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Abstract

This is not a book! These are personal notes written while preparing lectures on “Anélise
Matemadtica 3” for students of FIS in the a.y. 2007/08 and then 2009/10. They are based on
previous notes on “Complementos de Andlise Matematica” for students of ENGSI, FIS, FQ(E), QP
and QT. They are rather informal and may even contain mistakes. I tried to be as synthetic as I
could, without missing the observations that I consider important.

I probably will not lecture all I wrote, and did not write all I plan to lecture. So, I included empty
or sketched paragraphs, about material that I think should/could be lectured within the same course.

References contain some introductory manuals, some classics, and other books where I have learnt
things in the past century. Besides, good material and further references can easily be found on the
web, for example in Wikipedia.

Pictures were made with “Grapher” on my MacBook.
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1 Heat and diffusion

The simples model for propagation of heath and diffusion are

ou 0%u ou

where 3 is a positive parameter.

Example (heat propagation/conduction). Counsider a thin wire of length ¢, section s and density p,
so thin that its temperature profile at time ¢ may be considered a function of the length only, say u(z,t)
with 0 < x < /. If the two ends are in thermal contact with two thermostats maintained at constant
temperatures a and b, experiments show that the temperature profile stabilizes at the stationary linear
profile

14

The heath flowing along the wire’s section in unit time is seen to be 6Q) = —k:sb_Ta, where k is a coefficient
of thermal conduction which characterize the wire’s material.

Assume now that we have a non-stationary temperature profile u(z,t) at time ¢t. The heath flow
across the z-cross-section between the times ¢; and ¢ is then

a+

2 ou
5Q——/t1 ks%(x,t)dt.

But the amount of heat necessary to increase the temperature of a conductor by §7T is
0Q = cvdT,

where c is the specific heat of the material and v is the volume. Hence the heat balance for the piece of
wire between 1 and x2, and between times t; and t5 is

ou ou T2l
(&E(l'g,t) - &v(xht)) dt—&—/gﬁ1 /t1 F(z,t)dtdx,

where F'(z,t) represents the contribution of some heat source. Using the mean values theorem we find,
in the limit z5 — 27 and t2 — %1, the equation

/:2 cps (u(z, ta) —u(x,ty)) de = /t2 ks

1 t1

0%u

u
k4 F
Por = kgm T I,

that we may write as
ou 0%u
at_ﬂax2+f(x7t)7

having defined the coefficient of thermal conduction 8 = k/(c¢p), and where f(z,t) = F(x,t)/(cp) is a
heat source density.

Example (diffusion).

Example (Brownian motion). The first satisfactory theory of Brownian motion (the erratic move-
ments of particles suspended in a liquid, observed by the botanist Robert Brown in 1827) is due to Albert
Einstein !. With clever use of ideal experiments, mechanical and thermodynamic ideas, he was able to
show that the probability density P(zq|z,t) to find a Brownian particle in = at time ¢ provided it were
at xo at time 0 is the non-negative solution of the diffusion equation

or o
ot 0x?

such that lim; .o P(zo|z,t) = 0 for any = # x¢, and [ P(zo|z,t)dz = 1. Above, the “diffusion constant”
is

:07

RT

ﬁ:ma

LA. Einstein, Uber die von der molekularkinetischen Theorie der Wirme geforderte Bewegung von in ruhenden
Flissigkeiten suspendierten Teilchen, Ann. Phys. 17, 549, 1905. Translated and reprinted in A. Einstein, Investiga-
tions on the Theory of Brownian Movement, Dover, New York, 1956.



where R ~ 8314.51J/kmol-K is the perfect gas constant, T the absolute temperature, N ~ 6.00221 x
10%*mol ! the Avogadro number, and o = 67na a friction coefficient (depending on the dynamic viscosity
n of the liquid/gas and the radius a of the Brownian particle). One can check that the solution of this
problem is given by the (shifted and scaled) Gaussian

P(xo|z,t) = e~ (z=w0)*/4Bt

1
2\/mpt

The mean square displacement in time ¢ is

(z(t)?) = /00 22 P(z,t)dx

— 00

= 20,

so that the diffusion constant may be measured in experiments (and indeed in this way Perrin estimated
a value of the Avogadro number, winning a Nobel prize few years after Einstein proposal). You may also
see that the Brownian particle is displaced of an average amount

[a(t — 6t) — 2(t)] ~ /25t

during a small interval of time with length ¢, a fact which explains why its trajectories do not look like
the familiar differentiable curves of Newtonian mechanics. Of course, you may say that Einstein’s model
does not work for short intervals of time, and indeed improved models for the Brownian motion were
proposed later by L.S. Ornstein and G.E. Uhlenbeck.

1.1 Maximum value principle and uniqueness theorem

The uniqueness and stability theorems for the one-dimensional heat equation come from the obvious
physical principle saying that, in absence of internal heat sources, any interior point of a conductor at
time ¢t > 0 cannot be hotter or colder than it were a time ¢ = 0 or than the hotter or colder boundary
points (where energy is coming in or out). Technically, the principle is stated as

Maximum value principle.  Let u(z,t) be a smooth solution of the heat equation in a finite rectangle
R =[a,b] x [0,T). Then u attains its mazimum and its minimum for t =0 or at the boundary x = a or

Proof. First, call B = {(z,t) € R s.t. t=0o0r 2 =a or x = b} the set where the maximum and
minimum of u will eventually attained. Let M = max(, ;)ep u(z,t), and assume that there is some point
(z0,t0) € R\B where u(zg,ty) = M + ¢ for some positive ¢. Define an auxiliary function v as

3

v(x,t) = u(z,t) 5T

(t_t0)7

and observe that it is bounded by v(x,t) < M +¢/2 on B. Since v(xg,t9) = M +¢, v attains its maximum
in some point (x1,t1) € R\B. Computing derivatives, we must have

0%v 0%u
— t1) = — t1) <0
922 (w1,t1) 922 (w1,11) <
and 5 5
v U €
—(x1,t1) = —(x1,t1) — = >0
(@1 t) = S (k) = o 20,
which is impossible since u satisfies the heat equation. To prove the analogous statement for the minimum,

just repeat the argument for the function —u(z,t). q.e.d.
Applying the maximum principle to the difference of any two solutions of the heat equation we get the

Uniqueness theorem. There exists at most one smooth solution of the heat equation in a bounded
interval, given any initial and boundary conditions.

Another interesting consequence of the maximum principle is the



Stability theorem. If u(xz,t) and v(z,t) are two solutions of the heat equation on a finite interval I
such that |u(z,t) —v(z,t)| < e fort =0 and at the boundary points of I, then |u(x,t) —v(x,t)| < e for
any x € I and any time t > 0.

It may be rephrased saying that the Cauchy problem for the heat equation is “well posed”, a small
uncertainty on the initial and boundary conditions does not grow with time.
The uniqueness theorem in a infinite domain needs a separate proof.

1.2 Diffusion on the line and heat kernel

Direct computation shows that the “gaussian”

1 2
P(r,t) = ——=e " /45t
(2,) NG
is a solution of the heat equation
or 0P
ot 0z?

on the line z € R. Moreover, it has constant integral

=0

/ P(z,t)dx =1

and satisfies
}in}) P(z,t) =0

for any = # 0. Observe that, for any € > 0,
/ Pz —¢,t)dE — 1 and / Pz —&,t)dE — 0
|€—z|<e |E—z|>e

as t — 07. This implies that, if ¢(z) is a continuous and bounded function, then

o0

t—0t — 0o
so that we can interpret P(z,t) as being the solution of the heat equation with initial condition P(z,0) =
d(x), and as such it is called fundamental solution of the heat equation, or heat kernel. But then we can
write other solutions as “superpositions” of the fundamental solutions, namely as integrals

u(zt) = /Oo H(€)P(x — E.1)de

e—($—€)2/4ﬁtd§.

1 o0
T/W—Bt/_ww(ﬁ)

You may check that the above formula, called Poisson’s formula, is the solution of the heat equation with
initial condition u(x,0) = ¢(z), provided that ¢(x) is continuous and bounded on the real line.

1.3 Separation of variables and Fourier series solutions

Here we pose the problem to find solutions, as many as possible, of the heat equation

Ov 9%v

ot " ox?

in some interval 0 < z < /.

