,vptqq “ xmaptq,vptqy ` x∇V prqptq,vptqy

“ xmaptq ´ F,vptqy “ 0

if the acceleration satisfies Newton equation F “ ma.

Tangent space to a level set. Let Σλ be a non-empty level set of the differentiable scalar field
f : X Ă Rn Ñ R, and x P Σλ one of its points. If c :s ´ ε, εrÑ Σλ is any differentiable curve lying
entirely on the level set Σλ and passing through cp0q “ x at time 0, then the composite function
t ÞÑ fpcptqq is constant and equal to λ, and therefore, by the chain rule,

0 “
d

dt
fpcptqq

ˇ

ˇ

ˇ

ˇ

t“0

“ x∇fpxq, 9cp0qy .

If the gradient of f at x is different from the zero vector, i.e. ∇fpxq ‰ 0, we deduce the the
space of all such velocities 9cp0q, which we call tangent space to Σλ at x, is the normal space to the
gradient of f at x.
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For example, If fpx, y, zq is a scalar field defined in some X Ă R3, then the tangent plane to the
level surface Σλ at some point r is the affine plane orthogonal to the gradient ∇fprq and passing
through the point r, namely

tv P R3 such that x∇fprq,v ´ ry “ 0u .

The Cartesian equation of such a plane is

Bf

Bx
prq ¨ px´ aq `

Bf

By
prq ¨ py ´ bq `

Bf

Bz
prq ¨ pz ´ cq “ 0 ,

where v “ px, y, zq and r “ pa, b, cq.

ex: Considere as seguintes funções:

fpx, yq “ x2 ` y2 fpx, yq “ x2 ´ y2 fpx, yq “ x2

fpx, yq “ xy fpx, yq “ ex
2
`y2 fpx, yq “ 1´ y ´ x2

fpx, y, z, q “ x2 ` y2 ` z2 fpx, y, zq “ x2 ` y2 ´ z2 fpx, y, zq “ x2 ` y2 ´ z

Calcule o gradiente num ponto genérico onde estão definidas. Determine a recta/superf́ıcie tangente
à curva/superf́ıcie de ńıvel no ponto r “ p1, 1q (ou r “ p1, 1, 1q).

Critical points and local extrema. Let f : X Ñ R be a differentiable scalar field defined
in some domain X Ă Rn. Critical points (or stationary points) of f are points a P X where the
differential (hence the gradient) vanishes, i.e. where

dfpaq “ 0.

Observe that this means that all partial derivatives vanish.
If f has a local maximum or minimum at some interior point a P X (as, for example, the

origin for fpx, yq “ ´x2 ´ y2 or fpx, yq “ x2 ` y2), then it must be a critical point, since the
directional derivative Bf

Bv paq must vanishes there for any vector v P Rn. The converse is, of course,
false already in dimension one. Critical points such that in any neighborhood Bεpaq there exists
points x,y such that fpxq ă fpaq ă fpyq are said saddle points. The simplest example in the
plane is the origin for fpx, yq “ xy.

To decide if a critical point a is indeed a local minimum or maximum we must look at least at
the second derivatives of f , namely its Hessian matrix

Hessfpaq :“

ˆ

B2f

BxiBxj
paq

˙

.

It follows from Schwarz theorem that, if f is of class C2, this is a symmetric matrix. But this
implies that Hessfpaq is diagonalizable, namely that there exist n linear independent eigenvectors
w1, . . . ,wn, forming a base of Rn, and corresponding eigenvalues λ1, ..., λn, such that

Hessfpaq ¨wk “ λkwk

Now, given any direction v “
řn
k“1 vkwk, Taylor formula for the restriction t ÞÑ gptq “ f pa` tvq

gives
gptq “ gp0q `

ÿ

i

λkv
2
kt

2 ` higher order terms .

There follows

Proposition 16.1. Let a P X be a critical point of a scalar field f : X Ă Rn Ñ R of class
C2. If all the eigenvalues of the Hessian matrix Hessfpaq are positive/negative then a is a local
minimum/maximum of f . If the Hessian matrix has both positive and negative eigenvalues, then
a is a saddle point.

