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1 Introduction

1.1 What is it about

This is a first introduction to solving differential equations. “Solving differential equations is useful” is
V.I. Arnold’s translation [Ar85] of Isaac Newton’s anagram

“6accdae13eff7i3l9n4o4qrr4s8t12vx”

(Data aequatione quotcunque fluentes quantitates involvente fluxiones invenire et vice versa) contained
in a letter to Gottfried Leibniz in 1677.

1.2 Models and laws of physics

Laws of nature, or empirical models of physical phenomena, are relations between observables.
Some, as Kepler’s third law T 2{a3 � 3� 10�19 s2m�3 (relating the period T of revolution of a planet

to the semi-major axis a of its orbit) or the perfect gas equation PV � nRT (saying that the product of
the pressure P by the volume V of an ideal gas is proportional to the temperature T ), simply say that
the actual value of a certain observable is equal to some function of the actual values of other observables.

Many of them are equations that contain derivatives of some observable w.r.t. others observables, and
as such are called differential equations. The typical situation is that of “dynamics”, some observable
changing in time according to a law that prescribes the behavior of some of its time derivatives.

The archetypical example is Newton law “force = mass � acceleration”

m :qptq � F pt, qq .

It says that the trajectories t ÞÑ qptq of a moving particle in an inertial frame are not arbitrary curves,
but curves that have second derivative :qptq proportional to a given function F pt, qq called force, the
proportionality factor being the “inertial mass” of the particle. Given the force, and given the initial
position qp0q and velocity 9qp0q of the particle, Newton equation prescribes the future and the past history
of the particle. Hence, being able to solve the Newton equation amounts to being able to make predictions.

1.3 First classification and examples

Differential equations are classified according to their “form” and to “methods” at our disposal to solve
them.

A first dichotomy is ordinary versus partial differential equations.

Ordinary differential equations. An Ordinary Differential Equation (later on referred to as ODE )
is a differential equation where the unknown function only depends on one real variable. The order of a
differential equation is the biggest order of the derivatives entering in the equation. Examples are

• Newton equation
m :q � F pq, tq

satisfied by the trajectory rptq of a moving particle of mass m subject to a force F ),

• the (consequence of the) Kirchoff’s law

L 9I �RI � V ptq

(satisfied by the current Iptq in a LR circuit driven by a tension V ptq),
• or the Lotka-Volterra system "

9x � ax� bxy
9y � �cy � dxy

(modeling the competition between x preys and y predators in the same territory).
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Partial differential equations. A Partial Differential Equation (later on referred to as PDE ) is
a differential equation where the unknown function depends on two or more real variables (hence the
derivatives have to be partial derivatives). Examples are

• the wave equation
B2u

Bt2 � c
B2u

Bx2
� 0

which describes, for example, small oscillations of the displacement upx, tq of a string from its
equilibrium position,

• the Poisson and Laplace’s equations

∆V � 4πρ and ∆V � 0

satisfied by the electric potential V in a region with or without charges, respectively, where ρ is
the charge density and the “Laplacian” ∆ in the 3-dimensional Euclidean space is the differential
operator ∆ � B2{Bx2 � B2{By2 � B2{Bz2),

• the heat equation
Bρ
Bt � β∆ρ � 0

which describes propagation of heat in a homogeneous medium,

• or the Schrödinger equation

i~
B
Btψ � � ~2

2m
∆ψ � V ψ

satisfied by the complex valued wave function ψ of an electron subject to a potential field V .

The two classes, ODEs and PDEs, require conceptually distinct techniques to be dealt with.

Homework. Look for differential equation in your field.

1.4 Notations and facts from analysis

Números. N :� t0, 1, 2, 3, . . . u, Z :� t0,�1,�2,�3, . . . u, Q :� tp{q com p, q, P Z , q � 0u. R e C são
os corpos dos númeors reais e complexos, respectivamente.

Espaço Euclidiano. Rn denota o espaço Euclidiano de dimensão n. Fixada a base canónica e1, . . . , en,
os pontos de Rn são os vectores x � px1, x2, . . . , xnq :� x1e1�x2e2�� � ��xnen de coordenadas xi P R, com
i � 1, 2, . . . , n. As coordenadas no plano Euclidiano ou no espaço 3-dimensional são também denotadas,
conforme a tradição, por px, yq P R2 ou px, y, zq P R3.

O produto interno Euclidiano em Rn, denotado por xx, yy ou x � y, é

xx, yy :� x1y1 � x2y2 � � � � � xnyn ,

e a norma Euclidiana é }x} :�axx, xy. A distância Euclidiana entre os pontos x, y P Rn é definida pelo
teorema de Pitágoras

dpx, yq :� }x� y} �
a
px1 � y1q2 � � � � � pxn � ynq2 .

A bola aberta de centro a P Rn e raio r ¡ 0 é o conjunto Brpaq :� tx P Rn s.t. }x � a}   ru. Um
subconjunto A � Rn é aberto em Rn se cada seu ponto a P A é o centro de uma bola Bεpaq � A, com
ε ¡ 0 suficientemente pequeno.

Caminhos. Se t ÞÑ xptq � px1ptq, x2ptq, . . . , xnptqq P Rn é uma função diferenciável do “tempo” t P I �
R, ou seja, um caminho diferenciável definido num intervalo I � R com valores no espaço Euclidiano Rn,
então as suas derivadas são denotadas por

9x :� dx

dt
, :x :� d2x

dt2
, ;x :� d3x

dt3
, . . .

Em particular, vptq :� 9xptq é dita “velocidade” (da trajectória x no instante t), a sua norma }vptq}
“velocidade escalar” , e aptq :� :x “aceleração”.
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Campos. Um campo escalar é uma função real u : X � Rn Ñ R definida num domı́nio X � Rn. Um
campo vectorial é uma função f : X � Rn Ñ Rk, cujas coordenadas f1pxq, f2pxq, . . . , fkpxq são k campos
escalares.

A derivada do campo diferenciável f : X � Rn Ñ Rk no ponto x P X é a aplicação linear dfpxq :
Rn Ñ Rk tal que

fpx� vq � fpxq � dfpxq � v � op}v}q
para todos os vectores v P Rn de norma }v} suficientemente pequena, definida em coordenadas pela matriz
Jacobiana pBfi{Bxjq P Matk�npRq. Em particular, o diferencial do campo escalar u : X � Rn Ñ R no
ponto x P X é a forma linear dupxq : Rn Ñ R,

dupxq :� Bu
Bx1

pxq dx1 � Bu
Bx2

pxq dx2 � � � � � Bu
Bxn pxq dxn

(onde dxk, o diferencial da função coordenada x ÞÑ xk, é a forma linear que envia o vector v �
pv1, v2, . . . , vnq P Rn em dxk � v :� vk). A derivada do campo escalar diferenciável u : X � Rn Ñ R
na direção do vector v P Rn (aplicado) no ponto x P X � Rn, é igual, pela regra da cadeia, a

p£vuqpxq :� d

dt
upx� vtq

����
t�0

� dupxq � v .

O gradiente do campo escalar diferenciável u : X � Rn Ñ é o campo vectorial ∇u : X � Rn Ñ Rn tal
que dupxq � v � x∇upxq, vy para todo os vectores (tangentes) v P Rn (aplicados no ponto x P X).
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2 Ordinary differential equations

2.1 Ordinary differential equations as problems

Differential equations are actually problems that we are asked to solve, to make predictions and to take
decisions. Let us illustrate this with the following examples.

e.g. Free particle. The trajectory t ÞÑ qptq P R3 of a free particle of mass m in an inertial frame is
modeled by the Newton equation

d

dt
pmvq � 0 , i.e., if m is constant, ma � 0 ,

where vptq :� 9qptq denotes the velocity and aptq :� :qptq denotes the acceleration of the particle. In
particular, the linear momentum p :� mv is a constant of the motion (i.e. d

dtp � 0), in accordance with
Galileo’s principle of inertia or Newton’s first law1.

The solutions of Newton equation are the affine lines

qptq � s� vt ,

where s, v P R3 are arbitrary vectors, the initial position and the initial velocity.
Thus, for example, the trajectory of a free particle starting at qp0q � p3, 2, 1q with velocity 9qp0q �

p1, 2, 3q is qptq � p3, 2, 1q � p1, 2, 3qt.

e.g. Solving the Newton equation of free fall near the Earth surface. The Newton equation

m:x � �GmMC

R2
C

models the free fall of a particle of mass m near the Earth surface. Here xptq is the height of the particle at
time t (measured from some reference height, e.g. the sea level), G � 6.67 m3 kg�1 s�2 is the gravitational
constant, MC and RC are the mass and radius of the Earth, respectively. We are assuming that x ! RC.
Since inertial and gravitational masses are (experimentally) equal, the mass m cancels out and we get
the equation

:x � g ,

where g :� GMC{R2
C
� 9.8 m s�2 is the the gravitational acceleration near the Earth surface, independent

on the falling object!
A function with constant second derivative equal to �g is �gt2{2. But it is not the unique solution.

We may add to it any function with zero second derivative, that is any constant s and any linear function
vt. This means that also any

xptq � s� vt� 1
2
gt2

is a solution of our Newton equation, for any s and any v. The first arbitrary constant s is the initial
position xp0q (and this physically corresponds to the homogeneity of space: Newtonian physics is in-
dependent on the place where the laboratory is placed). The second arbitrary constant v is the initial
velocity 9xp0q (and this physically corresponds to Galilean invariance: we cannot distinguish between two
inertial laboratories moving at constant speed one from each other).

The moral is that the Newton equation alone does not have a “unique” solution. It has a whole “family
of solutions”, depending on two parameters s and v. On the other side, once we fix the initial position
xp0q and the initial velocity 9xp0q, the solution turns out to be unique (we’ll prove it soon! meanwhile,
you may try to prove that the difference of any two solutions with the same initial conditions is constant
and equal to zero). In other words, once known the initial “state” of the particle, i.e. its position and its
velocity, the Newton equation uniquely determines the “future” and “past” history of the particle.

1 “Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis
cogitur statum illum mutare” [Isaac Newton, Philosophiae Naturalis Principia Mathematica, 1687.]
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ex: Free fall near the Earth surface. Consider the above Newton equation :x � �g as a model for
the free fall, and solve the following problems.

• A stone is left falling from the top of the Pisa tower, about 56 meters high, with zero initial speed.
Compute the height of the stone after 1 second, and determine the time needed for the stone to hit
the ground.

• With which initial upward velocity a stone should be thrown in order to reach an height of 20
meters?

• With which initial upward velocity a stone should be thrown in order to fall back after 10 seconds?

The above situation is quite typical. Here is another example, actually a very important one!, where we
can easily prove the uniqueness of the solution given an initial data.

e.g. A differential equation for the exponential function. Consider the first order ODE

9x � x

where 9x denotes the derivative of xptq w.r.t. the real variable t.
An obvious solution is xptq � 0. Besides, computation shows that the exponential function et satisfies

the equation, since you may have learnt in “Calculus” that the exponential is equal to its own derivative.
Indeed, the (natural) exponential is defined by the power series

expptq :�
¸
n¥0

tn

n!
� 1� t� t2

2
� t3

6
� . . .

(remember that 0! � 1), which converges uniformly in any bounded interval. You may check, deriving
the power series term by term, that exp1 � exp.

But we can multiply it by any constant b and still get a solution, hence any function xptq � bet

satisfies the above identity. If we set t � 0, we notice that b is the value of xp0q.
We claim that xptq � x0e

t is the “unique” solution of the differential equation 9x � x with initial data
xp0q � x0. Indeed, let yptq be any other solution. Since the exponential is never zero, we can divide by
et and define the function hptq � yptqe�t. Deriving we get

9h � p 9y � yq e�t .
But y solves the equation, hence the first derivative of h is everywhere zero. By the mean value theorem
h is a constant function, and, since yp0q � x0 too, its value at the origin is hp0q � yp0qe�0 � x0. This
implies that yptq is indeed equal to xptq.

The problems posed by a ODE. We can formulate as follows the basic problems posed by a generic
ODE of order k which can be solved for the biggest order derivative. Consider the ODE

xpkq � F
�
t, x, 9x, :x, ..., xpk�1q

	
,

where F is some real valued function of k�1 real variables, 9x � dx{dt, :x � d2x{dt2, ... and xpkq � dkx{dtk.
A solution, or integral curve, of the equation is a function t ÞÑ ϕptq, defined in some interval I of the

real line, which once inserted inside F gives the above identity

ϕpkqptq � F
�
t, ϕptq, ϕ1ptq, ϕ2ptq, ..., ϕpk�1qptq

	
for any t in the chosen interval I. Of course, we must ask that ϕ has so many derivatives as needed,
hence that it is at least a k-times differentiable function.

As we have seen, a differential equation usually admits more than one solution (a one-dimensional
family for the exponential growth, or a two-dimensional family for the Newton equation). Finding
the general solution means writing formulas for the whole family, depending on a certain number of
parameters. But this is in general a helpless task.

It turns out that in the good cases the number of free parameter is equal to the order of the ODE.
Once we have fixed them, the solution is unique. Since most ODEs of physics are dynamical equations
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describing the time evolution of some observable/s x, it is natural to relate such free parameters to “initial
conditions”, and to pose the problem whether fixing initial conditions we are able to predict the future
and the past of the system. This is called initial value problem, or also Cauchy problem.

For example, the Cauchy problem for the above generic k-th order ODE is: find a solution t ÞÑ ϕptq
such that

ϕpt0q � x0 ϕ1pt0q � x1 ϕ2pt0q � x2 ... ϕpk�1qpt0q � xk�1

Above, t0 is some point in the interval where the equation is defined, which you may think as an “initial
time”, and x0, x1, x2, ..., xk�1 are the “initial values” of x and its first k � 1 derivatives at time t0.

Depending on the context, namely on the physical question you want to answer, other problems may
arise: the free parameters may be related to different kinds of “boundary conditions”. Here are some
examples.

e.g. Equilibrium profile of a star. The gravitational equilibrium profile of a star is described, as
a first approximation, by the Lane-Emden equation

1
ξ2

d

dξ

�
ξ2 dθ

dξ



� �θp .

Here ξ is a reduced radius, θpξq is proportional to the density at radius ξ, and p is a parameter which
depends on the polytropic equation of state P � Kρ1�1{p of the “gas” forming the star (cold star, white
dwarf, neutron star, ...). The physically relevant problem is to find the solution with initial conditions
θp0q � 1 and dθ{dξp0q � 0. The point where the first zero of the solution is attained is then interpreted
to be the radius of the star.

e.g. Sending a rocket to the Moon. If you want to send a rocket of initial mass mp0q to the Moon
in time T , you must solve the suitable Newton equation

d

dt

�
m
dr

dt



� �G mMC

|r �RC|3 pr �RCq �G
mMK

|r �RK|3 pr �RKq � ... friction and other perturbations

with boundary conditions rp0q �“Cape Canaveral” and rpT q �“Moon”.

ex: Radioactive decay. The rate of radioactive decay is observed to be proportional to the amount
of radioactive substance present. This means that the amount Nptq of radioactive substance present at
time t satisfies the autonomous first order ODE

9N � �βN
for some positive “decay constant” β (its inverse, 1{β, is the mean-life of each nucleus, the decay being
modeled with an exponential random variable X for the life-time, with law PpX ¤ tq � 1 � e�βt for
t ¥ 0.), where 9N denotes first derivative of N w.r.t. time t.

• Find the general solution (keeping in mind that physically meaningful solutions must be positive).

• Find the formula for the solution of the Cauchy problem with initial data Np0q � N0.

• The “half-time” of a radioactive substance is defined as the time needed for the amount of substance
to become half of the initial amount, i.e. it is that time T such that NpT q{Np0q � 1{2. Find the
relation between the half-time T and the decay constant β, and show that the half-time is well
defined, i.e. it does not depend on the initial data Np0q.

• Radiocarbon 14C (which decays as 14
6 C Ñ 14

7 N � e� � νe) has a mean-life 1{β � 8033 years. Show
how to date fossils assuming that the ratio of radiocarbon in a living being is fixed and known2.

• Assume that Solar radiation produces 14C in the atmosphere at a given fixed rate α (which is not
the case, due to Solar variations). Then the amount of radiocarbon in our atmosphere follows the
law

9N � �βN � α

Show that N � α{β is a equilibrium solution. Set xptq � Nptq �N , solve the differential equation
for x, and show that Nptq Ñ N as tÑ8, independently of the initial condition Np0q.

2J.R. Arnold and W.F. Libby, Age determinations by Radiocarbon Content: Checks with Samples of Known Ages,
Sciences 110 (1949), 1127-1151.

8



ex: Exponential growth. The growth of a population in an unlimited environment is modeled with
the first order ODE

9N � λN

where Nptq is the amount of specimen present at time t, λ is a positive “fertility constant”, and N 1

denotes the derivative of N w.r.t. time t.

• Find the general solution as a function of the (positive) initial data Np0q � N0.

• If a population of bacteria double in one hour, how much does it grow in two hours?