Constant boundary conditions. We start with the problem with constant boundary conditions, say
v(0,t) = a and v(¢,t) = b. Observe that, if we set v(z,t) = u(x,t) + a+ (b—a)x /¢, then the new function
u(x,t) also satisfies the same heat equation

ou 9%u

o Yo =0



with zero boundary conditions u(0,¢) = 0 and u(¢,t) = 0. So, we may restrict to this last problem,
describing heat propagation in a thin conductor whose ends are in thermal contact with two thermostats
at fixed zero temperature.

Separation of variables. An obvious “stationary solution” is the trivial solution wu(z,t) = 0, the
conductor in in thermal equilibrium with the two thermostats.

We try non-trivial solutions having the form u(x,t) = f(z)g(t), for some functions f(z), which only
depends on the position, and ¢(t), which only depends on time, to be determined. Substituting the guess
into the heat equation, we get

') 14'@®)

flx) B glt)’
at least at those points where f and g are different from zero. Now we notice that the 1.h.s. only depends
on the position x and the r.h.s. only depends on the time ¢. This may only happens when they are both
constant, say equal to u. But then we are left with the two second order ODEs

f"=nuf and ¢’ = fug

for f and g. The only non trivial solutions of f” = uf with zero boundary conditions f(0) = 0 and
f(€) =0 occur when the “eigenvalue” p is equal to

™\ 2
HPn = — (7)
for n =1,2,3, ..., and they are proportional to
(7<)
sin | —uax) .
l

For any given n, we then solve ¢’ = —( (%)2 g. The result is that g(¢) is proportional to
eiﬁ (%)% .
Hence, we have found solutions of the heath equation as ”modes”
up(x,t) = bne_ﬁ(m/é)zt sin (%x) forn=1,2,3,...,
where b,, are arbitrary constants.

Isolated boundaries. If the conductor is isolated, hence there is no heat flow at the boundaries, we
must solve the heat equation

v v
ot Poaz =0
with boundary conditions %(O,t) =0e %(6, t) = 0. The conjecture v(z,t) = f(x)g(t), for some

functions f(x), which only depends on the position, and g(t), which only depends on time, still lead to

') _ 14
flx)  Bglt)’

hence to the two second order ODEs

f"=uf and ¢’ = Bug

for f and g. This time, we must find non-trivial solutions of f” = uf with zero derivatives f’(0) = 0 and
f'(¢) = 0 at the boundary points. These exist provided the eigenvalue is equal to

™ 2
= ()
forn =10,1,2,3,..., and they are proportional to
()
cos|(—ux) .
L



For any given n, we then solve ¢’ = —f3 (%)2 g. The result is that g(t) is proportional to
e P (%)% .
Hence, we have solutions of the heath equation as ”"modes”
vp(x,t) = ane*'@(”"/z){zt cos (%x) forn=0,1,2,3, ...,
where a,, are arbitrary constants.

Superpositions and Fourier’s idea. Since the heat equation is linear, any finite superposition of
modes, say

N
u(z,t) = Y bue PO sin (%nx>
n=1

for zero boundary conditions, or
a al ™
_% 3 ~B(an/0)°t ,(7 )
v(z,t) = + ane cos T
( ) 2 n=1 " ¢

for zero derivative boundary conditions, is again a solution of the heat equation. We note that their
initial values are

N N
. ™n ag ™
u(z,0) = E b, sin (7:5) and v(z,0) = 5} + n§:1 a,, COS (736) ,

respectively. This says that every time we are able to write the initial condition as a “trigonometric
polynomial”, the formulas above (multiplication of each coefficient by the exponentially decaying factor
e’ﬁ(”"/o%) solves the heat equation.

We may also observe that the amplitude of each mode decreases exponentially in time, with a speed
that depends on the frequency number n. In particular, asymptotically the solution tends to the stationary
solution u(z,t) = 0 or v(x,t) = ag/2, in accordance with our physical intuition.

It was Fourier > who first conjectured the possibility to express an “arbitrary” well behaved function
o(z), say defined in the interval —¢ < z < ¢, as a “infinite trigonometric polynomial”, i.e. a trigonometric

series -
o(z) = % + ; (an cos (%x) + by, sin (%nx)) ,

for some coefficients a,,’s and b,,’s. On the right we have a series of functions, and equality should mean
that, for any fixed z, the resulting numerical series is summable and has sum equal to ¢(x). Observe
that the series should contain only sin’s if the function ¢ is odd (as the initial value for the heat problem
with zero boundary conditions), and only cos’s if the function ¢ is even (as the initial value for the heat
problem with zero derivative boundary conditions). Now, if the above expression for ¢ does make sense,
then multiplication of each coefficient by the exponentially decaying factor e=#(7/ O*t should give the
solution of the heat equation with initial condition u(x,0) = ¢(z). Indeed, if we admit that we can
differentiate the series term by term, once w.r.t. time ¢ and twice w.r.t. space z, and that the resulting
series for %7; and % are still point-wise absolutely convergent, then the heat equation will be satisfied
for trivial arithmetical reasons.

Fourier’s trigonometric series. Assume that the function ¢(x), defined in the interval —¢ < x < ¢,
admits a representation as a trigonometric series

o(z) = % + i (an cos (%lz) + by, sin (%lx)) .

To understand the meaning of the ”coefficients” a,, and b,,, we integrate the series against the functions
sin (’TT”x) and sin (%x), assuming that we can exchange the integral with the infinite sums. The first
observation is that the non-oscillating term ag/2 is the mean value of o, namely

ag 1 ¢

5 =37 » o(z)dz .

2Joseph Fourier, Théorie Analytique de la Chaleur, 1822. Translated as The Analytical Theory of Heat, Dover, 2003



As for the other terms, we get
/i ¢(z) cos (%m) de = /2 (i Gy, COS (%m) + b, sin (?x)) cos (%x) dz
- — \k=1
= /4 G (cos (%x))Qd:E
¢

= Vla, ifn>1,
Z ay, COS (7x> + b, sin ( Knx» sin (%m) dx

/igo(x)sin (%x) de = /ek 1
/ebn (sin (%’%))2 dx

= ‘gbnv

and

Hence, the Fourier coefficients of the function ¢ are

ap = E/ ) cos nz) dx e by, g/ ) sin a:) dr .

For the moment, we’ll content with the ”formal” solution we’ve found. We’ll see later which conditions
on the initial value ¢(z) will guarantee that our formula actually gives a genuine (meaning smooth)
solution of the heat equation. Meanwhile, it must be said that real world situations may be, and sometimes
must be, also modeled with non-smooth, e.g. discontinuous, functions (for example, when you suddenly
put in thermal contact two conductors at different temperatures). In such cases, the formal solution is
all we have, and it often does provide the correct answer, once properly interpreted.



2 Waves

The simplest PDEs modeling propagation of “waves” are written, in one and three spatial dimensions, as

Pu 0% Pu
atQ C@—O w_CA’UJ—O

Above, A is the Laplacian in Euclidean three dimensional space, the differential operator A = §% /922 +
0?/0y* + 0°/02%. Physicists also use the D’Alambert’s operator O = 9?/0t> — A to write the wave
equation in the compact form Ou = 0, in a system of units where the velocity ¢ has been set equal to one
(or time has been redefined to be ct).

Our basic example will be

Example (transversal small vibrations of a string). Consider a thin string of length ¢ and
constant linear density p maintained in equilibrium by a certain tension applied to its ends. Transversal
vibrations are described by a displacement field u(z,t), where x € [0, 4] and ¢ is time, which represents
the (one-dimensional) transversal displacement of the string from its rest position u(z,t) = 0. For small
vibrations, we will consider Ju/0z small and disregard higher order quantities. In this approximation,
there is no stretching of the string, since the length of the piece of string between any two points is

/ V 1+ (0u/0x)?dr ~ x9 — 21

This implies that the tension at each point is constant in time, say equal to k(z). Moreover, the longitu-
dinal tension is k() cos (arctanu,) ~ k(x), and the transversal tension is k(x) sin (arctan u,) ~ k(x)u,.
Since the longitudinal tensions between any two points must balance, we see that within this approxi-
mation the tension does not depends on the position, it is a constant k. Now we compute the change in
moment, for the piece of string between any two nearby points z7 < 2, in the interval of times from ¢;

to tg,
2 ou ou
o (Gt = G ) ) o,

1

and equals to the work done by the transversal tension and an external force field F(z,t) in the same

time interval,
t2 ou ou t2
k(— t) — — t) ) dt F(z,t)dt
[k (Gt - Gr@n)ae+ [

T2 ta 2 to T2 2 to T2
/ /t p(m)gtgdxdt:/t / kg;;dtda;+/t / pf(z,t)dtdz ,

where f(z,t) = F(x,t)/p is the force density, and, since it must hold for any x1,xs,t1,t2, we finally get

But then

Pu  *u
P(ff)@ - k@ =pf(z,t).

