Métodos Quantitativos (e Qualitativos)

5. Testes de hipóteses

Salvatore Cosentino D.Mat. U.Minho

5 jan 2021

Testes paramétricos

Observadas umas variáveis $x,\,y,\,\dots\,$ um cientista pode estar interessado em testar uma hipótese

do tipo

$$x = y$$

(por exemplo, verificar se a velocidade da luz não depende da direção relativa às estrelas fixas),

ou

(por exemplo, decidir se o universo está em expansão, ou seja, se a constante de Hubble H é positiva ou não),

ou

$$x \mod \mathrm{uma}$$
 certa distribuição

(por exemplo, verificar se o decaimento radioativo é descrito por uma lei exponencial)

(por exemplo, decidir se os possíveis resultados do lançamento de um dado são equiprováveis).

Testes de comparação de grupos/amostras

Nas C.S. (ou na medicina, na biologia, ...) tipicamente estamos interessados em comparar dois ou mais grupos ou tratamentos.

Uma possibilidade é a comparação de amostras independentes

(um grupo recebe um tratamento e um grupo de controlo recebe um placebo, ...)

Outra possibilidade é a comparação de amostras emparelhadas

(a mesma amostra é avaliada antes e depois do tratamento . . .)

Testes não paramétricos

Particularmente interessantes nas C.S. (ou na medicina, na biologia, \dots) são testes sobre dados categóricos.

Testes de aderência , ou sobre a qualidade do ajuste

(decidir se uma distribuição de probabilidade teórica descreve bem as frequências observadas . . .)

Testes de independência

(decidir se existem correlações entre duas variáveis, por exemplo, se ser canhoto depende ou não do sexo, . . .)

Testes de homogeneidade

(decidir se existem diferenças na distribuição de uma variável categórica observada em duas ou mais amostras/populações . . .)

Uma panóplia de testes

Existem muitos testes, mais ou menos sofisticados, pensado para as diferentes exigências experimentais.

Os testes mais comuns são os testes T de Student (utilizados para testes paramétricos e de comparação com variáveis numéricas, ...) e os testes qui-quadrado de Pearson (utilizados para testar aderência, independência e homogeneidade, ...) Outros testes de interesse nas C.S. são a análise da vaiância (em inglês, simplesmente ANOVA) (para detetar diferenças significativa entre amostras/populações . . .) o teste exato de Fisher e o teste de Barnard (para testar a independência, logo quantificar a correlação, entre duas variáveis categóricas dicotómicas) o teste G (para testar a aderência de umas frequências a umas distribuições teóricas)

Hipótese e alternativa

Como funciona um teste ?

Um teste é uma receita estandardizada para tomar uma decisão

entre uma hipótese H e a sua alternativa A

(também denotadas por H_0 , ou seja, hipótese nula, e H_1 , respetivamente).

dependendo dos resultados das experiências, ou seja, das observações de alguns observáveis.

Na prática, o cientista conjetura a alternativa A, e, na esperança de fazer uma descoberta científica, a compara com a hipótese H, tradicionalmente aceite pelo resto da comunidade científica, ou mais conservadora.

O modelo das observações é um modelo probabilístico,

e isto permite quantificar as diferentes probabilidades de tomar decisões corretas ou erradas dependendo se a hipótese é verdadeira ou falsa.

Estatística do teste

No modelo das observações, os resultados das experiências

$$x_1$$
 x_2 x_3 ...

(e eventualmente outras \dots) são valores observados de uma sequência de variáveis aleatóras X_1 X_2 X_3 \dots com certas leis hipotéticas, que dependem precisamente das hipóteses que queremos testar.

O teste é tipicamente construido sobre as propriedades de apenas uma variável aleatória

$$Z = f(X_1, X_2, X_3, \dots)$$

que é uma função de todas as X_k , chamada estatística do teste,

e portanto a resposta do teste depende do seu valor observado

$$z = f(x_1, x_2, x_3, \dots)$$

O ponto é que os probabilistas sabem calcular, ou pelo menos estimar, a lei de Z no caso da hipótese H ser verdadeira, \dots

...e com oportunas hipóteses razoáveis sobre os dados recolhidos.

