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Abstract

This is not a book! These are personal notes written while preparing lectures on “Análise
Matemática 3” for students of FIS in the a.y. 2007/08 and then 2009/10. They are based on
previous notes on “Complementos de Análise Matemática” for students of ENGSI, FIS, FQ(E), QP
and QT. They are rather informal and may even contain mistakes. I tried to be as synthetic as I
could, without missing the observations that I consider important.

I probably will not lecture all I wrote, and did not write all I plan to lecture. So, I included empty
or sketched paragraphs, about material that I think should/could be lectured within the same course.

References contain some introductory manuals, some classics, and other books where I have learnt
things in the past century. Besides, good material and further references can easily be found on the
web, for example in Wikipedia.

Pictures were made with “Grapher” on my MacBook.
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1 Heat and diffusion

The simples model for propagation of heath and diffusion are

∂u

∂t
− β ∂

2u

∂x2
= 0 ...

∂u

∂t
− β4u = 0 ,

where β is a positive parameter.

Example (heat propagation/conduction). Consider a thin wire of length `, section s and density ρ,
so thin that its temperature profile at time t may be considered a function of the length only, say u(x, t)
with 0 ≤ x ≤ `. If the two ends are in thermal contact with two thermostats maintained at constant
temperatures a and b, experiments show that the temperature profile stabilizes at the stationary linear
profile

a+
b− a
`

x .

The heath flowing along the wire’s section in unit time is seen to be δQ = −ks b−a` , where k is a coefficient
of thermal conduction which characterize the wire’s material.

Assume now that we have a non-stationary temperature profile u(x, t) at time t. The heath flow
across the x-cross-section between the times t1 and t2 is then

δQ = −
∫ t2

t1

ks
∂u

∂x
(x, t)dt .

But the amount of heat necessary to increase the temperature of a conductor by δT is

δQ = cvδT ,

where c is the specific heat of the material and v is the volume. Hence the heat balance for the piece of
wire between x1 and x2, and between times t1 and t2 is∫ x2

x1

cρs (u(x, t2)− u(x, t1)) dx =
∫ t2

t1

ks

(
∂u

∂x
(x2, t)−

∂u

∂x
(x1, t)

)
dt+

∫ x2

x1

∫ t2

t1

F (x, t)dtdx ,

where F (x, t) represents the contribution of some heat source. Using the mean values theorem we find,
in the limit x2 → x1 and t2 → t1, the equation

cρ
∂u

∂t
= k

∂2u

∂x2
+ F (x, t) ,

that we may write as
∂u

∂t
= β

∂2u

∂x2
+ f(x, t) ,

having defined the coefficient of thermal conduction β = k/(cρ), and where f(x, t) = F (x, t)/(cρ) is a
heat source density.

Example (diffusion).

Example (Brownian motion). The first satisfactory theory of Brownian motion (the erratic move-
ments of particles suspended in a liquid, observed by the botanist Robert Brown in 1827) is due to Albert
Einstein 1. With clever use of ideal experiments, mechanical and thermodynamic ideas, he was able to
show that the probability density P (x0|x, t) to find a Brownian particle in x at time t provided it were
at x0 at time 0 is the non-negative solution of the diffusion equation

∂P

∂t
− β ∂

2P

∂x2
= 0 ,

such that limt→0 P (x0|x, t) = 0 for any x 6= x0, and
∫
P (x0|x, t)dx = 1. Above, the “diffusion constant”

is
β =

RT

Nα
,

1A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden
Flüssigkeiten suspendierten Teilchen, Ann. Phys. 17, 549, 1905. Translated and reprinted in A. Einstein, Investiga-
tions on the Theory of Brownian Movement, Dover, New York, 1956.
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where R ' 8314.51J/kmol·K is the perfect gas constant, T the absolute temperature, N ' 6.00221 ×
1023mol−1 the Avogadro number, and α = 6πηa a friction coefficient (depending on the dynamic viscosity
η of the liquid/gas and the radius a of the Brownian particle). One can check that the solution of this
problem is given by the (shifted and scaled) Gaussian

P (x0|x, t) =
1

2
√
πβt

e−(x−x0)
2/4βt .

The mean square displacement in time t is

〈
x(t)2

〉
=

∫ ∞
−∞

x2P (x, t)dx

= 2βt ,

so that the diffusion constant may be measured in experiments (and indeed in this way Perrin estimated
a value of the Avogadro number, winning a Nobel prize few years after Einstein proposal). You may also
see that the Brownian particle is displaced of an average amount

|x(t− δt)− x(t)| '
√

2βt

during a small interval of time with length δt, a fact which explains why its trajectories do not look like
the familiar differentiable curves of Newtonian mechanics. Of course, you may say that Einstein’s model
does not work for short intervals of time, and indeed improved models for the Brownian motion were
proposed later by L.S. Ornstein and G.E. Uhlenbeck.

1.1 Maximum value principle and uniqueness theorem

The uniqueness and stability theorems for the one-dimensional heat equation come from the obvious
physical principle saying that, in absence of internal heat sources, any interior point of a conductor at
time t > 0 cannot be hotter or colder than it were a time t = 0 or than the hotter or colder boundary
points (where energy is coming in or out). Technically, the principle is stated as

Maximum value principle. Let u(x, t) be a smooth solution of the heat equation in a finite rectangle
R = [a, b]× [0, T ]. Then u attains its maximum and its minimum for t = 0 or at the boundary x = a or
b.

Proof. First, call B = {(x, t) ∈ R s.t. t = 0 or x = a or x = b} the set where the maximum and
minimum of u will eventually attained. Let M = max(x,t)∈B u(x, t), and assume that there is some point
(x0, t0) ∈ R\B where u(x0, t0) = M + ε for some positive ε. Define an auxiliary function v as

v(x, t) = u(x, t)− ε

2T
(t− t0) ,

and observe that it is bounded by v(x, t) ≤M+ε/2 on B. Since v(x0, t0) = M+ε, v attains its maximum
in some point (x1, t1) ∈ R\B. Computing derivatives, we must have

∂2v

∂x2
(x1, t1) =

∂2u

∂x2
(x1, t1) ≤ 0

and
∂v

∂t
(x1, t1) =

∂u

∂t
(x1, t1)− ε

2T
≥ 0 ,

which is impossible since u satisfies the heat equation. To prove the analogous statement for the minimum,
just repeat the argument for the function −u(x, t). q.e.d.

Applying the maximum principle to the difference of any two solutions of the heat equation we get the

Uniqueness theorem. There exists at most one smooth solution of the heat equation in a bounded
interval, given any initial and boundary conditions.

Another interesting consequence of the maximum principle is the
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Stability theorem. If u(x, t) and v(x, t) are two solutions of the heat equation on a finite interval I
such that |u(x, t) − v(x, t)| ≤ ε for t = 0 and at the boundary points of I, then |u(x, t) − v(x, t)| ≤ ε for
any x ∈ I and any time t ≥ 0.

It may be rephrased saying that the Cauchy problem for the heat equation is “well posed”, a small
uncertainty on the initial and boundary conditions does not grow with time.

The uniqueness theorem in a infinite domain needs a separate proof.

1.2 Diffusion on the line and heat kernel

Direct computation shows that the “gaussian”

P (x, t) =
1

2
√
πβt

e−x
2/4βt .

is a solution of the heat equation
∂P

∂t
− β ∂

2P

∂x2
= 0

on the line x ∈ R. Moreover, it has constant integral∫ ∞
−∞

P (x, t)dx = 1

and satisfies
lim
t→0

P (x, t) = 0

for any x 6= 0. Observe that, for any ε > 0,∫
|ξ−x|≤ε

P (x− ξ, t)dξ → 1 and
∫
|ξ−x|>ε

P (x− ξ, t)dξ → 0

as t→ 0+. This implies that, if ϕ(x) is a continuous and bounded function, then

lim
t→0+

∫ ∞
−∞

ϕ(ξ)P (x− ξ, t)dξ = ϕ(x) ,

so that we can interpret P (x, t) as being the solution of the heat equation with initial condition P (x, 0) =
δ(x), and as such it is called fundamental solution of the heat equation, or heat kernel. But then we can
write other solutions as “superpositions” of the fundamental solutions, namely as integrals

u(x, t) =
∫ ∞
−∞

ϕ(ξ)P (x− ξ, t)dξ

=
1

2
√
πβt

∫ ∞
−∞

ϕ(ξ)e−(x−ξ)2/4βtdξ .

You may check that the above formula, called Poisson’s formula, is the solution of the heat equation with
initial condition u(x, 0) = ϕ(x), provided that ϕ(x) is continuous and bounded on the real line.

1.3 Separation of variables and Fourier series solutions

Here we pose the problem to find solutions, as many as possible, of the heat equation

∂v

∂t
− β ∂

2v

∂x2
= 0

in some interval 0 ≤ x ≤ `.

Constant boundary conditions. We start with the problem with constant boundary conditions, say
v(0, t) = a and v(`, t) = b. Observe that, if we set v(x, t) = u(x, t) +a+ (b−a)x/`, then the new function
u(x, t) also satisfies the same heat equation

∂u

∂t
− β ∂

2u

∂x2
= 0
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with zero boundary conditions u(0, t) = 0 and u(`, t) = 0. So, we may restrict to this last problem,
describing heat propagation in a thin conductor whose ends are in thermal contact with two thermostats
at fixed zero temperature.

Separation of variables. An obvious “stationary solution” is the trivial solution u(x, t) = 0, the
conductor in in thermal equilibrium with the two thermostats.