Dividing by the density, we get the equation in the standard form

Pu ,0%u

o o I

where ¢ = y/k/p has the dimensions of a velocity. If external forces are absent, we are left with the
homogeneous equation

@ — 02@ =0,

ot? ox?
describing the free vibrations of the string.

In applications, you must remember that the model was obtained assuming that the string does not
stretch, hence that the amplitude of vibrations is small. Moreover, you may have noticed that real strings
(as in a piano) do stop vibrating appreciably after a finite time. The simplest way to model this fact is
putting a friction term as —adu /0t on the r.h.s. of the wave equation.

An heuristic look at the wave equation. Divide the string in a large number of short intervals
of length & centered at evenly spaced points 0 < 1 < 22 < T3 < ... < T, < ... < £. If the length ¢ is



not greater than your instrument’s resolution, you may imagine that the n-th piece of string is actually
a point-like particle of mass m,, = p(zy)e with height ¢, (t) = u(z,,t) over x,,. But then

0%u ..
paﬁ(mn, t) = mdgn

is equal to the mass times the transversal acceleration of the particle, and the wave equation is just the
Newton’s equation saying that this quantity is equal to a certain force
0%u
fn = kgﬁ(xn,t) .

Observe that the force is positive at those points z,, where the shape w is convex, and negative at points
where the shape is concave, a fact which is in agreement with your intuition (just imagine pulling up or
down the extremes of a jumping’ string!). Now, the second derivative of u w.r.t. z is well approximated,
within your instrument’s resolution, by the quantity

@(:c £ ~ w(@nt1,t) — 2u(xn, t) + u(zp—1,t)
ox2 T

g2 ’

so that the force acting on the n-th particle,

dn+1 — 4n dn — dn—1
~k —k
In . .

)

is a superposition of two forces obeying Hooke’s law with stiffness k£ and displacement proportional to
the distance between the n-th particle and its two neighbors. The string may be considered a continuous
limit of a system of point-like masses coupled with springs. This is one reason to believe that solving a
partial differential equation (as this one) is conceptually different from solving an ordinary differential
equation: morally, it amounts to solving an uncountable number of ODEs in a time!

Initial and boundary value problems for the wave equation. Since the equation

Pu 0%

2“0

gives the second derivative of u w.r.t. time as a function of something else, it is natural to pose the
problem of solving the equation given initial conditions

u(z,0) = () and %(%0) = ¢(x)
for w and its first time derivative at time t = 0.

Together with the initial conditions, it is necessary to say what happens to the field u at the boundary
of the space domain. Such conditions are called boundary conditions (“condigdes de fronteira”). They
may read

u(0,t) = A(t) and u(l,t) = p(t)

if the problem is formulated in a bounded space domain = € [0,¢], or may just say that u(z,t) — 0
with a certain speed for |z| — oo, if the problem is formulated in a infinite space domain (an infinite
space domain is also a good choice if we are interested in short time phenomena which occur far from

the ends of the string). Different kinds of boundary conditions may involve partial derivatives of u at the

boundary. For example, saying that %(O, t) = 0 for any time ¢ means that the 0-end of the string is left

loose ...
Example (longitudinal vibrations).
Example (electric oscillations in conductors).

2.1 d’Alembert’s traveling waves

Consider the one-dimensional wave equation

Pu 0%
b Sl
ot? O0x?

10



on the line. In the new variables £ = x 4 ¢t and np = © — ¢t, it takes the (canonical) form (of hyperbolic
second order PDEs)

Pu

ocon
The obvious general solution of this equation is f(£)+¢g(n), where f and g are arbitrary twice continuously
differentiable functions. Back to the original space and time variables, we get d’Alembert’s solution

u(t,z) = f(x +ct) + gl — ct),

representing a superposition of two waves, with shapes f and g, traveling to the left and to the right with
speed c.
The arbitrary shapes f and g are determined by the initial conditions. Assume that

u(0,z) = ¢(x) and ut(0,2) = o(x) .

Then we get

f@)+g(x)=¢(x)  and  cf'(z) —cd'(z) = p(x).
Integrating the second equation and substituting the result into the first, we finally get d’Alembert’s
formula

x+ct
u(t.a) = 3 (@ + o) + e =)+ 50 [ ey,

solving the Cauchy problem for the infinite string.
Exercise. Consider small vibrations of an infinite string.

e Show that if the initial conditions u(z,0) and u(x,0) are zero outside an interval [—L, L] then he
solution u(z,t) is zero outside the interval [—-L — ct, L + ct]. Discuss the physical meaning of this
fact.

e Find the solution when the initial conditions are
u(z,0) =0 and u(x,0) = cos(2mz) ,

or

u(z,0) = e and ut(x,0) =0.

e Show that if the initial conditions ¢(z) and ¢(z) are odd functions, then the solution u(z,t) is an
odd function of x for any time ¢. Use this observation to solve the problem in the semirect z > 0
with zero boundary condition u(0,¢) = 0.

e Show that if the initial conditions ¢(x) and p(x) are even functions, then the solution u(x,t) is an
even function of z for any time ¢. Use this observation to solve the problem in the semirect x > 0
with ”loose-end” boundary condition %g(o, t) =0.

2.2 Energy, uniqueness and stability theorems

The uniqueness theorem for the wave equation is obtained from a physical principle: conservation of
energy. The energy of a vibrating string is

1 /f ou\” ou\>
E=_ — k| =— dz
7 (”(at) i <a>
Integrating by parts one may check that the energy is a constant of the motion, provided that the extremes
are fixed (for otherwise we must take into account the work done by an external force to move them!).

Indeed,
[T e Py
a ), \Parae T "arazar) "
- "otox], " Jy Vot or " "ot o)
¢ 2 2
ou (0"u 50U B
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Uniqueness theorem. There is at most one C? solution of the wave equation

o%u 0%u
22 o = @)

with given initial conditions
u(z,0) = ¢(z) and  uy(z,0) = p(z),

and boundary conditions u(0,t) = A(t), u(f,t) = p(t).

Proof. The difference w between any two solutions is a solution of the same wave equation with trivial
initial and boundary conditions. Since its energy is constant, it is equal to initial value zero. But this
implies that both dw/dz and Ow/0t are constant and equal to zero. There follows that w is constant
and equal to its initial condition w(z,t) = 0 for any = € [0, ] and any time ¢ > 0. q.e.d.

For an infinite string, it is possible to obtain a uniqueness theorem provided that the solution vanishes
outside a bounded interval, or that it decreases so rapidly to zero that all the integrals above are absolutely
convergent.

Another important issue is that of “stability” of solutions. May small uncertainties in the initial
conditions produce large effects as times goes by? If so, how large? The result is that we have some
control. More precisely, initial perturbations grow at most linearly in time, as stated in the following

Stability theorem. For any positive £ and any positive time T there exists a positive 6(e,T) such
that if u(z,t) and v(z,t) are two solutions of the wave equation with initial and boundary conditions that
differ by no more than §(e,T) then

lu(z,t) —v(x,t)] <e

for any position © and any time 0 <t <T.

Proof. If initial and boundary conditions are bounded by some 4, then d’Alembert formula shows that
lu(z,t)] <6+ dt.

But if 0 <t < T, then the above is bounded by §(1+T'). Applying this to the difference of two solutions,
we see that given a required precision €, an initial precision

0, T)=¢/(14+1T)

will do the job. q.e.d.

2.3 Separation of variables and stationary waves

Here we pose the problem to find solutions, as many as possible, of the wave equation

v ,0%

o2~ a2
in some interval 0 < x < ¢, with time invariant boundary conditions, say v(0,t) = a and v(¢,t) = b.
Observe that, if we set v(x,t) = u(x,t) + a + (b — a)x/¢, then the new function u(z,t) also satisfies the
same wave equation

Pu 0%

oz oa2
with zero boundary conditions u(0,¢) = 0 and u(¢,t) = 0. So, we may restrict to this last problem,
describing small vibrations of a string with fixed ends (as a violin’s string).

Separation of variables. An obvious “stationary solution” is the trivial solution w(z,t) = 0, the
string doesn’t vibrate.