Projetação

Naturalmente, para que as hipóteses razoáveis sobre os dados recolhidos, que justificam as receitas dos testes, sejam satisfeitas,

e para evitar falsos julgamentos, erros graves, ou até potencialmente perigosos,

é muito importante a projetação (em inglês, design) do teste, ou seja, quais dados são recolhidos e de que forma . . .

Este aspeto dos testes tem muito a ver com as especificidades das diferentes áreas de pesquisa.

Por exemplo, os médicos desenvolveram protocolos para testar a eficâcia de medicamentos, vacinas, tratamentos, . . .

```
(cego, duplo-cego, ...)
```

Podem ler as boas práticas e os protocolos adotados nas C.S. no

Chapter 14: Analyzing Quantitative Data de R.D. Bachman & R.K. Schutt, The practice of Research in Criminology and Criminal Justice, SAGE, 2018.

Região crítica

Fazer um teste consiste em calcular uma região crítica do teste (dita também região de rejeieção), o conjunto R (tipicamente um intervalo ou uma reunião disjunta de dois intervalos) dos possíveis valores da estatística Z que consideramos não aceitável se a hipótese for verdadeira.

O complementar desta região é dita região de aceitação do teste.

A receita do teste é então a seguinte:

se $z \notin R$ aceitamos a hipótese H.

ou seja, aceitamos o STATUS QUO.

Vice-versa,

se $z \in R$ rejeitamos a hipótese H

logo aceitamos a alternativa A, e publicamos a nossa descoberta numa revista!

O cálculo da região crítica deve ser feito de uma forma estandardizada, ou seja, codificada e aceite pela comunidade científica da área.

Como calcular a região crítica ?

Nível de significância

O nível de significância α do teste é a maior das probabilidades

$$\alpha = \max \, \mathbf{P} \, (\text{rejeitar} \, \, H \, \mid H \, \, \text{\'e verdadeira} \,)$$

de rejetar a hipótese se a hipótese for verdadeira.

Um cientista honesto testa a hipótese mais conservadora, ou seja, o STATUS QUO

(se quero anunciar ao mundo que a água tem memória, testo a hipótese de que a água não tem memória)

(se quero provar que um fármaco é eficaz no tratamento do Covid-19, testo a hipótese de que o fármaco tem o mesmo efeito de um placebo)

portanto rejeitar H quando H é verdadeira, chamado erro de tipo I, é considerado um erro grave.

Consequentemente, é importante utilizar valores pequenos do nível de significância α , tipicamente

$$5\%$$
 ou 1%

e escolher α , que determina a região crítica R, antes de fazer as experiências.

Potência

O outro possível erro é aceitar a hipótese H quando a alternativa A é verdadeira, ou seja, não reconhecer uma descoberta científica.

Este é chamado erro de tipo II, e é considerado menos grave do erro de tipo I.

Se a sua probabilidade máxima é

$$\beta = \max \mathbf{P} (\text{aceitar } H \mid A \text{ \'e verdadeira})$$

então

$$1-\beta$$

é chamado potência do teste.

Seria desejável ter β pequeno, e portanto potência grande (ou seja, próxima de um).

Lamentavelmente, quando β cresce então α decresce, e vice-versa!

É prática comum escolher a região crítica usando apenas um nível de significância α pequeno (5% ou 1%), assim sacrificando a potência $1-\beta$.

p-value

Os software de estatística calculam diretamente o valor de prova (em inglês, p-value) a partir dos dados das experiências e portanto do valor observado z da estatística do teste (e do número de observações, \dots).

O p-value é a probabilidade p

$$p = \mathbf{P} \left(\mathsf{observar} \ Z \ \mathsf{pior} \ \mathsf{que} \ z \ \mid H \ \mathsf{\acute{e}} \ \mathsf{verdadeira} \right)$$

de observar um valor pior, ou seja, mais extremo, do valor atualmente observado z se a hipótese for verdadeira.

Equivalentemente, é o menor nível de significância com que se rejeitaria a hipótese ${\cal H}$ numa experiência onde se observou o valor z da estatística.

Isto significa que se, por exemplo, p=0.05, então as nossa experiências permitem aceitar a hipótese com qualquer nível de significância $\alpha \geq 5\%$.

Assim, um p-value suficientemente pequeno, por exemplo

é indício de que muito provavelmente é oportuno rejeitar a hipótese H, logo aceitar a alternativa A (e portanto anunciar uma descoberta científica!).

Exemplo: a moeda "honesta" ...

