Instruções: responda nesta folha de enunciado e justifique as suas resposta numa folha de exame.

1. (2 valores) Determine o tipo de secção cónica definida por $x^2 - 4xy - y^2 = 4$.

Resposta: A equação cartesiana pode ser escrita

$$\begin{pmatrix} (x & y) \begin{pmatrix} 1 & -2 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 4,$$

Os valores próprios da matriz simétrica $H=\begin{pmatrix} 1 & -2 \\ -2 & -1 \end{pmatrix}$ são 3 e -2. Portanto, existe um sistema de coordenadas ortogonais x' e y' tal que a equação cartesiana da cónica é

$$3x'^2 - 2y'^2 = 4$$

Em particular, a cónica é uma hipérbole.

2. (2 valores) Calcule a derivada direccional do campo escalar $f(x,y) = e^{xy}$ no ponto (1,2) e na direção do vetor $\mathbf{v} = (1,0)$.

Resposta: O gradiente de f no ponto (1,2) é o vetor $(2e^2,e^2)$, portanto a derivada direccional é $(2e^2,e^2)\cdot (1,0)=2e^2$.

3. (2 valores) Calcule as matrizes das derivadas parciais $\frac{\partial(x,y)}{\partial(t,s)}$ e $\frac{\partial(u,v)}{\partial(t,s)}$ se

$$x=ts$$
 , $y=ts$ e $u=x$, $v=-y$.

Resposta: As duas matrizes são

$$\frac{\partial(x,y)}{\partial(t,s)} = \begin{pmatrix} s & t \\ s & t \end{pmatrix}$$

$$(x,y) \qquad (1 \quad 0 \quad) \quad (s \quad t) \quad (s \quad t)$$

 $\frac{\partial(u,v)}{\partial(t,s)} = \frac{\partial(u,v)}{\partial(x,y)} \frac{\partial(x,y)}{\partial(t,s)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} s & t \\ s & t \end{pmatrix} = \begin{pmatrix} s & t \\ -s & -t \end{pmatrix}$

4. (2 valores) Determine uma equação cartesiana do plano tangente à superfície definida por $x^2 + 2y^2 + 3z^2 = 10$ no ponto $(1, \sqrt{3}, 1)$.

Resposta: O gradiente da função $f(x,y,z) = x^2 + 2y^2 + 3z^2$ no ponto $(1,\sqrt{3},1)$ é o vetor $\nabla f = (2,4\sqrt{3},6)$. Portanto, uma equação cartesiana do plano tangente à superfície no ponto $(1,\sqrt{3},1)$ é

$$x + 2\sqrt{3}y + 3z = 10$$
.

5. (2 valores) Determine os pontos críticos da função $f(x,y) = x^2 - 4xy - y^2$, e diga se são máximos, mínimos ou pontos de sela.

Resposta: O gradiente da função f(x,y) é gradf=(2x-4y,-4x-2y). O único ponto crítico é (0,0). A matriz Hessiana no ponto crítico é $H=\begin{pmatrix}2&-4\\-4&-2\end{pmatrix}$. Sendo det H=-12<0, o ponto (0,0) é um ponto de sela.

6. (2 valores) Determine máximos e mínimos da função f(x,y)=x+y na circunferência unitária $x^2+y^2=1$.

Resposta: Os pontos críticos de $F(x, y, \lambda) = x + y - \lambda(x^2 + y^2 - 1)$ são as soluções do sistema

$$1 - 2\lambda x = 0$$
 $1 - 2\lambda y = 0$ $x^2 + y^2 = 1$

ou seja, os pontos $P_{\pm}=\pm(1/\sqrt{2},1/\sqrt{2})$. Um cálculo mostra que $f(P_{\pm})=\pm\sqrt{2}$, portanto, P_{+} é um máximo e P_{-} é um mínimo de f(x,y) na circunferência unitária.

7. (2 valores) Seja D o triângulo limitado entre as retas $x=0,\,y=1$ e y=x. Calcule

$$\iint_D (x+y) \, dx dy.$$

Resposta:

$$\iint_D (x+y) \, dx dy = \int_0^1 \int_0^y (x+y) \, dx dy = \frac{3}{2} \int_0^1 y^2 \, dy = \frac{1}{2} \, .$$

8. (2 valores) Calcule

$$\iint_D \frac{1}{x^2 + y^2} \, dx dy$$

onde D é a região do plano limitada entre as circunferências $x^2+y^2=1$ e $x^2+y^2=4$ (o elemento de área em coordenadas polares é $dxdy\simeq r\,drd\theta$)

Resposta:

$$\iint_{D} \frac{1}{x^2 + y^2} \, dx dy = \int_{0}^{2\pi} \int_{1}^{2} \frac{1}{r} \, dr d\theta = 2\pi \log 2 \, .$$

9. (2 valores) Calcule o integral de linha $\int_C \mathbf{F} \cdot d\mathbf{r}$ do campo vetorial $\mathbf{F}(x,y) = (3,x)$ ao longo da circunferência unitária $x^2 + y^2 = 1$, orientada positivamente.

Resposta:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{\{x^2 + y^2 \le 1\}} dx dy = \pi \,.$$

10. (2 valores) Calcule o fluxo $\iint_S (\mathbf{V} \cdot \mathbf{n}) dA$ do campo vetorial $\mathbf{V}(x,y,z) = (-x,-y,-z)$ através da esfera $S = \{x^2 + y^2 + z^2 = 1\}$

Resposta:

$$\iint_{S} (\mathbf{V} \cdot \mathbf{n}) \, dA = -4\pi \,.$$