• If a predator kills the specimen at a fixed rate α, then the population grows as

9N � λN � α

Show that N � α{λ is an equilibrium solution. Say what happens to the other solutions for large
times.

ex: Chandrasekhar’s solutions of the Lane-Emden equation. Show that3

θpξq � 1� 1
6
ξ2 , θpξq � sin ξ

ξ
and θpξq � 1b

1� 1
3ξ

2

are solutions of the Lane-Emden equation 1
ξ2

d
dξ

�
ξ2 dθ

dξ

	
� �θp, for p � 0, 1 and 5, respectively.

2.2 Almost all ODEs have order one!

Here we claim that an ODE of arbitrary order n ¡ 1 which can be solved for the n-th derivative is
equivalent to a first order ODE, provided we allow the new unknown function to be vector valued. This
means that, at least in principle, the study of a large class of ODEs can be reduced to the study of first
order ODEs.

Reduction to order one. Indeed, consider the ODE

ypnq � F
�
t, y, 9y, :y, ..., ypn�1q

	
, (2.1)

of order n ¡ 1, where, for example, yptq is a real valued function. Define a new variable x � px1, x2, ..., xn�1q,
taking values in some domain X � Rn, as

x1 :� y , x2 :� 9y , x3 :� :y , ... xn :� ypn�1q .

Then the above ODE (2.1) is equivalent to the “system” of n one-dimensional ODEs

9x1 � x2

9x2 � x3

...
9xn�1 � xn

9xn � F pt, x1, x2, ..., xn�1, xnq

.

The space X where x takes its values is called phase space of the system. It is convenient to write the
system in a compact form, namely as a first order ODE

9x � v pt, xq ,

for the unknown vector valued function x, where

vpt, xq � px1, x2, ..., xk�1, F pt, x1, x2, ..., xnqq

is now a vector valued function of t and x, called velocity field. The initial value problem for the system
is simply: find a solution with initial data xpt0q � x0, for some x0 P X � Rn.

3Subrahmanyan Chandrasekhar, Introduction to the theory of stellar structure, Dover, New York 1942.
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2.3 Conservative systems: from Newton to Lagrange and Hamilton

Newtonian mechanics. According to greeks, the “velocity” 9q � dq
dt of a planet, where q � pq1, q2, q3q P

R3 is its position in the Euclidean space we think we live in and t is time, was determined by gods or
whatever forced planets to move around their orbits. Then came Galileo, and showed that gods could at
most determine the “acceleration” :q � d2q

dt2 , since the laws of physics should be written in the same way
by observers in any reference system at uniform rectilinear motion with respect to the fixed stars. Finally
came Newton, who decided that what gods determined was to be called “force”, and discovered that the
trajectories of planets, fulfilling Kepler’s empirical three laws, were solutions of his famous second order
differential equation

m:q � F , (2.2)

wherem is the mass of the planet and the attractive force F between the planet and the Sun is proportional
to the product of their masses and inverse proportional to the square of their distance.

Later, somebody noticed that many observed forces were “conservative”, could be written as F �
�∇U , for some real valued function U pqq called potential energy. There follows that Newton equations
for a particle of mass m in a conservative force field can be written as

m:q � �∇U . (2.3)

The quantity

T pq, 9qq :� 1
2
m | 9q|2 � 1

2
m

3̧

i�1

9q2
i

is called kinetic energy of the particle, and the sum

Epq, 9qq :� 1
2
m | 9q|2 � U pqq

is called (total) energy of the system. The total energy is a conserved quantity, namely is constant along
solutions of the Newton equation, since

d

dt
Epq, 9qq � x 9q,m:qy � x 9q,∇Uy

� x 9q,m:q �∇Uy � 0 (by Newton equation (2.3)) .

Variational principle, Euler-Lagrange equations. An alternative, and indeed useful, formulation
of Newtonian mechanics is the one named after Lagrange. The Lagrangian of the (conservative) system
is

L pq, 9qq :� T � U � 1
2
m | 9q|2 � U pqq , (2.4)

A trajectory γ is a C1 curve q : rt1, t2s Ñ R3, given explicitly by a continuously differentiable map
t ÞÑ qptq, defined for t P rt1, t2s. The action of the trajectory γ is

Spγq :�
» t2
t1

Lpqptq, 9qptqq dt

So, the action is a function, or “functional” (to remember that its argument if a space of functions!), on
the space of possible trajectories. It turns out that Nature choose those trajectories which minimize, at
least locally, the action. More precisely, we first observe that

Proposition 2.1. The critical points of the action are the solutions of the Euler-Lagrange equation

d

dt

� BL
B 9qi



� BL
Bqi for i � 1, 2, 3.

Proof. For simplicity we consider the one-dimensional case. Let qptq � δptq be a small variation of the
path qptq, with the constraints δpt1q � δpt2q � 0. The first variation of the action is

δS �
» t2
t1

�BL
Bq δptq �

BL
B 9q

9δptq


dt

�
» t2
t1

�BL
Bq �

d

dt

�BL
B 9q




δptq dt (integrating by parts)

10



and the last integral vanishes for all variations δptq iff the expression inside parenthesis vanishes for all
times t inside the given interval.

Now, you may check that the Euler-Lagrange equations for the Lagrangian (2.4) are Newton equations
(2.3).

e.g. Free motion and straight lines. Free motion in the Euclidean space R3 is a critical point of the
action Spγq � ³

T dt, obtained integrating the kinetic energy T � 1
2 | 9q|2. Solutions of the Euler-Lagrange

equation d
dt 9q � 0 are, as expected, straight lines qptq � s� vt. They are as well minimizers of the length

`pγq :� ³?
2T dt � ³t2

t1
| 9q| dt of the trajectory, that is geodesics of the Euclidean space.

One could change the metric, and consider T � 1
2

°
i,j gijpxq 9xi 9xj .

Hamiltonian mechanics. The vector p � m 9q, with coordinates pi � BL{B 9qi, is called “(linear) mo-
mentum”. If there are no forces, the linear momentum is conserved, since Newton equations reduce to
d
dtp � 0. The space R3 �R3 with coordinates pq, pq is called “phase space” of the mechanical system. As
a function of p, the kinetic energy is K ppq � |p|2 {2m and its gradient is p{m, so that Hamilton could
write Newton’s second order differential equations as the system of first order differential equations

9q � ∇K 9p � �∇U .

If we define the “Hamiltonian” of the system as

H pq, pq � K ppq � U pqq ,

which is nothing but the total energy written as a function of the phase space variables q and p, the
above system takes the elegant form

9qi � BH
Bpi 9pi � �BHBqi for i � 1, 2, 3

called “Hamilton’s equations” of motion.
In the very same way one can describe the Newtonian motion of N point-like particles under conser-

vative interactions, and the result are Hamilton’s equations in a 6N -dimensional phase space.

ex: Hooke’s law. Write the Hamilton’s equations corresponding to Hooke’s law

m:q � �kq

(call ω �a
k{m) and find the energy as a function of pq, pq.

ex: Mathematical pendulum. Do the same for the mathematical pendulum

:θ � �ω2 sinpθq

where ω �a
g{` and θ P R{2πZ is an angle.

2.4 Vector fields and ODEs

As we have seen, a rather general class of ODEs (those that can be solved for the higher order derivative)
is given by

9x � vpt, xq ,
where the unknown function is xptq, 9x denotes dx{dt, and v is some function of the two variables.

You can imagine that x is the “position” of a moving particle and t is “time”. The problem posed
is then that of determine the trajectory (or “time law”) t ÞÑ xptq of the moving particle once known its
velocity vpx, tq at every time and every position. With this interpretation in mind, we’ll refer to v as a
velocity field.

11



Phase space and extended phase space. The space X where x takes its values is called phase
space of the system. For some time we’ll only consider systems with one-dimensional phase space, hence
in the next sections X will be the real line R, or some interval of the real line (e.g. the allowed range
of a temperature is a half-line r0,8q, the allowed range of a velocity of a massive particle in special
relativity is a finite interval p�c, cq). You must keep in mind that interesting physics deals with more
than one real valued observables at a time (as a set of positions and linear momenta each one in Euclidean
3-dimensional space), hence with phase spaces which are subsets of some Euclidean space Rn.

The cartesian product of “time” (which we model as the real line) by the phase space, namely R�X
with coordinates pt, xq, is called extended phase space. It is the space where graphs of solutions, also
called integral curves of the equation, live.

Images of solutions in the phase space are called phase curves, or orbits of the system.

Directions field. Now, look at the equation. It says that the time derivative of xptq at time t is equal
to vpt, xq. This means that the graph of a solution t ÞÑ ϕptq, when seen in the extended phase space,
must be a curve having slope vpt, ϕptqq in correspondence with the point pt, ϕptqq.

You may think that, attached to any point pt, xq in the extended phase space, the equation prescribes
a line `pt,xq with slope vpt, xq with must be the tangent line to solutions passing through that point. This
correspondence pt, xq ÞÑ `pt,xq is called lines (or directions) field of the equation. Drawing the lines field
may help in guessing how solutions behave.

Initial value problem. Solving the initial value problem (or Cauchy problem) for 9x � vpt, xq with
initial condition xpt0q � x0 means finding the/those trajectory/ies t ÞÑ ϕptq such that ϕpt0q � x0. Their
graphs in the extended phase space are curves that pass through the point pt0, x0q.

Solutions need not be defined all over the time line R, in general. We may content with local solutions,
defined in some interval I containing the initial time t0. If everything goes right, namely if we are able to
prove an “existence and uniqueness” theorem, through every initial condition pt0, x0q P R �X will pass
one and only one such curve. In this case, solutions may be defined over a maximal interval of times.

Vector fields. An important class of ODEs may be written as

9x � vpxq

for some velocity field vpxq which does not depend on time. Theu are called autonomous since they
correspond to physical (Newtonian) systems which are isolated, no external forces. Here x takes values
in some domain X � Rn, or in some manifold, Then v defines a vector field on X, a vector vpxq attached
to each point x P X, which prescribe the velocity of the solution passing through the given point. Indeed,
solutions are curves t ÞÑ xptq such that d

dtxptq � vpxptqq.

The lines field of 9x � sinpxqp1� t2q, and the vector field of the damped pendulum, 9q � p,
9p � � sinpqq � p{2, together with one solution of each.

ex: Draw directions fields, trajectories and phase curves of the differential equations considered in the
previous examples and exercises.
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2.5 Simulations

Numerical integration The first observation is that a function xptq is a solution of the Cauchy problem
for 9x � vpt, xq with initial condition xpt0q � x0 iff

xptq � x0 �
» t
t0

v ps, xpsqq ds .

Euler lines and method What the differential equation 9x � vpt, xq, written in Leibnitz’ notation

dx

dt
� vpt, xq ,

wants to say is that to a “small displacement” dt of time there corresponds a “small displacement” dx of
the value of x which is proportional to dt by the factor vpt, xq. Namely, the very definition of derivative
as a limit is suggesting that if δt is sufficiently small,

xpt� δtq � xptq � vpt, xptqqδt� something small

where the “something small” is much less than δt. If you don’t mind to disregard the “something small”
above, you’ll get a recursive procedure to find approximate solutions with a given initial data xpt0q � x0.
Indeed, a good approximation of xpt0 � δtq is

xpt0q � vpt, xpt0qqδt .

But then you can bet that a good approximation of xpt0 � δt� δtq is

xpt0 � δtq � vpt0 � δt, xpt0 � δtqqδt ,

on so on. After n iterations you’ll get a guess for the “true” value of the solution xpt0 � nδtq.
This recipe is called Euler method (or tangent line method) to approximate/simulate solutions of first

order ODEs. The polygonal lines it produces are called Euler lines.
What in Euler’s times needed weeks of laborious handmade computations can nowadays be made in

a few nano-seconds of CPU time with your personal computer. Fix an initial condition t0 � time and
xpt0q � x, fix a small (depending on yours’ machine possibilities) integration step dt, and define the
velocity field v(time, x) you want to integrate. Then a c++ cycle like

while (time   t)
t
x += v(time, x) � dt ;
time += dt ;

u

will “return” a value x which is an approximation of xptq. What is maybe surprising is that the method
actually converges (in some sense which we’ll not discuss here, see Peano’s existence theorem) to a true
solution as the integration step dt goes to zero, provided some smoothness conditions on the velocity
field v.

e.g. The discrete exponential. Use the Euler method to solve 9x � x with initial condition xp0q � 1.
If ε denotes the step, you’ll get the estimates

xpεq � 1� ε , xp2εq � p1� εq � p1� εqε � p1� εq2 , ... , xpnεq � p1� εqn

so that

xptq �
�

1� t

n


n
where n � t{ε is the number of steps necessary to go from 0 to t. The limit for εÑ 0 is

lim
nÑ8

�
1� t

n


n
,

the well known formula for expptq.
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Estimating the error. The error we commit in each step is of order pδtq2. Since we need n � pt�t0q{δt
steps to simulate the value of the solution after time t�t0, we espect an overall error of order � pt�t0q�δt.

Homework. Write a code, in your favorite language, to integrate first order ODEs using Euler method.
Better if you get a graphic answer in the extended phase space. Then bring it into the classroom and
compare with exact solutions you’ll learn to find.

Runge-Kutta 4 . Call xn � xpt0 � pn� 1qδtq, tn � t0 � nε, where ε � δt the step. Then the method
is

xn�1 � xn � ε

6
pk1 � 2k2 � 2k3 � k4q

where

k1 � vptn, xnq k2 � v ptn � ε{2, xn � k1ε{2q k3 � v ptn � ε{2, xn � k2ε{2q k4 � vptn � ε, xn � εk3q

ex: Simulações com software proprietário. Existem software proprietários que permitem resolver
analiticamente, quando posśıvel, ou fazer simulações numéricas de equações diferenciais ordinarias e
parciais. Por exemplo, a função ode45 do MATLABR©, ou a função NDSolve do MathematicaR©, calculam
soluções aproximadas de EDOs 9x � vpt, xq utilizando variações do método de Runge-Kutta.

• Verifique se os PC do seu Departamento/da sua Universidade têm accesso a um dos software
proprietários MATLABR© ou MathematicaR©.

• Em caso afirmativo, aprenda a usar as funções ode45 ou NDSolve.
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3 First order ODEs on the line

Here we study first order ODEs with one-dimensional phase space of the form

9x � vpt, xq ,
where x is a real valued function of time t, and 9x denotes dx{dt.

At the end of the story we’ll see that there are two classes of equations that we can solve, at least
provided that we are able to compute integrals: linear equations and separable equations.

3.1 Integrating simple ODEs

Simple ODEs. The simplest case occurs when the velocity field v does not depend on the phase space
variable x, so the equation is

9x � vptq ,
where vptq is some given function of time. This just says that x is a primitive of v, and the fundamental
theorem of calculus (i.e. Leibniz and/or Newton’s discovery) tells us how to compute such a primitive:
just integrate the function v from some initial time t0 up to a final time t. Indeed, provided v is a
continuous function, the derivative of

³t
t0
vpsqds at the point t is vptq. This explains the current use of

the expression “integrate” a differential equation instead of “solving” a differential equation, as well as
the meaning of Newton’s quoted anagram.

Primitives are not unique, but are defined modulo an additive constant. This arbitrary constant can
be matched with the initial condition, so that the solution of 9x � vptq with initial condition xpt0q � x0 is

xptq � x0 �
» t
t0

vpsqds .

Here you may observe that this class of ODEs have “symmetries”. The line field does not depend on x,
hence slopes of solutions are the same along horizontal lines (t � constant) in the extended phase space.
There follows that any translate ϕptq � c of a solution ϕptq is still a solution. This is but a geometrical
interpretation of the arbitrary constant in the primitive of v.

ex: Training. Integrate the following equations:

9x � 2 sinptq 9x � e�t 9x � t2 � t .

ex: Newtonian motion in a time dependent force field. The one-dimensional motion of a
particle of mass m subject to a force F ptq is modeled by the Newton equation

m:x � F ptq .
• Call v � 9x the velocity of the particle, and derive the first order ODE satisfied by the velocity v.

• Solve the equation for the velocity, given a force F ptq � F0 sin pγtq and an initial condition vp0q � v0.

• Use the above solution vptq to find the trajectory xptq of the particle, given an initial position
xp0q � x0.

ex: Rockets. Se um foguetão (no espaço vazio, sem forças gravitacionais!) expulsa combust́ıvel a uma
velocidade relativa constante �V e a uma taxa constante 9m � �α, então a sua trajectória num referencial
inercial (uni-dimensional) é modelada pela equação de Newton

d

dt
pmvq � αpV � vq , ou seja , 9mv �m 9v � αpV � vq .

• Resolva a EDO 9m � �α para a massa do foguetão, com massa inicial mp0q � m0, e substitua o
resultado na equação de Newton, obtendo

9v � αV

m0 � αt

(valida se 0 ¤ t   m0{α).

• Calcule a trajectória do foguetão com velocidade inicial vp0q � v0 e posição inicial qp0q � 0, válida
para tempos t inferiores ao tempo necessário para acabar o combust́ıvel.
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3.2 Autonomous first order ODEs and flows

Autonomous ODEs. A first order ODE of the form

9x � vpxq ,
where the velocity field v does not depend on time, is called autonomous. We already encountered
examples in the models of radioactive decay and population growth. Most fundamental equations of
physics (those describing closed systems, without external forces) can be written as autonomous first
order ODEs, and this corresponds to time-invariance of physical laws.

