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Abstract

This is not a book! These are personal notes written while preparing lectures on “Análise
Matemática 3” for students of FIS in the a.y. 2007/08 and then 2009/10. They are based on
previous notes on “Complementos de Análise Matemática” for students of ENGSI, FIS, FQ(E), QP
and QT. They are rather informal and may even contain mistakes. I tried to be as synthetic as I
could, without missing the observations that I consider important.

I probably will not lecture all I wrote, and did not write all I plan to lecture. So, I included empty
or sketched paragraphs, about material that I think should/could be lectured within the same course.

References contain some introductory manuals, some classics, and other books where I have learnt
things in the past century. Besides, good material and further references can easily be found on the
web, for example in Wikipedia.

Pictures were made with “Grapher” on my MacBook.
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Il muratore di villa Enrichetta, con il buon senso proprio de’ paesani, affacciò una sua
ipotesi, d’altronde plausibilissima: che l’ultimo indietreggiamento del giallone, cos̀ı lo chiamò,
fosse dovuto al fatto d’aver trovata intasata la canna della latrina, per cui non potè usufruire
del passaggio necessario a tanto fulmine. Ma gli elettròlogi non ne vollero sapere d’una simile
ipotesi, e sfoderarono delle equazioni differenziali: che pervennero anche a integrare, con quale
gioia del cav. Bertoloni si può presumere.

Carlo Emilio Gadda, La cognizione del dolore
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1 Dictionary for ODEs

1.1 What is it about

This is a first introduction to solving differential equations. “Solving differential equations is useful” is
V.I. Arnold’s translation [Arnold79] of Isaac Newton’s anagram

“6accdae13eff7i3l9n4o4qrr4s8t12vx”

(Data aequatione quotcunque fluentes quantitates involvente fluxiones invenire et vice versa) contained
in a letter to Gottfried Leibniz in 1677.

1.2 Models and laws of physics

Laws of nature, or less pretentiously empirical models of physical phenomena, are relations between
observables.

Some, as Kepler’s third law T 2/a3 ' 3× 10−19 s2m−3 (relating the period T of revolution of a planet
to the semi-major axis a of its orbit) or the perfect gas equation PV = nRT (saying that the product of
the pressure P by the volume V of an ideal gas is proportional to the temperature T ), simply say that
the actual value of a certain observable is equal to some function of the actual values of other observables.

Many of them are equations that contain derivatives of some observable w.r.t. others observables, and
as such are called differential equations. The typical situation is that of “dynamics”, some observable
changing in time according to a law that prescribes the behavior of some of its time derivatives.

The archetypical example is Newton law “force = mass × acceleration”

m
d2~r

dt2
= ~F (t, ~r) .

It says that the trajectories t 7→ ~r(t) of a moving particle in an inertial frame are not arbitrary curves,
but curves that have second derivative proportional to a given function F (t, ~r) called force.

1.3 First classification and examples

Differential equations are classified according to their “form” and to “methods” at our disposal to solve
them.

A first dichotomy is ordinary versus partial differential equations.
An Ordinary Differential Equation (later on referred to as ODE ) is a differential equation where the

unknown function only depends on one real variable. The order of a differential equation is the biggest
order of the derivatives entering in the equation. Examples are Newton equation

m
d2r

dt2
= F (r, t)

(satisfied by the trajectory r(t) of a moving particle of mass m subject to a force F ), the (consequence
of the) Kirchoff’s law

L
dI

dt
+RI = V (t)

(satisfied by the current I(t) in a LR circuit driven by a tension V (t)), or the Lotka-Volterra system

dx

dt
= ax− bxy

dy

dt
= −cy + dxy

(modeling the competition between x preys and y predators in the same territory).
A Partial Differential Equation (later on referred to as PDE ) is a differential equation where the

unknown function depends on two or more real variables (hence the derivatives have to be partial deriva-
tives). Examples are the wave equation

∂2u

∂t2
− c∂

2u

∂x2
= 0
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(which describes small oscillations of the displacement u(x, t) of a string from its equilibrium position),
the Poisson and Laplace’s equations

∆V = 4πρ and ∆V = 0

(satisfied by the electric potential V in a region with or without charges, respectively, where ρ is the
charge density and the ”Laplacian” ∆ in the 3-dimensional Euclidean space is the differential operator
∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2), the heat equation

∂ρ

∂t
− β∆ρ = 0

(which describes propagation of heat in a homogeneous medium) or the Schrödinger equation

√
−1~

∂

∂t
Ψ = − ~2

2m
∆Ψ + VΨ

(satisfied by the complex valued wave function Ψ of an electron subject to a potential field V ).
Since the two classes, ODEs and PDEs, require conceptually distinct techniques to be dealt with, we

concentrate for the moment on the study of ODEs and postpone a discussion of PDEs to a later chapter.

Homework. Look for differential equation in your field.

1.4 Ordinary differential equations as problems

Differential equations are actually problems that we are asked to solve, to make predictions and to take
decisions. Let us illustrate this with the following

Example (solving the Newton equation of free fall near the Earth surface). The Newton
equation

m
d2r

dt2
= −mg

models the free fall of a particle of mass m near the Earth surface. Here r is the height of the particle, t
is time, and g = GMEarth/R

2
Earth ' 9.8 ms−2 is the the gravitational acceleration near the Earth surface.

A function with constant second derivative equal to −g is −gt2/2. But it is not the unique solution.
We may add to it any function with zero second derivative, that is any constant s and any linear function
vt. This means that also any

r(t) = s+ vt− 1
2
gt2

is a solution of our Newton equation, for any s and any v. The first arbitrary constant s is the initial
position r(0) (and this physically corresponds to the homogeneity of space: Newtonian physics is in-
dependent on the place where the laboratory is placed). The second arbitrary constant v is the initial
velocity r′(0) (and this physically corresponds to Galilean invariance: we cannot distinguish between two
inertial laboratories moving at constant speed one from each other).

The moral is that the Newton equation alone does not have a “unique” solution. It has a whole “family
of solutions”, depending on two parameters s and v. On the other side, once we fix the initial position
r(0) and the initial velocity r′(0), the solution turns out to be unique (we’ll prove it soon! meanwhile,
you may try to prove that the difference of any two solutions with the same initial conditions is constant
and equal to zero). In other words, once known the initial “state” of the particle, i.e. its position and its
velocity, the Newton equation uniquely determines the “future” and “past” history of the particle.

Exercise (free fall near the Earth surface). Consider the above Newton equation

m
d2r

dt2
= −mg

as a model for the free fall, and solve the following problems.

• A stone is left falling from the top of the Pisa tower, about 56 meters high, with zero initial speed.
Compute the height of the stone after 1 second, and determine the time needed for the stone to hit
the ground.
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• With which initial upward velocity a stone should be thrown in order to reach an height of 20
meters?

• With which initial upward velocity a stone should be thrown in order to fall back after 10 seconds?

The above situation is quite typical. Here is another example, actually a very important one!, where we
can easily prove the uniqueness of the solution given an initial data.

Example (a differential equation for the exponential function). Consider the first order ODE

ẋ = x

where ẋ denotes the derivative of x(t) w.r.t. the real variable t.
An obvious solution is x(t) = 0. Besides, computation shows that the exponential function et satisfies

the equation, since the exponential is equal to its own derivative. But we can multiply it by any constant
b and still get a solution, hence any function x(t) = bet satisfies the above identity. If we set t = 0, we
notice that b is the value of x(0).

We claim that x(t) = x0e
t is the “unique” solution of the differential equation ẋ = x with initial data

x(0) = x0. Indeed, let y(t) be any other solution. Since the exponential is never zero, we can divide by
et and define the function h(t) = y(t)e−t. Deriving we get

h′(t) = (y′(t)− y(t)) e−t .

But y solves the equation, hence the first derivative of h is everywhere zero. By the mean value theorem
h is a constant function, and, since y(0) = x0 too, its value at the origin is h(0) = y(0)e−0 = x0. This
implies that y(t) is indeed equal to x(t).

The problems posed by a ODE. We can formulate as follows the basic problems posed by a generic
ODE of order k which can be solved for the biggest order derivative. Consider the ODE

x(k) = F
(
t, x, ẋ, ẍ, ..., x(k−1)

)
,

where F is some real valued function of k + 1 real variables, ẋ = dx/dt, ẍ = d2x/dt2, ... and x(k) =
dkx/dtk.

A solution, or integral curve, of the equation is a function t 7→ ϕ(t), defined in some interval I of the
real line, which once inserted inside F gives the above identity

ϕ(k)(t) = F
(
t, ϕ(t), ϕ′(t), ϕ′′(t), ..., ϕ(k−1)(t)

)
for any t in the chosen interval I. Of course, we must ask that ϕ has so many derivatives as needed,
hence that it is at least a k-times differentiable function.

As we have seen, a differential equation usually admits more than one solution (a one-dimensional
family for the exponential growth, or a two-dimensional family for the Newton equation). Finding
the general solution means writing formulas for the whole family, depending on a certain number of
parameters. But this is in general a helpless task.

It turns out that in the good cases the number of free parameter is equal to the order of the ODE.
Once we have fixed them, the solution is unique. Since most ODEs of physics are dynamical equations
describing the time evolution of some observable/s x, it is natural to relate such free parameters to “initial
conditions”, and to pose the problem whether fixing initial conditions we are able to predict the future
and the past of the system. This is called initial value problem, or Cauchy problem.

For example, the Cauchy problem for the above generic k-th order ODE is: find a solution t 7→ ϕ(t)
such that

ϕ(t0) = x0 ϕ′(t0) = x1 ϕ′′(t0) = x2 ... ϕ(k−1)(t0) = xk−1

Above, t0 is some point in the interval where the equation is defined, which you may think as an “initial
time”, and x0, x1, x2, ..., xk−1 are the “initial values” of x and its first k − 1 derivatives at time t0.

Depending on the context, namely on the physical question you want to answer, other problems may
arise: the free parameters may be related to different kinds of “boundary conditions”.
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Example (equilibrium profile of a star). The gravitational equilibrium profile of a star is described,
as a first approximation, by the Lane-Emden equation1

1
ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θp .

Here ξ is a reduced radius, θ(ξ) is proportional to the density at radius ξ, and p is a parameter which
depends on the polytropic equation of state P = Kρ1+1/p of the “gas” forming the star (cold star, white
dwarf, neutron star, ...). The physically relevant problem is to find the solution with initial conditions
θ(0) = 1 and dθ/dξ(0) = 0. The point where the first zero of the solution is attained is then interpreted
to be the radius of the star.

Example (sending a rocket to the Moon). If you want to send a rocket of mass m to the Moon in
time T , you must solve the suitable Newton equation

d

dt

(
m
dr

dt

)
= −G mMearth

|r − rearth|3
(r − rearth)−G mMmoon

|r − rmoon|3
(r − rmoon)+... friction and other perturbations

with boundary conditions r(0) =“Cape Canaveral” and r(T ) =“Moon”.

Exercise (radioactive decay). The rate of radioactive decay is observed to be proportional to the
amount of radioactive substance present. This means that the amount N(t) of radioactive substance
present at time t satisfies the autonomous first order ODE

Ṅ = −βN

for some positive “decay constant” β (its inverse, 1/β, is the mean-life of each nucleus, the decay being
modeled with an exponential random variable X for the life-time, with law P(X ≤ t) = 1 − e−βt for
t ≥ 0.), where Ṅ denotes first derivative of N w.r.t. time t.

• Find the general solution (keeping in mind that physically meaningful solutions must be positive).

• Find the formula for the solution of the Cauchy problem with initial data N(0) = N0.

• The “half-time” of a radioactive substance is defined as the time needed for the amount of substance
to become half of the initial amount, i.e. it is that time T such that N(T )/N(0) = 1/2. Find the
relation between the half-time T and the decay constant β, and show that the half-time is well
defined, i.e. it does not depend on the initial data N(0).

• Radiocarbon 14C (which decays as 14
6 C → 14

7 N + e−+ νe) has a mean-life 1/β ' 8033 years. Show
how to date fossils assuming that the ratio of radiocarbon in a living being is fixed and known2.

• Assume that Solar radiation produces 14C in the atmosphere at a given fixed rate α (which is not
the case, due to Solar variations). Then the amount of radiocarbon in our atmosphere follows the
law

Ṅ = −βN + α

Show that N = α/β is a equilibrium solution. Set x(t) = N(t)−N , solve the differential equation
for x, and show that N(t)→ N as t→∞, independently of the initial condition N(0).

Exercise (exponential growth). The growth of a population in an unlimited environment is modeled
with the first order ODE

Ṅ = λN

where N(t) is the amount of specimen present at time t, λ is a positive “fertility constant”, and N ′

denotes the derivative of N w.r.t. time t.

• Find the general solution as a function of the (positive) initial data N(0) = N0.

• If a population of bacteria double in one hour, how much does it grow in two hours?
1Subrahmanyan Chandrasekhar, Introduction to the theory of stellar structure, Dover, New York 1942.
2J.R. Arnold and W.F. Libby, Age determinations by Radiocarbon Content: Checks with Samples of Known Ages,

Sciences 110 (1949), 1127-1151.
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• If a predator kills the specimen at a fixed rate α, then the population grows as

Ṅ = λN − α

Show that N = α/λ is an equilibrium solution. Say what happens to the other solutions for large
times.

Exercise (Chandrasekhar’s solutions of the Lane-Emden equation). Show that

θ(ξ) = 1− 1
6
ξ2 , θ(ξ) =

sin ξ
ξ

and θ(ξ) =
1√

1 + 1
3ξ

2

are solutions of the Lane-Emden equation 1
ξ2

d
dξ

(
ξ2 dθ

dξ

)
= −θp for p = 0, 1 and 5, respectively.

1.5 Almost all ODEs have order one!

Here we claim that an ODE of arbitrary order k which can be solved for the k-th derivative is equivalent
to a first order ODE, provided we allow the new unknown function to be vector valued. This means that,
at least in principle, the study of a large class of ODEs can be reduced to the study of first order ODEs.

Indeed, consider the ODE
y(k) = F

(
t, y, ẏ, ÿ, ..., y(k−1)

)
,

where, for example, y is a real valued function. Define a new variable x = (x0, x1, x2, ..., xk−1), taking
values in Rk, as

x0 = y x1 = ẏ x2 = ÿ ... xk−1 = y(k−1) .

Then the above ODE is equivalent to the “system” of k one-dimensional ODEs

ẋ0 = x1

ẋ1 = x2

:

˙xk−2 = xk−1

˙xk−1 = F (t, x0, x1, x2, ..., xk−2, xk−1) .

The space X where x takes its values is called phase space of the system. It is convenient to write the
system in a compact form, namely as a first order ODE

ẋ = v (t, x) ,

for the unknown vector valued function x, where

v(t, x) = (x1, x2, ..., xk−1, F (t, x0, x1, x2, ..., xk−2, xk−1))

is now a vector valued function of t and x, called velocity field. The Cauchy problem for the system is
simply: find a solution with initial data x(t0) = x0, for some x0 ∈ X.

Example (from Newton to Hamilton). According to greeks, the “velocity” q̇ = dq
dt of a planet,

where q = (q1, q2, q3) ∈ R3 is its position in the Euclidean space we think we live in and t is time, was
determined by gods or whatever forced planets to move around their orbits. Then came Galileo, and
showed that gods could at most determine the “acceleration” q̈ = d2q

dt2 , since the laws of physics should be
written in the same way by observers in any reference system at uniform rectilinear motion with respect
to the fixed stars. Finally came Newton, who decided that what gods determined was to be called “force”,
and discovered that the trajectories of planets, fulfilling Kepler’s empirical three laws, were solutions of
his famous second order differential equation

mq̈ = F ,

wherem is the mass of the planet and the attractive force F between the planet and the Sun is proportional
to the product of their masses and inverse proportional to the square of their distance.
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Later, somebody noticed that many observed forces were “conservative”, could be written as F =
−∇V , for some real valued function V (q) called “potential energy”. There follows that Newton equations
for a particle of mass m in a conservative force field can be written as

mq̈ = −∇V .