Como decidir se uma moeda é honesta ou enfeitiçada ?

O senso comum, logo a hipótese conservadora H, diz que se uma moeda é honesta então a probabilidade de sair CARA em cada lançamento é p=1/2. Portanto a alternativa A, a moeda enfeitiçada, é uma moeda tal que $p \neq 1/2$.

Se eu lançar um número grande n de vezes uma moeda honesta, não é naturalmente razoável esperar um número de CARAs exatamente igual a n/2.

A variável S_n , que conta o número de CARAs obtidas em n lançamentos (ou também a posição de um passeio aleatório simétrico) tem flutuações típicas da ordem de

$$\left|S_n - \frac{n}{2}\right| \sim \sqrt{n}$$

em torno do seu valor médio n/2.

Mais precisamente, a teoria das probabilidades permite quantificar a probabilidade destas flutuações.

Por exemplo, o teorema limite central diz que com probabilidade pelo menos 95% esta variável está num intervalo

$$S_n \simeq \frac{n}{2} \pm \sqrt{n}$$

... ou enfeitiçada?

Ontem a minha filha lançou $n=100\ {\rm vezes}$ uma moeda de um euro, obtendo um número de CARAs igual a

$$S_n = 44$$

A diferença entre o valor esperado $50~{\rm e}$ o valor observado $44~{\rm \acute{e}}$ um efeito natural do acaso, é uma flutuação típica, pois

$$|44 - 50| \sim \sqrt{100}$$

Em outras palavras, o valor observado S_n está bem dentro do intervalo de confiança de nível 95%

$$S_n \simeq 50 \pm 10$$

Assim, o resultado de um teste da hipótese H com nível de significância $\alpha=5\%$ é que a hipótese é aceitável.

A probabilidade de obter valores iguais ou ainda mais extremos de 53, chamada p-value, também pode ser calculada, usando a aproximação do teorema limite central. O seu valor é

$$p = \mathbf{P}(|S_n - 50| \ge 4) \simeq 0.52$$

que é uma probabilidade bastante grande.

Conclusão: não temos razões para suspeitar que a minha moeda seja enfeitiçada.

Testes sobre médias ingênuos

Uma maneira (aparentemente) ingênua de testar hipóteses sobre médias consiste em calcular intervalos de confiança apropriados.

Seja m o valor verdadeiro , ou seja, o valor esperado $\mathbf{E}X=m$ do observável x.

Para testar a hipótese $(m=m_0)$ contra a alternativa simétrica $(m \neq m_0)$, podemos calcular un intervalo de confiança centrado

$$x = \overline{x} \pm t_{1-\alpha/2} \frac{S_x}{\sqrt{n}}$$

de nível $1-\alpha=95\%$, e aceitar a hipótese se m_0 está neste intervalo.

Para testar a hipótese $(m \leq m_0)$ contra a alternativa asimétrica $(m > m_0)$ (natural quando $m < m_0$ não faz sentido) podemos calcular un intervalo de confiança asimétrico

$$x < \overline{x} - t_{1-\alpha} \frac{S_x}{\sqrt{n}}$$

de nível $1 - \alpha = 95\%$, e aceitar a hipótese se m_0 está neste intervalo.

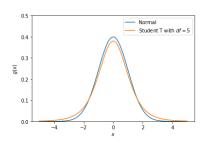
Estatística do teste T de Student

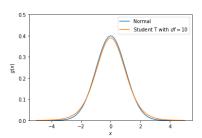
Se a lei das X_k é normal, com média m (o valor verdadeiro do observável x) e desvio padrão σ (estimado por S_x), então a variável

$$Z = \frac{\overline{X} - m}{S_x / \sqrt{n}}$$

tem lei de Student¹ T_{n-1} com df = n-1 graus de liberdade (em inglês, degrees of freedom),

que é muito bem aproximada por uma lei normal reduzida N(0,1) quando n é grande (basta $df \geq 5$, como podem ver nas imagens).





¹pseudónimo do estatístico e químico inglês Gosset que, trabalhando na cervejaria Guinness em Dublin, não podia publicar artigos usando o seu próprio nome

Cálculo das probabilidades

Obtidos os resultados $x_1,x_2,...,x_n$ das experiências, e se a hipótese é $(m=m_0)$, podemos calcular

$$z = \frac{\overline{x} - m_0}{S_x / \sqrt{n}}$$

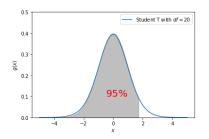
que é o valor observado da estatística ${\cal Z}$ do teste.