Here you may notice symmetries again. The line field v of an autonomous equation is constant along
vertical lines (x � constant) of the extended phase space. Hence any translate ϕpt� sq of a solution ϕptq
is still a solution. This is the manifestation of time-invariance of a law codified by an autonomous ODE.
This also implies that there is no loss of generality in restricting to initial value problems with initial
time t0 � 0.

Equilibrium solutions. First, we observe that an autonomous equation may admit constant solu-
tions. Indeed, if x0 is a singular point of the vector field v, i.e. a point where vpx0q � 0, then the constant
function

xptq � x0

obviously solves the equation. Such solutions, which do not change with time, are called equilibrium, or
stationary, solutions.

Solutions near non-singular points. Let x0 be a non-singular point of the velocity field vpxq, i.e.
a point x0 where vpx0q � 0. We want to solve 9x � vpxq with initial condition xpt0q � x0. First, rewrite
the equation dx{dt � vpxq formally as “dx{vpxq � dt” (multiply by dt and divide by vpxq, so that all x’s
are on the left and all t’s are on the right). Instead of trying to make sense to this last expression (which
is possible, of course, and here you can appreciate the beauty of Leibniz’ notation dx{dt for derivatives!),
observe that it is suggesting that

³
dx{vpxq � ³

dt. Now assume that the velocity field v is continuous
and let J � px�, x�q be the maximal interval containing x0 where v is different from zero. Integrating,
from x0 to x P J on the left and from t0 to t on the right, we obtain a differentiable function x ÞÑ tpxq
defined as

tpxq � t0 �
» x
x0

dy

vpyq
for any x P J . Now, observe that the derivative dt{dx is equal to 1{v. Since, by continuity, 1{v does not
change its sign in J , our tpxq is a strictly monotone continuously differentiable function. We can invoke
the inverse function theorem and conclude that the function tpxq is invertible. This prove that the above
relation defines actually a continuously differentiable function t ÞÑ xptq in some interval I � tpJq of times
around t0. Finally, you may want to check that the function t ÞÑ xptq solves the Cauchy problem: just
compute the derivative (using the inverse function theorem),

9xptq � 1{
�
dt

dx
pxptqq



� vpxq ,

and check the initial condition. Observe that the function tpxq � t0 has then the interpretation of the
“time needed to go from x0 to x”.

At the end of the story, if you are lucky enough and know how to invert the function tpxq, you’ll get
an explicit solution as

xptq � F�1 pt� t0 � F px0qq ,
where F is any primitive of 1{v. Close inspection of the above reasoning shows that the local solution
you’ve found is indeed the unique one. Namely, we have the following

Proposition 3.1. (Existence and uniqueness theorem for autonomous ODEs near a non-
singular point) Let vpxq be a continuous velocity field and let x0 be a non-singular point of v. Then
there exist one and only one solution of 9x � vpxq with initial condition xpt0q � x0 in some sufficiently
small interval I around t0. Moreover, the solution xptq is the inverse function of

tpxq � t0 �
» x
x0

dy

vpyq ,

defined in some small interval J around x0.
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Proof. Here we give the pedantic proof. Let J be as above. Define a function H : R� J Ñ R as

Hpt, xq � t� t0 �
» x
x0

dy

vpyq .

If t ÞÑ ϕptq is a solution of the Cauchy problem, then computation shows that d
dtH pt, ϕptqq � 0 for any

time t. There follows that H is constant along the solutions of the Cauchy problem. Since Hpt0, x0q � 0,
we conclude that the graph of any solution belongs to the level set Σ � tpt, xq P R� J s.t. Hpt, xq � 0u.
Now observe that H is continuously differentiable and that its differential dH � dt�dx{vpxq is never zero.
Actually, both partial derivatives BH{Bt and BH{Bx are always different from zero. Hence we can apply
the implicit function theorem and conclude that the level set Σ is, in some neighborhood I�J of pt0, x0q,
the graph of a unique differentiable function x ÞÑ tpxq, as well as the graph of a unique differentiable
function t ÞÑ xptq, the inverse of t, which as we have already seen solves the Cauchy problem.

On the failure of uniqueness near singular points. The interval I � tpJq where the solution
is defined need not be the entire real line: solutions may reach the boundary of J , i.e. one of the
singular points x� of the velocity field, in finite time. Since singular points are themselves equilibrium
solutions, this imply that solutions of the Cauchy problem at singular points may not be unique, under
such mild conditions (continuity) for the velocity field. Later we’ll see Picard’s theorem, which prescribes
stronger regularity conditions on v under which the Cauchy problem admits unique solutions for any
initial condition in the extended phase space.

e.g. Two solutions with the same initial condition! Both the curves xptq � 0 and xptq � t3

solve the equation
9x � 3x2{3

with initial condition xp0q � 0. The problem here is that the velocity field vpxq � 3x2{3, although
continuous, is not differentiable and not even Lipschitz at the origin. You may notice that the solution
starting, for example, at x0 � 1 reaches (or better comes from) the singular point x� � 0 in finite time,
since

tpx�q � tpx0q �
» 0

1

1
3
y�2{3dy

� �1 .

e.g. Leibniz’s tractrix. Leibniz’s tractrix is the solution of the differential equation

dy

dx
� �ya

`2 � y2

for some initial condition ypx0q � y0 with 0   y0   `. It gives the trajectory of an object which is pulled
on a plane by a rod of lenght ` when the free end of the rod moves along the x-axis. Separating variables
we get » y

y0

?
`2 � z2

z
dz � x0 � x .

To compute the left integral, change variable z � ` sin θ, and get, after some computations, the tractrix
in implicit form

x� x0 �
b
`2 � y2

0 �
a
`2 � y2 � ` log py{y0q � ` log

�
`�

a
`2 � y2

`�
a
`2 � y2

0

�
.
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Leibniz’s tractrix

The flow generated by an autonomous first order ODE. Assume that an autonomous first order
ODE 9x � vpxq admits unique solutions t ÞÑ ϕptq starting at every point ϕp0q � x of the phase space X,
and that all such solutions are defined for all times t P R (such velocity fields are then called complete).
Then we can define a family of maps Φt : X Ñ X, depending on time t P R, as follows: the value of
Φtpxq is equal to the value ϕptq of the solution of the Cauchy problem with initial condition ϕp0q � x.
Clearly Φ0 is the identity map, and

Φt � Φs � Φt�s

for any t, s P R (why?). Mathematicians say that such family of transformations tΦtutPR form a “group
acting” on X, and call it the flow of the autonomous first order differential equation. Physically, Φtpxq
is the state where the system will be after time t if it is observed in the state x at time 0. The group
property above is essentially what physicists call “determinism”: present uniquely determines past and
future of the system.

Given the flow Ψt, we recover the velocity field as

vpxq � d

dt
Φtpxq

����
t�0

.

Hence, the flow may be seen as an alternative way to define a dynamics.

e.g. Gradient flows. Consider the problem to find minima of a real valued function Upxq defined in
an interval X � R. Let vpxq :� �U 1pxq, and consider the flow Φt of the vector field vpxq. We compute,
using the chain rule,

d

dt
U pΦtpxqq

����
t�0

� U 1pxqvpxq � �pU 1pxqq2 .

It is clear that stationary solutions of 9x � vpxq are critical points of U . It follows from the above
computation that the value of U decreases if we are not at a critical point. Therefore, if p is a strict
minimum of U , an initial guess x0 sufficiently near p have a trajectory t ÞÑ xptq asymptotic to p.

ex: Training. Consider the following autonomous first order ODEs

9x � x� 1 9x � px� 1qpx� 2q 9x � ?
x 9x � 1�

a
|x| 9x �

a
1� x2 ,

where 9x denotes first derivative of x w.r.t. time t.

• Find, if any, equilibrium solutions.

• Draw the direction fields and conjecture the behavior of solutions.

• Integrate, find solutions, and draw some representative graphs of the solutions you have found.

• Find formulas for the solutions of the Cauchy problem with initial condition xpaq � b.
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ex: Logistic equation. A more realistic model of population dynamics is the logistic equation

9N � λNp1�N{N8q ,

where the positive constant N8 is the asymptotic stationary population in a given limited environment.
Observe that 9N � λN , as in the exponential model, for N much smaller than N8, and that the rate of
growth decreases to zero when N approaches N8 from below.

• Call x � N{N8 the relative population, and show that the function xptq satisfies

9x � λxp1� xq ,

a dimensionless form of the logistic equation.

• Find the equilibrium solutions of the logistic equation.

• Show that the solution with initial condition xp0q � x0, with 0   x0   1, is

xptq � 1

1�
�

1
x0
� 1

	
e�λt

,

• Find a formula for the solution of the Cauchy problem with initial condition xp0q � x0, with x0 ¡ 1,
and observe that the past history is not defined for any time t.

• Draw graphs of some solutions and say what happens to solutions for large times.

Equilibrium solutions, and three different solutions of the logistic equation.

ex: Super-exponential growth. Another model of population dynamics in a unlimited environment
is

9N � αN2 ,

where α is a positive constant.

• Find, if any, equilibrium solutions.

• Write the equation as dN{N2 � αdt, integrate both sides of the equality and find the other solutions.

• Find a formula for the solution of the Cauchy problem with initial data Np0q � N0, with N0 ¡ 0.

• Observe that the solutions you have just found are not defined for all times t: this model predict a
catastrophe (infinite population) after a finite time!
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ex: Draining a tank. Some liquid is contained in a tank which has section Sphq in correspondence
with height h. A hole of section s is opened at the base of the tank, and liquid start to drain. Torricelli’s
law says that the velocity of the dropping liquid at time t should be v � �?2gh, where hptq is the height
of the liquid at time t (since the potential energy mgh gained by liquid particles falling from the liquid
surface down to the hole will be transformed into a kinetic energy mv2{2). Actually, due to some friction
around the hole, the observed velocity is �γ?2gh for some dimensionless coefficient γ   1 (which is
experimentally seen to be of order 0.6 for usual liquids in usual conditions). There follows that the flow
of dropping liquid is γs

?
2gh, hence the volume V ptq of liquid in the tank at time t decreases as

9V � �γs
a

2gh .

• Write the volume as V ptq � ³hptq
0

Spxqdx and show that hptq satisfies the autonomous first order
ODE

Sphq 9h � �γs
a

2gh .

• Solve the equation for a cylindrical tank with constant section Sphq � S, and say what time does
it take to drain a tank filled up to a height h0.

• Solve the equation for a funnel, a conical tank having section Sphq � s � kh for some positive k,
and answer the same question as above.

ex: Real gravity and second cosmic velocity. The distance r of a particle of mass m from the
center of the Earth satisfies the Newton equation

m:r � �mgr
2
0

r2
,

where r0 is the radius of the Earth (and, of course, r ¡ r0). Here we are considering the real gravitational
force produced by the Earth, but we are disregarding the gravitational influence of the Sun and other
celestial bodies.

• Find the potential Uprq of the gravitational field and write the expression for the total energy of
the system.

• Write the integral that represents the time needed to send a particle from the Earth surface r0 up
to a height r � r0 from the Earth surface, given an initial energy E ¡ gr0.

• Find the minimum upward velocity necessary to escape from the Earth gravitational field, i.e. to
reach an infinite distance.

e.g. Helmoltz’s theorem, or “thermodynamics” of monocyclic motions. Consider a one-
dimensional Newtonian system whose orbits are all closed, hence monocyclic. This is the case when
the potential Upxq is strictly convex (i.e. has positive second derivative) and grows to infinity for large
displacements (i.e. Upxq Ñ 8 for x Ñ �8). Changing the origin we can assume that the potential is
everywhere positive. Moreover, we let the potential to depend smoothly on a parameter V . For any given
value E of the total energy. the orbit takes place in a finite interval rx�, x�s and has perioda

m{2
» x�
x�

dx?
K

if m is the mass of the particle. Call P as “pressure”, the time average of

�BUBV .

T , as “temperature”, the time average of the kinetic energy K � E � U , and define the “infinitesimal
work” and “heath” as

dL � �PdV dQ � dE � PdV .

Helmoltz’s theorem says that then
dQ{T
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is an exact differential. This means that there exists a function SpE, V q, such that dS � pdE �PdV q{T .
Indeed, define

SpE, V q � 2 log
» x�
x�

a
E � Upxqdx .

Its differential is

dS �
³x�
x�

pdE � pBU{BV qdV q dx?
K³x�

x�
K dx?

K

ex: Modeling. Write down differential equations that model each of the following situations, then
try to say as much as you can about the solutions and answer the questions posed at the end.

• The rate of change of the temperature of a cup of tea at time t is proportional to the difference
between the air temperature, assumed constant, and the tea temperature at time t. Will the cup
of tea reach the air temperature in finite time?

• The rate of growth of a population of mushrooms at time t is proportional to the square root of
the population at time t. Could you infer the age of a colony of such mushroom from its actual
population?

• The upward velocity of a rocket at time t is inverse proportional to the height reached at time t.
Will the rocket reach an infinite height?

• The rate of growth of the mass of a cubic crystal at time t is proportional to the crystal’s surface
at time t. At what rate does the radius of the crystal grow?

3.3 One-dimensional conservative systems

One-dimensional Newtonian motion in a time independent force field. The one-dimensional
motion of a particle of mass m subject to a force F pxq that does not depend on time is described by the
Newton equation

m:x � �dU
dx

pxq ,

where the potential Upxq � � ³
F pxqdx is some primitive of the force. The total energy

E px, 9xq � 1
2
m 9x2 � Upxq

(which of course is defined up to an arbitrary additive constant) of the system is a constant of the motion,
i.e. is constant along solutions of the Newton equation. In particular, once a value E of the energy is
given (depending on the initial conditions), the motion takes place in the region where Upxq ¤ E, since
the kinetic energy 1

2m 9x2 is non-negative. Conservation of energy allows to reduce the problem to the
first order ODE

9x2 � 2
m
pE � Upxqq ,

which has the unpleasant feature to be quadratic in the velocity 9x. Meanwhile, if we are interested in a
one-way trajectory going from some x0 to x, say with x ¡ x0, we may solve for 9x and find the first order
autonomous ODE

9x �
c

2
m
pE � Upxqq .

There follows that the time needed to go from x0 to x is

tpxq �
» x
x0

dyb
2
m pE � Upyqq

.

The inverse function of the above tpxq will give the trajectory xptq with initial position xp0q � x0 and

initial positive velocity 9xp0q �
b

2
m pE � Upx0qq, at least for sufficiently small times t.
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ex: Harmonic oscillator /particle in a potential well. Consider the motion of a particle of mass
m inside a potential well Upxq � 1

2k
2x2. The corresponding Newton equation is Hooke’s law

m:x � �k2x ,

which can be rewritten in the more familiar form :x � �ω2x, where ω � k{?m is the “resonant frequency”.

• Show that the energy

Epx, 9xq � 1
2
m 9x2 � 1

2
k2x2

is a constant of the motion.

• Fixed a positive energy E, the motion takes place in the interval px�, x�q with x� � �?2E{k, and
the velocity 9x satisfies the quadratic equation

9x2 � ω
a
p|x�|2 � x2q .

Find the trajectory from x� to any x ¤ x�.

• Compute the time needed to go from x� to x�, and show that it does not depend on E.

ex: Mathematical pendulum. Consider now the “real” pendulum, with Hamiltonian

Hpθ, pq � 1
2
p2 � cospθq

• Show that the motion with energy E is given by

t �
»

dθa
2pE � cospθqq

• Define x �
b

2
E�1 sin θ{2 and k �

b
E�1

2 , and show that the motion reads

9x �
a
p1� x2qp1� k2x2q

Deduce that time is given by the so called Jacobi’s elliptic integral of the first kind

t �
»

dxap1� x2qp1� k2x2q

whose solution is “defined” as the elliptic function x � snpt, kq.
• Replace t ÞÑ it and see what happens.

3.4 Separable first order ODEs

Separable ODEs. A first order ODE 9x � vpt, xq is said separable when the velocity field v is a product
of a function which only depends on t and another function which only depends on x. So it has the form

9x � gptqfpxq

for some known functions f and g. We assume that both f and g are continuous functions on some
intervals of the phase space and the real line, respectively. Observe that both simple ODEs like 9x � vptq
and autonomous ODEs like 9x � vpxq fall in this class.

If x0 is a zero of f , hence a singular point of the vector field v, then xptq � x0 is an equilibrium
solution.

The recipe to find other solutions is known as “separation of variables”. Take a non-singular point
x0, that is a point where fpx0q � 0. Choose a maximal interval J containing x0 where f is different from
zero, rewrite the equation formally as “dx{fpxq � gptqdt”, and then integrate from x0 to x P J the r.h.s.
and from t0 to t the l.h.s. You’ll get » x

x0

dy

fpyq �
» t
t0

gpsqds .
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As we did for autonomous equations, we can see that any continuously differentiable solution t ÞÑ xptq of
the equation passing through the non-singular point pt0, x0q must satisfy the above relation, as long as x
is sufficiently near to x0.