Observe also that if our scalar field is defined on the plane R2, then the Hessian matrix is two-
by-two matrix, and the task to detect its signature is much easier. In this case we can state the
recipe: a critical point of a scalar field fpx, yq is a local extremum iff the determinant det pHessfpaqq
is positive; moreover, the local extremum is a maximum/minimum iff one of the diagonal entries
of Hessfpaq is negative/positive.
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ex: Compute critical points of the following fields, and decide if they are maxima, minima or
saddle points.

fpx, yq “ px´ 1qpy ´ 2q fpx, yq “ x2 ` py ´ 3q2 fpx, yq “ x2 ´ y2 ` 7

fpx, yq “ x3y2 fpx, y “ sinpxq cospyq fpx, yq “ e´x
2
´y2

e.g. Geometric center. Given N points x1, x2, . . . , xN P Rn, we may try to minimize the
sum

Sprq “
N
ÿ

k“1

}xk ´ r}2

of the square distances from a given point r. The minimum is attained for r equal to the (geometric)
center

x :“
1

N

N
ÿ

k“1

xk .

e.g. Least squares. We measure n times an observable y in correspondence of another observ-
able x, obtaining the set of data

x1, y1, x2, y2 . . . xn, yn

We conjecture a law y “ fpx,aq, depending on certain parameters a “ pα1, . . . , αkq P Rk, and pose
the problem to find the “best” values of the parameters that fit the experimental results. One
popular answer, called least square fitting, consists in choosing those values of the parameters that
minimize the sum

Qpaq “
n
ÿ

k“1

pyk ´ fpxk,aqq
2

of the squares of the errors. In general, the condition ∇Qpaq “ 0 being nonlinear, cannot be solved
by exact methods. Computational softwares, in particular statistics software, use to have routines
dedicated to estimate a solution.

The answer is easy when we conjecture a linear law y “ α ` βx, In this case, computing the
partial derivatives BQ{Bα and BQ{Bβ, we get the two equations

n
ÿ

k“1

pyk ´ pα` βxkqq “ 0 and
n
ÿ

k“1

pyk ´ pα` βxkqqxk “ 0 ,

hence the system
"

β x` α “ y
nα` β

`

σ2
xx ` nx

2
˘

“ σ2
xy ` nxy

for α and β, where we used the notations x “ 1
n px1 ` x2 ` ¨ ¨ ¨ ` xnq and y “ 1

n py1 ` y2 ` ¨ ¨ ¨ ` ynq
for the mean values, and

σ2
xx :“

n
ÿ

k“1

pxk ´ xq
2 “

˜

n
ÿ

k“1

x2k

¸

´ nx2

σ2
xy :“

n
ÿ

k“1

pxk ´ xqpyk ´ yq “

˜

n
ÿ

k“1

xkyk

¸

´ nxy

for the covariances. After some rearrangement, we see that the critical point of Qpα, βq, hence the
answer according to the least squares principle, is given by the recipe

β “
σ2
xy

σ2
xx

and α “ y ´ βx .

It must be said that minima of Qpaq always exist, hence the method produces values of the
parameters for all laws we may conjecture, true or false! The actual value of the minimum, together
with some knowledge of the statistical errors in the data, gives a measure of the significance of the
result. You may learn more in any good manual on statistics.
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help: With Mathematica R©8 you may define your data and fit a line with the commands

data = {{100, 235}, {200, 337}, {300, 395}, {504, 451}, {600, 495}, {800, 534}, {1000, 574}};

line = Fit[data, {1, x}, x]

and produce the picture

Show[ListPlot[data, PlotStyle -> Red], Plot[{line}, {x, 50, 1050}]]

200 400 600 800 1000

400

500

600

ex: Na seguinte amostra, obtida por Galileo, foram registadas as coordenadas (altura x e
distância y) da trajectória de um objecto lançado com uma força horizontal,

x 100 200 300 450 600 800 1000
y 235 337 395 451 495 534 574

Ajuste uma recta.