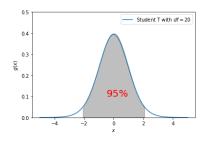
Fixado um nível de significância, por exemplo $\alpha=5\%$, as tabelas/software calculam o valor t_{α} tal que

$$\mathbf{P}\left(Z > t_{1-\alpha}\right) = \alpha$$

ou o valor $t_{1-lpha/2}$ tal que

$$\mathbf{P}\left(|Z| > t_{1-\alpha/2}\right) = \alpha$$





Receitas do teste T de Student

...e finalmente:

uma região crítica para testar a hipótese $(m=m_0)$ contra a alternativa simétrica $(m
eq m_0)$ é

$$|\overline{x} - m_0| > t_{1-\alpha/2} \frac{S_x}{\sqrt{n}}$$

uma região crítica para testar a hipótese $(m \leq m_0)$ contra a alternativa asimétrica $(m > m_0)$ é

$$\boxed{\overline{x} > m_0 + t_{1-\alpha} \frac{S_x}{\sqrt{n}}}$$

Testes T de Student sobre probablidades

Um caso particular de média é uma probabilidade p, a probabilidade de sucesso, logo a média, em uma prova de Bernoulli.

Neste caso as observações x_k têm valores 0 ou 1, e a probabilidade $p = \mathbf{P}(x_k = 1)$ é estimada com \overline{x} , a frequência amostral.

Na hipótese $(p=p_0)$, então a variável $n\overline{x}$ tem lei binomial B(n,p), com experança np_0 e variância $np_0(1-p_0)$, logo a variável

$$Z = \frac{\overline{x} - p_0}{\sqrt{p_0(1 - p_0)/n}} \sim N(0, 1)$$

tel lei aproximadamente normal N(0,1) quando n é grande.

Consequentemente, fixado um nível de significância $\alpha=5\%$ (ou menor), uma região crítica para testar a hipótese $(p=p_0)$ contra a alternativa asimétrica $(p>p_0)$ é

$$\overline{x} > p_0 + \phi_{1-\alpha} \frac{\sqrt{p_0(1-p_0)}}{\sqrt{n}}$$

onde $\phi_{1-\alpha} \simeq 1.96$ é o quantil da lei normal.

Testes de comparação

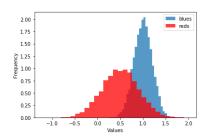
O problema é decidir se dois observáveis quantitativos, $x \in y$, por exemplo medidos em duas amostras independentes, ou apenas numa amostra antes e depois de um tratamento, são iguais.

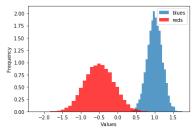
(por exemplo, decidir se a velocidade da luz na direção do movimento terrestre é igual a velocidade da luz na direção ortogonal)

Uma maneira (aparentemente) ingênua de testar a hipótese (x=y) contra a alternativa $(x \neq y)$ consiste em calcular os dois intervalos de confiança

$$\overline{x} \pm t_{1-\alpha/2} \frac{S_x}{\sqrt{n}} \qquad \text{e} \qquad \overline{y} \pm t_{1-\alpha/2} \frac{S_y}{\sqrt{m}}$$

de nível suficientemente grande ($\alpha \geq 95\%$ ou 99%), e aceitar a hipótese se estes intervalos não forem claramente disjuntos.





Estatística do teste de comparação de Student

Sejam

$$x_1$$
 x_2 x_3 \dots x_n e y_1 y_2 y_3 \dots y_m

as observações.

Se as leis dos x_k e dos y_k são normais, com variâncias σ_x^2 e σ_y^2 , respectivamente, então a variável

$$z = \frac{\overline{x} - \overline{y}}{\sqrt{\sigma_x^2/n + \sigma_y^2/m}}$$

tem lei normal N(0,1) na hipótese (x=y).

As variâncias podem ser estimadas com as variâncias amostrais S_x^2 e S_y^2 .