The quantity
1
2
m |q̇|2 =

1
2
m

3∑
i=1

q̇2
i

is called “kinetic energy” of the particle, and the sum

E(q, q̇) =
1
2
m |q̇|2 + V (q)

is called “(total) energy” of the system. The total energy is a conserved quantity, namely is constant
along solutions of the Newton equation, since

d

dt
E(q, q̇) = 〈q̇,mq̈〉+ 〈q̇,∇V 〉

= 〈q̇,mq̈ +∇V 〉 = 0 .

An alternative, and indeed useful, formulation of Newtonian mechanics is the one named after La-
grange. If we define the “Lagrangian” of the system as

L (q, q̇) =
1
2
m |q̇|2 − V (q) ,

we observe that Newton equations are equivalent to the (Euler)-Lagrange equations

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
for i = 1, 2, 3.

The vector p = mq̇, with coordinates pi = ∂L/∂q̇i, is called “(linear) momentum”. If there are no
forces, the linear momentum is conserved, since Newton equations reduce to d

dtp = 0. The space R3×R3

with coordinates (q, p) is called “phase space” of the mechanical system. As a function of p, the kinetic
energy is K (p) = |p|2 /2m and its gradient is p/m, so that Hamilton could write Newton’s second order
differential equations as the system of first order differential equations

q̇ = ∇K ṗ = −∇V .

If we define the “Hamiltonian” of the system as

H (q, p) = K (p) + V (q) ,

which is nothing but the total energy written as a function of the phase space variables q and p, the
above system takes the elegant form

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
for i = 1, 2, 3

called “Hamilton’s equations” of motion.
In the very same way one can describe the Newtonian motion of N point-like particles under conser-

vative interactions, and the result are Hamilton’s equations in a 6N -dimensional phase space.

Exercise (Hooke’s law). Write the Hamilton’s equations corresponding to Hooke’s law

mq̈ = −kq

(call ω =
√
k/m) and find the energy as a function of (q, p).

Exercise (mathematical pendulum). Do the same for the mathematical pendulum

θ̈ = −ω2 sin(θ)

where ω =
√
g/` and θ ∈ R/2πZ is an angle.
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1.6 Dictionary

As we have seen, a rather general class of ODEs (those that can be solved for the higher order derivative)
is given by

ẋ = v(t, x) ,

where the unknown function is x(t), ẋ denotes dx/dt, and v is some function of the two variables.
You can imagine that x is the “position” of a moving particle and t is “time”. The problem posed

is then that of determine the trajectory (or “time law”) t 7→ x(t) of the moving particle once known its
velocity v(x, t) at every time and every position. With this interpretation in mind, we’ll refer to v as a
velocity field.

The traditional notation for time derivatives uses “dots” instead of “primes”. One dot means first
derivative, i.e. ẋ = dx/dt, two dots mean second derivative, i.e. ẍ = d2x/dt2, ... and so on. So, a
physicist would write the equation as

ẋ = v(t, x) .

This notation is useful, mostly when time t does not appear explicitly in the equation, since it reminds
us the variable with respect to which we are taking derivatives.

Phase space and extended phase space. The space X where x takes its values is called phase space
of the system. For some time we’ll only consider systems with one-dimensional phase space, hence in
the next sections X will be the real line R, or some interval of the real line (e.g. the allowed range
of a temperature is a half-line [0,∞), the allowed range of a velocity of a massive particle in special
relativity is a finite interval (−c, c)). You must keep in mind that interesting physics deals with more
than one real valued observables at a time (as a set of positions and linear momenta each one in Euclidean
3-dimensional space), hence with phase spaces which are subsets of some Euclidean space Rn.

The cartesian product of “time” (which we model as the real line) by the phase space, namely R×X
with coordinates (t, x), is called extended phase space. It is the space where graphs of solutions, also
called integral curves of the equation, live.

Images of solutions in the phase space are called phase curves, or orbits of the system.

Directions field. Now, look at the equation. It says that the time derivative of x(t) at time t is equal
to v(t, x). This means that the graph of a solution t 7→ ϕ(t), when seen in the extended phase space,
must be a curve having slope v(t, ϕ(t)) in correspondence with the point (t, ϕ(t)).

You may think that, attached to any point (t, x) in the extended phase space, the equation prescribes
a line `(t,x) with slope v(t, x) with must be the tangent line to solutions passing through that point. This
correspondence (t, x) 7→ `(t,x) is called lines (or directions) field of the equation. Drawing the lines field
may help in guessing how solutions behave.

Cauchy problem. Solving the Cauchy problem for ẋ = v(t, x) with initial condition x(t0) = x0 means
finding the/those trajectory/yes t 7→ ϕ(t) such that ϕ(t0) = x0. Their graphs in the extended phase
space are curves that pass through the point (t0, x0).

Solutions need not be defined all over the time line R, in general. We may content with local solutions,
defined in some interval I containing the initial time t0. If everything goes right, namely if we are able to
prove an “existence and uniqueness” theorem, through every initial condition (t0, x0) ∈ R×X will pass
one and only one such curve.

Vector fields. An important class of ODEs may be written as

ẋ = v(x)

for some velocity field v(x) which does not depend on time. Theu are called autonomous since they
correspond to physical (Newtonian) systems which are isolated, no external forces. Here x takes values in
some domain X ⊂ Rn, or in some manifold, Then v defines a vector field on X, a vector v(x) attached to
each point x ∈ X, which prescribe the velocity of the solution passing through the given point. Indeed,
solutions are curves t 7→ x(t) such that d

dtx(t) = v(x(t)).
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The lines field of ẋ = sin(x)(1− t2), and the vector field of the damped pendulum, q̇ = p,
ṗ = − sin(q)− p/2, together with one solution of each.

Exercise. Draw directions fields, trajectories and phase curves of the differential equations considered
in the previous examples and exercises.

11



2 Simulations with ODEs

2.1 Numerical integration

The first observation is that a function x(t) is a solution of the Cauchy problem for ẋ = v(t, x) with
initial condition x(t0) = x0 iff

x(t) = x0 +
∫ t

t0

v (s, x(s)) ds

2.2 Euler lines

What the differential equation
dx

dt
= v(t, x)

wants to say is that to a “small displacement” dt of time there corresponds a “small displacement” dx of
the value of x which is proportional to dt by the factor v(t, x). Namely, the very definition of derivative
as a limit is suggesting that if δt is sufficiently small,

x(t+ δt) = x(t) + v(t, x(t))δt+ something small

where the “something small” is much less than δt. If you don’t mind to disregard the “something small”
above, you’ll get a recursive procedure to find approximate solutions with a given initial data x(t0) = x0.
Indeed, a good approximation of x(t0 + δt) is

x(t0) + v(t, x(t0))δt .

But then you can bet that a good approximation of x(t0 + δt+ δt) is

x(t0 + δt) + v(t0 + δt, x(t0 + δt))δt ,

on so on. After n iterations you’ll get a guess for the “true” value of the solution x(t0 + nδt).

Euler lines. This recipe is called Euler method (or tangent line method) to approximate/simulate
solutions of first order ODEs. The polygonal lines it produces are called Euler lines.

What in Euler’s times needed weeks of laborious handmade computations can nowadays be made in
a few seconds of CPU time with your personal computer. Fix an initial condition t0 = time and x(t0) =
x, fix a small (depending on yours’ machine possibilities) integration step dt, and define the velocity field
v(time, x) you want to integrate. Then a c++ cycle like

while (time < t)
{
x += v(time, x) ∗ dt ;
time += dt ;

}

will “return” a value x which is an approximation of x(t). What is maybe surprising is that the method
actually converges (in some sense which we’ll not discuss here, see Peano’s existence theorem) to a true
solution as the integration step dt goes to zero, provided some smoothness conditions on the velocity
field v.

Example (the exponential). Use the Euler method to solve ẋ = x with initial condition x(0) = 1. If
ε denotes the step, you’ll get the estimates

x(ε) ' 1 + ε , x(2ε) ' (1 + ε) + (1 + ε)ε = (1 + ε)2 , ... , x(nε) ' (1 + ε)n

so that

x(t) '
(

1 +
t

n

)n
where n ' t/ε is the number of steps necessary to go from 0 to t. The limit for ε→ 0 is

lim
n→∞

(
1 +

t

n

)n
,

the well known formula for exp(t).
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Estimating the error. The error we commit in each step is of order (δt)2. Since we need n = (t−t0)/δt
steps to simulate the value of the solution after time t−t0, we espect an overall error of order ∼ (t−t0)·δt.

Homework. Write a code, in your favorite language, to integrate first order ODEs using Euler method.
Better if you get a graphic answer in the extended phase space. Then bring it into the classroom and
compare with exact solutions you’ll learn to find.

2.3 Runge-Kutta methods

Runge-Kutta 4 . Call xn = x(t0 + (n+ 1)δt), tn = t0 + nε, where ε = δt the step. Then the method
is

xn+1 = xn +
ε

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = v(tn, xn) k2 = v (tn + ε/2, xn + k1ε/2) k3 = v (tn + ε/2, xn + k2ε/2) k4 = v(tn+ε, xn+εk3)

2.4 Other methods
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3 First order ODEs on the line

Here we study first order ODEs with one-dimensional phase space of the form

ẋ = v(t, x) ,

where x is a real valued function of time t, and ẋ denotes dx/dt.
At the end of the story we’ll see that there are two classes of equations that we can solve, at least

provided that we are able to compute integrals: linear equations and separable equations.

3.1 Integrating simple ODEs.

The simplest case occurs when the velocity field v does not depend on the phase space variable x. We
are left with

ẋ = v(t) ,

where v(t) is some given function of time. This just says that x must be a primitive of v, and the
fundamental theorem of calculus (i.e. Leibniz and/or Newton’s discovery) tells us how to compute such
a primitive: just integrate the function v from some initial time t0 up to a final time t. Indeed, provided
v is a continuous function, the derivative of

∫ t
t0
v(s)ds at the point t is v(t). This explains the current use

of the expression “integrate” a differential equation instead of “solving” a differential equation, as well
as the meaning of Newton’s quoted anagram.

Primitives are not unique, but are defined modulo an additive constant. This arbitrary constant can
be matched with the initial condition, so that the solution of the Cauchy problem for ẋ = v(t) with initial
condition x(t0) = x0 is seen to be

x(t) = x0 +
∫ t

t0

v(s)ds .

Here you may observe that this class of ODEs have “symmetries”. The line field does not depend on x,
hence slopes of solutions are the same along horizontal lines (t = constant) in the extended phase space.
There follows that any translate ϕ(t) + c of a solution ϕ(t) is still a solution. This is but a geometrical
interpretation of the arbitrary constant in the primitive of v.

Training. Integrate the following equations:

ẋ = 2 sin(t) ẋ = e−t ẋ = t2 − t .

Exercise (Newtonian motion in a time dependent force field). The one-dimensional motion of
a particle of mass m subject to a force F (t) is modeled by the Newton equation

mẍ = F (t) .

• Call v = ẋ the velocity of the particle, and derive the first order ODE satisfied by the velocity v.

• Solve the equation for the velocity, given a force F (t) = F0 sin (γt) and an initial condition v(0) = v0.

• Use the above solution v(t) to find the trajectory x(t) of the particle, given an initial position
x(0) = x0.

3.2 Autonomous first order ODEs and flows

A first order ODE of the form
ẋ = v(x) ,

where the velocity field v does not depend on time, is called autonomous. We already encountered
examples in the models of radioactive decay and population growth. Most fundamental equations of
physics (those describing closed systems, without external forces) can be written as autonomous first
order ODEs, and this corresponds to time-invariance of physical laws.

Here you may notice symmetries again. The line field v of an autonomous equation is constant along
vertical lines (x = constant) of the extended phase space. Hence any translate ϕ(t+ s) of a solution ϕ(t)
is still a solution. This is the manifestation of time-invariance of a law codified by an autonomous ODE.
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This also implies that there is no loss of generality in restricting to Cauchy problems to the initial time
t0 = 0.

Equilibrium solutions. First, we observe that an autonomous equation may admit constant solutions.
Indeed, if x0 is a singular point of the vector field v, i.e. a point where v(x0) = 0, then the constant
function

x(t) = x0

obviously solves the equation. Such solutions, which do not change with time, are called equilibrium, or
stationary, solutions.

Solutions near non-singular points. The trick used to “guess” other solutions is a first instance of
the method of “separation of variables”. Fix a non-singular point of the velocity field, i.e. a point x0

where v(x0) 6= 0. We want to solve the Cauchy problem with initial condition x(t0) = x0. First, rewrite
the equation dx/dt = v(x) formally as “dx/v(x) = dt” (multiply by dt and divide by v(x), so that all x’s
are on the left and all t’s are on the right). Instead of trying to make sense to this last expression (which
is possible, of course, and here you can appreciate the beauty of Leibniz’ notation dx/dt for derivatives!),
observe that it is suggesting that

∫
dx/v(x) =

∫
dt. Now assume that the velocity field v is continuous

and let J = (x−, x+) be the maximal interval containing x0 where v is different from zero. Integrating,
from x0 to x ∈ J on the left and from t0 to t on the right, we obtain a differentiable function x 7→ t(x)
defined as

t(x) = t0 +
∫ x

x0

dy

v(y)

for any x ∈ J . Now, observe that the derivative dt/dx is equal to 1/v. Since, by continuity, 1/v does not
change its sign in J , our t(x) is a strictly monotone continuously differentiable function. We can invoke
the inverse function theorem and conclude that the function t(x) is invertible. This prove that the above
relation defines actually a continuously differentiable function t 7→ x(t) in some interval I = t(J) of times
around t0. Finally, you may want to check that the function t 7→ x(t) solves the Cauchy problem: just
compute the derivative (using the inverse function theorem),

ẋ(t) = 1/
(
dt

dx
(x(t))

)
= v(x) ,

and check the initial condition. Observe that the function t(x) − t0 has then the interpretation of the
“time needed to go from x0 to x”.

At the end of the story, if you are lucky enough and know how to invert the function t(x), you’ll get
an explicit solution as

x(t) = F−1 (t− t0 + F (x0)) ,

where F is any primitive of 1/v. Close inspection of the above reasoning shows that the local solution
you’ve found is indeed the unique one. Namely, we have the following

Existence and uniqueness theorem for autonomous ODEs near a non-singular point. Let
v(x) be a continuous velocity field and let x0 be a non-singular point of v. Then there exist one and only
one solution of the Cauchy problem ẋ = v(x) with initial condition x(t0) = x0 in some sufficiently small
interval I around t0. Moreover, the solution x(t) is the inverse function of

t(x) = t0 +
∫ x

x0

dy

v(y)
,

defined in some small interval J around x0.

Proof. Here we give the pedantic proof. Let J be as above. Define a function H : R× J → R as

H(t, x) = t− t0 −
∫ x

x0

dy

v(y)
.

If t 7→ ϕ(t) is a solution of the Cauchy problem, then computation shows that d
dtH (t, ϕ(t)) = 0 for any

time t. There follows that H is constant along the solutions of the Cauchy problem. Since H(t0, x0) = 0,
we conclude that the graph of any solution belongs to the level set Σ = {(t, x) ∈ R× J s.t. H(t, x) = 0}.
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Now observe that H is continuously differentiable and that its differential dH = dt+dx/v(x) is never zero.
Actually, both partial derivatives ∂H/∂t and ∂H/∂x are always different from zero. Hence we can apply
the implicit function theorem and conclude that the level set Σ is, in some neighborhood I×J of (t0, x0),
the graph of a unique differentiable function x 7→ t(x), as well as the graph of a unique differentiable
function t 7→ x(t), the inverse of t, which as we have already seen solves the Cauchy problem. q.e.d.