We look for non-trivial solutions having the form wu(z,t) = f(x)g(¢), for some functions f(z), which
only depends on the position, and ¢(¢), which only depends on time, to be determined. Substituting the
guess into the wave equation, we get

f'x) _14"(@)

fl@) e gt)
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at least at those points where f and g are different from zero. Now we notice that the L.h.s. only depends
on the position x and the r.h.s. only depends on the time ¢. This may only happens when they are both
constant, say equal to u. But then we are left with the two second order ODEs

f'=nf and ¢’ =cug

for f and g. The only non trivial solutions of f” = uf with zero boundary conditions f(0) = 0 and
f(€) = 0 occur when the “eigenvalue” p is equal to

B ™ 2
m==(F)
for n =1,2,3, ..., and they are proportional to
. (TN
sin (7:10) .
For any given n, we then solve ¢’ = —c? (%)2 g. The result is that g(t) is a linear combinations of
men . [/men
cos (7t> and sin (7t> .

Stationary waves. Back to the function u(x,t), we have found solutions of the wave equation, with
zero boundary conditions at x = 0 and z = ¢, in the form of stationary waves

(an cos (2wvp,t) + by, sin (27r1/nt)) sin (2w /\y,)
= A,sin (2nvpt + 1) sin 2wz /Ay)

Un (2, 1)

for n =1,2,3, ..., where we have defined the wavelengths and the proper frequencies as

:2—€ and Vnzin, forn=1,2,3,...,

n 20
and where a,, and b, are arbitrary constants, A, = \/a2 + b2 is an amplitude, and 7,, = arctan(a,/b,) a
phase. Sometimes, also the quantities w,, = 271, = wen /L are called frequencies (their use allows to forget
the ubiquitous factor 27 in all formulas!). The first allowed frequency, v; = ¢/2¢, is said fundamental
frequency of the vibrating string, and vs, vs3, vy, ... are called 2nd, 3rd, 4th, ... harmonics.

The energy of the n-th stationary wave u,(z,t) is

B, ;/Oe <p (8;;(95,::))2 Tk (%Zl(x,t))2> do

= T MA%?

n-n?

An

where M = {p is the mass of the string.

Exercise. The E-string of a violin, which is about 325mm length and use to be tuned with a tension
~ 70N (i.e. ~ 7.1Kgx9.8m/s?), vibrates with frequencies 660Hz, 1320Hz, 1980Hz, ... (corresponding to
E5, E6, E7, ...) Find the linear density and the weight of the string.

What should a violinist do in order to obtain the A5 of 880Hz with this string?

Homework. Investigate the ratios between the frequencies of the notes in our western scale C-D-E-F-
G-A-B-C. The story starts with Pitagoras ...

Superpositions of stationary waves. Since the wave equation is linear, any superposition
u(z,t) = Z (an cos (2mvpt) + by, sin (27runt)) sin (2mz/Ay)
n>1

of stationary waves is still a solution, provided that the sum is finite or that is absolutely convergent
together with its partial derivatives up to order two. Computation shows that the initial conditions of
the above superposition are

u(x,0) = Zansin(%m‘/)\n)

n>1

%(%0) = Z (L;n) by sin (27 /Ay -

n>1

13



But this gives us a recipe to solve the wave equation whenever the initial conditions are given as super-
positions of sin (27x/A,,).

Exercise. Find solutions of the wave equation

0%u 9%u

57 WZO’ with 0 <z <,
X

with zero boundary conditions, u(0,¢) = 0 and u(w,t) = 0, and initial conditions

u(x,0) = sin(3x) e %(x, 0) = 2sin(4x) ,
or 5
u(z,0) = 3sin(z) — sin(2z) e a—?(w, 0) = 7sin(bz) — 2sin(6x) .

Example (dumped vibrations). Real strings in real musical instruments do stop vibrating after a
finite time. The simplest way to model this fact is introducing a dumping term in the wave equation, like

ot? Ox? ot

The conjecture uy, (z,t) = ¢, (t)sin (“x) implies that g, (t) satisfies the Newton equation of a dumped
oscillator, namely
Gn + WELQn = —qn,

with resonant frequency w2 = (ren/0)%. ...

2.4 Waves in 2-dimensional Euclidean space

Example (small vibrations of a membrane). (membrane eldstica)

2.5 Waves in 3-dimensional Euclidean space

Example (electromagnetic waves). Maxwell’s equations for the electric and magnetic fields E and
H, in absence of charges and currents, read

2 2
aEfczAE:O and O°H

2
Tl 52 c“AH =0

where ¢ ~ 2.998 x 108m/s is the speed of light in free space.

Example (non-viscous fluids and acoustic waves). The macroscopic motion of a fluid (a collection
of a large number of microscopic molecules) can be described by the following macroscopic observables:
a density (scalar) field p(r), a velocity (vector) field v(r), and a pressure (scalar) field p(r), where r =
(x,y,2) € R3 is the Euclidean coordinate in the observer’s reference systems. If we disregard viscosity
(for otherwise we end up with Navier-Stokes equation, a problem of the millennium!), Newton equations

of motion are
dv 1

at =f- ;grad(p),

where f = F/p is an external force field per unit mass. Observe that the time derivative of v is actually

dv/dt = % + %i‘ + g—gy + %2, or better % + (v|V) v. It must be solved given the continuity equation

z

% +div(pv) =0

(saying that no mass is lost), and an equation of state

p=f(p)

giving the pressure as a function of the density (and of the temperature, but we assume it constant).

14



First, we assume that the process is adiabatic (i.e. there is no heath exchange, so that the entropy
is constant). This implies that we may use the Poisson’s equation of state p/py = (p/po)”, where pg
and pg are the initial equilibrium pressure and density, and the exponent v = ¢,/c, is the ratio between
the constant pressure and constant volume specific heaths. Second, we consider small values of the
condensation s = (p — po)/po- In first approximation we get the equations

?s 0%u

— —cAs=0 and — —AAu=0

ot? ot?
for both the condensation s (or for the density p) and the velocity potential u (defined modulo a constant
by the identity v = —gradu), where the velocity ¢ = y/vpo/po. For air at usual temperature and pressure,
reasonable values are v ~ 7/5, pg =~ 0.001293g/cm? and py ~ 1033g/cm3, so that the sound’s speed is
¢~ 336m/s.

Spherical waves. Consider the wave equation

82
8Tg —FAu=0

in Euclidean 3-dimensional space. If we look for a solution which only depends on the radial coordinate

r = /22 + y2 + 22, we must solve
*u 5 (0*u  20u
— —C JRE— + [ R
ot2 or?  ror
which may be rewritten as

The general solution of the above equation is a superposition of two spherical waves
1 1
u(r,t) = ;f(?" +ct) + ;g(r —ct)

contracting and expanding around the origin with velocity c.

We now look for solutions of the wave equation which are superpositions of such spherical waves,
centered at all points of the Euclidean space. Let S? be the unit sphere in R?, with coordinates (&,7,¢)
and area form dw. Given a function ¢(z,y, z), we define its mean value on the sphere of radius ¢t centered
at (x,y,z) as

1

Mt [] = in

/ o (x+cté,y+ctn, z+ ct() dw .
SZ

.. Huygens’ principle
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3 Fourier series

3.1 Complex Fourier series

Fourier series of holomorphic functions. Se f(z) é uma func¢ao holomorfa num dominio que contém
a circunferéncia unitaria, entao a sua expansao em série de Laurent pode ser escrita, nos pontos z = e*?,

como

| © 1 £(2) L™
0\ _ in _ = _ 10 inf
f(e?) = E cpe onde Cn =5 7|{z|_1 g dz o | f(e¥)e "do

n=—oo

Complex Fourier series. Em geral, se f(f) é uma funcio integrdvel em S' = R/27Z (ou seja,
f: R — C é uma fungado periddica com perfodo 27), a sua série de Fourier compleza é

F0) ~ o0l F(n)ei?

¢ ”

(o simbolo “~” é apenas uma notagao!), onde os coeficientes de Fourier complezos de f() séo

fln) = & 7, f(B)e=?d6

Riemann-Lebesgue lemma. If g(x) is an integrable function in some bounded interval [a,b], then
the oscillatory integrals

b b
/ g(z) cos(Nzx)dx and / g(z) sin(Nz)dx
tend to zero as N — .

Proof. If g is continuously differentiable, the result follows from integration by parts. In the general
case, you should know that any integrable function may be approximated, in the Li-norm, by continuously
differentiable functions. A standard triangular argument then finishes the proof. q.e.d.