If F is a primitive of 1{f and G is a primitive of g, this gives the relation

F pxq � F px0q � Gptq �Gpt0q .
There follows that, if you are able to explicitly invert the function F , you’ll get the explicit solution as

xptq � F�1 pGptq �Gpt0q � F px0qq .

e.g. Solve 9x � tx3.
An obvious solution is the equilibrium solution xptq � 0. For a positive initial condition xpt0q � x0 ¡ 0,

rewrite the equation as dx{x3 � tdt and integrate» x
x0

dy

y3
�

» t
t0

sds

for x ¡ 0. You’ll find
1{x2 � 1{x2

0 � t2 � t20 ,

and, solving for x, the solution

xptq � 1a
t20 � 1{x2

0 � t2
.

defined for times t in the interval |t|  
a
t20 � 1{x2

0. In the same way you’ll find solutions with negative
initial condition x0   0.

ex: Training. Solve (i.e. find all solutions of) the following separable ODEs

9x � tx3 t 9x� t � t2 9x � t3{x2 x 9x � ex�3t2t

9x � t� 1
x2

x� 1
t

9x� x� x2

t2
� 0

dy

dx
� �x

y�
t2 � 1

�
9x � 2tx 9x � t

�
x2 � x

�
9x � et�x

defined in appropriate domains of the extended phase space.

ex: Exponential growth in variable environment. The growth of a population in a variable
environment may be modeled by

9N � λptqN
where λptq is a variable growth rate.

• Write the solution Nptq with Npt0q � N0 as a function of λpsq for t0 ¤ s ¤ t.

• Solve the problem with λptq � λ0 sinpωtq.

ex: Inseguimento. Una lepre scappa con moto rettilineo uniforme in un piano. Una volpe la vede e
la insegue puntando sempre nella direzione della lepre (e viaggiando a velocità costante). Determinare la
traiettoria della volpe.

3.5 Linear first order ODEs

Linear first order ODEs. A first order linear differential equation is a differential equation which
can be written in the “canonical form”

9x� pptqx � qptq , (3.1)

where p and q are (known) functions of the real variable t in some interval I of the real line, called
coefficients. We assume that both p and q are continuous functions, and we look for solutions t ÞÑ xptq
defined on I. Eventually we will want to solve the Cauchy problem with some initial condition xpt0q � x0.

The equation
9y � pptqy � 0 (3.2)

is said the homogeneous equation associated with the general, hence non-homogeneous, equation (3.1)
above.
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Observations about linearity. The word “homogeneous” is due to the fact that any constant
multiple λyptq of a solution y of the homogeneous equation (3.2) is again a solution. Also, any linear
combination (with real coefficients) ay1ptq�by2ptq of solutions y1ptq and y2ptq of the homogeneous equation
(3.2) is still a solution of the homogeneous equation. This means that the space of solutions of the
homogeneous equation is a linear space H.

Also interesting is that the difference yptq � x1ptq � x2ptq of any two solutions x1ptq and x2ptq of
the non-homogeneous equation (3.1) is a solution of the associated homogeneous equation (3.2), hence
belongs to the linear space H. Therefore, the space of solutions of the non-homogeneous equation (3.1)
is an affine space x�H, where xptq is any (particular) solution of (3.1).

All this suggests a strategy to solve the existence and uniqueness problem for both equations. We
start with

Solving the homogeneous equation. A trivial solution of the homogeneous equation is the equilib-
rium solution xptq � 0.

Now we look for others. Assume for the moment that the solution xptq is positive on I. The equation
is equivalent to 9x{x � �pptq. The chain rule says that 9x{x is the derivative of log x, hence log x must be
a primitive of �pptq. There follows that

log xptq � log x0 � �
» t
t0

ppsqds ,

hence
xptq � x0e

� ³t
t0
ppsqds

.

You may want to check that the above formula solves the Cauchy problem with initial condition xpt0q �
x0.

Of course, this makes sense provided that the function pptq is continuous. Now we claim that the
above formula (which includes the equilibrium solution if x0 � 0 as well as the negative solutions if
x0   0) gives the unique solution of the Cauchy problem.

Proposition 3.2. (Existence and uniqueness theorem for homogeneous first order linear
ODEs) Let p be a continuous function on some interval I. Then the unique solution of the hmogeneous
equation 9x� pptqx � 0 with initial condition xpt0q � x0 is given by

xptq � x0e
� ³t

t0
ppsqds

.

Proof. Let yptq be a second solution of the Cauchy problem above, and define

hptq � yptqe
³t
t0
ppsqds

.

Its value for t0 is x0. Its derivative is

9hptq � e
³t
t0
ppsqds p 9yptq � pptqyptqq .

Since y is supposed to solve the equation, the derivative of h is equal to zero for any t in the chosen
interval, and the mean value theorem says that then hptq is constant and equal to x0. There follows that
yptq is indeed equal to our solution xptq.

e.g. Solve t 9x� 2x � 0 for t P p0,8q with initial condition xpt0q � x0.
If x0 � 0, the solution is the equilibrium solution xptq � 0. If x0 ¡ 0, write the equation as

dx{x � 2dt{t, integrate » x
x0

dy{y �
» t
t0

2ds{s ,

for positive x, obtain
log x� log x0 � logpt2q � log

�
t20
�
,

and solve it for x, the solution being
xptq � �

x0{t20
�
t2 .

Finally observe that this formula gives the solutions for any initial condition x0.
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Back to the non-homogeneous equation. To solve the non-homogeneous equation

9x� pptqx � qptq ,
we use the following trick, a first and elementary instance of a much more general method named “varia-
tion of parameters” (or, sometimes, with the oxymoron “variation of constants”). We already know that
any function proportional to e�

³t
a
ppsqds solves the homogeneous equation. We look for a solution of the

non-homogeneous equation having the form

xptq � λe
� ³t

t0
ppsqds

,

but, instead of treating the parameter λ as a constant, we allow it to depend on t. Putting our guess into
the non-homogeneous equation, we get

d

dt

�
λptqe�

³t
t0
ppsqds	� pptqλptqe�

³t
t0
ppsqds � qptq .

Computing the derivative, we get

9λptqe�
³t
t0
ppsqds �(((((((((

pptqλptqe�
³t
t0
ppsqds �(((((((((

pptqλptqe�
³t
t0
ppsqds � qptq ,

the two terms containing pptq do cancel, and we are left with

9λptqe�
³t
t0
ppsqds � qptq .

This can be solved for 9λ, and integration gives

λptq � x0 �
» t
t0

e
³s
t0
ppuqdu

qpsqds

for some constant x0 equal to the value of λpt0q. Finally, we get a solution

xptq � λptqe�
³t
t0
ppsqds

,

and you may check that it has initial value xpt0q � x0. Since the difference of any two solutions of the
general equation is a solution of the associated homogeneous equation, and since (as follows from the
uniqueness theorem above) the only solution of the homogeneous equation with initial condition xpt0q � 0
is the zero solution, we just proved the following

Proposition 3.3. (Existence and uniqueness theorem for first order linear ODEs) Let p and
q be continuous functions in some interval I. Then the unique solution of the linear differential equation
9x� pptqx � qptq with initial condition xpt0q � x0 for t0 P I is given by

xptq � e
� ³t

t0
ppuqdu

�
x0 �

» t
t0

e
³s
t0
ppuqdu

qpsqds


.

Suggestion. Perhaps, instead of fixing the unpleasant formula in the above theorem, you could simply
remember the strategy used to derive it: find one non-trivial solution yptq of the associated homogeneous
equation (which is separable!), and then make the conjecture xptq � λptqyptq for some other unknown
function λptq. You’ll get a simple differential equation for λ, and integration gives you the solution.

e.g. Solve t 9x� 2x � t for t P p0,8q with initial condition xpt0q � x0.
You already know that the solution of the associated homogeneous equation ty1 � 2y � 0 with initial

condition ypt0q � 1 is yptq � t2{t20. Make the conjecture xptq � λptqt2{t20, insert your guess into the
non-homogeneous equation, and get

9λ � t20{t2 .
Integrate and find

λptq � λpt0q � t0 � t20{t ,
and, since λpt0q � xpt0q, finally find the solution

xptq � x0 � t0
t20

t2 � t .
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ex: Training.

• Find the general solutions of the following linear first order ODEs

2 9x� 6x � e2t
9x� 2x � t 9x� x{t2 � 1{t2 9x� tx � t2

for t in appropriate intervals of the real line.

• Solve the following initial value problems:

2 9x� 3x � e2t for t P p�8,8q with xp0q � 1

9x� x � e3t for t P p�8,8q with xp1q � 2

t 9x� x � t3 for t P p0,8q with xp0q � 1

9x� tx � t3 for t P p0,8q with xp0q � 0

dr{dθ � r tan θ � cos θ for θ P p�π{2, π{2q with rp0q � 1

ex: Free fall with friction. A more realistic model of free fall of a point-like particle near the Earth
surface must take into account the air resistance. The latter is assumed to be a force Ffriction � �k 9r,
proportional and opposed to the velocity of the particle, for some positive constant k (observe that, in
absence of other forces, the velocity v � 9r would satisfy the equation 9v � � 1

τ v, hence decay exponentially
with characteristic time τ � m{k). The resulting Newton equation for the free fall is

m:r � �k 9r �mg .

This can be thought as a first order ODE for the velocity v � 9r of the particle, namely

m 9v � �kv �mg .

• Find equilibrium solutions for the velocity v, and give a physical interpretation.

• Solve the Cauchy problem with initial velocity vp0q � 0.

• Show that the velocity goes to a definite value as time tends to infinity, independently on its initial
value.

• Use the above solution to find the trajectory rptq, given an initial position rp0q � s.

ex: Kirchoff’s law for a LR circuit. The electric current Iptq flowing in an electric circuit with
resistance R and inductance L driven by a tension V ptq satisfies the first order ODE

L 9Iptq �RIptq � V ptq .

• Write the general solution as a function of the tension V ptq and the initial current Ip0q.
• Solve the equation for a constant tension V ptq � V0. Draw graphs of some solutions for different

values of Ip0q and say what happen for large times.

• Solve the equation for a circuit driven by an alternate tension V ptq � V0 sinpωtq. Show that the
solution with initial current Ip0q � 0 has the form

Iptq � V0?
R2 � ω2L2

sin pωt� ϕq � EωL

R2 � ω2L2
e�Rt{L ,

where ϕ is a phase (or delay) which depends on ω, L and R.

• Compare with the free fall with friction, and give “mechanical” interpretations of the resistance R
and inductance L of an electric circuit.
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Response (red) to an alternate tension (black).

ex: Newton’s law of cooling. The temperature T ptq at time t of a body in contact with a thermostat,
maintained at temperature Mptq, is assumed to follow the Newton’s law of cooling

9T � �k pT �Mptqq ,
for some positive constant k.

• Find the formula which solves the Cauchy problem for T paq � b as a function of Mptq.
• Solve the Cauchy problem when the thermostat (supposed much bigger than the body) is main-

tained at constant temperature Mptq �M and discuss the solutions (observe that T ptq �M is an
equilibrium solution, and consider the substitution xptq � T ptq �M).

• Solve the Cauchy problem when the thermostat has temperature T ptq � T0 sinpωtq.
• A cup of coffee, initially at the temperature of 100oC is left in a room at constant temperature

20oC. Observing that the coffee reaches a temperature of 60oC in 15 minutes, compute the value of
k for coffee and the time needed for the coffee to reach a temperature of 40oC..

ex: Bernoulli equations. A first order ODE of the form

9x� pptqx � qptqxn ,
where p and q are continuous functions in some interval I and n � 0 or 1 (otherwise it’s just a linear
ODE!), is called Bernoulli equation.

• Show that xptq � 0 is a solution.

• Let k � 1� n. Show that xptq is a positive solution of the Bernoulli equation with initial condition
xpt0qk � x0 iff y � xk is a solution of the linear ODE

9y � kpptqy � kqptq
with initial condition ypt0q � x0.

• Conjecture and prove an analogous result for negative solutions of the Bernoulli equation, given
some appropriate conditions on the exponent n (there is no way to give a useful meaning to an
expression like p�3q

?
2 !).

• Solve the following initial value problems for Bernoulli equations:

9x� x{t � t
?
x for t P p0,8q com xp0q � 1

9x� x � x2 pcos t� sin tq for t P p�8,8q com xp1q � 2

t 9x� et
2
x � x2 log t for t P p0,8q com xp3q � 0
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4 Existence, uniqueness and stability results for ODEs

Many (not to say almost all!) interesting ODEs of physics are not linear and don’t belong to any class of
easily integrable differential equations.

For example, analytical solutions of the Lane-Emden equation are known for only a few values of the
parameter p. Solutions of the three-body problem in celestial mechanics are known only for a very few
symmetrical initial conditions.

How do we attach the problem? The first thing to do is to prove existence and uniqueness theorems
that tell you that the equation you wrote does make sense. This done, you may solve “numerically” the
equation, that is find approximate solutions and hope that they are not too different from the real ones.
Later on, following an idea of Henri Poincaré, you may try to guess the qualitative of solutions without
solving the equation.

Here we sketch just the first two steps.

4.1 Existence and uniqueness theorems

Here we consider a generic first order ODE of the form

9x � vpt, xq

where the velocity field v is a (continuous) function defined in some extended phase space R �X. Here
X may be some interval of the real line as well as an open subset of some Euclidean Rn. Since we’ll prove
a local result, everything we’ll say will be valid when X is any differentiable manifold.

The problem we address is the existence and uniqueness of solutions of the initial value problem.
A local solution passing through the point pt0, x0q P R � X is a solution t ÞÑ ϕptq, defined in some
neighborhood I of t0, such that ϕpt0q � x0. Eventually, we’ll be interested also in the possibility of
extending such local solutions to larger intervals of times.

Existence. The basic existence theorem is due to Giuseppe Peano4.

Theorem 4.1. (Peano existence theorem) Let vpt, xq be a continuous velocity field in some domain
D of the extended phase space R �X. Then for any point pt0x0q P D passes at least one integral curve
of the differential equation 9x � vpx, tq.

Idea of the proof. Natural guesses for the solutions are Euler lines starting through px0, t0q. If we
restrict to a sufficiently small neighborhood of pt0, x0q, we can assume that the velocity field is bounded,
say |vpt, xq| ¤ K, and that all such Euler lines lies in the “papillon” made of two triangles touching at
pt0, x0q with slopes �1{K. Construct a family of Euler lines, graphs of ϕnptq, such that the maximal
step εn of the n-th line goes to 0 as n Ñ 8. One easily sees that the family pϕnq is bounded and
equicontinuous. By the Ascoli-Arzelá theorem it admits a (uniformly) convergent subsequence. Finally,
we claim that the sublimit ϕni Ñ ϕ solves the differential equation.

Both existence and uniqueness may fail. The Hamilton-Jacobi equation

p 9xq2 � xt� 1 � 0

cannot have solutions satisfying the initial condition xp0q � 0, for otherwise we would have a negative
“kinetic energy” p 9xq2 � �1 at that point!

Some regularity of the functions involved in a differential equation is also needed to ensure the unique-
ness of solutions. For example, both curves t ÞÑ 0 and t ÞÑ t3 solve the equation

9x � 3x2{3

with initial condition xp0q � 0. The problem here is that the velocity field vpt, xq � 3x2{3, although
continuous, is not differentiable and not even Lipschitz at the origin. Indeed, a sufficient condition for
uniqueness is

4G. Peano, Sull’integrabilità delle equazioni differenziali del primo ordine, Atti Accad. Sci. Torino 21 (1886), 677-685.
G. Peano, Demonstration de l’intégrabilité des équations différentielles ordinaires, Mathematische Annalen 37 (1890) 182-
228.
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The Lipschitz condition. A velocity field vpt, xq, defined in a domain I �D of the extended phase
space R�Rn, is locally Lipschitz w.r.t. to the variable x if for any pt0, x0q P I�D there is a neighborhood
J � U Q pt0, x0q and a constant L ¥ 0 such that

}vpt, xq � vpt, yq} ¤ L � }x� y} @ pt, xq, pt, yq P J � U

If vpt, xq has continuous derivative w.r.t. x, i.e. if the Jacobian

Dxvpt, xq �
� Bvi
Bxj pt, xq



exists and is continuous, then vpt, xq is locally Lipschitz in any compact convex domain I �K � R�Rn.

Uniqueness. Here is the uniqueness theorem, due to Émile Picard and Ernst Lindelöf 5.

Theorem 4.2. (Picard-Lindelöf uniqueness theorem) Let vpt, xq be a continuous velocity field
defined in some domain D of the extended phase space R � X. If v is locally Lipschitz (for example
continuously differentiable) w.r.t. the second variable x, then there exist one and only one local solution
of 9x � vpt, xq passing through any point pt0, x0q P D.

Geometrically, the uniqueness theorem says that through any point pt0, x0q of the domain D there
pass one and only one solution. Hence solutions, considered as curves in the extended phase space, cannot
intersect each other.