We try non-trivial solutions having the form u(x, t) = f(x)g(t), for some functions f(x), which only
depends on the position, and g(t), which only depends on time, to be determined. Substituting the guess
into the heat equation, we get

f ′′(x)
f(x)

=
1
β

g′(t)
g(t)

,

at least at those points where f and g are different from zero. Now we notice that the l.h.s. only depends
on the position x and the r.h.s. only depends on the time t. This may only happens when they are both
constant, say equal to µ. But then we are left with the two second order ODEs

f ′′ = µf and g′ = βµg

for f and g. The only non trivial solutions of f ′′ = µf with zero boundary conditions f(0) = 0 and
f(`) = 0 occur when the “eigenvalue” µ is equal to

µn = −
(πn
`

)2

for n = 1, 2, 3, ..., and they are proportional to

sin
(πn
`
x
)
.

For any given n, we then solve g′ = −β
(
πn
`

)2
g. The result is that g(t) is proportional to

e−β(πn` )2
t .

Hence, we have found solutions of the heath equation as ”modes”

un(x, t) = bne
−β(πn/`)2t sin

(πn
`
x
)

for n = 1, 2, 3, ... ,

where bn are arbitrary constants.

Isolated boundaries. If the conductor is isolated, hence there is no heat flow at the boundaries, we
must solve the heat equation

∂v

∂t
− β ∂

2v

∂x2
= 0

with boundary conditions ∂v
∂x (0, t) = 0 e ∂v

∂x (`, t) = 0. The conjecture v(x, t) = f(x)g(t), for some
functions f(x), which only depends on the position, and g(t), which only depends on time, still lead to

f ′′(x)
f(x)

=
1
β

g′(t)
g(t)

,

hence to the two second order ODEs

f ′′ = µf and g′ = βµg

for f and g. This time, we must find non-trivial solutions of f ′′ = µf with zero derivatives f ′(0) = 0 and
f ′(`) = 0 at the boundary points. These exist provided the eigenvalue is equal to

µn = −
(πn
`

)2

for n = 0, 1, 2, 3, ..., and they are proportional to

cos
(πn
`
x
)
.
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For any given n, we then solve g′ = −β
(
πn
`

)2
g. The result is that g(t) is proportional to

e−β(πn` )2
t .

Hence, we have solutions of the heath equation as ”modes”

vn(x, t) = ane
−β(πn/`)2t cos

(πn
`
x
)

for n = 0, 1, 2, 3, ... ,

where an are arbitrary constants.

Superpositions and Fourier’s idea. Since the heat equation is linear, any finite superposition of
modes, say

u(x, t) =
N∑
n=1

bne
−β(πn/`)2t sin

(πn
`
x
)

for zero boundary conditions, or

v(x, t) =
a0

2
+

N∑
n=1

ane
−β(πn/`)2t cos

(πn
`
x
)

for zero derivative boundary conditions, is again a solution of the heat equation. We note that their
initial values are

u(x, 0) =
N∑
n=1

bn sin
(πn
`
x
)

and v(x, 0) =
a0

2
+

N∑
n=1

an cos
(πn
`
x
)
,

respectively. This says that every time we are able to write the initial condition as a “trigonometric
polynomial”, the formulas above (multiplication of each coefficient by the exponentially decaying factor
e−β(πn/`)2t) solves the heat equation.

We may also observe that the amplitude of each mode decreases exponentially in time, with a speed
that depends on the frequency number n. In particular, asymptotically the solution tends to the stationary
solution u(x, t) = 0 or v(x, t) = a0/2, in accordance with our physical intuition.

It was Fourier 2 who first conjectured the possibility to express an “arbitrary” well behaved function
ϕ(x), say defined in the interval −` ≤ x ≤ `, as a “infinite trigonometric polynomial”, i.e. a trigonometric
series

ϕ(x) =
a0

2
+
∞∑
n=1

(
an cos

(πn
`
x
)

+ bn sin
(πn
`
x
))

,

for some coefficients an’s and bn’s. On the right we have a series of functions, and equality should mean
that, for any fixed x, the resulting numerical series is summable and has sum equal to ϕ(x). Observe
that the series should contain only sin’s if the function ϕ is odd (as the initial value for the heat problem
with zero boundary conditions), and only cos’s if the function ϕ is even (as the initial value for the heat
problem with zero derivative boundary conditions). Now, if the above expression for ϕ does make sense,
then multiplication of each coefficient by the exponentially decaying factor e−β(πn/`)2t should give the
solution of the heat equation with initial condition u(x, 0) = ϕ(x). Indeed, if we admit that we can
differentiate the series term by term, once w.r.t. time t and twice w.r.t. space x, and that the resulting
series for ∂u

∂t and ∂2u
∂x2 are still point-wise absolutely convergent, then the heat equation will be satisfied

for trivial arithmetical reasons.

Fourier’s trigonometric series. Assume that the function ϕ(x), defined in the interval −` ≤ x ≤ `,
admits a representation as a trigonometric series

ϕ(x) =
a0

2
+
∞∑
n=1

(
an cos

(πn
`
x
)

+ bn sin
(πn
`
x
))

.

To understand the meaning of the ”coefficients” an and bn, we integrate the series against the functions
sin
(
πn
` x
)

and sin
(
πn
` x
)
, assuming that we can exchange the integral with the infinite sums. The first

observation is that the non-oscillating term a0/2 is the mean value of ϕ, namely

a0

2
=

1
2`

∫ `

−`
ϕ(x)dx .

2Joseph Fourier, Théorie Analytique de la Chaleur, 1822. Translated as The Analytical Theory of Heat, Dover, 2003
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As for the other terms, we get∫ `

−`
ϕ(x) cos

(πn
`
x
)
dx =

∫ `

−`

( ∞∑
k=1

an cos
(πn
`
x
)

+ bn sin
(πn
`
x
))

cos
(πn
`
x
)
dx

=
∫ `

−`
an

(
cos
(πn
`
x
))2

dx

= `an if n > 1 ,

and ∫ `

−`
ϕ(x) sin

(πn
`
x
)
dx =

∫ `

−`

∞∑
k=1

(
an cos

(πn
`
x
)

+ bn sin
(πn
`
x
))

sin
(πn
`
x
)
dx

=
∫ `

−`
bn

(
sin
(πn
`
x
))2

dx

= `bn ,

Hence, the Fourier coefficients of the function ϕ are

an =
1
`

∫ `

−`
ϕ(x) cos

(πn
`
x
)
dx e bn =

1
`

∫ `

−`
ϕ(x) sin

(πn
`
x
)
dx .

For the moment, we’ll content with the ”formal” solution we’ve found. We’ll see later which conditions
on the initial value ϕ(x) will guarantee that our formula actually gives a genuine (meaning smooth)
solution of the heat equation. Meanwhile, it must be said that real world situations may be, and sometimes
must be, also modeled with non-smooth, e.g. discontinuous, functions (for example, when you suddenly
put in thermal contact two conductors at different temperatures). In such cases, the formal solution is
all we have, and it often does provide the correct answer, once properly interpreted.
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2 Waves

The simplest PDEs modeling propagation of “waves” are written, in one and three spatial dimensions, as

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0 ...

∂2u

∂t2
− c24u = 0 .

Above, 4 is the Laplacian in Euclidean three dimensional space, the differential operator 4 = ∂2/∂x2 +
∂2/∂y2 + ∂2/∂z2. Physicists also use the D’Alambert’s operator � = ∂2/∂t2 − 4 to write the wave
equation in the compact form �u = 0, in a system of units where the velocity c has been set equal to one
(or time has been redefined to be ct).

Our basic example will be

Example (transversal small vibrations of a string). Consider a thin string of length ` and
constant linear density ρ maintained in equilibrium by a certain tension applied to its ends. Transversal
vibrations are described by a displacement field u(x, t), where x ∈ [0, `] and t is time, which represents
the (one-dimensional) transversal displacement of the string from its rest position u(x, t) = 0. For small
vibrations, we will consider ∂u/∂x small and disregard higher order quantities. In this approximation,
there is no stretching of the string, since the length of the piece of string between any two points is∫ x2

x1

√
1 + (∂u/∂x)2dx ' x2 − x1

This implies that the tension at each point is constant in time, say equal to k(x). Moreover, the longitu-
dinal tension is k(x) cos (arctanux) ' k(x), and the transversal tension is k(x) sin (arctanux) ' k(x)ux.
Since the longitudinal tensions between any two points must balance, we see that within this approxi-
mation the tension does not depends on the position, it is a constant k. Now we compute the change in
moment, for the piece of string between any two nearby points x1 < x2, in the interval of times from t1
to t2, ∫ x2

x1

ρ(x)
(
∂u

∂t
(x, t2)− ∂u

∂t
(x, t1)

)
dx ,

and equals to the work done by the transversal tension and an external force field F (x, t) in the same
time interval, ∫ t2

t1

k

(
∂u

∂x
(x2, t)−

∂u

∂x
(x1, t)

)
dt+

∫ t2

t1

F (x, t)dt

But then ∫ x2

x1

∫ t2

t1

ρ(x)
∂2u

∂t2
dxdt =

∫ t2

t1

∫ x2

x1

k
∂2u

∂x2
dtdx+

∫ t2

t1

∫ x2

x1

ρf(x, t)dtdx ,

where f(x, t) = F (x, t)/ρ is the force density, and, since it must hold for any x1, x2, t1, t2, we finally get

ρ(x)
∂2u

∂t2
− k∂

2u

∂x2
= ρf(x, t) .

Dividing by the density, we get the equation in the standard form

∂2u

∂t2
− c2 ∂

2u

∂x2
= f(x, t) ,

where c =
√
k/ρ has the dimensions of a velocity. If external forces are absent, we are left with the

homogeneous equation
∂2u

∂t2
− c2 ∂

2u

∂x2
= 0 ,

describing the free vibrations of the string.
In applications, you must remember that the model was obtained assuming that the string does not

stretch, hence that the amplitude of vibrations is small. Moreover, you may have noticed that real strings
(as in a piano) do stop vibrating appreciably after a finite time. The simplest way to model this fact is
putting a friction term as −α∂u/∂t on the r.h.s. of the wave equation.