Se f(6) é uma fungdo seccionalmente de classe C!, entdo a sua série de Fourier no ponto 6 converge
uniformemente para o valor médio (f(6+) + f(0-))/2. Em particular, a série de Fourier de uma fungéo
f(0) € C1(S?) converge para f(f) na norma uniforme, ou seja,

sup -0 quando N — 00.

oeS?t

N o~ .
fFO)= > Fn)e™
n=—N

3.2 Fourier series of square integrable functions

O produto interno e a norma L? no espago L?(S!) das fungdes complexas em S' = R/27Z com quadrado
integravel sao definidos por

(19) = 5= [ 1@5@a0 15 = VT

A série de Fourier f(#) — f(n) define um isomorfismo de L2(S') em £y, o espaco das sucessoes (2,)nez
tais que > - |z,|* < oo, munido do produto interno (z,y) =Y oo __ x,¥,. De facto, vale

(f.9) =0 F(n)g(n)

e a identidade de Parseval

1P = 3202 1 ()

A série de Fourier de uma funcio f(0) € L?(S') converge para f(f) na norma L?, ou seja,

—0 quando N — o0.

N -~ .
- 5 7w
n=—N
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e Verifique as relagoes de ortogonalidade

) . 1 L . =
(ezn,é"elmQ) — 7/ ezné)e—zmede _ { (1) sen m

2w sen#m
e Mostre que, se f(0) é diferencidvel e a derivada f'(0) é integravel, entao
f'(n) =inf(n)
3.3 Fourier series

Let f(x) periodic integrable function with period 2x. Its Fourier series (expansion) is

~

o0
?O z_: ay, cos(nx) + by, sin(nz)) ,

where the Fourier coefficients of f are defined as

ap = — f(z) cos(nx)dx and b, = — f(z)sin(nx)dz .

™) _x ™ J_x

If f is piecewice C!, the Fourier series converges to f(x) at the points of continuity, uniformly on bounded
intervals where f is continuous.

Fourier series of periodic functions with arbitrary periods. If the period is 2¢, we may change
variable, replacing x with 7z /¢,

oo
~ 2 Z ap, cos(wpx) + by sin(w,x)) ,
where w,, = 7*, and the Fourier coefficients of f are now
I 1t
= Z/ f(z) cos(wpx)dz and by, = Z/ f(z) sin(wpz)dx .
.y —L

Comparison with the complex notation. Let f(z) be an integrable periodic function with period
2. Tts complex Fourier series is
(oo}
Fr Y et

n=—oo

4
fuomgp | e @

and k, = Zn. If f is piecewice C!, the Fourier series converges to f(z) at the points of continuity,
uniformly on bounded intervals where f is continuous.

where the Fourier coefficients are

3.4 Pointwise convergence of Fourier series
Let f(z) be a 2w-periodic integrable function, and let
f(z) ~ % + Zl (ay, cos(nx) + by, sin(nx))

its Fourier series. We pose the question whether the series does converge at a given point x, and what
the sum eventually is. The partial sums of the Fourier series of f are the trigonometric polynomials

N
Sn(z) = % (an cos(nzx) + by, sin(nx)) ,
k=1

so the problem is to understand if, and if so what, limit does Sy (z) have for N — oo.

17



Point-wise convergence theorem. If f(x) is integrable and sectionally Ct, then the partial sums of
its Fourier series converge at every point x to the arithmetic mean

fl—=0)+ f(z+0)
2

of the left and right limits of f at x. In particular, the Fourier series of f converges to f(x) at continuity
points of f.

Uniform convergence theorem. If f(x) is absolutely continuous and its derivative f' is square
integrable, then the its Fourier series converges uniformly to f.

Proof of the point-wise convergence theorem. Using the integral formulas for the coefficients, we
get

N

Sn(z) = 1 /7T F(y) (; + Z ap, cos(nz) cos(ny) + by, sin(nz) sin(ny)) dy

s
- k=1

x N
= % / f) (; + Y cos(n(y — fﬂ))dy> :
4 k=1

The trigonometric identity
sin (WT"‘lx)

L cos(z) + cos(2z) + ... + cos(Nz) = — sin(z/2)

2

(which you can prove writing the sum in complex notation and using the formula for the partial sums of
a geometric series) implies that we can represent the partial sum of the Fourier series of f as

Su@) = [ f+ ) Dx iy,

where the Dirichlet kernel is defined as
sin ( %x)

Dn(y) = 2 sin(z/2)

Observe that from the above trigonometric identity follows that

T

Dy (y)dy =1
for any N. Hence, we may finally write the difference between f(x) and the N-th partial sum of its

Fourier series as .

J(@) — Sn(a) = / (F(z) — f(a+ 1)) Dx(y)dy.

—T

Fixed =, we break the integral into two parts,
0 T
| (a0 1o+ Dty + [ (£ +0) = ot ) Dty
If f admits left and right derivatives at the point x, then the functions

fa=0)—faty L f@t0) =Sty
Y )

are integrable at in their respective domains (this integrability condition, called Dini’s condition, is the
real sufficient condition for the point-wise convergence theorem!). But then both integrals

O flx—0)— flz+y) y /2N +1
. y orsn(y/2) " ( 2 y) dy
and T fa40) — f(z +1) IN 41
z+0) — flz+y y : +
/0 y 2 sin(y/2) o < 2 y) 4y

tends to zero as N — oo, because of the Riemann-Lebesgue lemma. q.e.d.
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3.5 Examples of Fourier series

Here we show some computations of simple Fourier series. For simplicity, we only consider functions with
period 27 (or, better, the 27-periodic extensions of functions defined in the interval —7 < z < 7). If you
want other periods, say 2¢, just change variable, from x to ¢z /7.

Example (linear). Find the Fourier series of f(z) = z, defined for —7m < 2 < 7. Since f is odd, all
a,’s are zero. Moreover,

1 (7 2 [T
by = f/ xsin(nz)dx = 7/ x sin(nz)dx
T - w 0
_ 2 [sin(nz) — na cos(nx) " 2cos(mr) B 2(—1)’”rl
oo n? 0 no n

Hence,
(_1)n+1 )
x ~ 2 Z — sin(nz)
n>1
. 1. 1. 1.
~ 2 |sin(z) — 3 sin(2x) + 3 sin(3z) — 1 sin(4x) + ... ) .

Example (modulus). Find the Fourier series of f(z) = |z|, defined for —7 < 2 < w. Since f is even,
all b,,’s are zero. The mean value is

ao 1 (7 T
L _ - dr — =
3y " on ) IHdr=3.
, and
1 ™ 2 ™
anp = 7/ || cos(mnz)dx = f/ x cos(nz)dx
TS T Jo
2 [cos(nz) + nwsin(nz)]™ 2 cos(nm) — 1 — =2 if n is odd
= — i S A — ™
0 n2 o T n2 0 if n is even and positive
Hence
|z~

1 1 1
- (cos(x) + g cos(3z) + % cos(5x) + o cos(7x) + ) .

Example (square). Find the Fourier series of f(z) = 22, defined for —7 < x < 7. Since f is even, all
b,’s are zero. The mean value is
ag 1 [, w2
— =— rodr = —,
[, ae=5

2 2 J_,

and other a,,’s are

1 (7 2 [7
a, = f/ x? cos(nx)dx = f/ z? cos(nx)dx
L —— ™ Jo
9 2 ™ 4 T - -1 n—1
= = [x bln(nx)} - — xsin(nx)dx = 4005(;171’) = 4( >2
T n o nmJo n n

Hence,

3 n
n>1
2 1 1 1
~ % —4 (cos(x) ~1 cos(2x) + ) cos(3x) — 16 cos(4x) + > .

19



This Fourier series is famous, since it allows to compute the value of the Riemann’s zeta function

)=

n?
n=1

at the point z = 2, which is (the volume of the unit tangent bundle of the modular orbifold H?/PSL(2,Z))

LR S N SRS B
1 4 9 16 25 3 6

Example (periodic step functions). Find the Fourier series of 2m-periodic extension of the Heaviside
function, namely

1 fo<z<m
@(x)—{ 0 if —7<z<0

The mean value is
ag 1 4 1
de = —,
2

2 21 ),

and other a,,’s are

g 1
an = / cos(nx)dz = — [sin(nm)]; =0 ifn=1,2,3,..
0 nm

3| -

The b,,’s coefficients are

b, = sin(nz)de = ————= = 0 ifniseven

1
T nmw

/’T 1 — cos(nm) { 2 if nis odd
0
Hence,

n 2 Z sinslnx)

n odd

N~ N

2 1 1 1
+ — [ sin(x) + = sin(3x) + = sin(5z) + - sin(7z) + ... | .
T 3 ) 7

Also interesting in applications is the odd function

1 ifo<z<n
ﬂxwl{-J if —r<a<0

whose Fourier series is

20(x) —1 ~ % Z sin;n:v)

n odd

~ % <sin(m) + %sin(?)x) + %sin('{m) + %sin(?;v) + ) .