On the failure of uniqueness near singular points. The interval I = t(J) where the solution
is defined need not be the entire real line: solutions may reach the boundary of J , i.e. one of the
singular points x± of the velocity field, in finite time. Since singular points are themselves equilibrium
solutions, this imply that solutions of the Cauchy problem at singular points may not be unique, under
such mild conditions (continuity) for the velocity field. Later we’ll see Picard’s theorem, which prescribes
stronger regularity conditions on v under which the Cauchy problem admits unique solutions for any
initial condition in the extended phase space.

Example. Both the curves x(t) = 0 and x(t) = t3 solve the equation

ẋ = 3x2/3

with initial condition x(0) = 0. The problem here is that the velocity field v(x) = 3x2/3, although
continuous, is not differentiable and not even Lipschitz at the origin. You may notice that the solution
starting, for example, at x0 = 1 reaches (or better comes from) the singular point x− = 0 in finite time,
since

t(x−)− t(x0) =
∫ 0

1

1
3
y−2/3dy

= −1 .

Example (Leibniz’s tractrix). Leibniz’s tractrix is the solution of the differential equation

dy

dx
=

−y√
`2 − y2

for some initial condition y(x0) = y0 with 0 < y0 < `. It gives the trajectory of an object which is pulled
on a plane by a rod of lenght ` when the free end of the rod moves along the x-axis. Separating variables
we get ∫ y

y0

√
`2 − z2

z
dz = x0 − x .

To compute the left integral, change variable z = ` sin θ, and get, after some computations, the tractrix
in implicit form

x− x0 =
√
`2 − y2

0 −
√
`2 − y2 − ` log (y/y0) + ` log

(
`+

√
`2 − y2

`+
√
`2 − y2

0

)
.

Leibniz’s tractrix
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The flow generated by an autonomous first order ODE. Assume that an autonomous first order
ODE ẋ = v(x) admits unique solutions t 7→ ϕ(t) starting at every point ϕ(0) = x of the phase space X,
and that all such solutions are defined for all times t ∈ R (such velocity fields are then called complete).
Then we can define a family of maps Φt : X → X, depending on time t ∈ R, as follows: the value of
Φt(x) is equal to the value ϕ(t) of the solution of the Cauchy problem with initial condition ϕ(0) = x.
Clearly Φ0 is the identity map, and

Φt ◦ Φs = Φt+s

for any t, s ∈ R (why?). Mathematicians say that such family of transformations {Φt}t∈R form a “group
acting” on X, and call it the flow of the autonomous first order differential equation. Physically, Φt(x)
is the state where the system will be after time t if it is observed in the state x at time 0. The group
property above is essentially what physicists call “determinism”: present uniquely determines past and
future of the system.

Given the flow Ψt, we recover the velocity field as

v(x) =
d

dt
Φt(x)|t=0 .

Hence, the flow may be seen as an alternative way to define a dynamics.

One-dimensional Newtonian motion in a time independent force field. The one-dimensional
motion of a particle of mass m subject to a force F (x) that does not depend on time is described by the
Newton equation

mẍ = −dU
dx

(x) ,

where the potential U(x) = −
∫
F (x)dx is some primitive of the force. The total energy

E (x, ẋ) =
1
2
mẋ2 + U(x)

(which of course is defined up to an arbitrary additive constant) of the system is a constant of the motion,
i.e. is constant along solutions of the Newton equation. In particular, once a value E of the energy is
given (depending on the initial conditions), the motion takes place in the region where U(x) ≤ E, since
the kinetic energy 1

2mẋ
2 is non-negative. Conservation of energy allows to reduce the problem to the

first order ODE
ẋ2 =

2
m

(E − U(x)) ,

which has the unpleasant feature to be quadratic in the velocity ẋ. Meanwhile, if we are interested in a
one-way trajectory going from some x0 to x, say with x > x0, we may solve for ẋ and find the first order
autonomous ODE

ẋ =

√
2
m

(E − U(x)) .

There follows that the time needed to go from x0 to x is

t(x) =
∫ x

x0

dy√
2
m (E − U(y))

.

The inverse function of the above t(x) will give the trajectory x(t) with initial position x(0) = x0 and

initial positive velocity ẋ(0) =
√

2
m (E − U(x0)), at least for sufficiently small times t.

Training. Consider the following autonomous first order ODEs

ẋ = x− 1 ẋ = (x− 1)(x− 2) ẋ =
√
x ẋ = 1 +

√
|x| ẋ =

√
1− x2 ,

where ẋ denotes first derivative of x w.r.t. time t.

• Find, if any, equilibrium solutions.

• Draw the direction fields and conjecture the behavior of solutions.

• Integrate, find solutions, and draw some representative graphs of the solutions you have found.

• Find formulas for the solutions of the Cauchy problem with initial condition x(a) = b.
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Exercise (harmonic oscillator /particle in a potential well). Consider the motion of a particle
of mass m inside a potential well U(x) = 1

2k
2x2. The corresponding Newton equation is Hooke’s law

mẍ = −k2x ,

which can be rewritten in the more familiar form ẍ = −ω2x, where ω = k/
√
m is the “resonant frequency”.

• Show that the energy

E(x, ẋ) =
1
2
mẋ2 +

1
2
k2x2

is a constant of the motion.

• Fixed a positive energy E, the motion takes place in the interval (x−, x+) with x± = ±
√

2E/k,
and the velocity ẋ satisfies the quadratic equation

ẋ2 = ω
√

(|x±|2 − x2) .

Find the trajectory from x− to any x ≤ x+.

• Compute the time needed to go from x− to x+, and show that it does not depend on E.

Exercise (mathematical pendulum). Consider now the “real” pendulum, with Hamiltonian

H(θ, p) =
1
2
p2 − cos(θ)

• Show that the motion with energy E is given by

t =
∫

dθ√
2(E − cos(θ))

• Define x =
√

2
E+1 sin θ/2 and k =

√
E+1

2 , and show that the motion reads

ẋ =
√

(1− x2)(1− k2x2)

Deduce that time is given by the so called Jacobi’s elliptic integral of the first kind

t =
∫

dx√
(1− x2)(1− k2x2)

whose solution is “defined” as the elliptic function x = sn(t, k).

• Replace t 7→ it and see what happens.

Exercise (logistic equation). A more realistic model of population dynamics is the logistic equation

Ṅ = λN(1−N/N∞) ,

where the positive constant N∞ is the asymptotic stationary population in a given limited environment.
Observe that Ṅ ' λN , as in the exponential model, for N much smaller than N∞, and that the rate of
growth decreases to zero when N approaches N∞ from below.

• Call x = N/N∞ the relative population, and show that the function x(t) satisfies

ẋ = λx(1− x) ,

a dimensionless form of the logistic equation.

• Find the equilibrium solutions of the logistic equation.

• Show that the solution with initial condition x(0) = x0, with 0 < x0 < 1, is

x(t) =
1

1 +
(

1
x0
− 1
)
e−λt

,
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• Find a formula for the solution of the Cauchy problem with initial condition x(0) = x0, with x0 > 1,
and observe that the past history is not defined for any time t.

• Draw graphs of some solutions and say what happens to solutions for large times.

Equilibrium solutions, and three different solutions of the logistic equation.

Exercise (super-exponential growth). Another model of population dynamics in a unlimited
environment is

Ṅ = αN2 ,

where α is a positive constant.

• Find, if any, equilibrium solutions.

• Write the equation as dN/N2 = αdt, integrate both sides of the equality and find the other solutions.

• Find a formula for the solution of the Cauchy problem with initial data N(0) = N0, with N0 > 0.

• Observe that the solutions you have just found are not defined for all times t: this model predict a
catastrophe (infinite population) after a finite time!

Exercise (draining a tank). Some liquid is contained in a tank which has section S(h) in correspon-
dence with height h. A hole of section s is opened at the base of the tank, and liquid start to drain.
Torricelli’s law says that the velocity of the dropping liquid at time t should be v = −

√
2gh, where h(t)

is the height of the liquid at time t (since the potential energy mgh gained by liquid particles falling from
the liquid surface down to the hole will be transformed into a kinetic energy mv2/2). Actually, due to
some friction around the hole, the observed velocity is −γ

√
2gh for some dimensionless coefficient γ < 1

(which is experimentally seen to be of order 0.6 for usual liquids in usual conditions). There follows that
the flow of dropping liquid is γs

√
2gh, hence the volume V (t) of liquid in the tank at time t decreases as

V̇ = −γs
√

2gh .

• Write the volume as V (t) =
∫ h(t)

0
S(x)dx and show that h(t) satisfies the autonomous first order

ODE
S(h)ḣ = −γs

√
2gh .

• Solve the equation for a cylindrical tank with constant section S(h) = S, and say what time does
it take to drain a tank filled up to a height h0.

• Solve the equation for a funnel, a conical tank having section S(h) = s + kh for some positive k,
and answer the same question as above.
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Exercise (real gravity and second cosmic velocity). The distance r of a particle of mass m from
the center of the Earth satisfies the Newton equation

mr̈ = −mgr
2
0

r2
,

where r0 is the radius of the Earth (and, of course, r > r0). Here we are considering the real gravitational
force produced by the Earth, but we are disregarding the gravitational influence of the Sun and other
celestial bodies.

• Find the potential U(r) of the gravitational field and write the expression for the total energy of
the system.

• Write the integral that represents the time needed to send a particle from the Earth surface r0 up
to a height r − r0 from the Earth surface, given an initial energy E > gr0.

• Find the minimum upward velocity necessary to escape from the Earth gravitational field, i.e. to
reach an infinite distance.

Example (Helmoltz’s theorem, or “thermodynamics” of monocyclic motions). Consider a
one-dimensional Newtonian system whose orbits are all closed, hence monocyclic. This is the case when
the potential U(x) is strictly convex (i.e. has positive second derivative) and grows to infinity for large
displacements (i.e. U(x) → ∞ for x → ±∞). Changing the origin we can assume that the potential
is everywhere positive. Moreover, we let the potential to depend smoothly on a parameter V . For any
given value E of the total energy. the orbit takes place in a finite interval [x−, x+] and has period√

m/2
∫ x+

x−

dx√
K

if m is the mass of the particle. Call P as “pressure”, the time average of

−∂U
∂V

.

T , as “temperature”, the time average of the kinetic energy K = E − U , and define the “infinitesimal
work” and “heath” as

dL = −PdV dQ = dE + PdV .

Helmoltz’s theorem says that then
dQ/T

is an exact differential. This means that there exists a function S(E, V ), such that dS = (dE+PdV )/T .
Indeed, define

S(E, V ) = 2 log
∫ x+

x−

√
E − U(x)dx .

Its differential is

dS =

∫ x+

x−
(dE − (∂U/∂V )dV ) dx√

K∫ x+

x−
K dx√

K

Exercise (modeling). Write down differential equations that model each of the following situations,
then try to say as much as you can about the solutions and answer the questions posed at the end.

• The rate of change of the temperature of a cup of tea at time t is proportional to the difference
between the air temperature, assumed constant, and the tea temperature at time t. Will the cup
of tea reach the air temperature in finite time?

• The rate of growth of a population of mushrooms at time t is proportional to the square root of
the population at time t. Could you infer the age of a colony of such mushroom from its actual
population?

• The upward velocity of a rocket at time t is inverse proportional to the height reached at time t.
Will the rocket reach an infinite height?

• The rate of growth of the mass of a cubic crystal at time t is proportional to the crystal’s surface
at time t. At what rate does the radius of the crystal grow?
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3.3 Separable first order ODEs

A first order ODE ẋ = v(t, x) is said separable when the velocity field v is a product of a function which
only depends on t and another function which only depends on x. So it has the form

ẋ = g(t)f(x)

for some known functions f and g. We assume that both f and g are continuous functions on some
intervals of the phase space and the real line, respectively. Observe that both simple ODEs like ẋ = v(t)
and autonomous ODEs like ẋ = v(x) fall in this class.

If x0 is a zero of f , hence a singular point of the vector field v, then x(t) = x0 is an equilibrium
solution.

The recipe to find other solutions is known as “separation of variables”. Take a non-singular point
x0, that is a point where f(x0) 6= 0. Choose a maximal interval J containing x0 where f is different from
zero, rewrite the equation formally as “dx/f(x) = g(t)dt”, and then integrate from x0 to x ∈ J the r.h.s.
and from t0 to t the l.h.s. You’ll get ∫ x

x0

dy

f(y)
=
∫ t

t0

g(s)ds .

As we did for autonomous equations, we can see that any continuously differentiable solution t 7→ x(t) of
the equation passing through the non-singular point (t0, x0) must satisfy the above relation, as long as x
is sufficiently near to x0.

If F is a primitive of 1/f and G is a primitive of g, this gives the relation

F (x)− F (x0) = G(t)−G(t0) .

There follows that, if you are able to explicitly invert the function F , you’ll get the explicit solution as

x(t) = F−1 (G(t)−G(t0) + F (x0)) .

Example. Solve ẋ = tx3.
An obvious solution is the equilibrium solution x(t) = 0. For a positive initial condition x(t0) = x0 > 0,

rewrite the equation as dx/x3 = tdt and integrate∫ x

x0

dy

y3
=
∫ t

t0

sds

for x > 0. You’ll find
1/x2 − 1/x2

0 = t2 − t20 ,
and, solving for x, the solution

x(t) =
1√

t20 + 1/x2
0 − t2

.

defined for times t in the interval |t| <
√
t20 + 1/x2

0. In the same way you’ll find solutions with negative
initial condition x0 < 0.

Training. Solve (i.e. find all solutions of) the following separable ODEs

ẋ = tx3 tẋ+ t = t2 ẋ = t3/x2 xẋ = ex+3t2t

ẋ =
t− 1
x2

x− 1
t

ẋ+
x− x2

t2
= 0

dy

dx
= −x

y(
t2 + 1

)
ẋ = 2tx ẋ = t

(
x2 − x

)
ẋ = et−x

defined in appropriate domains of the extended phase space.

Exercise (exponential growth in variable environment). The growth of a population in a variable
environment may be modeled by

Ṅ = λ(t)N

where λ(t) is a variable growth rate.

• Write the solution N(t) with N(t0) = N0 as a function of λ(s) for t0 ≤ s ≤ t.

• Solve the problem with λ(t) = λ0 sin(ωt).
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Exercise (inseguimento.) Una lepre scappa con moto rettilineo uniforme. Una volpe la ede e la
insegue pntando sempre nella direzione della lepre. Determinare la traiettoria della volpe.

3.4 Linear first order ODEs

A first order linear differential equation is a differential equation which can be written in the “canonical
form”

ẋ+ p(t)x = q(t) ,

where p and q are (known) functions of the real variable t in some interval I of the real line, called
coefficients. We assume that both p and q are continuous functions, and we look for solutions t 7→ x(t)
defined on I. Eventually we will want to solve the Cauchy problem with some initial condition x(t0) = x0.

The equation
ẋ+ p(t)x = 0

is said the homogeneous equation associated with the general, hence non-homogeneous, equation above.

Observations about linearity. The word “homogeneous” is due to the fact that any constant multiple
of a solution of the homogeneous equation is again a solution. Also, any linear combination (with real
coefficients) of solutions of the homogeneous equation is still a solution of the homogeneous equation.
This means that the space of solutions of the homogeneous equation is a linear space.

Exercise. Show that if x(t) and y(t) are two solution of the homogeneous equation

ẋ+ p(t)x = 0 ,

then also any linear combination cx(t)+dy(t), with constant coefficients c and d, solves the homogeneous
equation.

Also interesting is that the difference of any two solutions of the non-homogeneous equation is a
solution of the homogeneous equation.

Exercise. Show that if x(t) and y(t) are two solution of the non-homogeneous equation

ẋ+ p(t)x = q(t) ,

then the difference x(t)− y(t) is a solution of the associated homogeneous equation.

All this suggests a strategy to solve the existence and uniqueness problem for both equations. We
start with

Solving the homogeneous equation. A trivial solution of the homogeneous equation is the equilibrium
solution x(t) = 0.