Se

$$S_{\text{tot}}^2 = \frac{1}{n+m-2} \left((n-1)S_x^2 + (m-1)S_y^2 \right)$$

denota a variância total, então a variável

$$z = \frac{\overline{x} - \overline{y}}{S_{\text{tot}}\sqrt{1/n + 1/m}}$$

tem lei de Student T_{n+m-2} com df = n + m - 2 graus de liberdade.

Receita do teste de comparação Student

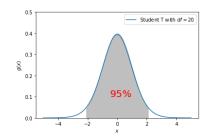
Finalmente, fixado um nível de confiança, por exemplo $\alpha = 5\%$,

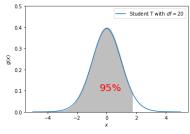
uma região crítica para testar a hipótese (x=y) contra a alternativa simétrica $(x \neq y)$ é

$$|\overline{x} - \overline{y}| > t_{1-\alpha/2} S_{\text{tot}} \sqrt{\frac{1}{n} + \frac{1}{m}}$$

e uma região crítica para testar a hipótese $(x \leq y)$ contra a alternativa asimétrica (x > y) é

$$\overline{x} - \overline{y} > t_{1-\alpha} S_{\text{tot}} \sqrt{\frac{1}{n} + \frac{1}{m}}$$





Testes de aderência

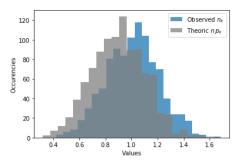
O problema é testar um modelo probabilístico.

(por exemplo, decidir se um dado é "honesto", ou seja, mostra as suas faces com probabilidades iguais \dots)

A hipótese H é: o observável X assume os valores x_1,x_2,\ldots,x_M (que podem ser classes) com probabilidades

$$p_k = \mathbf{P}(X = x_k)$$

Uma ideia natural é comparar os histogramas das observações com o histograma teórico, ou seja, com a função massa de probabilidades.



Flutuações esperadas

Sejam $f_1, f_2, ..., f_M$ as frequências empíricas em n observações, ou seja

$$f_k = \frac{n_k}{n}$$

onde n_k o número de vezes que observamos o valor/classe x_k .

A lei dos grandes números sugere que

$$f_k \sim p_k$$

logo $n_k \sim np_k$, quando n é grande.

O teorema limite central sugere que os desvios quadráticos observados

$$(n_k - np_k)^2$$

sejam da ordem (ou seja, uma ou duas ...vezes) das variâncias esperadas

$$np_k (1 - p_k) \simeq np_k$$

(se os p_k 's são pequenos).

Qui-quadrado esperado

Uma medida global das flutuações observadas é a soma dos quocientes

$$Q^2 = \sum_{k=1}^{M} \frac{(n_k - np_k)^2}{np_k}$$

Valores esperados de Q^2 no caso da hipótese ser verdadeira são portanto da ordem de

$$Q^2 \sim M$$

Um teorema de Pearson diz que, quando n é grande, as variáveis Q^2 têm leis bem aproximadas pela lei de uma variável qui-quadrado $\chi^2(M-1)$ com $d\!f=M-1$ graus de liberdade.

Os estatísticos concordam em dizer que a aproximação de Pearson começa a ser boa (e portanto o teste é significativo) desde que os números esperados np_k de observações em cada uma das classes sejam

$$np_k > 5$$

Se o número de graus de liberdade é mesmo grande, como $d\!f \geq 50$, então uma variável qui-quadrado é, com probabilidade 95%, limitada por

$$Q^2 \le M + 2\sqrt{2M}$$

Receita do teste qui-quadrado sobre a aderência

Uma região crítica do teste de aderência com nível de significância α é portanto

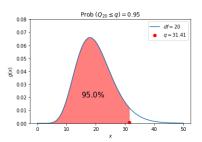
$$Q^2 > q_{1-\alpha}$$

onde $q_{1-\alpha}$ é o quantil de uma variável $\chi^2(nM1)$.

Em alternativa, um software calcula diretamente o p-value, ou seja, a probabilidade p de obter um qui-quadrado superior ao valor observado Q^2 . Então

se
$$p<\alpha$$
 rejeitamos a hipótese H

logo concluimos que a lei conjeturada não descreve bem os resultados da experiência.



Testes de independência

O problema é testar a independência entre dois (ou mais) observáveis, por exemplo, entre duas caraterísticas de uma população.

(por exemplo, decidir se, ao lançar um dado e uma moeda, o número de pintas que mostra o dado é independente da face que mostra a moeda . . .)