Example (periodic delta functions). The distributional derivative of the Heaviside function is the
Dirac delta function (at the origin). Actually, if you formally derive term by term the Fourier series of
the periodic ©(x), you get

O (x) ~ % (cos(z) 4 cos(3x) + cos(bx) + cos(7x) + ...) .

which may be interpreted as the formal Fourier series of the 27-periodic extension of the Dirac function
0(x). In more generality, here we compute the formal Fourier series of the odd and even 27-periodic
extensions of §(z — ), for some 0 < o < 27. A straightforward computation shows that

oo

drz—a)—d0(z+a)~ % Z sin(na) sin(nx)

n=1
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and

0z —a)+o(z+a)~ % + % Z cos(na) cos(nzx) .

n=1
Example (zig-zag). Find the Fourier series of the zig-zag, the odd 2w-periodic extension of

Z(x):{ z if0<ax<m/2

m—z ifr/2<z<m

Since Z is odd, all a,,’s are zero. The b,,’s coefficients are

2 m/2 2 ™
b, = 7/ x sin(nz)dx + */ (m — x)sin(nz)dx
0 T

iy /2
4 = ifnisodd
= (nm/2) = { 0 if nis even

Hence

1)(n=1
Z(x) ~ — Z ~————sin(nz)
nodd
4 1

. 1 1
~ o (sm(x) -3 sin(3x) + % sin(5x) — 9 sin(7x) + ) .

3.6 Fourier series solutions of the wave equation

Example (playing cavaquinho). When you play your “cavaquinho”, you leave the strings with no
appreciable initial velocity and more or less triangular initial shape. To understand the sound, we must
solve the suitable wave equation

Pu 0%

Z R
o2~ ox?
for a string of length ¢, with initial displacement given by
0 %m sel0<zr<a
u(z,0) ~ ﬁﬂfx) sea<z </l

where 0 < a < £ is the point where you touch the string, and h = e« is the maximal initial displacement,
and zero initial velocity 5 Qu ¢(2,0) = 0. Computing the Fourier coefficients of the odd 2/-periodic extension
of the initial dlsplacement

¢
b, = aﬁ/ msm d;v—l—%/a(é—x)sin(%x)dx

- ZL@H&?@—%w%?@E+

2h 02 ™ 02 s Lo ™ ¢
ity | (7) ~in () + g eos ()|
= ... some cancellations and rewriting ...

2h(?
m2a(l —a)n?’

we get the amplitude of the n-th excited harmonic

2h%  sin (nma/l)

A, =
2a(f — ) n?

The corresponding energy is
£ - mh?0?c?  sin® (nma/l)
" r2a?(f — «)? n? ’
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where m = pf is the mass of the string. You see that the intensities of the different harmonics decrease
as 1/n?, so that the sound is essentially given by the fundamental frequency v, = ¢/2¢ and few others.

You can also observe that choosing the point « near a rational multiple of the length ¢, it is possible
to Kkill, or at least to dump, all multiples of some given harmonic. Of course, our model is but a first
and poor approximation, but you may experience some difference in timbre playing a guitar at different
heights of its strings.

Example (playing piano). When you play a piano, strings are excited by a hammer driven by the
key that you're pressing. In a first approximation, we can imagine that the hammer gives to the string
an instantaneous impulse p concentrated at some point 0 < 3 < £ of the string. So, we may try to solve
the suitable wave equation

Pu ,0%u

oz~ a2
for a string of length ¢, with zero initial displacement w(z,0) = 0 and initial velocity given by

ou D
E(%O) = ﬁ(s(if - B).

Computing the Fourier coefficients of the odd 2¢-periodic extension of the Dirac delta function at 3, we
get the amplitude of the n-th excited harmonic

2p sin (nw(3/0)
™ n

Ay =

The corresponding energy is
2
P~ .2
E, = —sin” (nw3/f) .
w =L sin (nmp 0

You see that all the different harmonics have nearly equal intensities, as long as (3 is not a special point.
This is a first explanation for the piano’s timbre being more “important” than the one of your cavaquinho.
The problem with this first approximation is that it gives the unrealistic value co for the total energy
E = )" ., E, of the vibrating string! A more realistic model could be an initial velocity v equally
distributed along a portion of length 26 where the real hammer hits the string. So, we must solve the
wave equation with initial velocity

Ou v ifle—p]<4d
m(”’o)—{ 0 if|lz—p8>6
The non-zero Fourier coefficients of the odd 2¢-periodic extension of the initial velocity are
v [P an
b, = i o sin (71‘) dx
2v ™m ™ dv | .
- = (cos (7(5 - 5)) — cos (7@ n 5))) = — sin (nm /() sin (n6 /)

The energy of the n-th excited harmonic is then

B - 4mu? sin? (nm3/0) sin (nmé /£)

2 n2 ’

The total energy is now finite. Moreover, if § is much smaller that the string’s length ¢, the approximation
sin (nwd/f) ~ nwd /¢ shows that the first harmonics (those for which né is still much smaller that ¢) still
have energy

E, ~ M sin? (nm3/¢)

(observe that we recover the previous solution for an impulse p = mv2§/¢, as it should be!) nearly
constant, in accordance with our previous model.
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3.7 Fourier series solutions of the heat equation
3.8 Harmonic extensions

Férmula integral de Poisson no disco unitario. Considere o problema de determinar uma extensao
harménica f(re'), ou seja, uma solucio da equacio de Laplace

0? 0?
rr L
0x2 = 0Oy?
no disco D = {(z,y) € R? t.q. 22 +y?> <1} ~{z=7re? € C t.q. |z| = r < 1} de uma funcio g(e’¥)
definida na circunferéncia S' = {(z,y) € R? t.q. 22 +3?> =1} ~{z=¢"? € C t.q. |z| =1}.
e Verifique que 71"l é uma extensdo harménica de e,
e Deduza que
oo
f(rew) = Z cpri™em? re' e D
n=—oo

é uma extensao harmonica da série de Fourier (suposta convergente)

oo
g(eie) — Z cneiné eia c Sl

n=—oo

e Use a definicao dos coeficientes de Fourier complexos para mostrar que uma extensao harmoénica
de g(e') é dada pela férmula integral de Poisson

4 1 [

fre’) = o [ a@)P 0 - o)
™ —T

onde o nicleo de Poisson é definido por

P.(0) = Z plnlgind

n=—oo

e Mostre que o ntcleo de Poisson admite as seguintes expressoes,

P.(0) = 1+§:z” +§:§"
n=1 n=1

- 1+
1—2 1-7%
1—|z|?
11— 2
onde z = re*, e portanto
1—r?

P.(0) = .
() 14172 —2rcos(d)
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4 Fourier transform

The Fourier transform is one of the basic tools in analysis. Let’s illustrate it with Fourier’s original idea.

Heat flow on a infinite rod and Fourier’s idea. Here we look for bounded solutions of the heat
problem

ou 0%u

E
Assuming u(z,t) = f(x)g(t), we get, as usual

f"=Af and g =—PBAg

for some constant A. Bounded (complex valued) solutions of the first equation are proportional to

fee(a) = ™o

where the parameter £ now can take any value in R, and A = —¢£2. The second equation then gives

.2
ge(t) =€ ¢ 'guc(0)

so that we are left with the one-parameter family of separable solutions
ug(a,t) = e (g’ + g(~£)e )

for some constants g(§) = g¢(0). We are lead to try a solution as an integral fooo ug (z,t)d€ over all these
possible separable solutions, hence as

w(a ) = \/%r /_ g(6)e €t de

where we inserted a factor 1/v/27 which will simplify some future formulae. Apart from convergence
issues, the above is a solution of the heat equation with initial condition

1 o .
w(z,0) = — e
@0) = 2= [ geac
as you may prove deriving twice.

Now, following Fourier, we ask: “when is it possible to write such an integral formula

]‘ > €x
fl@) = = [ RGE

for a generic function of f(x) defined on the real line? If so, what is the function g(£)?”