An heuristic look at the wave equation. Divide the string in a large number of short intervals
of length ε centered at evenly spaced points 0 < x1 < x2 < x3 < ... < xn < ... < `. If the length ε is
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not greater than your instrument’s resolution, you may imagine that the n-th piece of string is actually
a point-like particle of mass mn = ρ(xn)ε with height qn(t) = u(xn, t) over xn. But then

ρε
∂2u

∂t2
(xn, t) = mq̈n

is equal to the mass times the transversal acceleration of the particle, and the wave equation is just the
Newton’s equation saying that this quantity is equal to a certain force

fn = kε
∂2u

∂x2
(xn, t) .

Observe that the force is positive at those points xn where the shape u is convex, and negative at points
where the shape is concave, a fact which is in agreement with your intuition (just imagine pulling up or
down the extremes of a jumping’ string!). Now, the second derivative of u w.r.t. x is well approximated,
within your instrument’s resolution, by the quantity

∂2u

∂x2
(xn, t) '

u(xn+1, t)− 2u(xn, t) + u(xn−1, t)
ε2

,

so that the force acting on the n-th particle,

fn ' k
qn+1 − qn

ε
− k qn − qn−1

ε
,

is a superposition of two forces obeying Hooke’s law with stiffness k and displacement proportional to
the distance between the n-th particle and its two neighbors. The string may be considered a continuous
limit of a system of point-like masses coupled with springs. This is one reason to believe that solving a
partial differential equation (as this one) is conceptually different from solving an ordinary differential
equation: morally, it amounts to solving an uncountable number of ODEs in a time!

Initial and boundary value problems for the wave equation. Since the equation

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0

gives the second derivative of u w.r.t. time as a function of something else, it is natural to pose the
problem of solving the equation given initial conditions

u(x, 0) = ϕ(x) and
∂u

∂t
(x, 0) = φ(x)

for u and its first time derivative at time t = 0.
Together with the initial conditions, it is necessary to say what happens to the field u at the boundary

of the space domain. Such conditions are called boundary conditions (“condições de fronteira”). They
may read

u(0, t) = λ(t) and u(`, t) = µ(t)

if the problem is formulated in a bounded space domain x ∈ [0, `], or may just say that u(x, t) → 0
with a certain speed for |x| → ∞, if the problem is formulated in a infinite space domain (an infinite
space domain is also a good choice if we are interested in short time phenomena which occur far from
the ends of the string). Different kinds of boundary conditions may involve partial derivatives of u at the
boundary. For example, saying that ∂u

∂x (0, t) = 0 for any time t means that the 0-end of the string is left
loose ...

Example (longitudinal vibrations).

Example (electric oscillations in conductors).

2.1 d’Alembert’s traveling waves

Consider the one-dimensional wave equation

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0

10



on the line. In the new variables ξ = x+ ct and η = x− ct, it takes the (canonical) form (of hyperbolic
second order PDEs)

∂2u

∂ξ∂η
= 0 .

The obvious general solution of this equation is f(ξ)+g(η), where f and g are arbitrary twice continuously
differentiable functions. Back to the original space and time variables, we get d’Alembert’s solution

u(t, x) = f(x+ ct) + g(x− ct) ,

representing a superposition of two waves, with shapes f and g, traveling to the left and to the right with
speed c.

The arbitrary shapes f and g are determined by the initial conditions. Assume that

u(0, x) = φ(x) and ut(0, x) = ϕ(x) .

Then we get
f(x) + g(x) = φ(x) and cf ′(x)− cg′(x) = ϕ(x) .

Integrating the second equation and substituting the result into the first, we finally get d’Alembert’s
formula

u(t, x) =
1
2

(φ(x+ ct) + φ(x− ct)) +
1
2c

∫ x+ct

x−ct
ϕ(y)dy ,

solving the Cauchy problem for the infinite string.

Exercise. Consider small vibrations of an infinite string.

• Show that if the initial conditions u(x, 0) and ut(x, 0) are zero outside an interval [−L,L] then he
solution u(x, t) is zero outside the interval [−L− ct, L+ ct]. Discuss the physical meaning of this
fact.

• Find the solution when the initial conditions are

u(x, 0) = 0 and ut(x, 0) = cos(2πx) ,

or
u(x, 0) = e−x

2
and ut(x, 0) = 0 .

• Show that if the initial conditions φ(x) and ϕ(x) are odd functions, then the solution u(x, t) is an
odd function of x for any time t. Use this observation to solve the problem in the semirect x ≥ 0
with zero boundary condition u(0, t) = 0.

• Show that if the initial conditions φ(x) and ϕ(x) are even functions, then the solution u(x, t) is an
even function of x for any time t. Use this observation to solve the problem in the semirect x ≥ 0
with ”loose-end” boundary condition ∂u

∂x (0, t) = 0.

2.2 Energy, uniqueness and stability theorems

The uniqueness theorem for the wave equation is obtained from a physical principle: conservation of
energy. The energy of a vibrating string is

E =
1
2

∫ `

0

(
ρ

(
∂u

∂t

)2

+ k

(
∂u

∂x

)2
)
dx

Integrating by parts one may check that the energy is a constant of the motion, provided that the extremes
are fixed (for otherwise we must take into account the work done by an external force to move them!).
Indeed,

dE

dt
=

∫ `

0

(
ρ
∂u

∂t

∂2u

∂t2
+ k

∂u

∂x

∂2u

∂x∂t

)
dx

=
[
k
∂u

∂t

∂u

∂x

]`
0

+
∫ `

0

(
ρ
∂u

∂t

∂2u

∂t2
− k∂u

∂t

∂2u

∂x2
+
)
dx

=
∫ `

0

ρ
∂u

∂t

(
∂2u

∂t2
− c2 ∂

2u

∂x2

)
dx = 0 .
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Uniqueness theorem. There is at most one C2 solution of the wave equation

∂2u

∂t2
− c2 ∂

2u

∂x2
= f(x, t)

with given initial conditions

u(x, 0) = φ(x) and ut(x, 0) = ϕ(x) ,

and boundary conditions u(0, t) = λ(t), u(`, t) = µ(t).

Proof. The difference w between any two solutions is a solution of the same wave equation with trivial
initial and boundary conditions. Since its energy is constant, it is equal to initial value zero. But this
implies that both ∂w/∂x and ∂w/∂t are constant and equal to zero. There follows that w is constant
and equal to its initial condition w(x, t) = 0 for any x ∈ [0, `] and any time t ≥ 0. q.e.d.

For an infinite string, it is possible to obtain a uniqueness theorem provided that the solution vanishes
outside a bounded interval, or that it decreases so rapidly to zero that all the integrals above are absolutely
convergent.

Another important issue is that of “stability” of solutions. May small uncertainties in the initial
conditions produce large effects as times goes by? If so, how large? The result is that we have some
control. More precisely, initial perturbations grow at most linearly in time, as stated in the following

Stability theorem. For any positive ε and any positive time T there exists a positive δ(ε, T ) such
that if u(x, t) and v(x, t) are two solutions of the wave equation with initial and boundary conditions that
differ by no more than δ(ε, T ) then

|u(x, t)− v(x, t)| ≤ ε

for any position x and any time 0 ≤ t ≤ T .

Proof. If initial and boundary conditions are bounded by some δ, then d’Alembert formula shows that

|u(x, t)| ≤ δ + δt .

But if 0 ≤ t ≤ T , then the above is bounded by δ(1 +T ). Applying this to the difference of two solutions,
we see that given a required precision ε, an initial precision

δ(ε, T ) = ε/(1 + T )

will do the job. q.e.d.

2.3 Separation of variables and stationary waves

Here we pose the problem to find solutions, as many as possible, of the wave equation

∂2v

∂t2
− c2 ∂

2v

∂x2
= 0

in some interval 0 ≤ x ≤ `, with time invariant boundary conditions, say v(0, t) = a and v(`, t) = b.
Observe that, if we set v(x, t) = u(x, t) + a + (b − a)x/`, then the new function u(x, t) also satisfies the
same wave equation

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0

with zero boundary conditions u(0, t) = 0 and u(`, t) = 0. So, we may restrict to this last problem,
describing small vibrations of a string with fixed ends (as a violin’s string).

Separation of variables. An obvious “stationary solution” is the trivial solution u(x, t) = 0, the
string doesn’t vibrate.

We look for non-trivial solutions having the form u(x, t) = f(x)g(t), for some functions f(x), which
only depends on the position, and g(t), which only depends on time, to be determined. Substituting the
guess into the wave equation, we get

f ′′(x)
f(x)

=
1
c2
g′′(t)
g(t)

,
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at least at those points where f and g are different from zero. Now we notice that the l.h.s. only depends
on the position x and the r.h.s. only depends on the time t. This may only happens when they are both
constant, say equal to µ. But then we are left with the two second order ODEs

f ′′ = µf and g′′ = c2µg

for f and g. The only non trivial solutions of f ′′ = µf with zero boundary conditions f(0) = 0 and
f(`) = 0 occur when the “eigenvalue” µ is equal to

µn = −
(πn
`

)2

for n = 1, 2, 3, ..., and they are proportional to

sin
(πn
`
x
)
.

For any given n, we then solve g′′ = −c2
(
πn
`

)2
g. The result is that g(t) is a linear combinations of

cos
(πcn

`
t
)

and sin
(πcn

`
t
)
.