Now we look for others. Assume for the moment that the solution x(t) is positive on I. The equation
is equivalent to ẋ/x = −p(t). The chain rule says that ẋ/x is the derivative of log x, hence log x must be
a primitive of −p(t). There follows that

log x(t)− log x0 = −
∫ t

t0

p(s)ds ,

hence
x(t) = x0e

−
R t
t0
p(s)ds

.

You may want to check that the above formula solves the Cauchy problem with initial condition x(t0) =
x0.

Of course, this makes sense provided that the function p(t) is continuous. Now we claim that the
above formula (which includes the equilibrium solution if x0 = 0 as well as the negative solutions if
x0 < 0) gives the unique solution of the Cauchy problem.

Existence and uniqueness theorem for homogeneous first order linear ODEs. Let p be a
continuous function on some interval I. Then the unique solution of the Cauchy problem ẋ + p(t)x = 0
with initial condition x(t0) = x0 is given by

x(t) = x0e
−

R t
t0
p(s)ds

.
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Proof. Let y(t) be a second solution of the Cauchy problem above, and define

h(t) = y(t)e
R t
t0
p(s)ds

.

Its value for t0 is x0. Its derivative is

ḣ(t) = e
R t
t0
p(s)ds (ẏ(t) + p(t)y(t)) .

Since y is supposed to solve the equation, the derivative of h is equal to zero for any t in the chosen
interval, and the mean value theorem says that then h(t) is constant and equal to x0. There follows that
y(t) is indeed equal to our solution x(t). q.e.d.

Example. Solve tẋ− 2x = 0 for t ∈ (0,∞) with initial condition x(t0) = x0.
If x0 = 0, the solution is the equilibrium solution x(t) = 0. If x0 > 0, write the equation as

dx/x = 2dt/t, integrate ∫ x

x0

dy/y =
∫ t

t0

2ds/s ,

for positive x, obtain
log x− log x0 = log(t2)− log

(
t20
)
,

and solve it for x, the solution being
x(t) =

(
x0/t

2
0

)
t2 .

Finally observe that this formula gives the solutions for any initial condition x0.

Back to the non-homogeneous equation. To solve the non-homogeneous equation

ẋ+ p(t)x = q(t) ,

we use the following trick, a first and elementary instance of a much more general method named “varia-
tion of parameters” (or, sometimes, with the oxymoron “variation of constants”). We already know that
any function proportional to e−

R t
a
p(s)ds solves the homogeneous equation. We look for a solution of the

non-homogeneous equation having the form

x(t) = λe
−

R t
t0
p(s)ds

,

but, instead of treating the parameter λ as a constant, we allow it to depend on t. Putting our guess into
the non-homogeneous equation, we get

d

dt

(
λ(t)e−

R t
t0
p(s)ds

)
+ p(t)λ(t)e−

R t
t0
p(s)ds = q(t) .

Computing the derivative, we get

λ̇(t)e−
R t
t0
p(s)ds − p(t)λ(t)e−

R t
t0
p(s)ds + p(t)λ(t)e−

R t
t0
p(s)ds = q(t)

the two terms containing p(t) do cancel, and we are left with

λ̇(t)e−
R t
t0
p(s)ds = q(t) .

This can be solved for λ̇, and integration gives

λ(t) = x0 +
∫ t

t0

e
R s
t0
p(u)du

q(s)ds

for some constant x0 equal to the value of λ(t0). This gives a solution as

x(t) = λ(t)e−
R t
t0
p(s)ds

,
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and you may check that it has initial value x(t0) = x0. Since the difference of any two solutions of the
general equation is a solution of the associated homogeneous equation, and since (as follows from the
uniqueness theorem above) the only solution of the homogeneous equation with initial condition x(t0) = 0
is the zero solution, we just proved the following

Existence and uniqueness theorem for first order linear ODEs. Let p and q be continuous
functions in some interval I. Then the unique solution of the Cauchy problem ẋ + p(t)x = q(t) with
initial condition x(t0) = x0 is given by

x(t) = e
−

R t
t0
p(u)du

(
x0 +

∫ t

t0

e
R s
t0
p(u)du

q(s)ds
)
.

Warning. Perhaps, instead of fixing the unpleasant formula in the above theorem, you could simply
remember the strategy used to derive it: find one non-trivial solution y(t) of the associated homogeneous
equation (which is separable!), and then make the conjecture x(t) = λ(t)y(t) for some other unknown
function λ(t). You’ll get a simple differential equation for λ, and integration gives you the solution.

Example. Solve tẋ− 2x = t for t ∈ (0,∞) with initial condition x(t0) = x0.
You already know that the solution of the associated homogeneous equation ty′ − 2y = 0 with initial

condition y(t0) = 1 is y(t) = t2/t20. Make the conjecture x(t) = λ(t)t2/t20, insert your guess into the
non-homogeneous equation, and get

λ̇ = t20/t
2 .

Integrate and find
λ(t)− λ(t0) = t0 − t20/t ,

and, since λ(t0) = x(t0), finally find the solution

x(t) =
x0 + t0
t20

t2 − t .

Training. Find the general solutions of the following linear first order ODEs

2ẋ− 6x = e2t ẋ+ 2x = t ẋ+ x/t2 = 1/t2 ẋ+ tx = t2

for t in appropriate intervals of the real line.

Training. Solve the following Cauchy problems:

2ẋ− 3x = e2t for t ∈ (−∞,∞) with x(0) = 1

ẋ+ x = e3t for t ∈ (−∞,∞) with x(1) = 2

tẋ− x = t3 for t ∈ (0,∞) with x(0) = 1

ẋ+ tx = t3 for t ∈ (0,∞) with x(0) = 0

dr/dθ + r tan θ = cos θ for θ ∈ (−π/2, π/2) with r(0) = 1

Exercise (free fall with friction). A more realistic model of free fall of a point-like particle near the
Earth surface must take into account the air resistance. The latter is assumed to be a force Ffriction = −kṙ,
proportional and opposed to the velocity of the particle, for some positive constant k (observe that, in
absence of other forces, the velocity v = ṙ would satisfy the equation v̇ = − 1

τ v, hence decay exponentially
with characteristic time τ = m/k). The resulting Newton equation for the free fall is

mr̈ = −kṙ −mg .

This can be thought as a first order ODE for the velocity v = ṙ of the particle, namely

mv̇ = −kv −mg .

• Find equilibrium solutions for the velocity v, and give a physical interpretation.
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• Solve the Cauchy problem with initial velocity v(0) = 0.

• Show that the velocity goes to a definite value as time tends to infinity, independently on its initial
value.

• Use the above solution to find the trajectory r(t), given an initial position r(0) = s.

Exercise (Kirchoff’s law for a LR circuit). The electric current I(t) flowing in an electric circuit
with resistance R and inductance L driven by a tension V (t) satisfies the first order ODE

Lİ(t) +RI(t) = V (t) .

• Write the general solution as a function of the tension V (t) and the initial current I(0).

• Solve the equation for a constant tension V (t) = V0. Draw graphs of some solutions for different
values of I(0) and say what happen for large times.

• Solve the equation for a circuit driven by an alternate tension V (t) = V0 sin(ωt). Show that the
solution with initial current I(0) = 0 has the form

I(t) =
V0√

R2 + ω2L2
sin (ωt− ϕ) +

EωL

R2 + ω2L2
e−Rt/L ,

where ϕ is a phase (or delay) which depends on ω, L and R.

• Compare with the free fall with friction, and give “mechanical” interpretations of the resistance R
and inductance L of an electric circuit.

Response (red) to an alternate tension (black).

Exercise (Newton’s law of cooling). The temperature T (t) at time t of a body in contact with a
thermostat, maintained at temperature M(t), is assumed to follow the Newton’s law of cooling

Ṫ = −k (T −M(t)) ,

for some positive constant k.

• Find the formula which solves the Cauchy problem for T (a) = b as a function of M(t).

• Solve the Cauchy problem when the thermostat (supposed much bigger than the body) is main-
tained at constant temperature M(t) = M and discuss the solutions (observe that T (t) = M is an
equilibrium solution, and consider the substitution x(t) = T (t)−M).

• Solve the Cauchy problem when the thermostat has temperature T (t) = T0 sin(ωt).
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• A cup of coffee, initially at the temperature of 100oC is left in a room at constant temperature
20oC. Observing that the coffee reaches a temperature of 60oC in 15 minutes, compute the value of
k for coffee and the time needed for the coffee to reach a temperature of 40oC..

Exercise (Bernoulli equations). A first order ODE of the form

ẋ+ p(t)x = q(t)xn ,

where p and q are continuous functions in some interval I and n 6= 0 or 1 (otherwise it’s just a linear
ODE!), is called Bernoulli equation.

• Show that x(t) = 0 is a solution.

• Let k = 1− n. Show that x(t) is a positive solution of the Bernoulli equation with initial condition
x(t0)k = x0 iff y = xk is a solution of the linear ODE

ẏ + kp(t)y = kq(t)

with initial condition y(t0) = x0.

• Conjecture and prove an analogous result for negative solutions of the Bernoulli equation, given
some appropriate conditions on the exponent n (there is no way to give a useful meaning to an
expression like (−3)

√
2 !).

• Solve the following Cauchy problems for Bernoulli equations:

ẋ− x/t = t
√
x for t ∈ (0,∞) com x(0) = 1

ẋ+ x = x2 (cos t− sin t) for t ∈ (−∞,∞) com x(1) = 2

tẋ+ et
2
x = x2 log t for t ∈ (0,∞) com x(3) = 0
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4 Existence, uniqueness and stability results for ODEs

Many (not to say almost all!) interesting ODEs of physics are not linear and don’t belong to any class of
easily integrable differential equations.

For example, analytical solutions of the Lane-Emden equation are known for only a few values of the
parameter p. Solutions of the three-body problem in celestial mechanics are known only for a very few
symmetrical initial conditions.

How do we attach the problem? The first thing to do is to prove existence and uniqueness theorems
that tell you that the equation you wrote does make sense. This done, you may solve “numerically” the
equation, that is find approximate solutions and hope that they are not too different from the real ones.
Later on, following an idea of Henri Poincaré, you may try to guess the qualitative of solutions without
solving the equation.

Here we sketch just the first two steps.

4.1 Existence and uniqueness theorems

Here we consider a generic first order ODE of the form

ẋ = v(t, x)

where the velocity field v is a (continuous) function defined in some extended phase space R×X. Here
X may be some interval of the real line as well as an open subset of some Euclidean Rn. Since we’ll
prove a local result, everything we’ll say will be valid when X is any differentiable manifold.

The problem we address is the existence and uniqueness of solutions of the Cauchy problem. A local
solution passing through the point (t0, x0) ∈ R×X is a solution t 7→ ϕ(t), defined in some neighborhood
I of t0, such that ϕ(t0) = x0. Eventually, we’ll be interested also in the possibility of extending such local
solutions to larger intervals of times.

The basic existence theorem is

Peano’s theorem. 3 Let v(x, t) be a continuous velocity field in some domain A of the extended phase
space R2. Then for any point (x0, t0) ∈ A passes at least one integral curve of the differential equation
ẋ = v(x, t).

Idea of the proof. Natural guesses for the solutions are Euler lines starting through (x0, t0). If we
restrict to a sufficiently small neighborhood of (x0, t0), we can assume that the velocity field is bounded,
say |v(x, t)| ≤ K, and that all such Euler lines lies in the “papillon” made of two triangles touching at
(x0, t0) with slopes ±K. Construct a family of Euler lines, graphs of ϕn(t), such that the maximal step εn
of the n-th line goes to 0 as n→∞. One easily sees that the family (ϕn) is bounded and equicontinuous.
By the Ascoli-Arzelá theorem it admits a (uniformly) convergent subsequence. Finally, we claim that the
sublimit ϕni → ϕ solves the differential equation. q.e.d.

Both existence and uniqueness may fail. The Hamilton-Jacobi equation

(ẋ)2 − xt+ 1 = 0

cannot have solutions satisfying the initial condition x(0) = 0, for otherwise we would have a negative
“kinetic energy” (ẋ)2 = −1 at that point!

Some regularity of the functions involved in a differential equation is also needed to ensure the unique-
ness of solutions. For example, both curves t 7→ 0 and t 7→ t3 solve the equation

ẋ = 3x2/3

with initial condition x(0) = 0. The problem here is that the velocity field v(t, x) = 3x2/3, although
continuous, is not differentiable and not even Lipschitz at the origin. Indeed, a sufficient condition for
uniqueness is

3G. Peano, Sull’integrabilità delle equazioni differenziali del primo ordine, Atti Accad. Sci. Torino 21 (1886), 677-
685. G. Peano, Demonstration de l’intégrabilité des équations différentielles ordinaires, Mathematische Annalen 37 (1890)
182-228.
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The Lipschitz condition. A velocity field v(t, x), defined in a domain I ×D of the extended phase
space R×Rn, is locally Lipschitz w.r.t. to the variable x if for any (t0, x0) ∈ I×D there is a neighborhood
J × U 3 (t0, x0) and a constant L ≥ 0 such that

‖v(t, x)− v(t, y)‖ ≤ L · ‖x− y‖ ∀ (t, x), (t, y) ∈ J × U

If v(t, x) has continuous derivative w.r.t. x, i.e. if the Jacobian

Dxv(t, x) =
(
∂vi
∂xj

(t, x)
)

exists and is continuous, then v(t, x) is locally Lipschitz in any compact convex domain I×K ⊂ R×Rn.

Picard’s theorem. 4 Let v(t, x) be a continuous velocity field defined in some domain D of the
extended phase space R×X. If v is locally Lipschitz (for example continuously differentiable) w.r.t. the
second variable x, then there exist one and only one local solution of ẋ = v(t, x) passing through any point
(t0, x0) ∈ D.

Geometrically, the uniqueness theorem says that through any point (t0, x0) of the domain D there
pass one and only one solution. Hence solutions, considered as curves in the extended phase space, cannot
intersect each other.

In a domain where Picard’s theorem applies, if two local solutions agree in a common interval of times
then they are indeed restrictions of a unique solution defined in the union of the respective domains.
There follows that solutions are always extendible to a maximum domain. Such solutions are called
maximal solutions.

Strategy of the proof of the Picard’s theorem. The first observation is that a function ϕ(t) is a
solution of the Cauchy problem for ẋ = v(t, x) with initial condition ϕ(t0) = x0 iff

ϕ(t) = x0 +
∫ t

t0

v (s, ϕ(s)) ds

Now, we notice that the above identity is equivalent to the statement that ϕ is a fixed point of the so
called Picard’s map φ 7→ Pφ, sending a function t 7→ φ(t) into the function

(Pφ) (t) = x0 +
∫ t

t0

v (s, φ(s)) ds

At this point, one must chose cleverly the domain of the Picard’s map, which is the space of functions
where we think a solution should be. It will be a certain space C of continuous functions, defined in an
appropriate neighborhood I of t0, equipped with a norm that makes it a complete metric space (hence
a Banach space). The Lipschitz condition, together with continuity, satisfied by the velocity field will
imply that if the interval I is sufficiently small then the Picard’s map P : C → C is a contraction. The
contraction principle (a.k.a. Banach fixed point theorem) finally guarantees the existence and uniqueness
of the fixed point of P in C.

Picard’s iterations. The contraction principle actually says that the fixed point, i.e. the solution we
are looking for, is the limit of any sequence φ, Pφ, ..., Pnφ, ... of iterates of the Picard map starting with
any initial guess φ ∈ C. In other words, the existence part of the theorem is “constructive”, it gives us a
procedure to find out the solution, or at least a sequence of functions which approximate the solution.