In a domain where Picard’s theorem applies, if two local solutions agree in a common interval of times
then they are indeed restrictions of a unique solution defined in the union of the respective domains.
There follows that solutions are always extendible to a maximum domain. Such solutions are called
maximal solutions.

Strategy of the proof of the Picard’s theorem. The first observation is that a function ϕptq is a
solution of the Cauchy problem for 9x � vpt, xq with initial condition ϕpt0q � x0 iff

ϕptq � x0 �
» t
t0

v ps, ϕpsqq ds

Now, we notice that the above identity is equivalent to the statement that ϕ is a fixed point of the so
called Picard’s map φ ÞÑ Pφ, sending a function t ÞÑ φptq into the function

pPφq ptq � x0 �
» t
t0

v ps, φpsqq ds

At this point, one must chose cleverly the domain of the Picard’s map, which is the space of functions
where we think a solution should be. It will be a certain space C of continuous functions, defined in an
appropriate neighborhood I of t0, equipped with a norm that makes it a complete metric space (hence
a Banach space). The Lipschitz condition, together with continuity, satisfied by the velocity field will
imply that if the interval I is sufficiently small then the Picard’s map P : C Ñ C is a contraction. The
contraction principle (a.k.a. Banach fixed point theorem) finally guarantees the existence and uniqueness
of the fixed point of P in C.

Picard’s iterations. The contraction principle actually says that the fixed point, i.e. the solution we
are looking for, is the limit of any sequence φ, Pφ, ..., Pnφ, ... of iterates of the Picard map starting with
any initial guess φ P C. In other words, the existence part of the theorem is “constructive”, it gives us a
procedure to find out the solution, or at least a sequence of functions which approximate the solution.

e.g. Simple ODEs. Consider the simple ODE 9x � vptq with initial condition xpt0q � x0. Picard’s
recipe, starting from the initial guess φptq � x0 gives, already at the first step,

pPφq ptq � x0 �
» t
t0

vpsqds

which is the solution we know.
5M. E. Lindelöf, Sur l’application de la méthode des approximations successives aux équations différentielles ordinaires

du premier ordre, Comptes rendus hebdomadaires des séances de l’Académie des sciences 114 (1894), 454-457. Digitized
version online via http://gallica.bnf.fr/ark:/12148/bpt6k3074
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e.g. The exponential. Suppose you want to solve 9x � x with initial condition xp0q � 1. You start
with the guess φptq � 1, and then compute

pPφq ptq � 1� t
�
P2φ

� ptq � 1� t� 1
2
t2 ... pPnφq ptq � 1� t� 1

2
t2 � ...� 1

n!
tn

Hence the sequence converges (uniformly on bounded intervals) to the Taylor series of the exponential
function

pPnφq ptq Ñ 1� t� 1
2
t2 � ...� 1

n!
tn � ... � et ,

which is the solution we already knew.

Details of the proof of the Picard’s theorem. Choose a sufficiently small rectangular neighbor-
hood

I �B � rt0 � ε, t0 � εs �Bδ px0q
around pt0, x0q, where B � Bδ px0q denotes the closed ball with center x0 and radius δ in X. There
follows from continuity of v that there exists K such that

|vpt, xq| ¤ K

for any pt, xq P I � B. There follows from the local Lipschitz condition for v that there exists M such
that

|vpt, xq � vpt, yq| ¤M |x� y|
for any t P I and any x, y P B. Now restrict, if needed, the (radius of the) interval I in such a way to get
both the inequalities Kε ¤ δ and Mε   1. Let C be the space of continuous functions t ÞÑ φptq sending
I into B. Equipped with the sup norm

}φ� ϕ} � sup
tPI

|φptq � ϕptq|

this is a complete space. One verifies that the Picard’s map sends C into C, since

| pPφq ptq � x0| ¤
» t
t0

|v ps, φpsqq |ds ¤ Kε ¤ δ.

Finally, given two functions φ, ϕ P C, one sees that

| pPφq ptq � pPϕq ptq| ¤
» t
t0

|v ps, φpsqq � v ps, ϕpsqq |ds ¤Mε sup
tPI

|φptq � ϕptq|

hence }Pφ � Pϕ}   Mε}φ � ϕ}. Since Mε   1, this proves that the Picard’s map is a contraction and
the fixed point theorem allows to conclude.

We may not be able to solve them! Last but not least, we must keep in mind that we are not able
to solve all equations. Actually, although we may prove the existence and the uniqueness for large classes
of equations, we are simply not able to explicitly integrate the really interesting differential equations...

Ultimately we must recur to numerical methods to find approximate solutions and to qualitative
analysis

4.2 Dependence on initial data and parameters

Consider a family of ODEs
9x � vpt, x, λq

where λ is a real parameter. We want to understand how solutions depend on the parameter λ. A basic
instrument is the

Theorem 4.3. (Grönwall’s lemma6) Let φptq and ψptq be two non-negative real valued functions
defined in the interval ra, bs, and assume that

φptq ¤ K �
» t
a

ψpsqφpsq ds

for any a ¤ t ¤ b and some constant K ¥ 0. Then

φptq ¤ Ke
³t
a
ψpsq ds .

6T. H. Gronwall, Note on the derivative with respect to a parameter of the solutions of a system of differential equations,
Ann. of Math 20 (1919), 292-296.
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Proof. First, assume K ¡ 0. Define

Φptq :� K �
» t
a

ψpsqφpsq ds

and observe that Φpaq � K ¡ 0, hence Φptq ¡ 0 for all a ¤ t ¤ b. The logarithmic derivative is

d

dt
log Φptq � ψptqφptq

Φptq ¤ ψptq

where we used the hypothesis φptq ¤ Φptq. Integrating the inequality we get, for a ¤ t ¤ b,

log Φptq ¤ Φpaq �
» t
a

ψpsq ds .

Exponentiation gives the result, since

φptq ¤ Φptq ¤ K � e
³t
a
ψpsq ds .

The case K � 0 follows taking the limit of the above inequalities along a sequence of Kn ¡ 0 decreasing
to zero.

Continuous dependence on initial conditions. If xptq and yptq are two solutions of

9x � vpt, xq

then

xptq � yptq � xp0q � yp0q �
» t
t0

pvps, xpsqq � vps, ypsqqq ds

If Lpsq denotes the Lipschitz constant of vps, �q, we get

}xptq � yptq} ¤ }xp0q � yp0q} �
» t
t0

Lpsq}xpsq � ypsq}ds

The Gronwall’s lemma gives the control

}xptq � yptq} ¤ e
³t
t0
Lpsqds}xp0q � yp0q}

Observe that the above control also gives an alternative proof of uniqueness of solutions given a
Lipschitz condition on the vector field.

Theorem 4.4. (Smooth dependence on parameters) Let vpt, x, λq be a family of vector fields defined
on some domain D � R �X of the extended phase space, depending on a parameter λ P Λ � R. If v is
of class Ck with k ¥ 1, then in some neighborhood of any pt0, x0, λ0q P D � Λ the local solutions of

9x � vpt, x, λq

with initial condition xpt0q � x0 are differentiable (indeed Ck) functions of pt, x, λq.

Proof. see [?]

Warning. Continuous dependence does not exclude sensitive dependence on both initial conditions and
parameters, even in the linear case! For example, the distance between solutions of 9x � µx with different
xp0q and/or µ may diverge for large time ...

4.3 Autonomous systems and flows

The flow generated by an autonomous first order ODE. Let vpxq be a vector field defined on
some domain X � Rn, or on a manifold. Assume that an autonomous first order ODE

9x � vpxq
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admits unique solutions t ÞÑ ϕptq starting at every point ϕp0q � x P X, and that all such solutions are
defined for all times t P R. Such vector fields are then called complete. Then we can define a family of
maps Φt : X Ñ X, depending on time t P R, as follows: Φtpxq is equal to the value ϕptq of the solution
of 9x � vpxq with initial condition ϕp0q � x. Clearly Φ0 is the identity map, and

Φt � Φs � Φt�s

for any t, s P R (why?). Mathematicians say that such a family of transformations tΦtutPR form a “group
acting” on X, and call it the flow of the vector field v. Physically, Φtpxq is the state where the system
will be after time t if it is observed in the state x at time 0. The group property above is essentially what
physicists call “determinism”: present uniquely determines past and future of the system.

Given the flow we recover the vector field as

vpxq � d

dt
Φtpxq

����
t�0

.

Hence, the flow may be seen as an alternative way to define the dynamics.

Observables.

Derivative along the flow. The Lie derivative of a differentiable function f : X Ñ R along the
vector field v is the function £vf defined by

p£vfqpxq :� d

dt
fpΦtpxqq

����
t�0

.

Therefore, an observable is constant of the motion, or invariant, if £vf � 0, i.e. if fpΦtxq � fpxq for any
time t P R.

Reparametrizations.

Lyapunov functions.

e.g. Gradient flow. Suppose you have a “potential” U : X � Rn Ñ R, and you want to find
its minima. You could make a first guess x0, and then follow the flow of v � �∇U , namely solve
9x � �∇Upxq with xp0q � x0. Indeed, equilibrium points are critical points of U , and minus the gradient
of U is the direction where U decreases the fastest, and computation gives £vU � ....

All this seems quite trivial, but it becomes extremely powerful in the infinite dimensional case of
the Laplace equation. The gradient flow of the Dirichlet integral

³
M
|∇u|2dx in a Riemannian manifold,

minimized by harmonic functions (those such that ∆u � 0), is the heat equation ut � ∆u.

Rectifiability

Proposition 4.1. (Flow box theorem.) A differentiable vector field near a nonsingular point is
rectifiable, i.e. diffeomorphic to a constant vector field. Explicitly, a nonsigular point p P X of the vector
field vpxq admits a neighborhood U with local coordinates px1, x2, . . . , xnq such that the vector field is the
constant vector field v � p1, 0, . . . , 0q.
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5 Some geometrical considerations on ODEs

5.1 Homogeneity and other dimensional considerations

You may have noticed that the only non-linear first order ODEs which we are able to integrate by
“quadratures” (i.e. computing integrals) are the separable ones. Moreover, simple equations like 9x � vptq
and autonomous equations like 9x � vpxq have symmetries, since their directions field is constant along
vertical and horizontal lines in the extended phase space, respectively. Here we show that also other less
trivial symmetries implies separability, hence integrability by quadratures.

Homotheties and homogeneous functions. Homotheties (with center 0) of the Euclidean space
Rn are the transformations x ÞÑ eλx, for λ P R (thus eλ P R�). Observe that homotheties form a group,
parametrized by the multiplicative group exppRq � R�.

Let f : D Ñ R be a function defined in a domainD � Rnzt0u which is invariant under homotheties (i.e.
if D contains a point p different from the origin then it contains the whole semirect R�p � tetp , t P Ru).
A function f : D Ñ R is called (positively) homogeneous of degree k if

fpeλxq � eλkfpxq (5.1)

for any point x P D and for all λ P R. In particular, a function f : D Ñ R is called (positively)
homogeneous (of degree 0) if it is invariant under homotheties, i.e. of

f
�
eλx

� � fpxq ,

for any point x P D and any λ P R. In other words, an homogeneous function f is constant on rays coming
out from the origin, hence it is defined by its values on the unit sphere Sn�1 :� tx P Rn s.t. |x| � 1u.

According to Euler’s homogeneous function theorem, a differentiable function f : D � Rn Ñ R is
(positively) homogeneous of degree k if and only if

xx,∇fy � k fpxq (5.2)

ex: Differentiate both sides of (5.1) at λ � 0 and prove Euler’s formula (5.2). Integrate (5.2) along
rays from the origin, and check that it implies that the function f is positively homogeneous.

Homogeneous first order ODEs. A first order ODE

9x � vpt, xq

is said homogeneous if the velocity field v is an homogeneous function of t and x, thought as points
pt, xq P R2.

A first observation is that homotheties pt, xq ÞÑ peλt, eλxq send integral curves into integral curves.
Indeed, if t ÞÑ ϕptq is a solution of 9x � vpt, xq, then also t ÞÑ φptq :� eλϕ

�
e�λt

�
, for λ P R, is a solution,

because

9φptq � d

dt
eλϕ

�
e�λt

� � 9ϕ
�
e�λt

�
� v

�
e�λt, ϕ

�
e�λt

�� � v
�
t, eλϕ

�
e�λt

��
(using homogeneity)

� v pt, φptqq .

This means that if we could find just one solution, we’ll have indeed a whole family of homothetic
solutions, depending on a parameter λ P R.
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Directions field and two homothetic solutions of the homogeneous equation 9y � �y{x.

Homogeneity amounts to say that v is actually a function of the ratio x{t, since

vpt, xq � vp1, x{tq

as long as t ¡ 0 (and the case t   0 can be treated in a similar way). This suggests that we may try and
see what the equation implies for the new unknown function yptq � xptq{t. Indeed, in a domain where
t ¡ 0, the guess xptq � typtq gives

y � t 9y � vp1, yq ,
hence the separable ODE

9y � pvp1, yq � yq {t
for y. Once you have yptq, you’ll have the solution xptq � t yptq as well as the whole family of solutions
t ÞÑ t y

�
e�λt

�
for λ P R.

e.g. Example. Solve

9x � x2 � t2

tx

in the first quadrant, i.e. for t ¡ 0 and x ¡ 0.
Make the conjecture xptq � typtq, compute 9x � y � ty1, and substitute this expression into the

equation. This gives

t 9y � y � y2 � 1
y

,

hence the separable equation
y 9y � 1{t .

A positive solution is yptq � ?
2 log t, defined for times t ¡ 1. Back to the original variable, you find the

solution xptq � t
?

2 log t. Finally, use homotheties to find the whole family of solutions

xptq � t
b

2 logpe�λtq ,

depending on the parameter λ P R, defined for times t ¡ eλ, in the first quadrant.

ex: Training. Solve the following homogeneous ODEs

9x � �t{x 9x � x� t

x� t
9x � 1� x{t v3 � �

u3 � uv2
� dv
du

� 0

9x � x{t 9x � 2
t

x
ex{t � x

t

dy

dx
� y{x� sinpy{xq

in appropriate domains of the extended phase space, and draw some integral curves.
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ex: Exercise. Show that an homogeneous ODE

dy

dx
� vpx, yq

in the x-y plane can be transformed into a separable ODE in polar coordinates ρ-θ, i.e. setting ρ �a
x2 � y2 and θ � arctanpy{xq.

Quasi-homogeneous functions and ODEs. Here we consider the quasi-homotheties gλ : R2 Ñ R2

defined
px, yq ÞÑ �

eλαx, eλβy
�

for some (possibly different) weights α and β.
A function fpx, yq is said quasi-homogeneous of degree k and weights α and β if

f
�
eλαx, eλβy

� � eλkfpx, yq

for any λ P R.

Example (Kepler 3rd law)

5.2 Newton equation in homogeneous potentials

see [Ar85, Ar89, LL78]

5.3 Exact differentials and conservative fields

Here we describe a sequence of observations which, once followed in the reversed order, will suggest
a method to deal with some first order ODEs. More interesting are the physical and the geometrical
interpretations.

Level sets of smooth functions on the plane. Let U : D Ñ R be a twice continuously differentiable
real valued function defined in some domain D � R2. Level sets of U are the sets

Σc �
 px, yq P R2 s.t. Upx, yq � c

(
,

for c P R. If c is a regular value of U , i.e. if ∇U � 0 at the points of Σc, then the level set Σc is a
differentiable curve.

If px0, y0q is a point in Σc where BU{Bypx0, y0q � 0, the implicit function theorem tells us that Σc is
locally (in a neighborhood of px0, y0q) the graph of a differentiable function x ÞÑ ypxq. Such a function
satisfies the constraint U px, ypxqq � c, hence deriving w.r.t. x we get

d

dx
U px, ypxqq � 0 , so that

BU
Bx px, ypxqq �

BU
By px, ypxqq

dy

dx
� 0 .

If we define the functions p :� BU{Bx and q :� BU{By, this means that the function x ÞÑ ypxq is a local
solution of the differential equation

ppx, yq � qpx, yqdy
dx

� 0 (5.3)

which satisfies the initial condition ypx0q � y0.
The very same reasoning, near a point (which could be the same) where BU{Bx � 0, gives a local

solution y ÞÑ xpyq of the differential equation

ppx, yqdx
dy

� qpx, yq � 0 . (5.4)

For this reason, we’d better write both the differential equations (5.3) and (5.4) in the suggestive single
form

ppx, yq dx� qpx, yq dy � 0 (5.5)

(called “Pfaffian equation” by mathematicians), to be solved for dy{dx or for dx{dy, and say that the
curve Σc contains the graphs of the local solutions of (5.5).
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e.g. . Let Upx, yq � x2 � y2. Level sets Σc are the family of circles x2 � y2 � c, and they are regular
as long as c ¡ 0, since ∇U � p2x, 2yq. Near the point

�
1{?2, 1{?2

�
, the curve Σ1 is the graph of both

functions ypxq � ?
1� x2 and xpyq �

a
1� y2, which are local solutions of the differential equation

xdx� ydy � 0 .