Stationary waves. Back to the function u(x, t), we have found solutions of the wave equation, with
zero boundary conditions at x = 0 and x = `, in the form of stationary waves

un(x, t) =
(
an cos (2πνnt) + bn sin (2πνnt)

)
sin (2πx/λn)

= An sin (2πνnt+ τn) sin (2πx/λn) ,

for n = 1, 2, 3, ..., where we have defined the wavelengths and the proper frequencies as

λn =
2`
n

and νn =
c

2`
n , for n = 1, 2, 3, ... ,

and where an and bn are arbitrary constants, An =
√
a2
n + b2n is an amplitude, and τn = arctan(an/bn) a

phase. Sometimes, also the quantities ωn = 2πνn = πcn/` are called frequencies (their use allows to forget
the ubiquitous factor 2π in all formulas!). The first allowed frequency, ν1 = c/2`, is said fundamental
frequency of the vibrating string, and ν2, ν3, ν4, ... are called 2nd, 3rd, 4th, ... harmonics.

The energy of the n-th stationary wave un(x, t) is

En =
1
2

∫ `

0

(
ρ

(
∂un
∂t

(x, t)
)2

+ k

(
∂un
∂x

(x, t)
)2
)
dx

= π2MA2
nν

2
n ,

where M = `ρ is the mass of the string.

Exercise. The E-string of a violin, which is about 325mm length and use to be tuned with a tension
' 70N (i.e. ' 7.1Kg×9.8m/s2), vibrates with frequencies 660Hz, 1320Hz, 1980Hz, ... (corresponding to
E5, E6, E7, ...) Find the linear density and the weight of the string.

What should a violinist do in order to obtain the A5 of 880Hz with this string?

Homework. Investigate the ratios between the frequencies of the notes in our western scale C-D-E-F-
G-A-B-C. The story starts with Pitagoras ...

Superpositions of stationary waves. Since the wave equation is linear, any superposition

u(x, t) =
∑
n≥1

(
an cos (2πνnt) + bn sin (2πνnt)

)
sin (2πx/λn) ,

of stationary waves is still a solution, provided that the sum is finite or that is absolutely convergent
together with its partial derivatives up to order two. Computation shows that the initial conditions of
the above superposition are

u(x, 0) =
∑
n≥1

an sin (2πx/λn)

∂u

∂t
(x, 0) =

∑
n≥1

(πcn
`

)
bn sin (2πx/λn) .
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But this gives us a recipe to solve the wave equation whenever the initial conditions are given as super-
positions of sin (2πx/λn).

Exercise. Find solutions of the wave equation

∂2u

∂t2
− 4

∂2u

∂x2
= 0 , with 0 ≤ x ≤ π ,

with zero boundary conditions, u(0, t) = 0 and u(π, t) = 0, and initial conditions

u(x, 0) = sin(3x) e
∂u

∂t
(x, 0) = 2 sin(4x) ,

or
u(x, 0) = 3 sin(x)− sin(2x) e

∂u

∂t
(x, 0) = 7 sin(5x)− 2 sin(6x) .

Example (dumped vibrations). Real strings in real musical instruments do stop vibrating after a
finite time. The simplest way to model this fact is introducing a dumping term in the wave equation, like

∂2u

∂t2
− c2 ∂

2u

∂x2
= −α∂u

∂t
.

The conjecture un(x, t) = qn(t) sin
(
πn
` x
)

implies that qn(t) satisfies the Newton equation of a dumped
oscillator, namely

q̈n + ω2
nqn = −q̇n ,

with resonant frequency ω2
n = (πcn/`)2. ...

2.4 Waves in 2-dimensional Euclidean space

Example (small vibrations of a membrane). (membrane elástica)

2.5 Waves in 3-dimensional Euclidean space

Example (electromagnetic waves). Maxwell’s equations for the electric and magnetic fields E and
H, in absence of charges and currents, read

∂2E

∂t2
− c24E = 0 and

∂2H

∂t2
− c24H = 0

where c ' 2.998× 108m/s is the speed of light in free space.

Example (non-viscous fluids and acoustic waves). The macroscopic motion of a fluid (a collection
of a large number of microscopic molecules) can be described by the following macroscopic observables:
a density (scalar) field ρ(r), a velocity (vector) field v(r), and a pressure (scalar) field p(r), where r =
(x, y, z) ∈ R3 is the Euclidean coordinate in the observer’s reference systems. If we disregard viscosity
(for otherwise we end up with Navier-Stokes equation, a problem of the millennium!), Newton equations
of motion are

dv

dt
= f − 1

ρ
grad(p) ,

where f = F/ρ is an external force field per unit mass. Observe that the time derivative of v is actually
dv/dt = ∂v

∂t + ∂v
∂x ẋ+ ∂v

∂y ẏ + ∂v
∂z ż, or better ∂v

∂t + 〈v|∇〉 v. It must be solved given the continuity equation

∂ρ

∂t
+ div (ρv) = 0

(saying that no mass is lost), and an equation of state

p = f(ρ)

giving the pressure as a function of the density (and of the temperature, but we assume it constant).
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First, we assume that the process is adiabatic (i.e. there is no heath exchange, so that the entropy
is constant). This implies that we may use the Poisson’s equation of state p/p0 = (ρ/ρ0)γ , where p0

and ρ0 are the initial equilibrium pressure and density, and the exponent γ = cp/cv is the ratio between
the constant pressure and constant volume specific heaths. Second, we consider small values of the
condensation s = (ρ− ρ0)/ρ0. In first approximation we get the equations

∂2s

∂t2
− c24s = 0 and

∂2u

∂t2
− c24u = 0

for both the condensation s (or for the density ρ) and the velocity potential u (defined modulo a constant
by the identity v = −gradu), where the velocity c =

√
γp0/ρ0. For air at usual temperature and pressure,

reasonable values are γ ' 7/5, ρ0 ' 0.001293g/cm3 and p0 ' 1033g/cm3, so that the sound’s speed is
c ' 336m/s.

Spherical waves. Consider the wave equation

∂2u

∂t2
− c24u = 0

in Euclidean 3-dimensional space. If we look for a solution which only depends on the radial coordinate
r =

√
x2 + y2 + z2, we must solve

∂2u

∂t2
− c2

(
∂2u

∂r2
+

2
r

∂u

∂r

)
,

which may be rewritten as
∂2u

∂t2
− c2 ∂

2

∂r2
(ru) .

The general solution of the above equation is a superposition of two spherical waves

u(r, t) =
1
r
f(r + ct) +

1
r
g(r − ct)

contracting and expanding around the origin with velocity c.
We now look for solutions of the wave equation which are superpositions of such spherical waves,

centered at all points of the Euclidean space. Let S2 be the unit sphere in R3, with coordinates (ξ, η, ζ)
and area form dω. Given a function ϕ(x, y, z), we define its mean value on the sphere of radius ct centered
at (x, y, z) as

Mct [ϕ] =
1

4π

∫
S2
ϕ (x+ ctξ, y + ctη, z + ctζ) dω .

.. Huygens’ principle

15



3 Fourier series

3.1 Complex Fourier series

Fourier series of holomorphic functions. Se f(z) é uma função holomorfa num domı́nio que contém
a circunferência unitária, então a sua expansão em série de Laurent pode ser escrita, nos pontos z = eiθ,
como

f(eiθ) =
∞∑

n=−∞
cne

inθ onde cn =
1

2πi

∮
|z|=1

f(z)
zn+1

dz =
1

2π

∫ π

−π
f(eiθ)e−inθdθ

Complex Fourier series. Em geral, se f(θ) é uma função integrável em S1 = R/2πZ (ou seja,
f : R→ C é uma função periódica com peŕıodo 2π), a sua série de Fourier complexa é

f(θ) ∼
∑∞
n=−∞ f̂(n)einθ

(o śımbolo “∼” é apenas uma notação!), onde os coeficientes de Fourier complexos de f(θ) são

f̂(n) = 1
2π

∫ π
−π f(θ)e−inθdθ

Riemann-Lebesgue lemma. If g(x) is an integrable function in some bounded interval [a, b], then
the oscillatory integrals ∫ b

a

g(x) cos(Nx)dx and
∫ b

a

g(x) sin(Nx)dx

tend to zero as N →∞.

Proof. If g is continuously differentiable, the result follows from integration by parts. In the general
case, you should know that any integrable function may be approximated, in the L1-norm, by continuously
differentiable functions. A standard triangular argument then finishes the proof. q.e.d.

Se f(θ) é uma função seccionalmente de classe C1, então a sua série de Fourier no ponto θ converge
uniformemente para o valor médio (f(θ+) + f(θ−))/2. Em particular, a série de Fourier de uma função
f(θ) ∈ C1(S1) converge para f(θ) na norma uniforme, ou seja,

sup
θ∈S1

∣∣∣∣∣f(θ)−
N∑

n=−N
f̂(n)einθ

∣∣∣∣∣→ 0 quando N →∞ .

3.2 Fourier series of square integrable functions

O produto interno e a norma L2 no espaço L2(S1) das funções complexas em S1 = R/2πZ com quadrado
integrável são definidos por

(f, g) =
1

2π

∫ π

−π
f(θ)g(θ)dθ ‖f‖ =

√
(f, f)

A série de Fourier f(θ) 7→ f̂(n) define um isomorfismo de L2(S1) em `2, o espaço das sucessões (xn)n∈Z
tais que

∑∞
n=−∞ |xn|2 <∞, munido do produto interno (x, y) =

∑∞
n=−∞ xnyn. De facto, vale

(f, g) =
∑∞
n=−∞ f̂(n)ĝ(n)

e a identidade de Parseval
‖f‖2 =

∑∞
n=−∞ |f̂(n)|2

A série de Fourier de uma função f(θ) ∈ L2(S1) converge para f(θ) na norma L2, ou seja,∥∥∥∥∥f(θ)−
N∑

n=−N
f̂(n)einθ

∥∥∥∥∥→ 0 quando N →∞ .
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• Verifique as relações de ortogonalidade

(einθ, eimθ) =
1

2π

∫ π

−π
einθe−imθdθ =

{
1 se n = m
0 se n 6= m

• Mostre que, se f(θ) é diferenciável e a derivada f ′(θ) é integrável, então

f̂ ′(n) = inf̂(n)

3.3 Fourier series

Let f(x) periodic integrable function with period 2π. Its Fourier series (expansion) is

f(x) ∼ a0

2
+
∞∑
n=1

(an cos(nx) + bn sin(nx)) ,

where the Fourier coefficients of f are defined as

an =
1
π

∫ π

−π
f(x) cos(nx)dx and bn =

1
π

∫ π

−π
f(x) sin(nx)dx .