Example (simple ODEs). Consider the simple ODE ẋ = v(t) with initial condition x(t0) = x0.
Picard’s recipe, starting from the initial guess φ(t) = x0 gives, already at the first step,

(Pφ) (t) = x0 +
∫ t

t0

v(s)ds

which is the solution we know.
4M. E. Lindelöf, Sur l’application de la méthode des approximations successives aux équations différentielles ordinaires

du premier ordre, Comptes rendus hebdomadaires des séances de l’Académie des sciences 114 (1894), 454-457. Digitized
version online via http://gallica.bnf.fr/ark:/12148/bpt6k3074
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Example (the exponential). Suppose you want to solve ẋ = x with initial condition x(0) = 1. You
start with the guess φ(t) = 1, and then compute

(Pφ) (t) = 1 + t
(
P2φ

)
(t) = 1 + t+

1
2
t2 ... (Pnφ) (t) = 1 + t+

1
2
t2 + ...+

1
n!
tn

Hence the sequence converges (uniformly on bounded intervals) to the Taylor series of the exponential
function

(Pnφ) (t)→ 1 + t+
1
2
t2 + ...+

1
n!
tn + ... = et ,

which is the solution we already knew.

Details of the proof of the Picard’s theorem. Choose a sufficiently small rectangular neighbor-
hood

I ×B = [t0 − ε, t0 + ε]×Bδ (x0)

around (t0, x0), where B = Bδ (x0) denotes the closed ball with center x0 and radius δ in X. There
follows from continuity of v that there exists K such that

|v(t, x)| ≤ K

for any (t, x) ∈ I × B. There follows from the local Lipschitz condition for v that there exists M such
that

|v(t, x)− v(t, y)| ≤M |x− y|

for any t ∈ I and any x, y ∈ B. Now restrict, if needed, the (radius of the) interval I in such a way to get
both the inequalities Kε ≤ δ and Mε < 1. Let C be the space of continuous functions t 7→ φ(t) sending
I into B. Equipped with the sup norm

‖φ− ϕ‖ = sup
t∈I
|φ(t)− ϕ(t)|

this is a complete space. One verifies that the Picard’s map sends C into C, since

| (Pφ) (t)− x0| ≤
∫ t

t0

|v (s, φ(s)) |ds ≤ Kε ≤ δ.

Finally, given two functions φ, ϕ ∈ C, one sees that

| (Pφ) (t)− (Pϕ) (t)| ≤
∫ t

t0

|v (s, φ(s))− v (s, ϕ(s)) |ds ≤Mε sup
t∈I
|φ(t)− ϕ(t)|

hence ‖Pφ− Pϕ‖ < Mε‖φ− ϕ‖. Since Mε < 1, this proves that the Picard’s map is a contraction and
the fixed point theorem allows to conclude. q.e.d.

We may not be able to solve them! Last but not least, we must keep in mind that we are not able
to solve all equations. Actually, although we may prove the existence and the uniqueness for large classes
of equations, we are simply not able to explicitly integrate the really interesting differential equations...

Ultimately we must recur to numerical methods to find approximate solutions and to qualitative
analysis

4.2 Dependence on initial data and parameters

Consider a family of ODEs
ẋ = v(t, x, λ)

where λ is a real parameter. We want to understand how solutions depend on the parameter λ. A basic
instrument is the
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Grönwall’s lemma. 5 Let φ(t) and ψ(t) be two non-negative real valued functions defined in interval
[a, b] such that

φ(t) ≤ K +
∫ t

a

ψ(s)φ(s)ds

for any a ≤ t ≤ b and some constant K ≥ 0. Then

φ(t) ≤ Ke
R t
a
ψ(s)ds .

Proof. First, assume K > 0. Define

Φ(t) = K +
∫ t

a

ψ(s)φ(s)ds

and observe that Φ(a) = K > 0, hence Φ(t) > 0 for all a ≤ t ≤ b. The logarithmic derivative is

d

dt
log Φ(t) =

ψ(t)φ(t)
Φ(t)

≤ ψ(t)

where we used the hypothesis φ(t) ≤ Φ(t). Integrating the inequality we get, for a ≤ t ≤ b,

log Φ(t) ≤ Φ(a) +
∫ t

a

ψ(s)ds .

Exponentiation gives the result, since

φ(t) ≤ Φ(t) ≤ K · e
R t
a
ψ(s)ds

The case K = 0 follows taking the limit of the above inequalities for a sequence of Kn > 0 decreasing to
zero. q.e.d.

Continuous dependence on initial conditions. If x(t) and y(t) are two solutions of

ẋ = v(t, x)

then

x(t)− y(t) = x(0)− y(0) +
∫ t

t0

(v(s, x(s))− v(s, y(s))) ds

If L(s) denotes the Lipschitz constant of v(s, ·), we get

‖x(t)− y(t)‖ ≤ ‖x(0)− y(0)‖+
∫ t

t0

L(s)‖x(s)− y(s)‖ds

The Gronwall’s lemma gives the control

‖x(t)− y(t)‖ ≤ e
R t
t0
L(s)ds‖x(0)− y(0)‖

Observe that the above control also gives an alternative proof of uniqueness of solutions given a
Lipschitz condition on the vector field.

Theorem (smooth dependence on parameters). Let v(t, x, λ) be a family of vector fields defined
on some domain of the extended phase space D ⊂ R×X depending on a parameter λ ∈ Λ ⊂ R. If v is
of class Ck with k ≥ 1, then in some neighborhood of any (t0, x0, λ0) ∈ D × Λ the local solutions of

ẋ = v(t, x, λ)

with initial condition x(t0) = x0 are differentiable (indeed Ck) functions of (t, x, λ).
see [ButtàNegrini]

5T. H. Gronwall, Note on the derivative with respect to a parameter of the solutions of a system of differential equations,
Ann. of Math 20 (1919), 292-296.
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Warning. Continuous dependence does not exclude sensitive dependence on both initial conditions and
parameters, even in the linear case! For example, the distance between solutions of ẋ = µx with different
x(0) and/or µ may diverge for large time ...

4.3 Autonomous systems and flows

The flow generated by an autonomous first order ODE. Assume that an autonomous first order
ODE

ẋ = v(x)

admits unique solutions t 7→ ϕ(t) starting at every point ϕ(0) = x of the phase space X, and that all
such solutions are defined for all times t ∈ R (such velocity fields are then called complete). Then we can
define a family of maps Φt : X → X, depending on time t ∈ R, as follows: the value of Φt(x) is equal to
the value ϕ(t) of the solution of the Cauchy problem with initial condition ϕ(0) = x. Clearly Φ0 is the
identity map, and

Φt ◦ Φs = Φt+s

for any t, s ∈ R (why?). Mathematicians say that such family of transformations {Φt}t∈R form a “group
acting” on X, and call it the flow of the autonomous first order differential equation. Physically, Φt(x)
is the state where the system will be after time t if it is observed in the state x at time 0. The group
property above is essentially what physicists call “determinism”: present uniquely determines past and
future of the system.

Given the flow Ψt, we recover the velocity field as

v(x) =
d

dt
Φt(x)|t=0 .

Hence, the flow may be seen as an alternative way to define a dynamics.

Flow box theorem. A differentiable vector field near a nonsingular point is rectifiable, i.e. diffeomor-
phic to a constant vector field.

Derivative along the flow (Lie derivative).
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5 Some geometrical considerations on ODEs

5.1 Homogeneity and other dimensional considerations

You may have noticed that the only non-linear first order ODEs which we are able to integrate by
“quadratures” (i.e. computing integrals) are the separable ones. Moreover, simple equations like ẋ = v(t)
and autonomous equations like ẋ = v(x) have symmetries, since their directions field is constant along
vertical and horizontal lines in the extended phase space, respectively. Here we show that also other less
trivial symmetries implies separability, hence integrability by quadratures.

Homotheties and homogeneous functions. Homotheties of the plane are the transformations
gλ : R2 → R2 defined as

(x, y) 7→ (λx, λy)

for λ > 0. Observe that g1 is the identity transformation, and that gλ ◦ gµ = gλµ for any λ, µ > 0, hence
homotheties form a group (parametrized by the multiplicative group R×+ of positive reals).

Let f : D → R be a function defined in a domain D ⊂ R2 which is invariant under homotheties (i.e.
if D contains a point p different from the origin then it contains the whole semirect λp with λ > 0, and
this implies that D must be an “angle” of the plane). The function f is called homogeneous of degree 0
if it is invariant under homotheties. This means that

f (λx, λy) = f(x, y) ,

for any point (x, y) ∈ D and any λ > 0. In other words, f is constant on rays coming out from the origin.

Homogeneous first order ODEs. A first order ODE

ẋ = v(t, x)

is said homogeneous if the velocity field v is an homogeneous function of t and x.
A first observation is that homotheties gλ send integral curves into integral curves. Indeed, if t 7→ ϕ(t)

is a solution of ẋ = v(t, x), then also t 7→ φ(t) = λϕ (t/λ), for λ > 0, is a solution, because

φ̇(t) =
d

dt
λϕ (t/λ) = ϕ̇ (t/λ)

= v (t/λ, ϕ (t/λ)) = v (t, λϕ (t/λ))
= v (t, φ(t)) .

This means that if we could find just one solution, we’ll have indeed a whole family of homothetic
solutions, depending on a positive parameter λ.

Directions field and two homothetic solutions of the homogeneous equation ẏ = −y/x.

Homogeneity amounts to say that v is actually a function of the ratio x/t, since

v(t, x) = v(1, x/t)
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as long as t > 0 (and the case t < 0 can be treated in a similar way). This suggests that we may try and
see what the equation implies for the new unknown function y(t) = x(t)/t. Indeed, in a domain where
t > 0, the guess x(t) = ty(t) gives

y + tẏ = v(1, y) ,

hence the separable ODE
yẏ = (v(1, y)− y) /t

for y. Once you have y(t), you’ll have the solution x(t) = ty(t) as well as the whole family of solutions
t 7→ ty (t/λ) for λ > 0.

Example. Solve

ẋ =
x2 + t2

tx
,

in the first quadrant, i.e. for t > 0 and x > 0.
Make the conjecture x(t) = ty(t), compute ẋ = y + ty′, and substitute this expression into the

equation. This gives

ty′ + y =
y2 + 1
y

,

hence the separable equation
yẏ = 1/t .

A positive solution is y(t) =
√

2 log t, defined for times t > 1. Back to the original variable, you find the
solution x(t) = t

√
2 log t. Finally, use homotheties to find the whole family of solutions

x(t) = t
√

2 log(t/λ) ,

defined for times t > λ, in the first quadrant.

Training. Solve the following homogeneous ODEs

ẋ = −t/x ẋ =
x− t
x+ t

ẋ = 1 + x/t v3 +
(
u3 − uv2

) dv
du

= 0

ẋ = x/t ẋ = 2
t

x
ex/t +

x

t

dy

dx
= y/x+ sin(y/x)

in appropriate domains of the extended phase space, and draw some integral curves.

Exercise. Show that an homogeneous ODE

dy

dx
= v(x, y)

in the x-y plane can be transformed into a separable ODE in polar coordinates ρ-θ, i.e. setting ρ =√
x2 + y2 and θ = arctan(y/x).

Quasi-homogeneous functions and ODEs. Here we consider the quasi-homotheties gλ : R2 → R2

defined
(x, y) 7→

(
λαx, λβy

)
for some (possibly different) weights α and β.

A function f(x, y) is said quasi-homogeneous of degree d and weights α and β if

f
(
λαx, λβy

)
= λdf(x, y)

for any λ > 0.

Example (Kepler 3rd law)

5.2 Newton equation in homogeneous potentials

see [LandauLifshitz]
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5.3 Exact differentials and exact differential equations

Here we describe a sequence of observations which, once followed in the reversed order, will suggest
a method to deal with some first order ODEs. More interesting are the physical and the geometrical
interpretations.

Level sets of smooth functions. Let U : D → R be a twice continuously differentiable real valued
function defined in some open domain D of the plane R2. Level sets of U are the sets

Σc = {(x, y) ∈ R s.t. U(x, y) = c} .

If c is a regular value of U , i.e. if ∇U 6= 0 at the points of Σc, then the level set Σc is a differentiable
curve.

If (x0, y0) is a point in Σc where ∂U/∂y(x0, y0) 6= 0, the implicit function theorem tells us that Σc is
locally (in a neighborhood of (x0, y0)) the graph of a differentiable function x 7→ y = (x). Such a function
satisfies the constraint U (x, y(x)) = c, hence deriving we get

d

dx
U (x, y(x)) = 0 so that

∂U

∂x
(x, y(x))dx+

∂U

∂y
(x, y(x))dy = 0 .

Setting p = ∂U/∂x and q = ∂U/∂y, this means that the function x 7→ y(x) is a local solution of the
differential equation

p(x, y) + q(x, y)
dy

dx
= 0

which satisfies the initial condition y(x0) = y0.
The very same reasoning, near a point (which could be the same) where ∂U/∂x 6= 0, gives a local

solution y 7→ x(y) of the differential equation

p(x, y)
dx

dy
+ q(x, y) = 0 .

For this reason, we’d better write both the differential equations in the suggestive single form

p(x, y)dx+ q(x, y)dy = 0

(called “Pfaffian equation” by mathematicians), to be solved for dy/dx or for dx/dy, and say that the
curve Σc contains the graphs of its local solutions.

Example. Let U(x, y) = x2 + y2. Level sets Σc are the family of circles x2 + y2 = c, and they are
regular as long as c > 0, since ∇U = (2x, 2y). Near the point

(
1/
√

2, 1/
√

2
)
, the curve Σ1 is the graph of

both functions y(x) =
√

1− x2 and x(y) =
√

1− y2, which are local solutions of the differential equation

xdx+ ydy = 0 .

Exact differentials and exact differential equations. Now, we reverse the reasoning, and give the
following definitions.

Let p(x, y) and q(x, y) be continuous functions defined in some domain D of the plane. A “differential”
pdx + qdy, or a differential equation pdx + qdy = 0, is called exact (in the domain D) if there exists a
continuously differentiable function U : D → R such that dU = pdx+ qdy, namely

∂U

∂x
= p and

∂U

∂y
= q .

Such U , if it exists, is called primitive of the exact differential pdx+ qdy. Observe that this is equivalent
to the statement that ∇U = (p, q), hence level curves of U are orthogonal to the vectors (p, q) at every
points. The solutions of the exact differential equation are then implicitly given by

U(x, y) = c ,

where the constants c are the regular values of U . Level sets of U are called integral curves of the
equation. Explicit local solutions, whose existence is guaranteed by the implicit function theorem, may
be obtained solving the equation U(x, y) = c for x or y, depending the case.
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To decide whether a differential or a differential equation is exact or not is an easy task, thanks to
the following

(Euler-Poincaré) Theorem. Let p and q be continuously differentiable functions in some “simply
connected” (for example a “convex” domain, or simply a “rectangle”) domain D of the plane. Then the
differential pdx+ qdy is exact iff

∂p

∂y
=
∂q

∂x
.

The condition is certainly necessary, since it amounts to exchanging the order in the mixed second
partial derivatives of U . So, we must prove the reverse implication, namely the existence of U . We start
with the simple case, considered by Euler, in which the domain D is a rectangle. In this case we’ll get a
very simple recipe to compute U that, modulo integrations, explicitly solves the problem.

Before, we give one of the possible

Physical interpretation. Instead of looking at the differential p(x, y)dx+q(x, y)dy, look at the vector
field

F (x, y) = − (p(x, y), q(x, y)) .

which you may think as a “force field”. Finding U such that dU = pdx + qdy amounts to finding
a “potential” for the force field, a function U such that F = −∇U . The level sets of U are then
equipotential lines, and physicists know that they must be curves orthogonal to the force field F at every
point.

Since potentials are defined modulo constant additive terms, you may fix any value of U(x0, y0). To
find the value of U at a generic point (x, y) you choose a path γ from (x0, y0) to (x, y) and compute the
“work”

Wγ =
∫
γ

Fd`

done by the force field along the path. Force fields which are gradients are called “conservative” by
physicists, meaning that the work done to displace a particle from one position to another position does
not depend on the chosen path, but only on the initial and final points. This work must be equal to
U(x0, y0) − U(x, y). Now, the work does not depend on the chosen path exactly when the force field
is “irrotational”, namely rotF = ∂p/∂y − ∂q/∂x is equal to zero, provided there are “no holes” in the
domain where paths are chosen.