ex: Na seguinte tabela, colecionada por Jaques Cassini, foram registadas as obliquidades da
ecĺıptica (o ângulo entre o plano equatorial da Terra e o seu plano orbital) py` 23q˝ em diferentes
datas t,

t ´140 ´140 390 880 1070 1300 1460
y 0.853 0.856 0.500 0.583 0.567 0.533 0.500

t 1500 1500 1570 1570 1600 1656 1672 1738
y 0.473 0.488 0.499 0.525 0.517 0.484 0.482 0.472

Ajuste uma recta. Retire os dados anteriores ao ano 1500, e ajuste outra recta. Discuta o resultado.

http://www.wolfram.com/mathematica/


17 CONTINUOUS-TIME MODELS AND SIMULATIONS 94

17 Continuous-time models and simulations

Systems of ordinary differential equations. Meaningful models of many physical, chemical,
biological . . . systems are written in the language of systems of differential equations

9x “ vpt,xq (17.1)

where xptq “ px1ptq, x2ptq, . . . , xnptqq P X Ă Rn is a vector of values of certain observables at time
t, and vpt,xq is a given direction field in the extended phase space T ˆX Ă Rˆ Rn.

e.g. Chemical reactions. The modern approach to the kinetics of chemical reactions is dis-
cussed in the article Chemical reaction kinetics of the Scholarpedia.

help: O campo vetorial do oscilador harmónico com atrito pode ser desenhado, no MathematicaR©,
usando a instrução

VectorPlot[{y, -x + 0.5 y}, {x, -1, 1}, {y, -1, 1}]

O resultado é

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Simulations. It is in general hopeless to find “exact” solutions of systems of differential equa-
tions, as long as they are not linear. For this reason, we must content with making simulations.

Euler method. Considere o problema de simular as soluções da EDO

9x “ vpt,xq .

O método de Euler consiste em utilizar recursivamente a aproximação linear

xpt` dtq ´ xptq » vpt,xq ¨ dt ,

dado um “passo” dt suficientemente pequeno. Portanto, a solução xpt0`n ¨dtq com condição inicial
xpt0q “ x0, é estimada pela sucessão pxnq definida recursivamente por

xn`1 “ xn ` vptn, xnq ¨ dt , (17.2)

onde tn “ t0 ` n ¨ dt. Numa linguagem como c++ ou Java, o ciclo para obter uma aproximação de
xptq, dado xpt0q “ x, é

while (time < t)

{

x += v(time, x) * dt ;

time += dt ;

}

http://www.scholarpedia.org/article/Chemical_reaction_kinetics
http://www.scholarpedia.org
http://www.wolfram.com/mathematica/
http://www.cplusplus.com/
http://www.java.com/en/
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e.g. The exponential. Considere a equação diferencial

9x “ x

com condição inicial xp0q “ 1. Mostre que, se o passo é dt “ ε, então o método de Euler fornece a
aproximação

xptq » p1` εq
n

onde n » t{ε é o número de passos. Deduza que, no limite quando o passo εÑ 0, as aproximações
convergem para a solução et, pois

lim
εÑ0

p1` εq
t{ε
“ lim
nÑ8

ˆ

1`
t

n

˙n

Método RK-4. O método de Runge-Kutta (de ordem) 4 para simular a solução de

9x “ vpt, xq com condição inicial xpt0q “ x0

consiste em escolher um “passo” dt, e aproximar xpt0 ` n ¨ dtq com a sucessão pxnq definida
recursivamente por

xn`1 “ xn `
dt
6 pk1 ` 2k2 ` 2k3 ` k4q

onde tn “ t0 ` n ¨ dt, e os coeficientes k1, k2, k3 e k4 são definidos recursivamente por

k1 “ vptn, xnq k2 “ v
`

tn `
dt
2 , xn `

dt
2 ¨ k1

˘

k3 “ v
`

tn `
dt
2 , xn `

dt
2 ¨ k2

˘

k4 “ vptn ` dt, xn ` dt ¨ k3q

• Implemente um código para simular sistemas de EDOs usando o método RK-4.

help: O pêndulo com atrito pode ser simulado, no MathematicaR©, usando as instruções

s = NDSolve[{x’[t] == y[t], y’[t] == -Sin[x[t]] - 0.7 y[t],

x[0] == y[0] == 1}, {x, y}, {t, 20}]