If f is piecewice C1, the Fourier series converges to f(x) at the points of continuity, uniformly on bounded
intervals where f is continuous.

Fourier series of periodic functions with arbitrary periods. If the period is 2`, we may change
variable, replacing x with πx/`,

f(x) ∼ a0

2
+
∞∑
n=1

(an cos(ωnx) + bn sin(ωnx)) ,

where ωn = πn
` , and the Fourier coefficients of f are now

an =
1
`

∫ `

−`
f(x) cos(ωnx)dx and bn =

1
`

∫ `

−`
f(x) sin(ωnx)dx .

Comparison with the complex notation. Let f(x) be an integrable periodic function with period
2`. Its complex Fourier series is

f ∼
∞∑

n=−∞
f̂ne

iknx

where the Fourier coefficients are

f̂n =
1
2`

∫ `

−`
e−iknxf(x)dx

and kn = π
` n. If f is piecewice C1, the Fourier series converges to f(x) at the points of continuity,

uniformly on bounded intervals where f is continuous.

3.4 Pointwise convergence of Fourier series

Let f(x) be a 2π-periodic integrable function, and let

f(x) ∼ a0

2
+
∞∑
n=1

(an cos(nx) + bn sin(nx))

its Fourier series. We pose the question whether the series does converge at a given point x, and what
the sum eventually is. The partial sums of the Fourier series of f are the trigonometric polynomials

SN (x) =
a0

2
+

N∑
k=1

(an cos(nx) + bn sin(nx)) ,

so the problem is to understand if, and if so what, limit does SN (x) have for N →∞.
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Point-wise convergence theorem. If f(x) is integrable and sectionally C1, then the partial sums of
its Fourier series converge at every point x to the arithmetic mean

f(x− 0) + f(x+ 0)
2

of the left and right limits of f at x. In particular, the Fourier series of f converges to f(x) at continuity
points of f .

Uniform convergence theorem. If f(x) is absolutely continuous and its derivative f ′ is square
integrable, then the its Fourier series converges uniformly to f .

Proof of the point-wise convergence theorem. Using the integral formulas for the coefficients, we
get

SN (x) =
1
π

∫ π

−π
f(y)

(
1
2

+
N∑
k=1

an cos(nx) cos(ny) + bn sin(nx) sin(ny)

)
dy

=
1
π

∫ π

−π
f(y)

(
1
2

+
N∑
k=1

cos(n(y − x))dy

)
.

The trigonometric identity

1
2

+ cos(x) + cos(2x) + ...+ cos(Nx) =
sin
(

2N+1
2 x

)
2 sin(x/2)

(which you can prove writing the sum in complex notation and using the formula for the partial sums of
a geometric series) implies that we can represent the partial sum of the Fourier series of f as

Sn(x) =
∫ π

−π
f(x+ y)DN (y)dy ,

where the Dirichlet kernel is defined as

DN (y) =
sin
(

2N+1
2 x

)
2π sin(x/2)

.

Observe that from the above trigonometric identity follows that∫ π

−π
DN (y)dy = 1

for any N . Hence, we may finally write the difference between f(x) and the N -th partial sum of its
Fourier series as

f(x)− SN (x) =
∫ π

−π
(f(x)− f(x+ y))DN (y)dy .

Fixed x, we break the integral into two parts,∫ 0

−π
(f(x− 0)− f(x+ y))DN (y)dy +

∫ π

0

(f(x+ 0)− f(x+ y))DN (y)dy

If f admits left and right derivatives at the point x, then the functions

f(x− 0)− f(x+ y)
y

and
f(x+ 0)− f(x+ y)

y

are integrable at in their respective domains (this integrability condition, called Dini’s condition, is the
real sufficient condition for the point-wise convergence theorem!). But then both integrals∫ 0

−π

f(x− 0)− f(x+ y)
y

y

2π sin(y/2)
sin
(

2N + 1
2

y

)
dy

and ∫ π

0

f(x+ 0)− f(x+ y)
y

y

2π sin(y/2)
sin
(

2N + 1
2

y

)
dy

tends to zero as N →∞, because of the Riemann-Lebesgue lemma. q.e.d.
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3.5 Examples of Fourier series

Here we show some computations of simple Fourier series. For simplicity, we only consider functions with
period 2π (or, better, the 2π-periodic extensions of functions defined in the interval −π ≤ x < π). If you
want other periods, say 2`, just change variable, from x to `x/π.

Example (linear). Find the Fourier series of f(x) = x, defined for −π ≤ x ≤ π. Since f is odd, all
an’s are zero. Moreover,

bn =
1
π

∫ π

−π
x sin(nx)dx =

2
π

∫ π

0

x sin(nx)dx

=
2
π

[
sin(nx)− nx cos(nx)

n2

]π
0

= 2
cos(nπ)

n
= 2

(−1)n+1

n

Hence,

x ∼ 2
∑
n≥1

(−1)n+1

n
sin(nx)

∼ 2
(

sin(x)− 1
2

sin(2x) +
1
3

sin(3x)− 1
4

sin(4x) + ...

)
.

Example (modulus). Find the Fourier series of f(x) = |x|, defined for −π ≤ x < π. Since f is even,
all bn’s are zero. The mean value is

a0

2
=

1
2π

∫ π

−π
|x|dx =

π

2
,

, and

an =
1
π

∫ π

−π
|x| cos(πnx)dx =

2
π

∫ π

0

x cos(nx)dx

=
2
π

[
cos(nx) + nx sin(nx)

n2

]π
0

=
2
π

cos(nπ)− 1
n2

=
{
− 4
πn2 if n is odd
0 if n is even and positive

Hence

|x| ∼ π

2
− 4
π

∑
n odd

cos(nx)
n2

∼ π

2
− 4
π

(
cos(x) +

1
9

cos(3x) +
1
25

cos(5x) +
1
49

cos(7x) + ...

)
.

Example (square). Find the Fourier series of f(x) = x2, defined for −π ≤ x ≤ π. Since f is even, all
bn’s are zero. The mean value is

a0

2
=

1
2π

∫ π

−π
x2dx =

π2

3
,

and other an’s are

an =
1
π

∫ π

−π
x2 cos(nx)dx =

2
π

∫ π

0

x2 cos(nx)dx

=
2
π

[
x2 sin(nx)

n

]π
0

− 4
nπ

∫ π

0

x sin(nx)dx = 4
cos(nπ)
n2

= 4
(−1)n−1

n2

Hence,

x2 ∼ π2

3
− 4

∑
n≥1

(−1)n−1

n2
cos(nx)

∼ π2

3
− 4

(
cos(x)− 1

4
cos(2x) +

1
9

cos(3x)− 1
16

cos(4x) + ...

)
.
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This Fourier series is famous, since it allows to compute the value of the Riemann’s zeta function

ζ(z) =
∞∑
n=1

1
nz

at the point z = 2, which is (the volume of the unit tangent bundle of the modular orbifold H2/PSL(2,Z))

1
1

+
1
4

+
1
9

+
1
16

+
1
25

+
1
36

+ ... =
π2

6
.

Example (periodic step functions). Find the Fourier series of 2π-periodic extension of the Heaviside
function, namely

Θ(x) =
{

1 if 0 ≤ x < π
0 if − π ≤ x < 0

The mean value is
a0

2
=

1
2π

∫ π

0

dx =
1
2
,

and other an’s are

an =
1
π

∫ π

0

cos(nx)dx =
1
nπ

[sin(nπ)]π0 = 0 if n = 1, 2, 3, ...

The bn’s coefficients are

bn =
1
π

∫ π

0

sin(nx)dx =
1− cos(nπ)

nπ
=
{

2
πn if n is odd
0 if n is even

Hence,

Θ(x) ∼ 1
2

+
2
π

∑
n odd

sin(nx)
n

∼ 1
2

+
2
π

(
sin(x) +

1
3

sin(3x) +
1
5

sin(5x) +
1
7

sin(7x) + ...

)
.

Also interesting in applications is the odd function

2Θ(x)− 1 =
{

1 if 0 ≤ x < π
−1 if − π ≤ x < 0 ,

whose Fourier series is

2Θ(x)− 1 ∼ 4
π

∑
n odd

sin(nx)
n

∼ 4
π

(
sin(x) +

1
3

sin(3x) +
1
5

sin(5x) +
1
7

sin(7x) + ...

)
.

Example (periodic delta functions). The distributional derivative of the Heaviside function is the
Dirac delta function (at the origin). Actually, if you formally derive term by term the Fourier series of
the periodic Θ(x), you get

Θ′(x) ∼ 2
π

(cos(x) + cos(3x) + cos(5x) + cos(7x) + ...) .

which may be interpreted as the formal Fourier series of the 2π-periodic extension of the Dirac function
δ(x). In more generality, here we compute the formal Fourier series of the odd and even 2π-periodic
extensions of δ(x− α), for some 0 < α < 2π. A straightforward computation shows that

δ(x− α)− δ(x+ α) ∼ 2
π

∞∑
n=1

sin(nα) sin(nx)
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and

δ(x− α) + δ(x+ α) ∼ 1
π

+
2
π

∞∑
n=1

cos(nα) cos(nx) .