Euler’s constructive proof. Fix any starting point (x0, y0) ∈ D and set U(x0, y0) = 0. The recipe to
get other values of U at points (x, y) ∈ D is

U(x, y) =
∫ x

x0

p(s, y0)ds+
∫ y

y0

q(x, s)ds .

If D is a rectangle the above integrations are well defined. Now we show that U is a primitive of pdx+qdy.
The identity

∂U

∂y
(x, y) = q(x, y)

is obvious. Computing the other partial derivative, using differentiation under the integral and the
hypothesis, we see that

∂U

∂x
(x, y) = p(x, y0) +

∫ y

y0

∂q

∂x
(x, s)ds

= p(x, y0) +
∫ y

y0

∂p

∂y
(x, s)ds

= p(x, y0) + p(x, y)− p(x, y0) ,

so that also ∂U/∂x(x, y) = p(x, y). q.e.d.

Modern proof. Observe that the above recipe amounts to define U integrating the differential pdx+qdy
(or the vector field F = (p, q) if you want to think about forces and work) along a particular path going
from (x0, y0) to (x, y) (go from (x0, y0) to (x, y0) along a horizontal segment and then from (x, y0) to

35



(x, y) along a vertical segment). But we could as well define U(x, y) as being the integral of pdx + qdy
along any piecewise smooth path γ′ going from (x0, y0) to (x, y) and lying inside D, namely

U(x, y) =
∫
γ′

(pdx+ qdy)

and still get ∂U/∂x = p and ∂U/∂y = q. The only problem here is that the value of U(x, y) may depend
on the chosen path. To see that this is not the case, take any other path γ′′ going from (x0, y0) to (x, y).
If you follow γ′ in the right direction and then γ′′ in the reverse direction, you’ll get a closed path γ
going from (x0, y0) back to (x0, y0) passing through (x, y). If the domain D is simply connected, γ is the
boundary ∂Ω of some domain Ω contained inside D (you may think that this is a definition of “simply
connectedness”). But then the Stokes-Green theorem says that∫

γ′
(pdx+ qdy)−

∫
γ′′

(pdx+ qdy) =
∫
γ

(pdx+ qdy)

=
∫
∂Ω

(pdx+ qdy)

=
∫

Ω

(
∂p
∂y −

∂q
∂x

)
dxdy ,

and the last integral is equal to zero due to the hypothesis of the theorem. q.e.d.

Example. Decide if the differential (2xy + 1) dx+x2dy is exact, find a primitive and solve the differential
equation (2xy + 1) dx+ x2dy = 0.

Compute partial derivatives and check that ∂(2xy + 1)/∂y = ∂
(
x2
)
/∂x. Then set U(0, 0) = 0 and

integrate

U(x, y) =
∫ x

0

(2s0 + 1) ds+
∫ y

0

x2ds .

A primitive is U(x, y) = x2y + x. The curves x2y + x = c are the integral curves of the differential
equation (2xy + 1) dx+ x2dy = 0.

Example (magnetic field in the plane). Consider the “magnetic field”

F (x, y) =

(
−y√
x2 + y2

,
x√

x2 + y2

)
generated by an electric current flowing along the z-axis of the 3-dimensional space. This field is defined
in the domain R2\ {0}, which is not simply connected. The rotational is zero, but if you integrate the
field along the unit circle, a closed curve around the “hole” at the origin, you get the value∫

x2+y2=1

−y√
x2 + y2

dx+
x√

x2 + y2
dy =

∫ 2π

0

dθ

= 2π

for the work done. This implies that it is impossible to find a globally defined potential. On the other end,
if you restrict the domain of the field to a half-space as

{
(x, y) ∈ R2 s.t. x > 0

}
, you do get single-valued

potentials as arctan(y/x).

Magnetic field in the plane.
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Example (electric field in the plane). A force field may be conservative without being defined in
a simply connected domain! For example, the “electric field” F = −∇U , where

U(x, y) = log
√
x2 + y2 ,

generated by a point-like charge at the origin of the plane has a singularity at the origin, hence is defined
in the punctured plane R2\ {0}.

The electric potential U(r) = 1/‖r‖ generated by a point-like charge in the 3-dimensional physical
space is also singular at the origin.

Electric field generated by a charge at the origin.

Training. Tell which of the following differentials are exact

dx+ dy (t+ 2x) dt+ (2t+ 3x) dx

exydx+ exydy
x

y
dy + (1 + log y) dx

and draw level sets of their primitives.

Training. Tell which of the following differential equations are exact

5 + 3
dx

dt
= 0 (x− t) dx

dt
+ ex = 0

1
x

+ t− t

x2

dx

dt
= 0

(
4x+ 3y2

)
+ 2xy

dy

dx
= 0 2x2 + 4t3 + (4tx+ 1)

dx

dt
= 0

(t+ 2x) dt+ (2t+ 3x) dx = 0
(
r2 + 1

)
cos θdθ + 2r sin θdr = 0

and solve them.

Orthogonal trajectories. If a family C of curves in the plane is given as the integral lines of a
differential equation

p(x, y)dx+ q(x, y)dy = 0 ,

then the family C′ of orthogonal trajectories (those lines which meet orthogonally the curves of C at every
point of mutual intersection) are the integral curves of the differential equation

p(x, y)dy − q(x, y)dx = 0 .

(the operator sending the differential ω = pdx+qdx into ∗ω = pdy−qdx is known as “Hodge star operator”
in the Euclidean plane). Indeed, at a point where the first ODE can be solved for y(x), the curves C have
slope dy

dx = v(x, y), with v = −p/q, so that orthogonal lines must have slope dy
dx = −1/v(x, y).

Observe that if C are the level set of a differentiable function U , which you may think as a potential,
then orthogonal trajectories are “force lines”, since are everywhere tangent to the force field F = −∇U .
The differential equation for such orthogonal trajectories become

∂U

∂x
dy − ∂U

∂y
dx = 0 .
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Example. Find the orthogonal trajectories to the family of circles x2 + y2 = c.
Call U(x, y) = x2 + y2. The family of circles U(x, y) = c solve the differential equation

xdx+ ydy = 0 .

Orthogonal trajectories are integral lines of

xdy − ydx = 0 .

Solutions are the lines y = kx, for real k, and the vertical line x = 0.

Exercise. Find the family of curves orthogonal to the family of ellipses x2 + λ2y2 = c, the family of
hyperbolas xy = c, and the family of parabolas y2 = cx.

Exercise. Find equipotential lines of the following force fields:

F (x, y) = (3, 2) F (x, y) = (x, y) F (x, y) =
(

x

x2 + y2
,

y

x2 + y2

)

Integrating factors. It may happen that, although the differential pdx + qdy is not exact, we may
find a positive function λ(x, y) such that the differential

λpdx+ λqdy

became exact.
The differential equations pdx+ qdy = 0 and λpdx+ λqdy = 0 are “equivalent”, since they have the

same integral lines. This means that if you can find a primitive U of λpdx + λqdy, you can integrate
the differential equation pdx + qdy = 0. For this reason, such a function λ is called integrating factor
for pdx + qdy = 0 (physicists already know an example in thermodynamics: the heat δQ = dU − PdV
exchanged in a infinitesimal reversible transformation is not an exact differential, meanwhile the inverse
temperature β = 1/T is an integrating factor for δQ since δQ/T is the differential of a state function
S =

∫
δQ/T called entropy)

Exercise. Consider the following differential equations:(
4x+ 3y2

)
+ 2xy

dy

dx
= 0

(
2x2 + y

)
+
(
x2y − x

) dy
dx

= 0 .

• Show that they are not exact.

• Find integrating factor of the form xn for some integer n, and solve the resulting exact equations.

Exercise. Show that an integration factor for the linear first order ODE

y′ + p(x)y = q(x)

is λ(x) = e
R
p(x)dx, and use this observation to solve the equation.

Exercise. Let λ(x, y) be an integrating factor for the differential equation

p(x, y)dx+ q(x, y)dy = 0 .

• Show that
∂p

∂y
− ∂q

∂x
= q

∂

∂x
log |λ| − p ∂

∂y
log |λ| .

• Deduce the following recipes to find integrating factors:

- if (∂p/∂y − ∂q/∂x) /q is a function of x alone, say f(x), then an integrating factor is λ(x) =
e

R
f(x)dx,

- if (∂p/∂y − ∂q/∂x) /p is a function of y alone, say g(y), then an integrating factor is λ(y) =
e

R
g(y)dy.
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6 Second order linear ODEs on the line

Many interesting models in physics, engineering and other natural sciences, arise naturally as differential
equations of order two or, occasionally, more. One possibility to deal with them is transforming the
equation into a system of first order ODEs. Meanwhile, in some special cases may be useful to rest with
the high order equation. This is the case of some linear ODEs, those that may be written as

ak(t)x(k) + ak−1(t)x(k−1) + ...+ a2(t)ẍ+ a1(t)ẋ+ a0(t)x = r(t)

for some (continuous) functions ai, called coefficients, and r, called r.h.s. term, defined in some interval
I of the real line. Although it is possible to prove existence and uniqueness theorems for this class, there
is no “formula” giving the general solution by integration, as for the first order case. It happens that
physically interesting equations of this kind (like Legendre’s equation

(
1− t2

)
ẍ − 2tẋ + α(α + 1)x = 0,

Bessel’s equation t2ẍ+ tẋ+
(
t2 − α2

)
x = 0 or Hermite’s equation ẍ− 2tẋ+ 2αx = 0) require a case by

case investigation, and their solutions even deserve special names.
It turns out that a satisfactory theory (I mean general strategies to solve the equation!) can only

be given when the coefficients do not depend on time, i.e. for the class of linear ODEs with constant
coefficients.

Since most linear ODEs of physics are of order two, and since the general theory is actually constructed
starting with order two “differential operators”, we start with

6.1 General considerations on second order linear ODEs

A second order linear differential equation is a differential equation of the form

a(t)ẍ+ b(t)ẋ+ c(t)x = r(t)

where the coefficients a(t), b(t) and c(t), and the r.h.s. term (“segundo membro”) r(t) are continuous
functions defined in some interval I of the real line.

The strategy to solve such equations passes through the solution of the associated homogeneous equa-
tion

a(t)ẍ+ b(t)ẋ+ c(t)x = 0 .

The Cauchy problem for both differential equations is: find the solution with initial condition x(t0) =
x0 and ẋ(t0) = v0.

We will be mainly interested in linear ODEs with constant coefficients, so we give a

Mechanical interpretation of second order linear ODEs with constant coefficients. It may
be useful to keep in mind the “mechanical” interpretation of the ingredients of a generic second order
linear ODE with constant coefficients like

aẍ+ bẋ+ cx = r(t) .

To understand it, consider the one-dimensional motion of a particle of mass m. The trivial Newton
equation

mq̈ = 0

describes free motion in an inertial frame. It says d
dt (mq̇) = 0, so that the linear momentum p = mq̇ is a

constant of the motion. The kinetic energy K = p2/2m of the particle is also a constant of the motion.
The plane with coordinate (q, p) is called “phase space” of the system (“espaço de fases”), and images of
trajectories t 7→ (q(t), p(t)) in the phase space are called “phase curves”.

Newton equation
mq̈ = F (t)

describes the motion driven by an external time-dependent force F (t). So, the first coefficient m is the
inertia of the system, and the r.h.s. is an external force.

Newton equation
mq̈ = −αq̇

describes free motion with friction, provided that α is positive. Indeed, the kinetic energy decreases
exponentially as d

dtK = −αK. So, the second coefficient represent dissipation, when positive, or energy
production, when negative (a rather unphysical situation!)
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Newton equations
mq̈ = −ω2q and mq̈ = k2q

describe a particle in a potential well U(q) = 1
2ω

2q2 and in a potential hill U(q) = − 1
2k

2q2, respectively.
In both cases the total energy

E = p2/2m+ U(q)
is a constant of the motion. The trajectory q(t) = 0 is an equilibrium solution, and other phase curves
are contained in the level sets of the energy. Draw pictures of these level sets, and convince yourself
that the equilibrium solution is stable in the first case (the force tends to push the particle towards the
equilibrium position), and unstable in the second case (the force tends to fasten the particle from the
equilibrium position). So, the third coefficient is the stiffness of an attracting or repelling force.

Newton equations
mq̈ = −αq̇ − ω2q and mq̈ = −αq̇ + k2q

describe damped systems, as long as α is positive.
Finally, Newton equations

mq̈ = −αq̇ − ω2q + F (t) and mqq̈ = −αq̇ + k2q + F (t) .

describe damped systems forced by a time-dependent external force F (t).

Observations on linearity and strategy. The non-homogeneous and the associated homogeneous
equations can be written as

Lx = r and Lx = 0 ,
respectively, if we define the “differential operator”

L = a(t)
d2

dt2
+ b(t)

d

dt
+ c(t)

sending a twice differentiable functions x(t) into the function a(t)ẍ(t) + b(t)ẋ(t) + c(t)x(t).
The operator L is linear, meaning that L(x + y) = Lx + Ly for any two functions x and y, and

L(kx) = kLx for any function x and real number k. Consequences are:

• the space of solutions of the homogeneous equation Lx = 0 is a linear space,

• the difference between any two solutions of the non-homogeneous equation Lx = r is a solution of
the homogeneous equation Lx = 0

In other words, the space of solutions of the non-homogeneous equation is an affine space modeled on
the linear space L of solutions of the associated homogeneous equations. Hence, once you have just one
solution z of the non-homogeneous equation, you recover the whole space of solutions as z + L.

This suggests the following strategy to solve the Cauchy problem for Lx = r.

• First, solve the homogeneous equation Ly = 0, and show that it has enough solutions, actually a
two dimensional space of solutions, which can be written as y(t) = c+φ+(t) + c−φ−(t), where φ+

and φ− form a “basis” of the space of solutions and c+ and c− are arbitrary constants.

• Find one “particular solution” z of the non-homogeneous equation Lz = r.

• Try a solution of the non-homogeneous equation Lx = r having the form x = z + y, where z is the
particular solution of the non-homogeneous equation and y = c1φ+ + c2φ− is the general solution
of the homogeneous equation. Since x depends on two free parameters, c1 and c2, choose them to
match your initial conditions x(t0) = x0 and ẋ(t0) = v0.

• Finally, prove an existence and uniqueness theorem for the homogeneous equation. This will imply
an existence and uniqueness theorem for the non-homogeneous equation as well.

Superposition principle. If x1 and x2 are solutions of the non-homogeneous equations Lx = r1 and
Lx = r2, respectively, then the linear combination c1x1 + c2x2 is a solution of the non-homogeneous
equation Lx = c1r1 + c2x2. The same holds, of course, for any finite number of r.h.s. terms. This
observation is known as superposition principle (“prinćıpio de sobreposição”). If you think at the solution
x of the differential equation Lx = r as the system’s response to the external input r, the principle just
says that the system responds linearly. So, the strategy to solve an equation with a complicated r.h.s.
could be: try to write r(t) as a sum

∑
ri(t) of simpler functions, solve separately each Lxi = ri, and

finally sum the solutions
∑
xi(t).

This said, we start with solving
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6.2 Second order homogeneous ODEs with constant coefficients

Here we consider a second order homogeneous equation with constant coefficients as

ẍ+ 2αẋ+ βx = 0 .

(note the factor 2 before the second coefficient: it will simplify all formulas below!) Observe that the
homogeneous equation is autonomous (nothing depends on time explicitly), hence if ϕ(t) is a solution,
also any ϕ(s+t) is a solution, for any time s. This implies that we may only consider the Cauchy problem
for initial time t0 = 0.