ParametricPlot[Evaluate[{x[t], y[t]} /. s], {t, 0, 20}]

O resultado é

-0.3 -0.2 -0.1 0.1 0.2 0.3

-0.2

-0.1

0.1

0.2

e.g. Pêndulo matemático. Considere a equação de Newton que modela as oscilações de um
pêndulo,

:θ “ ´ω2 sinpθq ´ α 9θ .

onde ω “
a

g{`, g é a aceleração gravitacional, ` o comprimento do pêndulo, e α ě 0 um coeficiente

de atrito. No espaço de fase, de coordenadas θ e p “ 9θ, a equação assume a forma do sistema

9θ “ p
9p “ ´ω2 sinpθq ´ αp

• Simule o sistema, e esboçe as trajectórias e as curvas de fase.

http://www.wolfram.com/mathematica/
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Retrato de fase do pêndulo (sem e com atrito).

e.g. Oscilador harmónico. As pequenas oscilações de um pêndulo em torno da posição de
equiĺıbrio estável θ “ 0 são descrita pela equação do oscilador harmónico

:q “ ´ω2q .

onde ω é a frequência caracteŕıstica. No espaço de fase, de coordenadas q e p “ 9q, a equação
assume a forma do sistema

9q “ p
9p “ ´ω2q

As tsoluç oes são
qptq “ A sin pωt` ϕq ou A cos pωt` φq ,

onde a amplitude A e as fases ϕ e φ dependem dos dados iniciais qp0q “ q0 e 9qp0q “ v0. A energia

Epq, pq “
1

2
p2 `

1

2
ω2q2

é uma constante do movimento, ou seja, d
dtE pqptq, pptqq “ 0.

Retrato de fase do oscilador harmónico.

e.g. Circuito LRC. A corrente Iptq num circuito RLC, de resistência R, indutância L e
capacidade C, é determinada pela EDO

L:I `R 9I `
1

C
I “ 9V ,

onde V ptq é a tensão que alimenta o circuito.

• Simule a corrente num circuito alimentado com uma tensão constante V ptq “ V0.

• Simule a corrente num circuito alimentado com uma tensão alternada V ptq “ V0 sinpγtq
(compare com a equação das oscilações forçadas amortecidas).
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e.g. Oscilador de van der Pol. Considere o oscilador de van der Pol33

:q ´ µp1´ q2q 9q ` q “ 0

que modela a corrente num circuito com um elemento não-linear.

• Simule o sistema e discuta o comportamento das soluções ao variar o parâmetro µ.

Retrato de fase e trajectórias do oscilador de van der Pol.

• Simule o oscilador forçado

:q ´ µp1´ q2q 9q ` q “ F0 sinpωtq

ao variar o parâmetro µ e a frequência ω.

e.g. Sistema de Lotka-Volterra. Considere o sistema de Lotka-Volterra

9x “ ax´ bxy
9y “ ´cy ` dxy

Foi proposto por Vito Volterra34 para modelar a competição entre x presas e y predadores, e
por Alfred J. Lotka35 para modelar o comportamento ćıclico de certas reacções qúımicas, como o
esquema abstracto

A`X Ñ 2X X ` Y Ñ 2Y Y Ñ B

Stationary solutions are found solving the system 9x “ 0 and 9y “ 0. This gives the trivial solution
p0, 0q, and the point pc{d, a{bq. To understand the other solutions, one observes that the function

Hpx, yq “ dx` by ´ c log x´ a log y

is a constant of the motion, i.e. d
dtHpxptq, yptqq “ 0. Therefore, orbits of the Lotka-Volterra system

are contained in the level curves Hpx, yq “ c.

33B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review 1 (1920), 701-710
and 754-762. B. van der Pol and J. van der Mark, Frequency demultiplication, Nature 120 (1927), 363-364.

34Vito Volterra, Variazioni e fluttuazioni del numero d’individui in specie di animali conviventi, Mem. Acad.
Lincei 2 (1926), 31-113. Vito Volterra, Leçons sur la Théorie Mathématique de la Lutte pour la Vie, Paris 1931.