As with Fourier series, the second question is much easier. If we integrate the product f(z)e’* over
the real line we get, formally (i.e. assuming everything converge and commute!),

—1271_ [m f(z)edrdr = —1271_ [m f(:z:)eﬂfzdx
1 o0 1 /! , "
= — lim — e""dn | e " dx
= /_ | e /_ gg(n) n

= im — i(n—&)x
elggo 2 /_oo (/_e ‘ dx) gla)dn

{—o0 T 0o g -n
1 [ sin(t)
= 1 —_ —
ZHEOTF /Oo t 9(& —t/0)ydt

I
Q
—~
i
~

| —

Q|
w0
=
B
—
~+
~—
I
SN

= 9(§)
So, the answer is that g(£) must be the integral

1 > —i€x
g(f):\/T?/,oof(x)e g
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4.1 Fourier transform of integrable functions

The space L'(R) das funcdes integrdveis na recta real é o espaco das funcdes f(z) tais que, equipped
with the norm

\mmz/ 1 (@)]dz < o

—00
~

A transformada de Fourier da funcdo integravel f(z) é a funcao F{f(x)}(§) = f(§) definida pelo

integral impréprio
~ 1 / o —itw
= — z)e T .
flo=—= | 1@

The existence of the above integral follows from the estimate

L/fwe@ms/ﬂMM—wm

Riemann-Lebesgue lemma. The Fourier transform of a function f € L*(R) is continuous, bounded

~

and f(§) — 0 as || — oo.
Proof.

Elementary properties. The Fourier transform is linear, i.e.

o~

FM () + pg(x) }(E) = Af(€) + ng(é)

and behaves as follows under conjugation and dilatations:

FT@)E) = F(-¢) FUIONE) = 1 FE/
Translations = +— x — a are sent into multiplications by the character e %€,
Flfx—a)}(€) = e f(O) FLe f@)}€) = F(€ )

Exercise. Calcule a transformada de Fourier de 1;_, 4, a fungdo caracteristica do intervalo [/, £]. Show
that

Calcule, usando a técnica dos residuos, a transformada de Fourier de

f(z) ! f(z) = e =l

2 + a?

Example (Gaussian and heat kernel). Show that the Fourier transform of the Gaussian

P s G =e 82,

g(x) =e”
In other words, the Gaussian is a fixed point of the Fourier transform, a first evidence of its importance.
Deduce that the Fourier transform of the heat kernel

1 x ~ 1
Py(z) = \/Tme_a is P(§) = Ee—tﬁm’

Point-wise converge of the Fourier transform.

N

4.2 Fourier transform on the Schwartz space

The Schwartz space. O espaco de Schwartz S = S(R) é o espago das fungoes f(x) infinitamente
diferencidveis na recta real que decrescem |f(x)] — 0 quando x — +o00, com todas as suas derivadas,
mais rdpido que o inverso de qualquer polinémio. Ou seja, o espago das fungoes f(x) tais que V «, 5 € Ny

o8
ol

¢ < 0.

[flle. = sup
z€R
Examples are p(x)e’z2, where p(z) is a polynomial.
The Schwartz space is a locally convex topological vector space, with the natural topology defined by
the system of seminorms || - ||q,g-
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Fourier transform on the Schwartz space. Mostre que, se f € S,

(jf Jo=icflo o Cune - g

dg

Define the inverse Fourier transform F~1:S — S, sending g — §, as

-~ o 1 > &x
@) = = /_ RGEG

Fourier inversion theorem. The Fourier transform is a linear bijection F : S — S of the Schwartz
space, which inverse is the inverse Fourier transform g — §. In particular, the Fourier inversion formula

holds,
1@ =5 [ ([ o) eeas.

Riesz’s proof. First observe that, for f,g € S,

Jaofoea = —— [ ( /- f(y)eifydy> ¢ g
- %27 / 1) ( / Zg(ﬁ)eig(“)d§> dy

- / f(@ +1)3(y)dy

Now, take g(§) = e=€/2 , so that g(v/t€) is the Fourier inverse transform of the heat kernel ﬁe
Indeed7’g\()—ey/23ndfg )dy = v27. We get, for ¢t > 0,

/ gt F(e)ede = / F(@ + 1)t (/) dy
/ f(@ + ty)a(y)dy

0) / Fe)eede = f(o)Var

Since g(0) = 1, this is the Fourier inversion formula. g.e.d.

|
—
K,j
I
R
=
<

—z2/2t

and, letting t — 0, this gives

Produto de convolucao. The convolution product de f(x) e g(x) é a fungao (f * g)(x) definida por

(f *9)x / F(w)g(z — y)dy

It is easy to see that fx g € S whenever f,g € S. Moreover, Fubini theorem and change of variable show
that the following basic identity holds:

(f = 9)(€) = V2mf(£)3(E)
This says that the Fourier transform sends convolution products into ordinary products in the frequency
space.

Example (convolutions in probability) If X and Y are two independent discrete random variables
taking integers values with discrete densities px(n) and py (n) respectively, then their sum X + Y has
density

Px+y(n ZPX Jpy (n— k).

The obvious generalization of this formula for absolutely continuous random variables says that the
density of the sum X + Y is the convolution product of the two densities, namely

Frov® = [ T ()t — s)ds
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Exercise (Brownian motion) Considere o nicleo de Poisson

1 .2
Fi(w) = \/47rte "

This is the probability density of a Brownian motion W;, namely

mmeﬁmpmz/amm.
A
Show that P; x Ps = Py, s and interprete this fact.

Parseval identities. Se f € S, entao vale a identidade de Parseval

Ifll2=[Ifll owseja, [0 |f(x)Pdz = [ |F(€)[2de

O teorema de Plancherel afirma que a transformada de Fourier extende a uma transformacao unitaria
F : H — 'H do espaco de Hilbert H = L?(R) das fungoes de quadrado integravel®, cuja inversa é a
prépria adjunta, F~1 = F*.

e Calcule a norma L? da gaussiana e=2/2,

z?/2 d™
dxm™

Equacgao e fungées de Hermite. As funcées de Hermite ¢,(x) = e (e*zg), solugoes da

equagdo de Hermite
d2

com \, = —(2n + 1), formam uma base ortogonal do espago de Hilbert L?(R).
e Mostre que a transformada de Fourier transforma a equacao diferencial

2 o~ o~
f(z) 2 f(z) = M(z)  em j—ng@) —e25(6) = Af(©).

dz?

e Verifique que as fungoes de Hermite ¢, (x) sdo fungdes préprias, de valores préprios (—i)", da
transformada de Fourier, ou seja

F{on} = (=i)"bn -
The Poisson summation formula. Dada uma fungéo f(z) € S (R), seja

farz(x) =) fla+2mn)

neZ

Entao forz(x) é uma fungao de classe C*°, periédica de periodo 27, e como tal admite uma expansao em
série de Fourier

forz(z Z emwf

nez

Janz(n \/ﬂ/—ﬂ e fz(x)da

com coeficientes

e Mostre que

forz(n)

\/127T/_7T e~ (Z f(x—|—27rm)> dx

meZ

= f(n)-

30 espago H = L?(R) das fun¢ées de quadrado integrdvel é o espago das fungdes f(x) tais que

[ @i < oo
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e Deduza a formula do somatorio de Poisson

S f(2mn) = % S fln)

nezZ nez
Poisson formula as a “trace formula”. The Laplacian A = —92?/9z% on the circle S = R/27Z
has eigenvalues )\, = n?, with n = 0,1,2,3, .... Indeed, its eigenfunctions are

Aeina: _ n26inz

4.3 Distributions and their Fourier transform

Distribuicdes. O espaco das distribuicoes (temperadas) S’ é o espago dual do espago de Schwartz S,
o espaco dos funcionais lineares continuos T : § — C. A derivada da distribuicao T é a distribuicao T”
definida pela identidade

T'(f)=-T(f) VfesS.

e Dada g(z) € S, seja T a distribuicdo induzida, definida por Ty(f) = [~ f(z)g(z)dz. Mostre que
(Ty) =Ty

e A delta de Dirac é a distribuigdo ¢ definida por

50) = [ s f@de = 50)

(o integral é apenas uma notacdo, é(x) ndo é uma fungdo!). A delta de Dirac em zp € R ¢ a
distribuicao 6,, definida por 05, (f) = [*o_ 0(z — x0) f(z)dz = f(zo). Calcule as derivadas de &,,.

o A distribuicdo de Heaviside é a distribui¢ao H = T,,, definida por

1) = [ uole) )i = / " fa)ds

onde a funcao de salto unitdrio (ou fun¢do de Heaviside) é definida por

Uy () = 0 se r < xg
oA 1 se T > xg

Calcule as derivadas de H.

e Considere o nicleo de Poisson

M)

Pi(z) = \/é%e_

Verifique que P;(x) — &(x) quando ¢ | 0, ou seja, que, se f(x) é continua e limitada,

8

N
&)

oo

lim Pi(y)f(y)dy = 6(f) = f(0)

t10 J_o

Transformada de Fourier das distribuigoes. Se T € S’ é uma distribuicao, a sua transformada de
Fourier é a distribuicao 7' definida pela identidade

T(f)=T(f) VfeSs.

e Verifique que se g(z) é uma funcao integravel e T é a distribui¢ao induzida, definida por Ty(f) =
I f(x)g(x)dz, entdo T, = T;.

e Calcule a tranformada de Fourier da distribuigao 77, induzida pela func¢ao constante g(x) = 1.
e Calcule a transformada de Fourier da delta de Dirac 4.

e Calcule a transformada de Fourier da distribuicao de Heaviside H.
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4.4 Fourier transform on [?