An obvious solution is the equilibrium solution x(t) = 0.
Suppose that x(t) is a solution of the above equation, and make the conjecture x(t) = e−αty(t) for

some other function y(t). Computation shows that then y(t) must be a solution of

ÿ = δy

where δ = α2 − β (the parameter 4δ is called discriminant of the linear ODE).
Now, solving ÿ = δy is quite simple. Three different cases are possible, depending on the sign of δ,

and a couple of solutions for each case are obvious.
If δ is positive, hence equal to k2, two solutions of the equation y′′ = k2y are

ϕ+(t) = ekt and ϕ−(t) = e−kt .

If δ is negative, hence equal to −ω2, two solutions of the equation y′′ = −ω2y are

ϕ+(t) = cos(ωt) and ϕ−(t) = sin(ωt) .

If δ = 0, and this is a degenerate case, two solutions of the equation y′′ = 0 are

ϕ+(t) = 1 and ϕ−(t) = t .

Now we claim that the three couples of solutions above are linearly independent (this simply means
that their quotient is not constant, which is the case). Since, as shown by the following existence and
uniqueness theorem, they form a basis of the space of solutions of the respective equations y′′ = δy, these
(like any other independent) couple are called fundamental solutions. Going back to the original equation
ẍ+ 2αẋ+ βx = 0, we get the couples of fundamental solutions

φ+(t) = e−αtϕ+(t) and φ−(t) = e−αtϕ−(t) .

There follows that the formula
x(t) = c+φ+(t) + c−φ−(t) ,

where c+ and c− are arbitrary real numbers, gives solutions of the homogeneous equation.
The free parameters c+ and c− can be chosen to match any initial condition x(0) = x0 and ẋ(0) = v0.

Indeed, this amount to solve the system

c+φ+(0) + c−φ−(0) = x0

c+φ̇+(0) + c−φ̇−(0) = v0 ,

and the vectors
(
φ+(0), φ̇+(0)

)
and

(
φ−(0), φ̇−(0)

)
are linearly independent (check this!). Now, we

claim that solutions of the Cauchy problem are unique.

Existence and uniqueness theorem for homogeneous second order linear ODEs with constant
coefficients. The Cauchy problem for ẍ + 2αẋ + βx = 0 with any initial conditions x(0) = x0 and
ẋ(0) = v0 has one and only one solution. The unique solution may be written as

x(t) = c+e
−αtϕ+(t) + c−e

−αtϕ−(t) ,

where c+ and c− are constant coefficients, and ϕ+ and ϕ− are a pair of fundamental solutions of y′′ = δy
with δ = α2 − β, for example:

ϕ+(t) = 1 and ϕ−(t) = t , if δ = 0 ,
ϕ+(t) = ekt and ϕ−(t) = e−kt , if δ = k2 > 0 ,

ϕ+(t) = cos(ωt) and ϕ−(t) = sin(ωt) , if δ = −ω2 < 0 .
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Proof. It is sufficient to prove the result for the linear ODE ẍ = δx. Also, by linearity, it is sufficient to
show that the only solution of ẍ = δx with zero initial data x(0) = 0 and ẋ(0) = 0 is the trivial solution.

The starting observation is that solutions of ẍ = δx are analytic functions (their Taylor series converges
to the function). The way you prove it is an elementary instance of a strategy, called “bootstrap”, which
works for eigenfunctions of a Laplacian or more generally of any elliptic differential operator in any
dimension. The equation ẍ = δx implies that x admits derivatives all orders, and we can actually
compute them. Indeed, ẍ′ = (ẍ)′ = δẋ, x(4) = (ẍ′)′ = (δẋ)′ = δẍ = δ2x, ..., and by induction you see
that

x(2n) = δnx and x(2n+1) = δnẋ .

Since x are ẋ are bounded on a bounded interval (because they are continuous), the derivatives of x grow
at most polynomially, say x(k)(t) ≤ CKk for some constants C and K and any t in a fixed bounded
interval. Now you use the fact that a polynomial bound for the derivatives of a function in some bounded
interval implies (by the Taylor formula with error, or, if you want, because the series is bounded by the
Taylor series of an exponential) absolute convergence of the Taylor series.

Now, assume that x(t) is a solution of ẍ = δx with initial conditions x(0) = 0 and ẋ(0) = 0. The
above formulas show that all the derivatives of x at the origin are zero. There follows from analyticity
that x is identically equal to zero on any bounded interval around the origin. q.e.d.

Characteristic equation and fundamental solutions. Here we provide a unifying picture of the
above apparently different cases.

Consider the second order differential operator with constant coefficients

L =
d2

dt2
+ 2α

d

dt
+ β

which defines the second order homogeneous ODE Lx = 0. We make the conjecture that the solution is
an exponential, say x(t) = ezt. Computation shows that

(Lx) (t) =
(
z2 + 2αz + β

)
x(t) .

The quadratic polynomial p(z) = z2 + 2αz + β is called characteristic polynomial of the second order
differential operator L. The above computation shows that x(t) = ezt is a solution of the homogeneous
equation Lx = 0 provided that the “frequency” z is a zero of p(z). The equation

z2 + 2αz + β = 0

is called characteristic equation associated with the homogeneous second order ODE ẍ+ 2αẋ+ βx = 0.
The resolvent formula says that the zeros of the quadratic polynomial z2 + 2αz + β are given by

z± = −α±
√
δ ,

where δ = α2 − β. Depending on the sign of δ, the characteristic polynomial may have two distinct real
roots, no real root but two complex conjugate roots, or one real root of multiplicity two. Here we give
the recipe to find a couple of fundamental solutions of the homogeneous ODE for each of these cases.

• If the discriminant is positive, say δ = k2 > 0, the characteristic polynomial has two distinct real
roots z± = −α ± k. But this means that the polynomial factorizes like (z − z+)(z − z−). The
corresponding factorization for the differential operator

d2

dt2
+ 2α

d

dt
+ β =

(
d

dt
− z+

)(
d

dt
− z−

)
shows that any function in the kernel of one of the two first order operators above, hence solution
of the first order ODEs ẋ = z±x, is a solution of the homogeneous equation. This gives the known
fundamental solutions

ez±t = e−αte±kt .
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• If the discriminant is negative, say δ = −ω2 < 0, the characteristic polynomial has no real roots.
Meanwhile, it has two conjugate complex roots z± = −α ± iω, where i denotes

√
−1. The corre-

sponding factorization
d2

dt2
+ 2α

d

dt
+ β =

(
d

dt
− z+

)(
d

dt
− z−

)
shows that solutions solutions of the first order ODEs ẋ = z±x are also solutions of the homogeneous
equation. We get the two linearly independent complex valued solutions as

ez±t = e−αte±iωt .

If we don’t like complex valued solutions, we may finally take suitable linear combinations, use
Euler’s formula eiθ = cos(θ) + i sin(θ), and get our familiar fundamental solutions

ez+t + ez−t

2
= e−αt cos(ωt) and

ez+t − ez−t

2i
= e−αt sin(ωt) .

• If the discriminant is zero, i.e. δ = 0, the polynomial has just one real root z0 = −α of multiplicity
two. The factorization now is

d2

dt2
+ 2α

d

dt
+ α2 =

(
d

dt
+ α

)2

.

The kernel of d
dt + α gives the first solution e−αt. But the conjecture x(t) = e−αty(t) says that y

must be a solution of the trivial equation ÿ = 0, hence a polynomial of degree one. There follows
that a set of fundamental solutions is

e−αt and te−αt .

Linear independence and Wronskian. We claimed that the two fundamental solutions φ+ and
φ− of the homogeneous equation ẍ + 2αẋ + βx were linearly independent, namely that there exist no
constants c+ and c−, apart for the trivial case c+ = c− = 0, such that

c+φ+(t) + c−φ−(t) = 0

for any t. This is the same as saying that the quotient φ+/φ− (whenever defined) is not constant. Here
we provide a sophisticated tool to check linear independence.

Let f(t) and g(t) be two differentiable functions defined in some interval of the real line. The Wron-
skian between f and g is defined as

Wf,g(t) = f(t)g′(t)− f ′(t)g(t) .

Observe that this is nothing but the derivative of the ratio g/f multiplied by f2, as well as minus the
derivative of the ratio f/g multiplied by g2. If Wf,g(t) = 0 for any t in some interval, then the quotient
g/f (or f/g) is constant on that interval. There follows that if the quotient between f and g is not
constant, that is if f and g are linearly independent, then the Wronskian Wf,g must be different from
zero somewhere in the interval.

If φ+ and φ− are two solution of the same linear homogeneous second order ODE (not necessarily
with constant coefficients), say

ẍ+ p(t)ẋ+ q(t)x = 0 ,

then their Wronskian is either everywhere zero or everywhere different from zero. Indeed, deriving one
gets

W ′φ+,φ−(t) = φ+(t)φ′′−(t)− φ′′+(t)φ−(t)
= −p(t)Wφ+,φ−(t) ,

and integration gives Abel’s identity

Wφ+,φ−(t) = Wφ+,φ−(0)e−
R t
0 p(s)ds .

Since the exponential is never zero, there follows that
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Theorem. Two solutions of the same homogeneous second order ODE are linearly independent iff their
Wronskian is different from zero in at least (hence in any!) one point.

Observe that, taking t = 0, the condition Wφ+,φ−(0) 6= 0 amounts to say that φ+(0)φ′−(0) −
φ′+(0)φ−(0) 6= 0. But this is the determinant of the two-by-two matrix(

φ+(0) φ′+(0)
φ−(0) φ′−(0)

)
,

so that this is the same as saying that the two vectors (φ+(0), φ−(0)) and
(
φ′+(0), φ′−(0)

)
are independent.

This last statement is precisely the statement that, given any initial conditions x0 and v0, we can unique
constants c+ and c+ such that the solution x(t) = c+φ+(t) + c+φ−(t) satisfies x(0) = x0 and ẋ(0) = v0.

Exercise. Finally, you may want to check that the Wronskian between the couples of fundamental
solutions of the homogeneous equation ẍ− 2αẋ+ βx = 0 are different from zero. Compute

We−αt,te−αt(t) , We−αtekt,e−αte−kt(t) and We−αt sin(ωt),e−αt cos(ωt)(t) .

Example (free motion). Free motion of a particle in a inertial frame and without forces is governed
by the trivial Newton equation mq̈ = 0. Solutions are q(t) = s + vt, where s is the initial position q(0)
and v is the initial velocity q′(0).

Example. Solve ẍ+ 2ẋ+ 5x = 0 with initial conditions x(0) = 3 and ẋ(0) = −2.
The characteristic polynomial z2 + 2z + 5 has complex conjugate roots z± = −1± i2, hence a couple

of fundamental solutions are e−t cos(2t) and e−t sin(2t). The general solution is

x(t) = c+e
−t cos(2t) + c−e

−t sin(2t) .

To determine the value of the constants, you solve the system

c+ = 3
−c+ + c− = −2

given by the initial conditions, and get the solution x(t) = 3e−t cos(2t) + e−t sin(2t).

Training. Find the general solution of the following EDOs:

ẍ− 2x = 0 ẍ+ π2x = 0 3ẍ+ ẋ = 0 ẍ− ẋ = 0

ẍ+ 2ẋ− x = 0 ẍ+ 2ẋ+ x = 0 ẍ+ 4ẋ+ 5x = 0 ẍ− 4ẋ+ x = 0

Training. Solve the following Cauchy problems:

ẍ+ 2x = 0 with x(0) = 0 and ẋ(0) = 2

ẍ+ ẋ = 0 with x(0) = 1 and ẋ(0) = 0

ẍ+ 4ẋ+ 5x = 0 with x(1) = 2 and ẋ(1) = −1

ẍ− 17ẋ+ 13x = 0 with x(3) = 0 and ẋ(3) = 0

ẍ− 2ẋ− 2x = 0 with x(0) = 0 and ẋ(0) = 9

ẍ+ 2ẋ− 2x = 0 with x(3) = 0 and ẋ(3) = 9

ẍ− 4ẋ− x = 0 com x(1) = 2 e ẋ(1) = 1 .

Training. Find second order ODEs which admit the following pairs of independent solutions:

e2t and e−2t , e−t sin(2πt) and e−t cos(2πt) , sinh(t) and cosh(t) ,

e−3t and te−3t , sin(2πt) and sin(2πt+ π/2) , 3 and 5t .

Exercise. Find for which values of λ there exist non-trivial solutions of

d2y

dx2
= λy

in the segment [0, `] with boundary conditions y(0) = 0 and y(`) = 0.
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6.3 Oscillations

Here we study in details the most important second order linear differential equations, describing oscil-
lations of a system near its equilibrium positions6.

From the mathematical pendulum to the harmonic oscillator. Oscillations of a “mathematical
pendulum” (a point-like mass attached to a wire of negligible weight, under a constant gravitational force)
are modeled by the Newton equation

Iθ̈ = −mg` sin θ ,

where θ is the angle formed by the wire with the vertical line (hence θ = 0 is the equilibrium position),
m is the mass, ` is the length, g is the gravitational acceleration and I = m`2 is the momentum of inertia
of the pendulum. The conserved energy of the system is

E
(
θ, θ̇
)

=
1
2
Iθ̇2 −mg` cos θ .

Introducing the “resonant frequency” ω =
√
g/`, the Newton equation may be written as

θ̈ = −ω2 sin θ .

Small oscillations of a pendulum are modeled after the approximation sin θ ' θ, hence by the Newton
equation

θ̈ = −ω2θ ,

called harmonic oscillator.
The harmonic oscillator is a quite universal equation, since it describes small oscillations around a

“generic” stable equilibrium of any one-dimensional Newtonian system. Indeed, take a Newton equation
mẍ = −dU/dx of a particle in a potential field U . An equilibrium position is a zero of the force, i.e. a
point x0 where dU/dx(x0) = 0. It is “stable” if x0 is a local minimum of the potential, so that the Taylor
expansion of a generic potential around x0 starts with

U(x) = α+
1
2
β (x− x0)2 +

1
6
γ (x− x0)3 + ... ,

for some positive second derivative d2U/dx2(x0) = β. If we are only interested in small displacements of
x around x0, we can safely disregard high order terms and approximate the Newton equation as

m
d2

dt2
(x− x0) ' −β (x− x0) ,

which is an harmonic oscillator with resonant frequency ω =
√
β/m. An example is “Hooke’s law”

ẍ = −k2x which describes small displacements of a spring from its rest position x = 0.

Harmonic oscillator. Consider the harmonic oscillator

q̈ = −ω2q .

The solution with initial data q(0) = q0 and qq̇(0) = v0 is

q(t) = q0 cos (ωt) +
v0

ω
sin (ωt) ,

representing oscillations with period 2π/ω. The above solution can be written as

q(t) = A sin (ωt+ ϕ) as well as A cos (ωt+ φ)

for some “amplitude” A =
√
q2
0 + (v0/ω)2 and “phases” ϕ and φ, which depend on the initial data.

6 “The harmonic oscillator, which we are about to study, has close analogs in many other fields; although we start with
a mechanical example of a weight on a spring, or a pendulum with a small swing, or certain other mechanical devices, we
are really studying a certain differential equation. This equation appears again and again in physics and other sciences, and
in fact is a part of so many phenomena that its close study is well worth our while. Some of the phenomena involving this
equation are the oscillations os a mass on a spring; the oscillations of charge flowing back and forth in an electrical circuit;
the vibrations of a tuning fork which is generating sound waves; the analogous vibrations of the electrons in an atom, which
generate light waves; the equations for the operation of a servosystem, such as a thermostat trying to adjust a temperature;
complicated interactions in chemical reactions; the growth of a colony of bacteria in interaction with the food supply and
the poison the bacteria produce; foxes eating rabbits eating grass, and so on; ...”

Richard P. Feynman [Feynman]
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Harmonic oscillator, phase curves and time series.