35Alfred J. Lotka, J. Amer. Chem. Soc 27 (1920), 1595. Alfred J. Lotka, Elements of physical biology, Williams
& Wilkins Co. 1925.
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Phase portrait of the Lotka-Volterra system.

e.g. Rock-paper-scissor game. Consider the reaction

X ` Y
γ
Ñ 2X Y ` Z

α
Ñ 2Y Z `X

β
Ñ 2Z

modeled by the system
9x “ xpγy ´ βzq
9y “ ypαz ´ γxq
9z “ zpβx´ αyq

e.g. Double-negative feedback. The interplay between two mutually repressing genes is de-
scribed by the system36

9x “ α
1`yγ ´ x

9y “ β
1`xδ

´ y

e.g. Brusselator. O Brusselator é um modelo autocataĺıtico proposto por Ilya Prigogine e
colaboradores37 que consiste na reacção abstracta

AÑ X B `X Ñ Y ` C 2X ` Y Ñ 3X X Ñ D

• Simule o sistema
9x “ α´ pβ ` 1qx` x2y
9y “ βx´ x2y

para as concentrações das espécies cataĺıticas X e Y , obtido quando as concentrações rAs „ α
e rBs „ β são mantidas constantes.

• Simule o sistema
9x “ α´ pb` 1qx` x2y
9y “ bx´ x2y
9b “ ´bx` δ

para as concentrações de X, Y e B, obtido quando a concentração rAs „ α é mantida
constante e B é injectado a uma velocidade constante v „ δ.

Rerato de fase do Brusselator.

36T.S. Gardner, C.R. Cantor and J.J. Collins, Construction of a genetic toggle switch in Escherichia coli, Nature
403 (2000) 339-342.

37I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems, J. Chem. Phys. 48 (1968),
1655-1700. P. Glansdorff and I. Prigogine, Thermodynamic theory of structure, stability and fluctuations, Wiley,
New York 1971. G. Nicolis and I. Prigogine, Self-organization in non-equilibrium chemical systems, Wiley, New
York 1977.
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e.g. Reacção de Schnakenberg. Considere a reacção de Schnakenberg38

2X ` Y Ñ 3X AÑ Y X Ñ B

modelada pelo sistema
9x “ x2y ´ x` β
9y “ ´x2y ` α

para as concentrações x „ rXs e y „ rY s.

• Simule o sistema e discuta o comportamento das soluções ao variar so parâmetros.

Retrato de fase do sistema de Schnakenberg.

e.g. Oscilador bioqúımico de Goodwin. Um modelo de interações proteinas-mRNA proposto
por Goodwin39 é

9M “ 1
1`P ´ α

9P “M ´ β

onde M e P denotam as concentrações relativas de mRNA e proteina, respectivamente.

• Simule o sistema e discuta o comportamento das soluções ao variar so parâmetros.

Retrato de fase do sistema de Goodwin.

• Simule o sistema40
9M “ 1

1`Pn ´ αM
9P “Mm ´ βP

38J. Schnakenberg, Simple chemical reaction with limit cycle behavior, J. Theor. Biol. 81 (1979), 389-400.
39B.C. Goodwin, Temporal organization in cells, Academic Press, London/New York 1963. B.C. Goodwin,

Oscillatory behaviour in enzymatic control processes, Adv. Enzyme Regul. 3 (1965), 425-438.
40T. Scheper, D. Klinkenberg, C. Pennartz and J. van Pelt, A Mathematical Model for the Intracellular Cicardian

Rhythm Generator, J. Neuroscience 19 (1999), 40-47.
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e.g. Atrator de Lorenz. Considere o sistema de Lorenz 41

9x “ σpy ´ xq

9y “ xpρ´ zq ´ y

9z “ xy ´ βz

• Analize o comportamento assimptótico das trajectórias ao variar os parâmetros σ, ρ e β.

• Observe o comportamento das trajectórias quando σ » 10, ρ » 28 e β » 8{3.

Atractor de Lorenz.

41E.N. Lorenz, Deterministic nonperiodic flow, J. Atmspheric Science 20 (1963), 130-141.
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