Exact differentials and exact differential equations. Now, we reverse the reasoning, and give the
following definitions.

Let ppx, yq and qpx, yq be continuous functions defined in some domain D of the plane. A “differential”
pdx � qdy, or a differential equation pdx � qdy � 0, is called exact (in the domain D) if there exists a
continuously differentiable function U : D Ñ R such that dU � pdx� qdy, namely

BU
Bx � p and

BU
By � q .

Such U , if it exists, is called primitive of the exact differential pdx� qdy. Observe that this is equivalent
to the statement that ∇U � pp, qq, hence level curves of U are orthogonal to the vectors pp, qq at every
points. The solutions of the exact differential equation are then implicitly given by

Upx, yq � c ,

where the constants c are the regular values of U . Level sets of U are called integral curves of the
equation. Explicit local solutions, whose existence is guaranteed by the implicit function theorem, may
be obtained solving the equation Upx, yq � c for x or y, depending the case.

To decide whether a differential or a differential equation is exact or not is an easy task, thanks to
the following

Theorem 5.1. (Euler-Poincaré) Let p and q be continuously differentiable functions in some “sim-
ply connected” (for example a “convex” domain, or simply a “rectangle”) domain D � R2. Then the
differential pdx� qdy is exact iff

Bp
By �

Bq
Bx .

The condition is certainly necessary, since it amounts to exchanging the order in the mixed second
partial derivatives of U . So, we must prove the reverse implication, namely the existence of U . We start
with the simple case, considered by Euler, in which the domain D is a rectangle. In this case we’ll get a
very simple recipe to compute U that, modulo integrations, explicitly solves the problem.

Before, we give one of the possible physical interpretations.

Conservative fields. Instead of looking at the differential ppx, yqdx � qpx, yqdy, look at the vector
field

F px, yq � � pppx, yq, qpx, yqq .
which you may think as a “force field”. Finding U such that dU � pdx � qdy amounts to finding
a “potential” for the force field, a function U such that F � �∇U . The level sets of U are then
equipotential lines, and physicists know that they must be curves orthogonal to the force field F at every
point.

Since potentials are defined modulo constant additive terms, you may fix any value of Upx0, y0q. To
find the value of U at a generic point px, yq you choose a path γ from px0, y0q to px, yq and compute the
“work”

Wγ �
»
γ

Fd`

done by the force field along the path. Force fields which are gradients are called “conservative” by
physicists, meaning that the work done to displace a particle from one position to another position does
not depend on the chosen path, but only on the initial and final points. This work must be equal to
Upx0, y0q � Upx, yq. Now, the work does not depend on the chosen path exactly when the force field is
“irrotational”, namely rotF :� Bp{By � Bq{Bx � 0, provided there are “no holes” in the domain where
paths are chosen.
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Euler’s constructive proof. Fix any starting point px0, y0q P D and set Upx0, y0q � 0. The recipe
to get other values of U at points px, yq P D is

Upx, yq �
» x
x0

pps, y0qds�
» y
y0

qpx, sqds .

If D is a rectangle the above integrations are well defined. Now we show that U is a primitive of pdx�qdy.
The identity

BU
By px, yq � qpx, yq

is obvious. Computing the other partial derivative, using differentiation under the integral and the
hypothesis, we see that

BU
Bx px, yq � ppx, y0q �

» y
y0

Bq
Bx px, sqds

� ppx, y0q �
» y
y0

Bp
By px, sqds

� ppx, y0q � ppx, yq � ppx, y0q ,

so that also BU{Bxpx, yq � ppx, yq.

Modern/abstract proof. Observe that the above recipe amounts to define U integrating the dif-
ferential pdx � qdy (or the vector field F � pp, qq if you want to think about forces and work) along a
particular path going from px0, y0q to px, yq (go from px0, y0q to px, y0q along a horizontal segment and
then from px, y0q to px, yq along a vertical segment). But we could as well define Upx, yq as being the
integral of pdx� qdy along any piecewise smooth path γ1 going from px0, y0q to px, yq and lying inside D,
namely

Upx, yq �
»
γ1
ppdx� qdyq

and still get BU{Bx � p and BU{By � q. The only problem here is that the value of Upx, yq may depend
on the chosen path. To see that this is not the case, take any other path γ2 going from px0, y0q to px, yq.
If you follow γ1 in the right direction and then γ2 in the reverse direction, you’ll get a closed path γ
going from px0, y0q back to px0, y0q passing through px, yq. If the domain D is simply connected, γ is the
boundary BΩ of some domain Ω contained inside D (you may think that this is a definition of “simply
connectedness”). But then the Stokes-Green theorem says that»

γ1
ppdx� qdyq �

»
γ2
ppdx� qdyq � ³

γ
ppdx� qdyq

� ³
BΩ ppdx� qdyq

� ³
Ω

�
Bp
By � Bq

Bx
	
dxdy ,

and the last integral is equal to zero due to the hypothesis of the theorem.

e.g. Decide if the differential p2xy � 1q dx � x2dy is exact, find a primitive and solve the differential
equation p2xy � 1q dx� x2dy � 0.

Compute partial derivatives and check that Bp2xy � 1q{By � B �x2
� {Bx. Then set Up0, 0q � 0 and

integrate

Upx, yq �
» x

0

p2s0� 1q ds�
» y

0

x2ds .

A primitive is Upx, yq � x2y � x. The curves x2y � x � c are the integral curves of the differential
equation p2xy � 1q dx� x2dy � 0.

e.g. Magnetic field in the plane. Consider the “magnetic field”

F px, yq :�
�

�ya
x2 � y2

,
xa

x2 � y2

�
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generated by an electric current flowing along the z-axis of the 3-dimensional space. This field is defined
in the domain R2z t0u, which is not simply connected. The rotational is zero, but if you integrate the
field along the unit circle, a closed curve around the “hole” at the origin, you get the value¾

x2�y2�1

�
�ya
x2 � y2

dx� xa
x2 � y2

dy

�
�

» 2π

0

dθ

� 2π

for the work done. This implies that it is impossible to find a globally defined potential. On the other end,
if you restrict the domain of the field to a half-space as

 px, yq P R2 s.t. x ¡ 0
(

, you do get single-valued
potentials as arctanpy{xq.

Magnetic field in the plane.

e.g. Electric field in the plane. A force field may be conservative without being defined in a simply
connected domain! For example, the “electric field” F � �∇U , with

Upx, yq � log
a
x2 � y2 ,

generated by a point-like charge at the origin of the plane has a singularity at the origin, hence is defined
in the punctured plane R2z t0u.

Similarly, the electric potential Uprq � 1{}r} generated by a point-like charge in the 3-dimensional
physical space is also singular at the origin.

Electric field generated by a charge at the origin.

ex: Training. Tell which of the following differentials are exact

dx� dy pt� 2xq dt� p2t� 3xq dx
exydx� exydy

x

y
dy � p1� log yq dx

and draw level sets of their primitives.
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ex: Training. Tell which of the following differential equations are exact

5� 3
dx

dt
� 0 px� tq dx

dt
� ex � 0

1
x
� t� t

x2

dx

dt
� 0

�
4x� 3y2

�� 2xy
dy

dx
� 0 2x2 � 4t3 � p4tx� 1q dx

dt
� 0

pt� 2xq dt� p2t� 3xq dx � 0
�
r2 � 1

�
cos θdθ � 2r sin θdr � 0

and solve them.

Orthogonal trajectories. If a family C of curves in the plane is given as the integral lines of a
differential equation

ppx, yqdx� qpx, yqdy � 0 ,

then the family CK of orthogonal trajectories (those lines which meet orthogonally the curves of C at
every point of mutual intersection) are the integral curves of the differential equation

ppx, yqdy � qpx, yqdx � 0 .

(the operator sending the differential ω � pdx�qdx into �ω � pdy�qdx is known as “Hodge star operator”
in the Euclidean plane). Indeed, at a point where the first ODE can be solved for ypxq, the curves C have
slope dy

dx � vpx, yq, with v � �p{q, so that orthogonal lines must have slope dy
dx � �1{vpx, yq.

Observe that if C are the level set of a differentiable function U , which you may think as a potential,
then orthogonal trajectories are “force lines”, since are everywhere tangent to the force field F � �∇U .
The differential equation for such orthogonal trajectories become

BU
Bx dy �

BU
By dx � 0 .

e.g. Find the orthogonal trajectories to the family of circles x2 � y2 � c.
Call Upx, yq � x2 � y2. The family of circles Upx, yq � c solve the differential equation

xdx� ydy � 0 .

Orthogonal trajectories are integral lines of

xdy � ydx � 0 .

Solutions are the lines y � kx, for real k, and the vertical line x � 0.

ex: Find the family of curves orthogonal to the family of ellipses x2�λ2y2 � c, the family of hyperbolas
xy � c, and the family of parabolas y2 � cx.

ex: Find equipotential lines of the following force fields:

F px, yq � p3, 2q F px, yq � px, yq F px, yq �
�

x

x2 � y2
,

y

x2 � y2



Integrating factors. It may happen that, although the differential pdx � qdy is not exact, we may
find a positive function λpx, yq such that the differential

λpdx� λqdy

became exact.
The differential equations pdx� qdy � 0 and λpdx� λqdy � 0 are “equivalent”, since they have the

same integral lines. This means that if you can find a primitive U of λpdx� λqdy, you can integrate the
differential equation pdx � qdy � 0. For this reason, such a function λ is called integrating factor for
pdx� qdy � 0.

Physicists’ example. Physicists already know an example in thermodynamics: the heat δQ � dU �
PdV exchanged in a infinitesimal reversible transformation is not an exact differential, meanwhile the
inverse temperature β � 1{T is an integrating factor for δQ since δQ{T is the differential of a state
function S � ³

δQ{T called “entropy”.
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ex: Consider the following differential equations:�
4x� 3y2

�� 2xy
dy

dx
� 0

�
2x2 � y

�� �
x2y � x

� dy
dx

� 0 .

• Show that they are not exact.

• Find integrating factor of the form xn for some integer n, and solve the resulting exact equations.

Exercise. Show that an integration factor for the linear first order ODE

y1 � ppxqy � qpxq i.e. dy � pppxqy � qpxqq dx � 0 ,

is λpxq � e
³
ppxqdx, and use this observation to solve the equation.

ex: Let λpx, yq be an integrating factor for the differential equation

ppx, yqdx� qpx, yqdy � 0 .

• Show that Bp
By �

Bq
Bx � q

B
Bx log |λ| � p

B
By log |λ| .

• Deduce the following recipes to find integrating factors:

- if pBp{By � Bq{Bxq {q is a function of x alone, say fpxq, then an integrating factor is λpxq � e
³
fpxqdx,

- if pBp{By � Bq{Bxq {p is a function of y alone, say gpyq, then an integrating factor is λpyq � e
³
gpyqdy.
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6 Second order linear ODEs on the line

Many interesting models in physics, engineering and other natural sciences, arise naturally as differential
equations of order two or, occasionally, more. One possibility to deal with them is transforming the
equation into a system of first order ODEs. Meanwhile, in some special cases may be useful to rest with
the high order equation. This is the case of some linear ODEs, those that may be written as

akptqxpkq � ak�1ptqxpk�1q � ...� a2ptq:x� a1ptq 9x� a0ptqx � fptq

for some (continuous) functions aiptq, called coefficients, and fptq, called r.h.s. term, defined in some
interval I of the real line. Although it is possible to prove existence and uniqueness theorems for this class,
there is no “formula” giving the general solution by integration, as for the first order case. It happens that
physically interesting equations of this kind (like Legendre’s equation

�
1� t2

�
:x � 2t 9x � αpα � 1qx � 0,

Bessel’s equation t2:x� t 9x� �
t2 � α2

�
x � 0 or Hermite’s equation :x� 2t 9x� 2αx � 0) require a case by

case investigation, and their solutions even deserve special names.
It turns out that a satisfactory theory (I mean general strategies to solve the equation!) can only

be given when the coefficients do not depend on time, i.e. for the class of linear ODEs with constant
coefficients.

Since most linear ODEs of physics are of order two, and since the general theory is actually constructed
starting with order two “differential operators”, we start with

6.1 General considerations on second order linear ODEs

A second order linear differential equation is a differential equation of the form

aptq:x� bptq 9x� cptqx � fptq (6.1)

where the coefficients aptq, bptq and cptq, and the r.h.s. term (“segundo membro”) fptq are continuous
functions defined in some interval I � R of the real line.

The strategy to solve such equations passes through the solution of the associated homogeneous equa-
tion

aptq:y � bptq 9y � cptqy � 0 . (6.2)

The initial problem for both differential equations is: find the solution with initial condition xpt0q � x0

and 9xpt0q � v0.
We will be mainly interested in linear ODEs with constant coefficients, so we give a

Mechanical interpretation of second order linear ODEs with constant coefficients. It may
be useful to keep in mind the “mechanical” interpretation of the ingredients of a generic second order
linear ODE with constant coefficients like

a:x� b 9x� cx � fptq .

To understand it, consider the one-dimensional motion of a particle of mass m. The trivial Newton
equation

m:q � 0

describes free motion in an inertial frame. It says d
dt pm 9qq � 0, so that the linear momentum p � m 9q

is a constant of the motion. The kinetic energy K � p2{2m of the particle is also a constant of the
motion. The plane with coordinate pq, pq is called “phase space” of the system, and images of trajectories
t ÞÑ pqptq, pptqq in the phase space are called “phase curves”.

Newton equation
m:q � F ptq

describes the motion driven by an external time-dependent force F ptq. So, the first coefficient a � m is
the inertia of the system, and the r.h.s. is an external force.

Newton equation
m:q � �α 9q

describes free motion with friction, provided that α is positive. Indeed, the kinetic energy decreases
exponentially as d

dtK � �αK. So, the second coefficient b � α represent dissipation, when positive, or
energy production, when negative (a rather unphysical situation!)
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Newton equations
m:q � �ω2q and m:q � k2q

describe a particle in a potential well Upqq � 1
2ω

2q2 and in a potential hill Upqq � � 1
2k

2q2, respectively.
In both cases the total energy

E :� p2{2m� Upqq
is a constant of the motion. The trajectory qptq � 0 is an equilibrium solution, and other phase curves
are contained in the level sets of the energy. Draw pictures of these level sets, and convince yourself
that the equilibrium solution is stable in the first case (the force tends to push the particle towards the
equilibrium position), and unstable in the second case (the force tends to fasten the particle from the
equilibrium position). So, the third coefficient c � ω2 or �k2 is the stiffness of an attracting or repelling
force.

Newton equations
m:q � �α 9q � ω2q and m:q � �α 9q � k2q

describe damped systems, as long as α is positive.
Finally, Newton equations

m:q � �α 9q � ω2q � F ptq and mq:q � �α 9q � k2q � F ptq .

describe damped systems forced by a time-dependent external force F ptq.

Observations on linearity and strategy. The non-homogeneous equation (6.1) and the associated
homogeneous equation (6.2) can be written as

Lx � r and Ly � 0 ,

respectively, if we define the “differential operator” L according to

L :� aptq d
2

dt2
� bptq d

dt
� cptq

sending a twice differentiable functions xptq into the function pLxqptq � aptq:xptq � bptq 9xptq � cptqxptq.
The operator L is linear, meaning that Lpx � yq � Lx � Ly for any two functions x and y, and

Lpλxq � λLx for any function x and real number λ P R. Therefore, the space of solutions of the
homogeneous equation Ly � 0 is a linear space H.

The difference y � x1 � x2 between any two solutions x1 and x2 of the non-homogeneous equation
Lx � r is a solution of the homogeneous equation Ly � 0 Therefore, the space of solutions of the non-
homogeneous equation (6.1) is an affine space modeled on the linear space H of solutions of the associated
homogeneous equation (6.2), where x is any solution of Lx � r. Hence, once you have just one solution
z of the non-homogeneous equation, you recover the whole space of solutions as z �H.

This suggests the following strategy to solve the initial value problem for Lx � r.

• First, solve the homogeneous equation Ly � 0, and show that it has enough solutions, actually a
two dimensional space of solutions, which can be written as yptq � c�φ�ptq � c�φ�ptq, where φ�
and φ� form a “basis” of the space H of solutions and c� and c� are arbitrary constants.

• Find one “particular solution” z of the non-homogeneous equation Lz � r.

• Try a solution of the non-homogeneous equation Lx � r having the form x � z � y, where z is the
particular solution of the non-homogeneous equation and y � c�φ� � c�φ� is the general solution
of the homogeneous equation. Since y depends on two free parameters, c�, choose them to match
your initial conditions xpt0q � x0 and 9xpt0q � v0.

• Finally, prove an existence and uniqueness theorem for the homogeneous equation. This will imply
an existence and uniqueness theorem for the non-homogeneous equation as well.

Superposition principle. If x1 and x2 are solutions of the non-homogeneous equations Lx � f1

and Lx � f2, respectively, then the linear combination c1x1 � c2x2 is a solution of the non-homogeneous
equation Lx � c1f1 � c2f2. The same holds, of course, for any finite number of r.h.s. terms. This
observation is known as superposition principle. If you think at the solution x of the differential equation
Lx � f as the system’s response to the external input f , the principle just says that the system responds
linearly. So, the strategy to solve an equation with a complicated r.h.s. could be: try to write fptq as a
sum

°
i fiptq of simpler functions, solve separately each Lxi � fi, and finally sum the solutions

°
i xiptq.