(por exemplo, decidir se a probabilidade de desenvolver uma doença depende ou não da presença de um determinado gene ...)

Na linguagem das C.S., o objetivo é procurar alguma forma de associação entre duas caraterísticas de uma população

(por exemplo, determinar os fatores que influenciam o desenvolvimento de um comportamento criminoso \dots)

Naturalmente, associação não significa necessariamente dependência!

A dicotomia correta é entre independência e correlação, objeto da próxima e última aula.

Independência

Apesar de ser uma palavra do dia a dia, e ter até festividades dedicadas, para matemáticos e físicos a independência tem um significado preciso e quantificável (que é de fato a ideia central da teoria das probabilidades).

O que significa, por exemplo, dizer que "ao lançar um dado e uma moeda (que nos achamos não falarem entre si), o número de pintas que mostra o dado é independente da face que mostra a moeda" ?

Dizer que a probabilidade de sair, por exemplo, UMA PINTA é p=1/6 significa que o dado mostra UMA PINTA aproximadamente uma vez em cada 6 lançamentos.

Por outro lado, dizer que a probabilidade de sair CARA é q=1/2 significa que a moeda mostra CARA aproximadamente uma vez em cada 2 lançamentos.

Assim, se lançamos 12 vezes um dado e uma moeda, esperamos oservar $12\cdot p=2$ vezes UMA PINTA e, destas duas vezes, apenas $2\cdot q=1$ vez CARA. Assim, a probabilidade de observar contemporaneamente CARA e UMA PINTA é

$$\frac{1}{12} = p \cdot q$$

Em geral, as duas variáveis X e Y são independentes se

$$\boxed{\mathbf{P}(X = x_i \text{ e } Y = y_j) = \mathbf{P}(X = x_i) \cdot \mathbf{P}(Y = y_j)}$$

Tabelas de contingência

Se as variáveis X e Y assumem valores/classes

$$x_1, \dots x_M$$
 e y_1, \dots, y_N

respetivamente, então o resultado de uma experiência é uma tabela de contingência, que conta os números

$$n_{ij} = \#\{ ext{observações tais que} \ X = x_i \ \ ext{e} \ \ Y = y_j \}$$

num total de n observações.

	y_1	y_2	y_3	 total
x_1	n_{11}	n_{12}	n_{13}	n_{1*}
x_2	n_{21}	n_{22}	n_{23}	n_{2*}
x_3	n_{31}	n_{32}	n_{33}	n_{3*}
:	:	:	:	
total	n_{*1}	n_{*2}	n_{*3}	n

Também, podemos calcular os números de vezes

$$n_{i*} = \sum_{j=1}^N n_{ij}$$
 e $n_{*j} = \sum_{i=1}^N n_{ij}$

em que foram observados os eventos $(X=x_i)$ ou $(Y=y_j)$, respetivamente, assim que o número total das observações é

$$n=\sum_{i}n_{ist}=\sum_{j}n_{st j}$$

Frequências observadas e esperadas

As probablidades $\mathbf{P}(X=x_i)$ e $\mathbf{P}(Y=y_j)$ são estimadas pelas frequências observadas

$$f_{i*}=rac{n_{i*}}{n}$$
 e $f_{*j}=rac{n_{*j}}{n}$

dos eventos $(X = x_i)$ ou $(Y = y_j)$, respetivamente.

e as probabilidades $\mathbf{P}(X=x_i\,\mathrm{e}\,|Y=y_j)$ são estimadas pelas frequências observadas

$$f_{ij} = \frac{n_{ij}}{n}$$

Na hipótese de independência, é natural esperar que

$$f_{ij} \sim f_{i*} f_{*j}$$

e portanto que as ocorrências esperadas dos eventos $(X=x_i \ \ {\rm e} \ Y=y_j)$ sejam da ordem de

$$n f_{i*} f_{*j}$$

Esta expetativa deve ser comparada com as ocorrências oservadas n_{ij} .