Example (zig-zag). Find the Fourier series of the zig-zag, the odd 2π-periodic extension of

Z(x) =
{

x if 0 ≤ x < π/2
π − x if π/2 ≤ x < π

.

Since Z is odd, all an’s are zero. The bn’s coefficients are

bn =
2
π

∫ π/2

0

x sin(nx)dx+
2
π

∫ π

π/2

(π − x) sin(nx)dx

=
4
πn2

sin (nπ/2) =
{

2
πn if n is odd
0 if n is even

Hence

Z(x) ∼ 4
π

∑
n odd

(−1)(n−1)

n
sin(nx)

∼ 4
π

(
sin(x)− 1

9
sin(3x) +

1
25

sin(5x)− 1
49

sin(7x) + ...

)
.

3.6 Fourier series solutions of the wave equation

Example (playing cavaquinho). When you play your “cavaquinho”, you leave the strings with no
appreciable initial velocity and more or less triangular initial shape. To understand the sound, we must
solve the suitable wave equation

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0

for a string of length `, with initial displacement given by

u(x, 0) '
{ h

αx se 0 ≤ x < α
h

α(`−α) (`− x) se α ≤ x < `

where 0 < α < ` is the point where you touch the string, and h = εα is the maximal initial displacement,
and zero initial velocity ∂u

∂t (x, 0) = 0. Computing the Fourier coefficients of the odd 2`-periodic extension
of the initial displacement,

bn =
2h
α`

∫ α

0

x sin
(πn
`
x
)
dx+

2h
`α(`− α)

∫ `

α

(`− x) sin
(πn
`
x
)
dx

=
2h
α`

[
`2

π2n2
sin
(πn
`
x
)
− `α

πn
cos
(πn
`
x
)]α

0

+

+
2h

`α(`− α)

[
− `2

πn
cos
(πn
`
x
)
− `2

π2n2
sin
(πn
`
x
)

+
`α

πn
cos
(πn
`
x
)]`

α

= ... some cancellations and rewriting ...

=
2h`2

π2α(`− α)n2
,

we get the amplitude of the n-th excited harmonic

An =
2h`2

π2α(`− α)
sin (nπα/`)

n2
.

The corresponding energy is

En =
mh2`2c2

π2α2(`− α)2
sin2 (nπα/`)

n2
,
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where m = ρ` is the mass of the string. You see that the intensities of the different harmonics decrease
as 1/n2, so that the sound is essentially given by the fundamental frequency ν1 = c/2` and few others.

You can also observe that choosing the point α near a rational multiple of the length `, it is possible
to kill, or at least to dump, all multiples of some given harmonic. Of course, our model is but a first
and poor approximation, but you may experience some difference in timbre playing a guitar at different
heights of its strings.

Example (playing piano). When you play a piano, strings are excited by a hammer driven by the
key that you’re pressing. In a first approximation, we can imagine that the hammer gives to the string
an instantaneous impulse p concentrated at some point 0 < β < ` of the string. So, we may try to solve
the suitable wave equation

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0

for a string of length `, with zero initial displacement u(x, 0) = 0 and initial velocity given by

∂u

∂t
(x, 0) =

p

ρ`
δ(x− β) .

Computing the Fourier coefficients of the odd 2`-periodic extension of the Dirac delta function at β, we
get the amplitude of the n-th excited harmonic

An =
2p
πm

sin (nπβ/`)
n

The corresponding energy is

En =
p2

m
sin2 (nπβ/`) .

You see that all the different harmonics have nearly equal intensities, as long as β is not a special point.
This is a first explanation for the piano’s timbre being more “important” than the one of your cavaquinho.
The problem with this first approximation is that it gives the unrealistic value ∞ for the total energy
E =

∑
n≥1En of the vibrating string! A more realistic model could be an initial velocity v equally

distributed along a portion of length 2δ where the real hammer hits the string. So, we must solve the
wave equation with initial velocity

∂u

∂t
(x, 0) '

{
v if |x− β| ≤ δ
0 if |x− β| > δ

The non-zero Fourier coefficients of the odd 2`-periodic extension of the initial velocity are

bn =
2v
`

∫ β+δ

β−δ
sin
(πn
`
x
)
dx

=
2v
πn

(
cos
(πn
`

(β − δ)
)
− cos

(πn
`

(β + δ)
))

=
4v
πn

sin (nπβ/`) sin (nπδ/`) .

The energy of the n-th excited harmonic is then

En =
4mv2

π2

sin2 (nπβ/`) sin (nπδ/`)
n2

.

The total energy is now finite. Moreover, if δ is much smaller that the string’s length `, the approximation
sin (nπδ/`) ' nπδ/` shows that the first harmonics (those for which nδ is still much smaller that `) still
have energy

En '
(mv2δ/`)2

m
sin2 (nπβ/`)

(observe that we recover the previous solution for an impulse p = mv2δ/`, as it should be!) nearly
constant, in accordance with our previous model.
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3.7 Fourier series solutions of the heat equation

3.8 Harmonic extensions

Fórmula integral de Poisson no disco unitário. Considere o problema de determinar uma extensão
harmónica f(reiθ), ou seja, uma solução da equação de Laplace

∂2f

∂x2
+
∂2f

∂y2
= 0 ,

no disco D = {(x, y) ∈ R2 t.q. x2 + y2 ≤ 1} ' {z = reiθ ∈ C t.q. |z| = r ≤ 1} de uma função g(eiθ)
definida na circunferência S1 = {(x, y) ∈ R2 t.q. x2 + y2 = 1} ' {z = eiθ ∈ C t.q. |z| = 1}.

• Verifique que r|n|einθ é uma extensão harmónica de einθ.

• Deduza que

f(reiθ) =
∞∑

n=−∞
cnr
|n|einθ reiθ ∈ D

é uma extensão harmónica da série de Fourier (suposta convergente)

g(eiθ) =
∞∑

n=−∞
cne

inθ eiθ ∈ S1

• Use a definição dos coeficientes de Fourier complexos para mostrar que uma extensão harmónica
de g(eiθ) é dada pela fórmula integral de Poisson

f(reiθ) =
1

2π

∫ π

−π
g(eiϕ)Pr(θ − ϕ)dϕ

onde o núcleo de Poisson é definido por

Pr(θ) =
∞∑

n=−∞
r|n|einθ

• Mostre que o núcleo de Poisson admite as seguintes expressões,

Pr(θ) = 1 +
∞∑
n=1

zn +
∞∑
n=1

zn

= 1 +
z

1− z
+

z

1− z

=
1− |z|2

|1− z|2

onde z = reiθ, e portanto

Pr(θ) =
1− r2

1 + r2 − 2r cos(θ)
.
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4 Fourier transform

The Fourier transform is one of the basic tools in analysis. Let’s illustrate it with Fourier’s original idea.

Heat flow on a infinite rod and Fourier’s idea. Here we look for bounded solutions of the heat
problem

∂u

∂t
− β ∂

2u

∂x2
= 0

Assuming u(x, t) = f(x)g(t), we get, as usual

f ′′ = λf and g′ = −βλg

for some constant λ. Bounded (complex valued) solutions of the first equation are proportional to

f±ξ(x) = e±iξx

where the parameter ξ now can take any value in R, and λ = −ξ2. The second equation then gives

g±ξ(t) = e−ξ
2tg±ξ(0)

so that we are left with the one-parameter family of separable solutions

uξ(x, t) = e−ξ
2t
(
g(ξ)eiξx + g(−ξ)e−iξx

)
for some constants g(ξ) = gξ(0). We are lead to try a solution as an integral

∫∞
0
uξ(x, t)dξ over all these

possible separable solutions, hence as

u(x, t) =
1√
2π

∫ ∞
−∞

g(ξ)e−ξ
2teiξxdξ

where we inserted a factor 1/
√

2π which will simplify some future formulae. Apart from convergence
issues, the above is a solution of the heat equation with initial condition

u(x, 0) =
1√
2π

∫ ∞
−∞

g(ξ)eiξxdξ

as you may prove deriving twice.
Now, following Fourier, we ask: “when is it possible to write such an integral formula

f(x) =
1√
2π

∫ ∞
−∞

g(ξ)eiξxdξ

for a generic function of f(x) defined on the real line? If so, what is the function g(ξ)?”
As with Fourier series, the second question is much easier. If we integrate the product f(x)eiξx over

the real line we get, formally (i.e. assuming everything converge and commute!),

1√
2π

∫ ∞
−∞

f(x)eiξxdx =
1√
2π

∫ ∞
−∞

f(x)e−iξxdx

=
1√
2π

∫ ∞
−∞

(
lim
`→∞

1√
2π

∫ `

−`
g(η)eiηxdη

)
e−iξxdx

= lim
`→∞

1
2π

∫ ∞
−∞

(∫ `

−`
ei(η−ξ)xdx

)
g(η)dη

= lim
`→∞

1
π

∫ ∞
−∞

sin((ξ − η)`)
ξ − η

g(η)dη

= lim
`→∞

1
π

∫ ∞
−∞

sin(t)
t

g(ξ − t/`)dt

= g(ξ)
1
π

∫ ∞
−∞

sin(t)
t

dt

= g(ξ)

So, the answer is that g(ξ) must be the integral

g(ξ) =
1√
2π

∫ ∞
−∞

f(x)e−iξxdx
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4.1 Fourier transform of integrable functions

The space L1(R) das funções integráveis na recta real é o espaço das funções f(x) tais que, equipped
with the norm

‖f‖L1 =
∫ ∞
−∞
|f(x)|dx <∞

A transformada de Fourier da função integrável f(x) é a função F{f(x)}(ξ) = f̂(ξ) definida pelo
integral impróprio

f̂(ξ) =
1√
2π

∫ ∞
−∞

f(x)e−iξxdx .