This said, we start with solving
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6.2 Second order homogeneous ODEs with constant coefficients

Here we consider a second order homogeneous equation with constant coefficients as

:x� 2α 9x� βx � 0 .

(note the factor 2 before the second/friction coefficient: it will simplify all formulas below!) Observe
that the homogeneous equation is autonomous (nothing depends on time explicitly), hence if ϕptq is a
solution, also any ϕps� tq is a solution, for any time s. This implies that we may only consider the initial
value problem for initial time t0 � 0.

An obvious solution is the equilibrium solution xptq � 0.
Suppose that xptq is a solution of the above equation, and make the conjecture xptq � e�αtyptq for

some other function yptq. Computation shows that then yptq must be a solution of

:y � δy

where δ � α2 � β (the parameter 4δ is called discriminant of the linear ODE).
Now, solving :y � δy is quite simple. Three different cases are possible, depending on the sign of δ,

and a couple of solutions for each case are obvious.
If δ is positive, hence equal to k2, two solutions of the equation :y � k2y are

ϕ�ptq � ekt and ϕ�ptq � e�kt .

If δ is negative, hence equal to �ω2, two solutions of the equation :y � �ω2y are

ϕ�ptq � cospωtq and ϕ�ptq � sinpωtq .
If δ � 0, and this is a degenerate case, two solutions of the equation :y � 0 are

ϕ�ptq � 1 and ϕ�ptq � t .

Now we claim that the three couples of solutions above are linearly independent (this simply means
that their quotient is not constant, which is the case). Since, as shown by the following existence and
uniqueness theorem, they form a basis of the space of solutions of the respective equations y2 � δy, these
(like any other independent) couples are called fundamental solutions of the corresponding homogeneous
equation. Going back to the original equation :x � 2α 9x � βx � 0, we get the couples of fundamental
solutions

φ�ptq � e�αtϕ�ptq and φ�ptq � e�αtϕ�ptq .
There follows that the formula

xptq � c�φ�ptq � c�φ�ptq ,
where c� and c� are arbitrary real numbers, gives solutions of the homogeneous equation.

The free parameters c� and c� may be chosen to match any initial condition xp0q � x0 and 9xp0q � v0.
Indeed, this amount to solve the system"

c�φ�p0q � c�φ�p0q � x0

c� 9φ�p0q � c� 9φ�p0q � v0 ,

and the vectors pφ�p0q, 9φ�p0qq and pφ�p0q, 9φ�p0qq are linearly independent (check this!). Now, we claim
that solutions of the Cauchy problem are unique.

Proposition 6.1. (Existence and uniqueness theorem for homogeneous second order linear
ODEs with constant coefficients) The Cauchy problem for :x�2α 9x�βx � 0 with any initial conditions
xp0q � x0 and 9xp0q � v0 has one and only one solution. The unique solution may be written as

xptq � c�e�αtϕ�ptq � c�e�αtϕ�ptq ,
where c� and c� are constant coefficients, and ϕ� and ϕ� are a pair of fundamental solutions of :y � δy
with δ � α2 � β, for example:

ϕ�ptq � 1 and ϕ�ptq � t , if δ � 0 ,
ϕ�ptq � ekt and ϕ�ptq � e�kt , if δ � k2 ¡ 0 ,

ϕ�ptq � cospωtq and ϕ�ptq � sinpωtq , if δ � �ω2   0 .
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Proof. It is sufficient to prove the result for the linear ODE :x � δx. Also, by linearity, it is sufficient to
show that the only solution of :x � δx with zero initial data xp0q � 0 and 9xp0q � 0 is the trivial solution.

The starting observation is that solutions of :x � δx are analytic functions (their Taylor series converges
to the function). The way you prove it is an elementary instance of a strategy, called “bootstrap”, which
works for eigenfunctions of a Laplacian or more generally of any elliptic differential operator in any
dimension. The equation :x � δx implies that x admits derivatives all orders, and we can actually
compute them. Indeed, :x1 � p:xq1 � δ 9x, xp4q � p:x1q1 � pδ 9xq1 � δ:x � δ2x, ..., and by induction you see
that

xp2nq � δnx and xp2n�1q � δn 9x .

Since x are 9x are bounded on a bounded interval (because they are continuous), the derivatives of x grow
at most polynomially, say xpkqptq ¤ CKk for some constants C and K and any t in a fixed bounded
interval. Now you use the fact that a polynomial bound for the derivatives of a function in some bounded
interval implies (by the Taylor formula with error, or, if you want, because the series is bounded by the
Taylor series of an exponential) absolute convergence of the Taylor series.

Now, assume that xptq is a solution of :x � δx with initial conditions xp0q � 0 and 9xp0q � 0. The
above formulas show that all the derivatives of x at the origin are zero. There follows from analyticity
that x is identically equal to zero on any bounded interval around the origin.

Characteristic equation and fundamental solutions. Here we provide a unifying picture of the
above apparently different cases.

Consider the second order differential operator with constant coefficients

L � d2

dt2
� 2α

d

dt
� β

which defines the second order homogeneous ODE Lx � 0. We make the conjecture that the solution is
an exponential, say xptq � ezt, for some “frequency” z P C to be determined. Computation shows that

pLxq ptq � �
z2 � 2αz � β

�
xptq .

The quadratic polynomial ppzq � z2 � 2αz � β is called characteristic polynomial of the second order
differential operator L. The above computation shows that xptq � ezt is a solution of the homogeneous
equation Lx � 0 provided that the “frequency” z is a zero of ppzq. The equation

z2 � 2αz � β � 0

is called characteristic equation associated with the homogeneous second order ODE :x� 2α 9x� βx � 0.
The resolvent formula says that the zeros of the quadratic polynomial z2 � 2αz � β are given by

z� � �α�
?
δ ,

where δ � α2 � β. Depending on the sign of δ, the characteristic polynomial may have two distinct real
roots, no real root but two complex conjugate roots, or one real root of multiplicity two. Here we give
the recipe to find a couple of fundamental solutions of the homogeneous ODE for each of these cases.

• If the discriminant is positive, say δ � k2 ¡ 0, the characteristic polynomial has two distinct real
roots z� � �α � k. But this means that the polynomial factorizes like pz � z�qpz � z�q. The
corresponding factorization for the differential operator

d2

dt2
� 2α

d

dt
� β �

�
d

dt
� z�


�
d

dt
� z�



shows that any function in the kernel of one of the two first order operators above, hence solution
of the first order ODEs 9x � z�x, is a solution of the homogeneous equation. This gives the known
fundamental solutions

ez�t � e�αte�kt .

• If the discriminant is negative, say δ � �ω2   0, the characteristic polynomial has no real roots.
Meanwhile, it has two conjugate complex roots z� � �α � iω, where i denotes

?�1. The corre-
sponding factorization

d2

dt2
� 2α

d

dt
� β �

�
d

dt
� z�


�
d

dt
� z�
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shows that solutions of the first order ODEs 9x � z�x are also solutions of the homogeneous equation.
We get the two linearly independent complex valued solutions as

ez�t � e�αte�iωt .

If we don’t like complex valued solutions, we may finally take suitable linear combinations, use
Euler’s formula eiθ � cospθq � i sinpθq, and get our familiar fundamental solutions

ez�t � ez�t

2
� e�αt cospωtq and

ez�t � ez�t

2i
� e�αt sinpωtq .

• If the discriminant is zero, i.e. δ � 0, the polynomial has just one real root z0 � �α of multiplicity
two. The factorization now is

d2

dt2
� 2α

d

dt
� α2 �

�
d

dt
� α


2

.

The kernel of d
dt � α gives the first solution e�αt. But the conjecture xptq � e�αtyptq says that y

must be a solution of the trivial equation :y � 0, hence a polynomial of degree one. There follows
that a set of fundamental solutions is

e�αt and te�αt .

Linear independence and Wronskian. We claimed that the two fundamental solutions φ� and
φ� of the homogeneous equation :x � 2α 9x � βx were linearly independent, namely that there exist no
constants c� and c�, apart for the trivial case c� � c� � 0, such that

c�φ�ptq � c�φ�ptq � 0

for any t. This is the same as saying that the quotient φ�{φ� (whenever defined) is not constant. Here
we provide a sophisticated tool to check linear independence.

Let fptq and gptq be two differentiable functions defined in some interval of the real line. The Wron-
skian between f and g is defined as

Wf,gptq :� fptq 9gptq � 9fptqgptq .
Observe that this is nothing but the derivative of the ratio g{f multiplied by f2, as well as minus the
derivative of the ratio f{g multiplied by g2. If Wf,gptq � 0 for any t in some interval, then the quotient
g{f (or f{g) is constant on that interval. There follows that if the quotient between f and g is not
constant, that is if f and g are linearly independent, then the Wronskian Wf,g must be different from
zero somewhere in the interval.

If φ� and φ� are two solution of the same linear homogeneous second order ODE (not necessarily
with constant coefficients), say

:x� pptq 9x� qptqx � 0 ,

then their Wronskian is either everywhere zero or everywhere different from zero. Indeed, deriving one
gets

9Wφ�,φ�ptq � φ�ptq :φ�ptq � :φ�ptqφ�ptq
� �pptqWφ�,φ�ptq ,

and integration gives Abel’s identity

Wφ�,φ�ptq �Wφ�,φ�p0qe�
³t
0 ppsqds .

Since the exponential is never zero, there follows that

Proposition 6.2. Two solutions of the same homogeneous second order ODE are linearly independent
iff their Wronskian is different from zero in at least (hence in any!) one point.

Observe that, taking t � 0, the condition Wφ�,φ�p0q � 0 amounts to say that φ�p0q 9φ�p0q �
9φ�p0qφ�p0q � 0. But this is the determinant of the two-by-two matrix�

φ�p0q 9φ�p0q
φ�p0q 9φ�p0q



,

so that this is the same as saying that the two vectors pφ�p0q, φ�p0qq and
�

9φ�p0q, 9φ�p0q
	

are independent.
This last statement is precisely the statement that, given any initial conditions x0 and v0, we can unique
constants c� and c� such that the solution xptq � c�φ�ptq � c�φ�ptq satisfies xp0q � x0 and 9xp0q � v0.
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ex: Finally, you may want to check that the Wronskian between the couples of fundamental solutions
of the homogeneous equation :x� 2α 9x� βx � 0 are different from zero. Compute

We�αt,te�αtptq , We�αtekt,e�αte�ktptq and We�αt sinpωtq,e�αt cospωtqptq .

e.g. Free motion. Free motion of a particle in a inertial frame and without forces is governed by the
trivial Newton equation m:q � 0. Solutions are qptq � s� vt, where s is the initial position qp0q and v is
the initial velocity 9qp0q.

e.g. Example. Solve :x� 2 9x� 5x � 0 with initial conditions xp0q � 3 and 9xp0q � �2.
The characteristic polynomial z2 � 2z � 5 has complex conjugate roots z� � �1� i2, hence a couple

of fundamental solutions are e�t cosp2tq and e�t sinp2tq. The general solution is

xptq � c�e�t cosp2tq � c�e�t sinp2tq .
To determine the value of the constants, you solve the system"

xp0q � 3
9xp0q � �2 ñ

"
c� � 3
�c� � c� � �2

given by the initial conditions, and get the solution xptq � 3e�t cosp2tq � e�t sinp2tq.

ex: Training.

• Find the general solution of the following EDOs:

:x� 2x � 0 :x� π2x � 0 3:x� 9x � 0 :x� 9x � 0

:x� 2 9x� x � 0 :x� 2 9x� x � 0 :x� 4 9x� 5x � 0 :x� 4 9x� x � 0

• Solve the following initial values problems:

:x� 2x � 0 with xp0q � 0 and 9xp0q � 2

:x� 9x � 0 with xp0q � 1 and 9xp0q � 0

:x� 4 9x� 5x � 0 with xp1q � 2 and 9xp1q � �1

:x� 17 9x� 13x � 0 with xp3q � 0 and 9xp3q � 0

:x� 2 9x� 2x � 0 with xp0q � 0 and 9xp0q � 9

:x� 2 9x� 2x � 0 with xp3q � 0 and 9xp3q � 9

:x� 4 9x� x � 0 com xp1q � 2 e 9xp1q � 1 .

• Find second order ODEs which admit the following pairs of independent solutions:

e2t and e�2t , e�t sinp2πtq and e�t cosp2πtq , sinhptq and coshptq ,
e�3t and te�3t , sinp2πtq and sinp2πt� π{2q , 3 and 5t .

• Find for which values of λ there exist non-trivial solutions of
d2y

dx2
� λy

in the segment r0, `s with boundary conditions yp0q � 0 and yp`q � 0.

6.3 Oscillations

Here we study in details the most important second order linear differential equations, describing oscil-
lations of a system near its equilibrium positions7.

7 “The harmonic oscillator, which we are about to study, has close analogs in many other fields; although we start with
a mechanical example of a weight on a spring, or a pendulum with a small swing, or certain other mechanical devices, we
are really studying a certain differential equation. This equation appears again and again in physics and other sciences, and
in fact is a part of so many phenomena that its close study is well worth our while. Some of the phenomena involving this
equation are the oscillations os a mass on a spring; the oscillations of charge flowing back and forth in an electrical circuit;
the vibrations of a tuning fork which is generating sound waves; the analogous vibrations of the electrons in an atom, which
generate light waves; the equations for the operation of a servosystem, such as a thermostat trying to adjust a temperature;
complicated interactions in chemical reactions; the growth of a colony of bacteria in interaction with the food supply and
the poison the bacteria produce; foxes eating rabbits eating grass, and so on; ...”

Richard P. Feynman [Fe63]
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From the mathematical pendulum to the harmonic oscillator. Oscillations of a “mathematical
pendulum” (a point-like mass attached to a wire of negligible weight, under a constant gravitational force)
are modeled by the Newton equation

I :θ � �mg` sin θ ,

where θ is the angle formed by the wire with the vertical line (hence θ � 0 is the equilibrium position),
m is the mass, ` is the length, g is the gravitational acceleration and I � m`2 is the momentum of inertia
of the pendulum. The conserved energy of the system is

E
�
θ, 9θ

	
� 1

2
I 9θ2 �mg` cos θ .

Introducing the “resonant frequency” ω �a
g{`, the Newton equation may be written as

:θ � �ω2 sin θ .

Small oscillations of a pendulum are modeled after the approximation sin θ � θ, hence by the Newton
equation

:θ � �ω2θ ,

called harmonic oscillator.
The harmonic oscillator is a quite universal equation, since it describes small oscillations around a

“generic” stable equilibrium of any one-dimensional Newtonian system. Indeed, take a Newton equation
m:x � �dU{dx of a particle in a potential field U . An equilibrium position is a zero of the force, i.e. a
point x0 where dU{dxpx0q � 0. It is “stable” if x0 is a local minimum of the potential, so that the Taylor
expansion of a generic potential around x0 starts with

Upxq � α� 1
2
β px� x0q2 � 1

6
γ px� x0q3 � ... ,

for some positive second derivative d2U{dx2px0q � β. If we are only interested in small displacements of
x around x0, we can safely disregard high order terms and approximate the Newton equation with the
Hooke’s law

m
d2

dt2
px� x0q � �β px� x0q ,

which is an harmonic oscillator with resonant frequency ω �a
β{m.

Harmonic oscillator. Consider the harmonic oscillator

:q � �ω2q .

The solution with initial data qp0q � q0 and 9qp0q � v0 is

qptq � q0 cos pωtq � v0

ω
sin pωtq ,

representing oscillations with period 2π{ω. The above solution can be written as

qptq � A sin pωt� ϕq as well as A cos pωt� φq
for some “amplitude” A �

a
q2
0 � pv0{ωq2 and “phases” ϕ and φ, which depend on the initial data.

Harmonic oscillator, phase curves and time series.
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The energy

Epq, 9qq � 1
2
9q2 � 1

2
ω2q2

is a constant of the motion. As a function of the amplitude and the resonant frequency, the energy is
E � ω2A2.

Call p � 9q the momentum. Level sets of E in the q-p plane (the phase-space of the system) are
ellipses, and argue that that they are the phase curves (i.e. the images of the trajectories of the harmonic
oscillator in the phase space). The Newton equation :q � �ω2q is equivalent to Hamilton’s first order
equations

9q � p
9p � �ω2q .

Eliminate dt, and show that phase curves are solutions of the first order (homogeneous and exact) ODE

pdp� ω2qdq � 0 ,

which is nothing but dE � 0.

ex: Particle in a potential hill. Solve and discuss the Newton equation

m:q � k2q ,

of a particle of mass m in a potential Upqq � � 1
2k

2q2.
Does it admit equilibrium solutions? Does it admit periodic orbits? Does it admit bounded orbits?

Damped oscillations. Adding friction to an harmonic oscillator we get

:q � �2α 9q � ω2q ,

where α is some positive constant.