Flutuações e qui-quadrado esperado

O teorema limite central sugere que as flutuações das ocorrências observadas n_{ij} em torno do valor esperado $n\,f_{i*}\,f_{*j}$,

$$(n_{ij} - n f_{i*} f_{*j})^2$$

sejam da ordem das variâncias esperadas

$$n f_{i*} f_{*j} (1 - f_{i*} f_{*j}) \simeq n f_{i*} f_{*j}$$

Consequentemente, esperamos que a soma dos quocientes

$$Q^{2} = \sum_{ij} \frac{(n_{ij} - n f_{i*} f_{*j})^{2}}{n f_{i*} f_{*j}}$$

a estatística do teste qui-quadrado, seja da ordem de

$$Q^2 \sim MN$$

o número total de classes das duas variáveis (ou seja, o número de entradas da tabela de contingência), e não muito maior.

Um teorema de Pearson diz que, quando n é grande, a variável Q^2 tem lei bem aproximada pela lei de uma variável qui-quadrado $\chi^2((M-1)(N-1))$, com df=(M-1)(N-1) graus de liberdade.

Receita do teste qui-quadrado para a independência

Uma região crítica de um teste de independência com nível de significância α é portanto

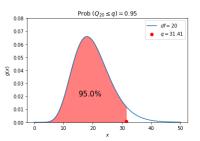
$$Q^2 > q_{1-\alpha}$$

onde $q_{1-\alpha}$ é o quantil da lei qui-quadrado.

Em alternativa, um software calcula o p-value, ou seja, a probabilidade p de obter um qui-quadrado superior ao valor observado Q^2 . Então

se
$$p<\alpha$$
 rejeitamos a hipótese H

e portanto concluimos que as variáveis não são independentes.



Coeficiente Φ

Quando as variáveis são dicotómica, logo a tabela de contingência é

	y = 0	y=1	total
x = 0	n_{00}	n_{01}	n_{0*}
x = 1	n_{10}	n_{11}	n_{1*}
total	n_{*0}	n_{*1}	n

uma medida da falta de independência, ou seja, da correlação (que nas C.S, é chamada associação) entre as variáveis é o coeficiente Φ

$$\Phi = \frac{n_{00} \, n_{11} - n_{01} \, n_{10}}{\sqrt{n_{0*} \, n_{1*} \, n_{*0} \, n_{*1}}}$$

(conhecido como Matthews Correlation Coefficient nas áreas da bioquímica e do machine learning), que é um caso particular do coeficiente de correlação de Pearson², e assume valores entre -1 e 1.

O seu quadrado é

$$\Phi^2 = \frac{Q^2}{n}$$

Valores $\Phi \simeq 0$ indicam independência, e valores $\Phi \simeq \pm 1$ indicam correlação, positiva ou negativa, respetivamente.

²tratado na próxima aula

Exemplo: um dado e uma moeda . . .

A minha filha lançou n=120 vezes um dado e uma moeda, obtendo os resultados

	UM	DOIS	TRÊS	QUATRO	CINCO	SEIS	total
CARA	10	9	11	12	6	5	53
COROA	8	16	13	7	7	16	67
total	18	25	24	19	13	21	120

Com probabilidade 95%, uma moeda honesta mostra CARA um número de vezes

$$n\frac{1}{2} \pm 2\sqrt{n\frac{1}{2}\left(1 - \frac{1}{2}\right)} \simeq 60 \pm 11$$

um dado honesto mostra cada uma das suas faces um número de vezes

$$n\frac{1}{6} \pm 2\sqrt{n\frac{1}{6}\left(1 - \frac{1}{6}\right)} \simeq 20 \pm 8$$

e um dado e uma moeda honestos e independentes mostram cada um dos 12 resultados possíveis um número de vezes

$$n\frac{1}{12} \pm 2\sqrt{n\frac{1}{12}\left(1 - \frac{1}{12}\right)} \simeq 10 \pm 6$$

Os resultados da experiência são claramente compatíveis com estes intervalos.

... honestos e independentes

Os testes qui-quadrado não podem que confirmar as nossas observações.

Um teste de aderência sobre a moeda, a hipótese nula sendo equiprobabilidade entre CARA e COROA, tem como resultados

$$Q^2 \simeq 1.63 \qquad {\rm e} \qquad p \simeq 0.20$$

Um teste de aderência sobre a dado, a hipótese nula sendo equiprobabilidade entre UMA, DUAS, TRÊS, QUATRO, CINCO e SEIS PINTAS, tem como resultados

$$Q^2 \simeq 4.80$$
 e $p \simeq 0.44$

Finalmente, um teste de independência sobre dado e moeda tem como resultado

$$Q^2 \simeq 7.98$$
 e $p \simeq 0.16$

Testes de homogeneidade

O problema é testar a homogeneidade entre duas ou mais populações en relação a uma certa variável, que mede uma certa caraterística dos indivíduos.