The existence of the above integral follows from the estimate∣∣∣∣∫ ∞
−∞

f(x)e−iξxdx
∣∣∣∣ ≤ ∫ ∞

−∞
|f(x)|dx = ‖f‖L1

Riemann-Lebesgue lemma. The Fourier transform of a function f ∈ L1(R) is continuous, bounded
and f̂(ξ)→ 0 as |ξ| → ∞.

Proof.

Elementary properties. The Fourier transform is linear, i.e.

F{λf(x) + µg(x)}(ξ) = λf̂(ξ) + µĝ(ξ)

and behaves as follows under conjugation and dilatations:

F{f(x)}(ξ) = f̂(−ξ) F{f(λx)}(ξ) =
1
λ
f̂(ξ/λ)

Translations x 7→ x− a are sent into multiplications by the character e−iaξ,

F{f(x− a)}(ξ) = e−iaξ f̂(ξ) F{eibxf(x)}(ξ) = f̂(ξ − b)

Exercise. Calcule a transformada de Fourier de 1[−`,`], a função caracteŕıstica do intervalo [−`, `]. Show
that

...

Calcule, usando a técnica dos reśıduos, a transformada de Fourier de

f(x) =
1

x2 + a2
e f(x) = e−a|x| .

Example (Gaussian and heat kernel). Show that the Fourier transform of the Gaussian

g(x) = e−x
2/2 is ĝ(ξ) = e−ξ

2/2 ,

In other words, the Gaussian is a fixed point of the Fourier transform, a first evidence of its importance.
Deduce that the Fourier transform of the heat kernel

Pt(x) =
1√
2πt

e−
x2
2t is P̂ (ξ) =

1√
2π
e−tξ

2/2 ,

Point-wise converge of the Fourier transform.

4.2 Fourier transform on the Schwartz space

The Schwartz space. O espaço de Schwartz S = S(R) é o espaço das funções f(x) infinitamente
diferenciáveis na recta real que decrescem |f(x)| → 0 quando x → ±∞, com todas as suas derivadas,
mais rápido que o inverso de qualquer polinómio. Ou seja, o espaço das funções f(x) tais que ∀ α, β ∈ N0

‖f‖α,β = sup
x∈R

∣∣∣∣xα ∂βf∂xβ
(x)
∣∣∣∣ <∞ .

Examples are p(x)e−x
2
, where p(x) is a polynomial.

The Schwartz space is a locally convex topological vector space, with the natural topology defined by
the system of seminorms ‖ · ‖α,β .
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Fourier transform on the Schwartz space. Mostre que, se f ∈ S,(̂
df

dx

)
(ξ) = iξf̂(ξ) e ̂(−ixf)(ξ) =

d

dξ
f̂(ξ)

Define the inverse Fourier transform F−1 : S → S, sending g 7→ ǧ, as

ǧ(x) =
1√
2π

∫ ∞
−∞

g(ξ)eiξxdξ

Fourier inversion theorem. The Fourier transform is a linear bijection F : S → S of the Schwartz
space, which inverse is the inverse Fourier transform g 7→ ǧ. In particular, the Fourier inversion formula
holds,

f(x) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(y)e−iξydy
)
eiξxdξ .

Riesz’s proof. First observe that, for f, g ∈ S,∫
g(ξ)f̂(ξ)eiξxdξ =

1√
2π

∫
g(ξ)

(∫ ∞
−∞

f(y)e−iξydy
)
eiξxdξ

=
1√
2π

∫
f(y)

(∫ ∞
−∞

g(ξ)e−iξ(y−x)dξ
)
dy

=
∫
f(y)ĝ(y − x)dy

=
∫
f(x+ y)ĝ(y)dy

Now, take g(ξ) = e−ξ
2/2, so that g(

√
tξ) is the Fourier inverse transform of the heat kernel 1√

2πt
e−x

2/2t.

Indeed, ĝ(y) = e−y
2/2 and

∫
ĝ(y)dy =

√
2π. We get, for t > 0,∫

g(tξ)f̂(ξ)eiξxdξ =
∫
f(x+ y)t−1ĝ(y/t)dy

=
∫
f(x+ ty)ĝ(y)dy

and, letting t→ 0, this gives

g(0)
∫
f̂(ξ)eiξxdξ = f(x)

√
2π

Since g(0) = 1, this is the Fourier inversion formula. q.e.d.

Produto de convolução. The convolution product de f(x) e g(x) é a função (f ∗ g)(x) definida por

(f ∗ g)(x) =
∫ ∞
−∞

f(y)g(x− y)dy

It is easy to see that f ∗ g ∈ S whenever f, g ∈ S. Moreover, Fubini theorem and change of variable show
that the following basic identity holds:

(̂f ∗ g)(ξ) =
√

2πf̂(ξ)ĝ(ξ)

This says that the Fourier transform sends convolution products into ordinary products in the frequency
space.

Example (convolutions in probability) If X and Y are two independent discrete random variables
taking integers values with discrete densities pX(n) and pY (n) respectively, then their sum X + Y has
density

pX+Y (n) =
∑
k

pX(k)pY (n− k) .

The obvious generalization of this formula for absolutely continuous random variables says that the
density of the sum X + Y is the convolution product of the two densities, namely

fX+Y (t) =
∫ ∞
−∞

fX(s)fY (t− s)ds .
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Exercise (Brownian motion) Considere o núcleo de Poisson

Pt(x) =
1√
4πt

e−
x2
4t

This is the probability density of a Brownian motion Wt, namely

P (Wt ∈ A |W0 = 0) =
∫
A

Pt(x)dx .

Show that Pt ∗ Ps = Pt+s and interprete this fact.

Parseval identities. Se f ∈ S, então vale a identidade de Parseval

‖f‖2 = ‖f̂‖2 ou seja,
∫∞
−∞ |f(x)|2dx =

∫∞
−∞ |f̂(ξ)|2dξ

O teorema de Plancherel afirma que a transformada de Fourier extende a uma transformação unitária
F : H → H do espaço de Hilbert H = L2(R) das funções de quadrado integrável3, cuja inversa é a
própria adjunta, F−1 = F∗.

• Calcule a norma L2 da gaussiana e−x
2/2.

Equação e funções de Hermite. As funções de Hermite φn(x) = ex
2/2 dn

dxn

(
e−x

2
)

, soluções da
equação de Hermite

d2

dx2
φn(x)− x2φn(x) = λnφn(x)

com λn = −(2n+ 1), formam uma base ortogonal do espaço de Hilbert L2(R).

• Mostre que a transformada de Fourier transforma a equação diferencial

d2

dx2
f(x)− x2f(x) = λf(x) em

d2

dξ2
f̂(ξ)− ξ2f̂(ξ) = λf̂(ξ) .

• Verifique que as funções de Hermite φn(x) são funções próprias, de valores próprios (−i)n, da
transformada de Fourier, ou seja

F{φn} = (−i)nφn .

The Poisson summation formula. Dada uma função f(x) ∈ S (R), seja

f2πZ(x) =
∑
n∈Z

f(x+ 2πn)

Então f2πZ(x) é uma função de classe C∞, periódica de peŕıodo 2π, e como tal admite uma expansão em
série de Fourier

f2πZ(x) =
∑
n∈Z

einxf̂Z(n)

com coeficientes
f̂2πZ(n) =

1√
2π

∫ π

−π
e−inxfZ(x)dx

• Mostre que

f̂2πZ(n) =
1√
2π

∫ π

−π
e−inx

(∑
m∈Z

f(x+ 2πm)

)
dx

=
1√
2π

∫ ∞
−∞

e−inxf(x)dx

= f̂(n) .
3O espaço H = L2(R) das funções de quadrado integrável é o espaço das funções f(x) tais queZ ∞

−∞
|f(x)|2dx <∞
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• Deduza a fórmula do somatório de Poisson∑
n∈Z

f(2πn) =
1√
2π

∑
n∈Z

f̂(n)

Poisson formula as a “trace formula”. The Laplacian ∆ = −∂2/∂x2 on the circle S1 = R/2πZ
has eigenvalues λn = n2, with n = 0, 1, 2, 3, .... Indeed, its eigenfunctions are

∆einx = n2einx

4.3 Distributions and their Fourier transform

Distribuições. O espaço das distribuições (temperadas) S ′ é o espaço dual do espaço de Schwartz S,
o espaço dos funcionais lineares cont́ınuos T : S → C. A derivada da distribuição T é a distribuição T ′

definida pela identidade
T ′(f) = −T (f ′) ∀f ∈ S .

• Dada g(x) ∈ S, seja Tg a distribuição induzida, definida por Tg(f) =
∫∞
−∞ f(x)g(x)dx. Mostre que

(Tg)′ = Tg′ .

• A delta de Dirac é a distribuição δ definida por

δ(f) =
∫ ∞
−∞

δ(x)f(x)dx = f(0)

(o integral é apenas uma notação, δ(x) não é uma função!). A delta de Dirac em x0 ∈ R é a
distribuição δx0 definida por δx0(f) =

∫∞
−∞ δ(x− x0)f(x)dx = f(x0). Calcule as derivadas de δx0 .

• A distribuição de Heaviside é a distribuição H = Tu0 definida por

H(f) =
∫ ∞
−∞

u0(x)f(x)dx =
∫ ∞

0

f(x)dx

onde a função de salto unitário (ou função de Heaviside) é definida por

ux0(x) =
{

0 se x < x0

1 se x ≥ x0
.

Calcule as derivadas de H.