• Find the general solution, draw pictures and discuss the cases
α2   ω2 (under-critical damping),
α2 � ω2 (critical damping),
and α2 ¡ ω2 (overcritical damping). .

• Show that the energy

Epq, 9qq � 1
2
9q2 � 1

2
ω2q2

decreases with time outside equilibrium points.

• Call p � 9q the momentum. The Newton equation :q � �2α 9q � ω2q is equivalent to Hamilton’s first
order equations

9q � p
9p � �2αp� ω2q

Eliminate dt, and show that phase curves are solutions of the homogeneous first order ODE

pdp� �
2αp� ω2q

�
dq � 0 .

Solve the equation, or try to understand the qualitative behavior of its solutions, depending on the
ratio α2{ω2, and draw phase curves in the phase space q-p.

• What does it change if α is supposed to be negative?
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Underdamped, critical and overdamped oscillations (phase portrait and time series).

ex: Equidimensional equations. An ODE like

ax2 d
2y

dx2
� bx

dy

dx
� cy � 0

is called equidimensional, or Cauchy-Euler, equation.

• Show that the substitution x � et transform an equidimensional equation for ypxq in an equation
with constant coefficients for zptq � ypxptqq.

• Solve

x2 d
2y

dx2
� x

dy

dx
� 4y � 0 ,

for x ¡ 0.

Harmonic oscillator in complex coordinates. Consider the harmonic oscillator

:q � �ω2q .

Define the complex variable z � ωq � i 9q. Newton equation then takes the form of a first order linear
equation in the complex line, namely

9z � �iωz
and the solution can be written as

z ptq � e�iωtz p0q .
Going back to your original variables, and using Euler’s formula, you get the familiar “sin and cos”
solution.

e.g. Stationary Schrödinger equation on the line. The stationary Schrödinger equation for the
complex valued wave-function Ψpxq of a particle of energy E in a potential Upxq is

� ~2

2m
d2Ψ
dx2

� pE � UpxqqΨ ,

where m is the mass of the particle and ~ � h{2π is the reduced Planck constant (h � 6.6262 � 10�34 J
s).

The equation for the free particle, the one with Upxq � 0, has the couple of independent solutions

Ψpxq � e�ipx{~

corresponding to the value E � p2{2m of the energy. The parameter p is then interpreted to be the
momentum of the particle. The modulus |Ψpxq| of the wave-function is interpreted to be the probability
density to find the particle in the position x. The fact that the solutions e�ipx{~ have unit modulus
at all points (and are not square integrable!) is a manifestation of Heisenberg’s uncertainty principle
∆x∆p ¥ ~{2: fixing the value of the momentum produces an infinite uncertainty for the position!
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A free particle confined in a box, here simply a segment r0, `s since we are in dimension one, is modeled
taking (the limit of a sequence of smooth potentials that tends to) a potential which is zero inside the
interval and infinite outside. This produces natural boundary conditions Ψp0q � 0 and Ψp`q � 0 for the
wave function. The only non-trivial solutions have then energy levels

En � h2

8m`2
n2 ,

for n � 1, 2, 3, ....

Wave functions of the first 5 energy levels.

6.4 Second order non-homogeneous ODEs with constant coefficients

Consider the non-homogeneous equation

:x� 2α 9x� βx � fptq ,

where the “external force” fptq is a continuous function defined in some interval I � R of the time axis.
The difference between any two solutions must be a solution of the associated homogeneous equation

:y � 2α 9y � βy � 0 .

But we already know how to solve it: its general solution is a linear combination

yptq � c1φ�ptq � c2φ�ptq ,

where φ� and φ� are a pair of fundamental solutions. This implies that if we could find just one solution
zptq of the non-homogeneous equation, any other solution will be a sum

xptq � zptq � c1φ�ptq � c2φ�ptq

of this particular solution and a solution of the homogeneous equation. In other words,

Proposition 6.3. The general solution of the non-homogeneous equation is given by the sum of a par-
ticular solution of the non-homogeneous equation and the general solution of the associated homogeneous
equation.

So, we are left with the problem to determine one particular solution of the non-homogeneous equation.
We first show a general method, working in any case.

Method of variation of parameters to find a particular solution. Let φ�ptq and φ�ptq be two
independent solutions of the associated homogeneous equation. We try a solution of the non-homogeneous
equation having the form

zptq � λ�ptqφ�ptq � λ�ptqφ�ptq
where λ� and λ� are two functions to be determined. Inserting our guess into the non-homogeneous
equation

:x� α 9x� βx � rptq ,
we get, after some computations, the result that zptq satisfies the non-homogeneous equation if (but not
only if!) λ1� and λ1� solve the system of algebraic equations

9λ�ptqφ�ptq � 9λ�ptqφ�ptq � 0
9λ�ptq 9φ�ptq � 9λ�ptq 9φ�ptq � fptq .
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The determinant of the system is the Wronskian Wφ�,φ�ptq, hence is everywhere different from zero. The
solution of the system is

9λ�ptq � �φ�ptq fptq
Wφ�,φ�ptq

9λ�ptq � φ�ptq fptq
Wφ�,φ�ptq

.

Integrating the above ODEs for λ� and λ�, we get finally the following recipe

Proposition 6.4. (variation of parameters) Let φ�ptq and φ�ptq be two independent solutions of
the homogeneous equation :y � 2α 9y � βy � 0. A (particular) solution of the non-homogeneous equation
:x� 2α 9x� βx � fptq is given by

zptq � λ�ptqφ�ptq � λ�ptqφ�ptq ,

where

λ�ptq � �
»
φ�ptq fptq

Wφ�,φ�ptq
dt and λ�ptq �

»
φ�ptq fptq

Wφ�,φ�ptq
dt .

e.g. Solve :x� x � 1{ sinptq for t P p0, πq.
A set of fundamental solutions of the homogeneous equation :y � y � 0 is φ�ptq � cosptq and φ� �

sinptq, and we may compute Wφ�,φ� � 1. The recipe above gives a particular solution

zptq � λ� cosptq � λ� sinptq

where

λ�ptq � �
»
dt � t and λ�ptq �

»
cosptq
sinptq dt � log psinptqq .

The general solution is finally

xptq � �t cosptq � log psinptqq sinptq � c� cosptq � c� sinptq .

Method of undetermined coefficients to find a particular solution. When the r.h.s.’s fptq
is particularly simple, we have at our disposal a less painful method to find particular solutions, which
involves no integrations at all.

We are looking for just one solution of the non-homogeneous equation Lx � f , where L is the
differential operator L � d2{dt2 � αd{dt� β. Assume that the r.h.s. fptq belongs to a finite dimensional
space of functions F which is left invariant by L (i.e., if ϕ P F , then also Lϕ P F). If ϕ1ptq, ϕ2ptq, ..., ϕnptq
is a basis of F , we may try a particular solution having the form

zptq � z1ϕ1ptq � z2ϕ2ptq � ...� znϕnptq

for some coefficients z1, z2, ..., zn to be determined. Indeed, since Lz is again an element of F , and since
also the r.h.s. admits a (unique) expression as fptq � f1ϕ1ptq�f2ϕ2ptq� ...�fnϕnptq, we may adjust the
coefficients in order to have Lz � f . This method works whenever the space F is not too small, namely
when it is not contained in the kernel of L.

Here are the recipes.

• Polynomials. The space of polynomials of given finite degree is left invariant by any differential
operator with constant coefficients. So, if the r.h.s.is a polynomial of degree n, say fptq � °n

i�0 rit
i,

a particular solution may be found between polynomials of the same degree, if β � 0, of degree
n� 1 if β � 0 but α � 0, or of degree n� 2 for the trivial equation :x � fptq.
To do this, you just try a solution zptq � °n�2

i�0 zit
i, substitute it into the equation, and equal the

coefficients of the same powers of t.

• Exponentials. If the r.h.s. is an exponential, say fptq � eγt, try a particular solution of the form
zptq � pptqeγt, where p is a polynomial of degree less then or equal to two.

If the r.h.s. is an polynomial times an exponential, say fptq � eγt
°n
i�0 rit

i, try a particular solution
of the form zptq � eγt

°n�2
i�0 zit

i.
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• Trigonometric functions. If the r.h.s. is a trigonometric function as fptq � sinpγt � ϕq or
cospγt�ϕq, try a particular solution as zptq � pptq sinpγt�ϕq � qptq cospγt�ϕq, where p and q are
polynomial of degree less than or equal to two.

• General case. If, finally, the r.h.s. is a product of a polynomial times an exponential times sin’s
and cos’s, try a linear combination of polynomials times exponentials times sin’s and cos’s.

Example. Find a particular solution of :x� 9x � te2t.

Example. Find a particular solution of :x� x � cosp2tq.

Example. Find a particular solution of :x� x � cosptq.

Example. Find a particular solution of :x� 2 9x� 2x � et cosptq.

Training. Find the general solution of the following non-homogeneous equations:

:x� x � t :x� 9x � t2 :x� 4x � e�2t
:x� 2 9x� x � e�t :x� 4 9x� 3x � t2 � 1

Integral representation of the response. Show that a particular integral of the equation :x�ω2x �
rptq is given by the formula

ϕptq � 1
ω

» t
0

rpsq sin pωpt� sqq ds ,

and that a particular integral of the equation :x� k2x � rptq is given by the formula

φptq � 1
k

» t
0

rpsq sinh pkpt� sqq ds .

Training. Find the general solution of the following non-homogeneous equations:

:x� 9x � sinptq :x� 4x � cosp2tq :x� 4x � e�2t
:x� 4x � e�t

Exercise (forced particle). Consider the Newton equation

m:q � �2α 9q � F ptq

of a particle of mass m subject to a time dependent force F ptq, with some positive friction coefficient α.
Given initial data qp0q � q0 and 9qp0q � v0, find the trajectory when the force is

• constant, i.e. F ptq � g,

• a polynomial like F ptq � 3� t2,

• an exponential like F ptq � e�3t,

• a periodic function like F ptq � F0 cospγtq,
• a superposition of periodic functions like F ptq � °n

i�1 Fi cos pγitq.
• Find the corresponding trajectories when there is no friction, and compare with the limits of your

solutions above for αÑ 0.
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6.5 Driven oscillations

Driven oscillations. If an external periodic force F ptq � F0 cospγtq acts on a harmonic oscillator we
get the Newton equation

:q � �ω2q � F ptq .
The homogeneous equation :y � �ω2y has solution

yptq � A sinpωt� φq

for some amplitude A and some phase φ. A particular solution of the non-homogeneous equation may
be found using the guess zptq � a cospγtq � sinpγtq. This gives (inserting the guess into the differential
equation and equating the coefficients of cos and sin) the linear system

apω2 � γ2q � F0

bpω2 � γ2q � 0

for the undetermined coefficients a and b. When γ2 � ω2 it can be solved, and gives the response

zptq � F0

ω2 � γ2
cospγtq

so that the general solution is

qptq � A sinpωt� φq � F0

ω2 � γ2
cospγtq

For ω2 � γ2, i.e. the force has the same frequency of the free oscillator, we must modify our guess. The
right guess is zptq � tpa cospωtq � b sinpωtqq. We find the linear system

2ωa � 0
2ωb � F0

The solution is now
qptq � A sin pωt� ϕq � F0

2ω
t sin pωtq .

and, as expected, is an oscillation with amplitude increasing with time. This phenomena is known as
resonance.

We can have idea of what happens near resonance observing the solution for γ � ω. Indeed, the
solution with trivial initial conditions (both position and velocity) is

qptq � F0

ω2 � γ2
pcospγtq � cospωtqq

and addiction formulas give

qptq � F0

ω2 � γ2
2 sin

�
ω � γ

2
t



� sin

�
ω � γ

2
t



When the difference ω � γ � 2ε is small, hence ω�γ

2 � ω, the above is

qptq � F0

2ωε
sinpεtq � sinppω � εqtq

i.e. the product of a factor sinppω� εqtq � sinpωtq, oscillating with a frequency near the proper frequency
of the oscillator, times a slowly oscillating factor sinpεtq. This phenomena is known as beats, due to
the strange effect that it produces in human hears (like a single note with slowly oscillating amplitude).
Taking the limit εÑ 0 we recover the resonant solution

F0

2ωε
sinpεtq � sinppω � εqtq Ñ F0

2ω
t � sinpωtq
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Beats and resonance.

We may use the complex variable z :� p� iωq, which satisfies the first order ODE

9z � iωz � F ptq .

If we look for a solution zptq � λptqeiωt (where eiωt solves the homogeneous equation), we get for λ the
simple ODE 9λ � F ptqe�iωt. There follows that we may write the system response as

zptq � eiωt
�
zpt0q �

» t
t0

F psqe�iωsds


.

In particular, the energy that a force F ptq, acting in an infinite interval p�8,8q of time, transfers to the
system is given by

E � 1
2
|zp8q|2 � 1

2

����» 8�8 F ptqe�iωtdt
����2 .

i.e., the square modulus | pF pωq|2 of the Fourier transform (if you already know what it is) of the force
computed at the frequency ω of the oscillator.

ex: Driven and damped oscillations. If an external periodic force F ptq � F0 cospγtq acts on a
damped oscillator we get the Newton equation

:q � �2α 9q � ω2x� F ptq .

• Show that solutions have the form

qptq � Ae�αt sin
�a

ω2 � α2t� ϕ
	
� F0b

pω2 � γ2q2 � 4α2γ2

sin pγt� φq ,

where ϕ and φ are two phases. The first term in the above solution is a transient term, which van-
ishes for large times. The second term, called steady-state solution, is a (out of phase) synchronous
response to the force. The function

Rpγq � 1b
pω2 � γ2q2 � 4α2γ2

is called resonant curve, or frequency response curve, since it represent the proportionality factor
between the input magnitude and the asymptotic response of the system.

• Show that, if α2   ω2 (i.e. if the non forced system is under-critical), the resonant curve Rpγq
reaches a maximum for the value

γr �
a
ω2 � 2α2

of the forcing frequency, called resonant frequency.

• Discuss the behavior of the resonant curve for different values of the damping coefficient α, and the
limit of the resonant response Rpγrq for small values of α.
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• Use the superposition principle to show that if the force acting on a damped oscillator is a super-
position like

F ptq �
ņ

i�1

Fi cos pγitq ,

then the steady-state solution will be

qptq �
ņ

i�1

RpγiqFi sin pγit� φiq .

• Discuss what happens in the critical (α2 � ω2) and overcritical (α2 ¡ ω2) cases.

ex: Kirchoff’s law for a LRC circuit. The electric current Iptq flowing in an electric circuit with
resistance R, inductance L, capacitance C and driven by a tension V ptq satisfies the second order linear
ODE

L:I �R 9I � 1
C
I � 9V ptq .

• Compute the current flowing in a circuit driven by a constant tension V ptq � V0, and discuss its
behavior (compare with damped oscillations).

• Compute the current flowing in a circuit driven by an alternate tension V ptq � V0 sinpγtq (compare
with forced and damped oscillations).

• Find the resonant frequency of a LRC circuit.

6.6 Central forces and Kepler problem

Motion in a central force. Consider the Newton equation

MD:r � F p|r|q r̂

describing the motion of a particle, say planet Mars, of mass MD in a central force field F . Conservation
of angular momentum implies that the motion is planar, hence we may take r P R2. In polar coordinates
r � ρeiθ, the equations reed

:ρ� ρ 9θ2 � F pρq{MD

ρ:θ � 2 9ρ 9θ � 0 .

The second equation says that the “areal velocity” (“velocidade areal”) ` � ρ2
9θ is a constant of the

motion (Kepler’s second law).

Planetary motion. Taking Newton’s gravitational force F pρq � �GMDM@

ρ2 , where M@ is the mass of
the Sun and G is the gravitational constant, the first equation may be written as

MD:ρ � � B
BρV` pρq ,

where we defined the “effective potential energy” as

V` pρq :� 1
2
MD

`2

ρ2
�G

MDM@

ρ
.

The conserved energy is

E � 1
2
MD 9ρ2 � 1

2
MD

`2

ρ2
�G

MDM@

ρ
.

Now we set ρ � 1{x and look for a differential equation for x as a function of θ. Computation shows
that dx{dθ � � 9ρ{`, and, using conservation of `, that d2x{dθ2 � �ρ2

:ρ{`2. There follows that the first
Newton equation reads

d2x

dθ2
� x � � 1

`2x2MD

F p1{xq .
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we get
d2x

dθ2
� x � �GM@

`2
.

The general solution of this second order linear differential equation is

x pθq � GM@

`2
p1� e cos pθ � θ0qq ,

for some constants e and θ0. Back to the original radial variable we get the solution

ρ pθq � `2{GM@

1� e cos pθ � θ0q ,

Hence, orbits are conic sections with eccentricity (“excentricidade” ) e and focus at the origin: an ellipse
for 0 ¤ e   1 (corresponding to negative energy, hence to planets, and this is Kepler’s first law), a
parabola for e � 1 (corresponding to zero energy), an hyperbola for e ¡ 1 (corresponding to positive
energy). .

Kepler’s effective potential and some energy level sets.
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