The Hilbert space of square integrable functions. O produto interno e a norma L? sdo definidos

por
= [ f@g@)de (fll2 = () = /[ o 1f(2)2d

Plancherel’s theorem The Fourier transform extends to a unitary linear map F : H — H of the
Hilbert space H = L*(R), whose inverse is its adjoint F~1 = F*.

Proof. A function f € H defines a distribution Ty € S’. Take its Fourier transform 1/“} . By the Schwarz
inequality

< [I£ll2 - lleell2

Tr(0)| = 175(@) —ﬁ/f 2)da
The Riesz’s representation theorem says that there exists a unique ]?E ‘H such that

Tr(p) = (f.9)

for any ¢ € H.

4.5 Fourier transform solutions of heat and wave equations

Difusao na recta e niicleo de Poisson. Considere a equagao de calor

ou  9*u

ot 0x?
na recta, com condigao inicial u(z,0) = ug(z). Se u(z,t) é suficientemente regular, a sua transformada
de Fourier (apenas na varidvel ),

u(g,t) \/7/ Ty (z, t)dx

satisfaz a equagao diferencial

T[>~ _
yrie —&%u com condigdo inicial u(¢,0) = E/ e %0 (2)dr = ug (&)

A solugao é
(e t) = et (€)

e Verifique que re —&’t & a transformada de Fourier do nicleo de Poisson (ou heat kernel)

N

1 71:
Pz) = —=e™ 4

e Deduza que a solucao da equagdo de calor na recta com condigao inicial ug(x) é

u(z,t) = (Prxup)(x)
_(@=y)?

1
= — It d
o= wmay

Movimento Browniano. No modelo do movimento Browniano proposto por Einstein em 1905%, a
densidade de probabilidade P(z,t) de encontrar a particula Browniana na posigdo x no tempo ¢t sabendo
que ela estava na posicao 0 no tempo 0 é a solugao nao-negativa da equagao da difusao

OP 0’pP

ot o =0

tal que lim;_,g P(z, t) =0 paratodoox # 0, e foo P(z,t)dx = 1 para todo o tempo t > 0. O “coeficiente

de difusao” é 3 = ,onde R é a constante de gas perfeito, T' a temperatura absoluta, N o nimero de
Avogadro, e o = 67r77p um coeficiente de friccao (que depende da viscosidade dindmica 7 do liquido e do
raio p da particula Browniana).

4A. Einstein, Uber die von der molekularkinetischen Theorie der Wirme geforderte Bewegung von in ruhenden
Flissigkeiten suspendierten Teilchen, Ann. Phys. 17, 549, 1905. Traduzido em A. Einstein, Investigations on the
Theory of Brownian Movement, Dover, New York, 1956.
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e Verifique que a Gaussiana

1 )
Pp) = L /By
() NG

resolve o problema do movimento Browniano.

e Verifique que
Pt+s / P )dy

e interprete este facto.

e Calcule o caminho quadrético médio da particula Browniana no tempo t, definido por

(z(t)*) = /°° 2?Py(x)dx .

— 00

Exercise: equagao de calor com dissipacao. Use a transformada de Fourier para achar a solucao
formal do problema

ou 0%u

ot B

com condigao inicial u(z,0) = f(x) continua e limitada.

Exercise: equagao de ondas com dissipagao. Use a transformada de Fourier para achar a solugao
formal do problema
Pu ,0%u
i e
ot? Ox?

com condigoes iniciais u(x,0) = f(x) e %(I,O) = g(x) continuas e limitadas.

4.6 Kernels for the Laplace equation

Poisson formula in the unit disk.

Férmula integral de Poisson no semi-plano. Considere o problema de determinar uma extensao
harmoénica f(x,y), ou seja
o?f  O*f
Af = =0
I=a2t g
no semi-plano superior H = {(z,y) € R? t.q. y > 0} de uma funcio g(x) definida na fronteira OH =
{(z,y) € R? t.q. y=0}. Se f(x,y) é suficientemente regular, a sua transformada de Fourier (apenas na

variavel x),
. 1 oo
— —ifx
y) = e z,y)dx
satisfaz a equacao diferencial

27 . o .
—&f + gyf 0 com condi¢ao inicial f(£,0) = \/%/ e g (x)dx = G(&)

— 00

A solugao limitada em y > 0 é

Fl&y) =g

e Verifique que \/%e*my ¢ a transformada de Fourier do nicleo de Poisson em H

1y

Py(m) = ;.’1,‘2—"-:1/2

e Deduza que a extensdo harménica de g(x) em H é

flxz,y) = (Py*g)(x)
1 oo
B ?[m@—juwﬂ®®



Conformal transformations.

4.7 Quantum mechanics
Oscilador harménico quantico. Considere a equagdo de Schrodinger

ov h? 0%V 1
h— = —— —— + “mw?2?¥
! ot " 2m Ox2? + 2 v

para a funcio de onda ¥(z,t) € C de uma particula de massa m num potencial V(z) = 1mw?z?, onde

h é a constante de Planck reduzida. Determine as solugoes separdveis, ou seja do género

U, (z,t) = e_iEgtfn(m) ,

com f,(x) € L?(R), e mostre que os “niveis de energia” sao

1
En:m(n+2) com n=0,1,2,3,..

4.8 Characteristic functions and the central limit theorem

Funcgao caracteristica e teorema limite central. A funcdo caracteristica de uma variavel aleatéria
real X, com lei P, é a média/esperaca da variavel e com ¢ € R, ou seja,

ox (&) =EeN = /ei&P(dx).

Em particular, se X é absolutamente continua com lei P(X € A) = [ 4 p(z)dr, entdo a funcio carac-
teristica ¢x(€) é a transformada de Fourier da densidade de X, pois

ox©= [ " e p()de = VI P(E).

”5

O teorema de Lévy afirma que uma sequéncia de varidveis aleatérias (X,,) converge “em lei
variavel X quando n — oo, i.e. X, =% X, sse ¢y, (£) — ¢x (&) para cada € € R.

para a

e Verifique que as derivadas da fungao caracteristica na origem sao
¢x(0)=1 = ¢x(0) =iEX %(0) = ~EX?
(desde que os momentos da varidvel X sejam finitos).

e Mostre que, se a varidvel aleatéria X tem média EX = m e variancia VX = E(X —m)? = 02, e se
Y = X1 entéo®

1
Py () =1~ 552 +0(€%)
numa vizinhanca da origem.

e Sejam X;, Xo, X3, ... variaveis aleatérias independentes e identicamente distribuidas, com média
m e variancia o2, seja S, = X7 + X + ... + X,,, e seja

«_ Sn—nm
S o fz

Verifique que

ds: (€) = (ov(E/vn))"

onde Y = 2= ¢ portanto

G5 € — 6_52/2 quando n — oo

5 Convergéncia em lei: X, —* X se, para cada fungio f(z) continua e limitada, Ef(X,) — Ef(X), ou seja, se

lim P(X, <z)=P(X <x).

para cada ponto de continuidade x da fungdo de reparticao de X.
6Notacdo de Landau: f(£) = o(¢*) quando & — 0 significa que limg_,q f(£)/€F = 0.
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e Deduza o teorema limite central, que afirma que a sequéncia de varidveis (S};) converge em lei para
uma varidvel normal N(0, 1), ou seja,

P(S; <) — —*/2g4

1 xT
—— e
2T /_oo
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