• Considere o núcleo de Poisson
Pt(x) =

1√
4πt

e−
x2
4t

Verifique que Pt(x)→ δ(x) quando t ↓ 0, ou seja, que, se f(x) é cont́ınua e limitada,

lim
t↓0

∫ ∞
−∞

Pt(y)f(y)dy = δ(f) = f(0)

Transformada de Fourier das distribuições. Se T ∈ S ′ é uma distribuição, a sua transformada de
Fourier é a distribuição T̂ definida pela identidade

T̂ (f) = T (f̂) ∀f ∈ S .

• Verifique que se g(x) é uma função integrável e Tg é a distribuição induzida, definida por Tg(f) =∫∞
−∞ f(x)g(x)dx, então T̂g = Tbg.

• Calcule a tranformada de Fourier da distribuição T1, induzida pela função constante g(x) = 1.

• Calcule a transformada de Fourier da delta de Dirac δ.

• Calcule a transformada de Fourier da distribuição de Heaviside H.
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4.4 Fourier transform on L2

The Hilbert space of square integrable functions. O produto interno e a norma L2 são definidos
por

(f, g) =
∫∞
−∞ f(x)g(x)dx ‖f‖2 =

√
(f, f) =

√∫∞
−∞ |f(x)|2dx

Plancherel’s theorem The Fourier transform extends to a unitary linear map F : H → H of the
Hilbert space H = L2(R), whose inverse is its adjoint F−1 = F∗.

Proof. A function f ∈ H defines a distribution Tf ∈ S ′. Take its Fourier transform T̂f . By the Schwarz
inequality ∣∣∣T̂f (ϕ)

∣∣∣ = |Tf (ϕ̂)| =
∣∣∣∣∫ f(x)ϕ̂(x)dx

∣∣∣∣ ≤ ‖f‖2 · ‖ϕ‖2
The Riesz’s representation theorem says that there exists a unique f̂ ∈ H such that

T̂f (ϕ) = (f̂ , ϕ)

for any ϕ ∈ H.

4.5 Fourier transform solutions of heat and wave equations

Difusão na recta e núcleo de Poisson. Considere a equação de calor

∂u

∂t
− ∂2u

∂x2
= 0

na recta, com condição inicial u(x, 0) = u0(x). Se u(x, t) é suficientemente regular, a sua transformada
de Fourier (apenas na variável x),

û(ξ, t) =
1√
2π

∫ ∞
−∞

e−iξxu(x, t)dx

satisfaz a equação diferencial

∂û

∂t
= −ξ2û com condição inicial û(ξ, 0) =

1√
2π

∫ ∞
−∞

e−iξxu0(x)dx = û0(ξ)

A solução é
û(ξ, t) = e−ξ

2tû0(ξ)

• Verifique que 1√
2π
e−ξ

2t é a transformada de Fourier do núcleo de Poisson (ou heat kernel)

Pt(x) =
1

2
√
πt
e−

x2
4t

• Deduza que a solução da equação de calor na recta com condição inicial u0(x) é

u(x, t) = (Pt ∗ u0)(x)

=
1

2
√
πt

∫ ∞
−∞

e−
(x−y)2

4t u0(y)dy

Movimento Browniano. No modelo do movimento Browniano proposto por Einstein em 19054, a
densidade de probabilidade P (x, t) de encontrar a part́ıcula Browniana na posição x no tempo t sabendo
que ela estava na posição 0 no tempo 0 é a solução não-negativa da equação da difusão

∂P

∂t
− β ∂

2P

∂x2
= 0

tal que limt→0 P (x, t) = 0 para todo o x 6= 0, e
∫∞
−∞ P (x, t)dx = 1 para todo o tempo t > 0. O “coeficiente

de difusão” é β = RT
Nα , onde R é a constante de gás perfeito, T a temperatura absoluta, N o número de

Avogadro, e α = 6πηρ um coeficiente de fricção (que depende da viscosidade dinâmica η do ĺıquido e do
raio ρ da part́ıcula Browniana).

4A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden
Flüssigkeiten suspendierten Teilchen, Ann. Phys. 17, 549, 1905. Traduzido em A. Einstein, Investigations on the
Theory of Brownian Movement, Dover, New York, 1956.
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• Verifique que a Gaussiana

Pt(x) =
1

2
√
πβt

e−x
2/(4βt) .

resolve o problema do movimento Browniano.

• Verifique que

Pt+s(x) =
∫ ∞
−∞

Pt(y)Ps(x− y)dy

e interprete este facto.

• Calcule o caminho quadrático médio da part́ıcula Browniana no tempo t, definido por

〈
x(t)2

〉
=
∫ ∞
−∞

x2Pt(x)dx .

Exercise: equação de calor com dissipação. Use a transformada de Fourier para achar a solução
formal do problema

∂u

∂t
− β ∂

2u

∂x2
= −αu

com condição inicial u(x, 0) = f(x) cont́ınua e limitada.

Exercise: equação de ondas com dissipação. Use a transformada de Fourier para achar a solução
formal do problema

∂2u

∂t2
− c2 ∂

2u

∂x2
= −αu

com condições iniciais u(x, 0) = f(x) e ∂u
∂t (x, 0) = g(x) cont́ınuas e limitadas.

4.6 Kernels for the Laplace equation

Poisson formula in the unit disk.

Fórmula integral de Poisson no semi-plano. Considere o problema de determinar uma extensão
harmónica f(x, y), ou seja

∆f =
∂2f

∂x2
+
∂2f

∂y2
= 0

no semi-plano superior H = {(x, y) ∈ R2 t.q. y > 0} de uma função g(x) definida na fronteira ∂H =
{(x, y) ∈ R2 t.q. y = 0}. Se f(x, y) é suficientemente regular, a sua transformada de Fourier (apenas na
variável x),

f̂(ξ, y) =
1√
2π

∫ ∞
−∞

e−iξxf(x, y)dx

satisfaz a equação diferencial

−ξ2f̂ +
∂2f̂

∂y2
= 0 com condição inicial f̂(ξ, 0) =

1√
2π

∫ ∞
−∞

e−iξxg(x)dx = ĝ(ξ)

A solução limitada em y ≥ 0 é
f̂(ξ, y) = e−|ξ|y ĝ(ξ)

• Verifique que 1√
2π
e−|ξ|y é a transformada de Fourier do núcleo de Poisson em H

Py(x) =
1
π

y

x2 + y2

• Deduza que a extensão harmónica de g(x) em H é

f(x, y) = (Py ∗ g)(x)

=
1
π

∫ ∞
−∞

y

(x− s)2 + y2
g(s)ds
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Conformal transformations.

4.7 Quantum mechanics

Oscilador harmónico quântico. Considere a equação de Schrödinger

i~
∂Ψ
∂t

= − ~2

2m
∂2Ψ
∂x2

+
1
2
mω2x2Ψ

para a função de onda Ψ(x, t) ∈ C de uma part́ıcula de massa m num potencial V (x) = 1
2mω

2x2, onde
~ é a constante de Planck reduzida. Determine as soluções separáveis, ou seja do género

Ψn(x, t) = e−i
Ent

~ fn(x) ,

com fn(x) ∈ L2(R), e mostre que os “ńıveis de energia” são

En = ~ω
(
n+

1
2

)
com n = 0, 1, 2, 3, ...

4.8 Characteristic functions and the central limit theorem

Função caracteŕıstica e teorema limite central. A função caracteŕıstica de uma variável aleatória
real X, com lei P, é a média/esperaça da variável eiξX , com ξ ∈ R, ou seja,

φX(ξ) = E eiξX =
∫
eiξxP(dx) .

Em particular, se X é absolutamente cont́ınua com lei P(X ∈ A) =
∫
A
p(x)dx, então a função carac-

teŕıstica φX(ξ) é a transformada de Fourier da densidade de X, pois

φX(ξ) =
∫ ∞
−∞

eiξxp(x)dx =
√

2π · p̂(ξ) .

O teorema de Lévy afirma que uma sequência de variáveis aleatórias (Xn) converge “em lei”5 para a
variável X quando n→∞, i.e. Xn →L X, sse φXn(ξ)→ φX(ξ) para cada ξ ∈ R.

• Verifique que as derivadas da função caracteŕıstica na origem são

φX(0) = 1 φ′X(0) = iEX φ′′X(0) = −EX2 ...

(desde que os momentos da variável X sejam finitos).

• Mostre que, se a variável aleatória X tem média EX = m e variância VX = E(X −m)2 = σ2, e se
Y = X−m

σ , então6

φY (ξ) = 1− 1
2
ξ2 + o(ξ2)

numa vizinhança da origem.

• Sejam X1, X2, X3, ... variáveis aleatórias independentes e identicamente distribúıdas, com média
m e variância σ2, seja Sn = X1 +X2 + ...+Xn, e seja

S∗n =
Sn − nm
σ
√
n

=
1√
n

n∑
i=1

Xi −m
σ

Verifique que
φS∗n(ξ) =

(
φY (ξ/

√
n)
)n

onde Y = X−m
σ , e portanto

φS∗n(ξ)→ e−ξ
2/2 quando n→∞

5Convergência em lei : Xn →L X se, para cada função f(x) cont́ınua e limitada, Ef(Xn)→ Ef(X), ou seja, se

lim
n→∞

P(Xn ≤ x) = P(X ≤ x) .

para cada ponto de continuidade x da função de repartição de X.
6Notação de Landau: f(ξ) = o(ξk) quando ξ → 0 significa que limξ→0 f(ξ)/ξk = 0.
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• Deduza o teorema limite central, que afirma que a sequência de variáveis (S∗n) converge em lei para
uma variável normal N(0, 1), ou seja,

P (S∗n ≤ x)→ 1√
2π

∫ x

−∞
e−t

2/2dt .
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