(por exemplo, decidir se a distribuição dos ordenados pro capite \acute{e} igual nos diferentes paises da UE \ldots)

(por exemplo, decidir se uma terapia tem os mesmos efeitos em pacientes com diferentes tipos de uma determinada doença ...)

É essencialmente um teste de independência entre duas variáveis X e Y se consideramos que a variável X determina a população, ou seja, que os seus valores

$$x_1 \quad x_2 \quad \dots \quad x_M$$

são apenas os nomes/classificadores das diferentes populações, e que portanto podemos substituir por $1,2,3,\ldots,M$.

Naturalmente, de cada população é escolhida uma amostra, de tamanho razoável e de forma possivelmente aleatória, de acordo com os protocolos usuais das técnicas de amostragem.

Tabelas de contingência

Se a variável Y assume os valores/classes

$$y_1 \quad y_2 \quad \dots \quad y_N$$

respetivamente, então o resultado de uma experiência é uma tabela de contingência, que conta os números

$$n_{ij}=\#\{{
m observações\ de}\,Y=y_j\ \ {
m dentro\ da}\ i ext{-\'esima\ população}\ \}$$

	y_1	y_2	y_3	 total
1	n_{11}	n_{12}	n_{13}	n_1
2	n_{21}	n_{22}	n_{23}	n_2
3	n_{31}	n_{32}	n_{33}	n_3
:	:	:	:	
\overline{M}	n_{M1}	n_{M2}	n_{M3}	n_M
total	n_{*1}	n_{*2}	n_{*3}	n

Neste caso as somas

$$n_i = \sum_{i=1}^{N} n_{ij}$$

são os tamanhos das diferentes amostras das M populações consideradas.

Frequências observadas e esperadas

As somas

$$n_{*j} = \sum_{i=1}^{N} n_{ij}$$

calculam as ocorrências dos valores y_j na amostra total, de tamanho

$$n = \sum_{i} n_i$$

assim que as frequências observadas dos diferentes valores de Y na amostra total são

$$f_j = \frac{n_{*j}}{n}$$

Na hipótese de homogeneidade, os valores esperados das ocorrências dos valores y_j dentro da i-ésima amostra são portanto

$$n_i f_j$$

Estes valores devem ser comparados com as ocorrências observadas

$$n_{ij}$$

Flutuações e qui-quadrado esperado

O teorema limite central sugere que as flutuações das ocorrências observadas n_{ij} em torno do valor esperado $n_i\,f_j$, ou seja,

$$(n_{ij} - n_i f_j)^2$$

sejam da ordem das variâncias esperadas

$$n f_j (1 - f_j) \simeq n_i f_j$$

Consequentemente, esperamos que a soma dos quocientes

$$Q^{2} = \sum_{ij} \frac{(n_{ij} - n_{i} f_{j})^{2}}{n_{i} f_{j}}$$

seja da ordem do produto

$$Q^2 \sim MN$$

o número de classes da variável vezes o número das populações, e não muito maior.

Mais uma vez, um teorema de Pearson diz que, quando n é grande, a lei da variável Q^2 é bem aproximada pela lei qui-quadrado $\chi^2((M-1)(N-1))$, com df=(M-1)(N-1) graus de liberdade.

Receita do teste qui-quadrado para a homogeneidade

Uma região crítica de um teste de homogeneidade com nível de significância α é portanto

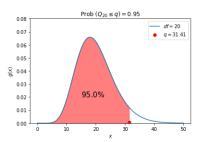
$$Q^2 > q_{1-\alpha}$$

onde $q_{1-\alpha}$ é o quantil da lei qui-quadrado.

Em alternativa, um software calcula o p-value, ou seja, a probabilidade p de obter um qui-quadrado superior ao valor observado Q^2 . Então

se
$$p<\alpha$$
 rejeitamos a hipótese H

e portanto concluimos que as diferentes amostras/populações não são homogéneas.



R.A.

Hipótese e alternativa.

Estatística do teste

Nível de significância e potência do teste.

Valor de prova.

Testes T de Student .

Testes qui-quadrado de Pearson.

Testes de aderência.

Testes de independência.

Testes de homogeneidade.