The energy

E(q, q̇) =
1
2
q̇2 +

1
2
ω2q2

is a constant of the motion. As a function of the amplitude and the resonant frequency, the energy is
E = ω2A2.

Call p = q̇ the momentum. Level sets of E in the q-p plane (the phase-space of the system) are
ellipses, and argue that that they are the phase curves (i.e. the images of the trajectories of the harmonic
oscillator in the phase space). The Newton equation q̈ = −ω2q is equivalent to Hamilton’s first order
equations

q̇ = p
ṗ = −ω2q .

Eliminate dt, and show that phase curves are solutions of the first order (homogeneous and exact) ODE

pdp+ ω2qdq = 0 ,

which is nothing but dE = 0.

Exercise (particle in a potential hill). Solve and discuss the Newton equation

mq̈ = k2q ,

of a particle of mass m in a potential U(q) = − 1
2k

2q2.
Does it admit equilibrium solutions? Does it admit periodic orbits? Does it admit bounded orbits?

Damped oscillations. Adding friction to an harmonic oscillator we get

q̈ = −2αq̇ − ω2q ,

where α is some positive constant.

• Find the general solution, draw pictures and discuss the cases

α2 < ω2 (under-critical damping),

α2 = ω2 (critical damping),

and α2 > ω2 (overcritical damping). .

• Show that the energy

E(q, q̇) =
1
2
q̇2 +

1
2
ω2q2

decreases with time outside equilibrium points.

• Call p = q̇ the momentum. The Newton equation q̈ = −2αq̇ − ω2q is equivalent to Hamilton’s first
order equations

q̇ = p
ṗ = −2αp− ω2q

Eliminate dt, and show that phase curves are solutions of the homogeneous first order ODE

pdp+
(
2αp+ ω2q

)
dq = 0 .

Solve the equation, or try to understand the qualitative behavior of its solutions, depending on the
ratio α2/ω2, and draw phase curves in the phase space q-p.

46



• What does it change if α is supposed to be negative?

Underdamped, critical and overdamped oscillations (phase portrait and time series).

Exercise (equidimensional equations). An ODE like

ax2 d
2y

dx2
+ bx

dy

dx
+ cy = 0

is called equidimensional, or Cauchy-Euler, equation.

• Show that the substitution x = et transform an equidimensional equation for y(x) in an equation
with constant coefficients for z(t) = y(x(t)).

• Solve

x2 d
2y

dx2
+ x

dy

dx
− 4y = 0 ,

for x > 0.

Example (harmonic oscillator in complex coordinates). Consider the harmonic oscillator

q̈ = −ω2q .

Define the complex variable z = ωq + iq̇. Newton equation then takes the form of a first order linear
equation in the complex line, namely

ż = −iωz
and the solution can be written as

z (t) = e−iωtz (0) .

Going back to your original variables, and using Euler’s formula, you get the familiar “sin and cos”
solution.

Example (stationary Schrödinger equation on the line). The stationary Schrödinger equation
for the complex valued wave-function Ψ(x) of a particle of energy E in a potential U(x) is

− ~2

2m
d2Ψ
dx2

= (E − U(x)) Ψ ,
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where m is the mass of the particle and ~ = h/2π is the reduced Planck constant (h ' 6.6262× 10−34 J
s).

The equation for the free particle, the one with U(x) = 0, has the couple of independent solutions

Ψ(x) = e±ipx/~

corresponding to the value E = p2/2m of the energy. The parameter p is then interpreted to be the
momentum of the particle. The modulus |Ψ(x)| of the wave-function is interpreted to be the probability
density to find the particle in the position x. The fact that the solutions e±ipx/~ have unit modulus
at all points (and are not square integrable!) is a manifestation of Heisenberg’s uncertainty principle
∆x∆p ≥ ~/2: fixing the value of the momentum produces an infinite uncertainty for the position!

A free particle confined in a box, here simply a segment [0, `] since we are in dimension one, is modeled
taking (the limit of a sequence of smooth potentials that tends to) a potential which is zero inside the
interval and infinite outside. This produces natural boundary conditions Ψ(0) = 0 and Ψ(`) = 0 for the
wave function. The only non-trivial solutions have then energy levels

En =
h2

8m`2
n2 ,

for n = 1, 2, 3, ....

Wave functions of the first 5 energy levels.

6.4 Second order non-homogeneous ODEs with constant coefficients

Consider the non-homogeneous equation

ẍ+ 2αẋ+ βx = r(t) ,

where r(r) is a continuous function in some interval I. The difference between any two solutions must
be a solution of the associated homogeneous equation

y′′ + 2αy′ + βy = 0 .

But we already know how to solve it: its general solution is a linear combination

y(t) = c1φ+(t) + c2φ−(t) ,

where φ+ and φ− are a pair of fundamental solutions. This implies that if we could find just one solution
z(t) of the non-homogeneous equation, any other solution will be a sum

x(t) = z(t) + c1φ+(t) + c2φ−(t)

of this particular solution and a solution of the homogeneous equation. In other words,

Theorem. The general solution of the non-homogeneous equation is given by the sum of a partic-
ular solution of the non-homogeneous equation and the general solution of the associated homogeneous
equation.

So, we are left with the problem to determine one particular solution of the non-homogeneous equation.
We first show a general method, working in any case.

Method of variation of parameters to find a particular solution. Let φ+(t) and φ−(t) be two
independent solutions of the associated homogeneous equation. We try a solution of the non-homogeneous
equation having the form

z(t) = λ+(t)φ+(t) + λ−(t)φ−(t)
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where λ+ and λ− are two functions to be determined. Inserting our guess into the non-homogeneous
equation

ẍ+ αẋ+ βx = r(t) ,

we get, after some computations, the result that z(t) satisfies the non-homogeneous equation if (but not
only if!) λ′+ and λ′− solve the system of algebraic equations

λ′+(t)φ+(t) + λ′−(t)φ−(t) = 0
λ′+(t)φ′+(t) + λ′−(t)φ′−(t) = r(t) .

The determinant of the system is the Wronskian Wφ+,φ−(t), hence is everywhere different from zero. The
solution of the system is

λ′+(t) = −φ−(t)
r(t)

Wφ+,φ−(t)

λ′−(t) = φ+(t)
r(t)

Wφ+,φ−(t)
.

Integrating the above ODEs for λ+ and λ−, we get finally the following recipe

Theorem (variation of parameters). Let φ+(t) and φ−(t) be two independent solutions of the
homogeneous equation y′′ + 2αy′ + βy = 0. A particular solution of the non-homogeneous equation
ẍ+ 2αẋ+ βx = r(t) is given by

z(t) = λ+(t)φ+(t) + λ−(t)φ−(t)

where

λ+(t) = −
∫
φ−(t)

r(t)
Wφ+,φ−(t)

dt , λ−(t) =
∫
φ+(t)

r(t)
Wφ+,φ−(t)

dt .

Example. Solve ẍ+ x = 1/ sin(t) for t ∈ (0, π).
A set of fundamental solutions of the homogeneous equation y′′+ y = 0 is cos(t) and sin(t), hence the

theorem above gives a particular solution

z(t) = λ+ cos(t) + λ− sin(t)

where

λ+(t) = −
∫
dt = t and λ−(t) =

∫
cos(t)
sin(t)

dt = log (sin(t)) .

The general solution is finally

x(t) = −t cos(t) + log (sin(t)) sin(t) + c+ cos(t) + c− sin(t) .

Method of undetermined coefficients to find a particular solution. When the r.h.s.’s r(t) is
particularly simple, we have at our disposal a less painful method to find particular solutions, which
involves no integrations at all.

We are looking for just one solution of the non-homogeneous equation Lx = r, where L is the
differential operator L = d2/dt2 + αd/dt + β. Assume that the r.h.s. r(t) belongs a finite dimensional
space of functions F which is left invariant by L (i.e., if f ∈ F , then also Lf ∈ F). If f1(t), f2(t), ..., fn(t)
is a basis of F , we may try a particular solution having the form

z(t) = z1f1(t) + z2f2(t) + ...+ znfn(t)

for some coefficients z1, z2, ..., zn to be determined. Indeed, since Lz is again an element of F , and since
also the r.h.s. admits a (unique) expression as r(t) = r1f1(t) + r2f2(t) + ...+ rnfn(t), we may adjust the
coefficients in order to have Lz = r. This method works whenever the space F is not too small, namely
when it is not contained in the kernel of L.

Here are the recipes.
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• Polynomials. The space of polynomials of given finite degree is left invariant by any differential
operator with constant coefficients. So, if the r.h.s.is a polynomial of degree n, say r(t) =

∑n
i=0 rit

i,
a particular solution may be found between polynomials of the same degree, if β 6= 0, of degree
n+ 1 if β = 0 but α 6= 0, or of degree n+ 2 for the trivial equation ẍ = r(t).

To do this, you just try a solution z(t) =
∑n+2
i=0 zit

i, substitute it into the equation, and equal the
coefficients of the same powers of t.

• Exponentials. If the r.h.s. is an exponential, say r(t) = eγt, try a particular solution of the form
z(t) = p(t)eγt, where p is a polynomial of degree less then or equal to two.

If the r.h.s. is an polynomial times an exponential, say r(t) = eγt
∑n
i=0 rit

i, try a particular solution
of the form z(t) = eγt

∑n+2
i=0 zit

i.

• Trigonometric functions. If the r.h.s. is a trigonometric function as r(t) = sin(γt + ϕ) or
cos(γt+ϕ), try a particular solution as z(t) = p(t) sin(γt+ϕ) + q(t) cos(γt+ϕ), where p and q are
polynomial of degree less than or equal to two.

• General case. If, finally, the r.h.s. is a product of a polynomial times an exponential times sin’s
and cos’s, try a linear combination of polynomials times exponentials times sin’s and cos’s.

Example. Find a particular solution of ẍ+ ẋ = te2t.

Example. Find a particular solution of ẍ+ x = cos(2t).

Example. Find a particular solution of ẍ+ x = cos(t).

Example. Find a particular solution of ẍ− 2ẋ+ 2x = et cos(t).

Training. Find the general solution of the following non-homogeneous equations:

ẍ+ x = t ẍ− ẋ = t2 ẍ− 4x = e−2t ẍ+ 2ẋ+ x = e−t ẍ+ 4ẋ+ 3x = t2 − 1

Integral representation of the response. Show that a particular integral of the equation ẍ+ω2x =
r(t) is given by the formula

ϕ(t) =
1
ω

∫ t

0

r(s) sin (ω(t− s)) ds ,

and that a particular integral of the equation ẍ− k2x = r(t) is given by the formula

φ(t) =
1
k

∫ t

0

r(s) sinh (k(t− s)) ds .

Training. Find the general solution of the following non-homogeneous equations:

ẍ+ 9x = sin(t) ẍ+ 4x = cos(2t) ẍ− 4x = e−2t ẍ− 4x = e−t

Exercise (forced particle). Consider the Newton equation

mq̈ = −2αq̇ + F (t)

of a particle of mass m subject to a time dependent force F (t), with some positive friction coefficient α.
Given initial data q(0) = q0 and q̇(0) = v0, find the trajectory when the force is

• constant, i.e. F (t) = g,

• a polynomial like F (t) = 3− t2,

• an exponential like F (t) = e−3t,

• a periodic function like F (t) = F0 cos(γt),

• a superposition of periodic functions like F (t) =
∑n
i=1 Fi cos (γit).

• Find the corresponding trajectories when there is no friction, and compare with the limits of your
solutions above for α→ 0.

50



6.5 Driven oscillations

Driven oscillations. If an external periodic force F (t) = F0 cos(γt) acts on a harmonic oscillator we
get the Newton equation

q̈ = −ω2q + F (t) .

The homogeneous equation ÿ = −ω2y has solution

y(t) = A sin(ωt+ φ)

for some amplitude A and some phase φ. A particular solution of the non-homogeneous equation may
be found using the guess z(t) = a cos(γt) + sin(γt). This gives (inserting the guess into the differential
equation and equating the coefficients of cos and sin) the linear system

a(ω2 − γ2) = F0

b(ω2 − γ2) = 0

for the undetermined coefficients a and b. When γ2 6= ω2 it can be solved, and gives the response

z(t) =
F0

ω2 − γ2
cos(γt)

so that the general solution is

q(t) = A sin(ωt+ φ) +
F0

ω2 − γ2
cos(γt)

For ω2 = γ2, i.e. the force has the same frequency of the free oscillator, we must modify our guess. The
right guess is z(t) = t(a cos(ωt) + b sin(ωt)). We find the linear system

2ωa = 0
2ωb = F0

The solution is now
q(t) = A sin (ωt+ ϕ) +

F0

2ω
t sin (ωt) .

and, as expected, is an oscillation with amplitude increasing with time. This phenomena is known as
resonance.

We can have idea of what happens near resonance observing the solution for γ ' ω. Indeed, the
solution with trivial initial conditions (both position and velocity) is

q(t) =
F0

ω2 − γ2
(cos(γt)− cos(ωt))

and addiction formulas give

q(t) =
F0

ω2 − γ2
2 sin

(
ω − γ

2
t

)
· sin

(
ω + γ

2
t

)
When the difference ω − γ = 2ε is small, hence ω+γ

2 ' ω, the above is

q(t) =
F0

2ωε
sin(εt) · sin((ω + ε)t)

i.e. the product of a factor sin((ω+ ε)t) ' sin(ωt), oscillating with a frequency near the proper frequency
of the oscillator, times a slowly oscillating factor sin(εt). This phenomena is known as beats, due to
the strange effect that it produces in human hears (like a single note with slowly oscillating amplitude).
Taking the limit ε→ 0 we recover the resonant solution

F0

2ωε
sin(εt) · sin((ω + ε)t) → F0

2ω
t · sin(ωt)
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Beats and resonance.

Driven and damped oscillations. If an external periodic force F (t) = F0 cos(γt) acts on a damped
oscillator we get the Newton equation

q̈ = −2αq̇ − ω2x+ F (t) .

• Show that solutions have the form

q(t) = Ae−αt sin
(√

ω2 − α2t+ ϕ
)

+
F0√

(ω2 − γ2)2 + 4α2γ2

sin (γt+ φ) ,

where ϕ and φ are two phases. The first term in the above solution is a transient term, which van-
ishes for large times. The second term, called steady-state solution, is a (out of phase) synchronous
response to the force. The function

R(γ) =
1√

(ω2 − γ2)2 + 4α2γ2

is called resonant curve, or frequency response curve, since it represent the proportionality factor
between the input magnitude and the asymptotic response of the system.

• Show that, if α2 < ω2 (i.e. if the non forced system is under-critical), the resonant curve R(γ)
reaches a maximum for the value

γr =
√
ω2 − 2α2

of the forcing frequency, called resonant frequency.

• Discuss the behavior of the resonant curve for different values of the damping coefficient α, and the
limit of the resonant response R(γr) for small values of α.

• Use the superposition principle to show that if the force acting on a damped oscillator is a super-
position like

F (t) =
n∑
i=1

Fi cos (γit) ,

then the steady-state solution will be

q(t) =
n∑
i=1

R(γi)Fi sin (γit+ φi) .

• Discuss what happens in the critical (α2 = ω2) and overcritical (α2 > ω2) cases.

Exercise (Kirchoff’s law for a LRC circuit). The electric current I(t) flowing in an electric circuit
with resistance R, inductance L, capacitance C and driven by a tension V (t) satisfies the second order
linear ODE

LÏ +Rİ +
1
C
I = V ′(t) .

52



• Compute the current flowing in a circuit driven by a constant tension V (t) = V0, and discuss its
behavior (compare with damped oscillations).

• Compute the current flowing in a circuit driven by an alternate tension V (t) = V0 sin(γt) (compare
with forced and damped oscillations).

• Find the resonant frequency of a LRC circuit.

6.6 Central forces and Kepler problem

Example (motion in a central force and planetary motion). Consider the Newton equation

mr̈ = F (|r|) r̂

describing the motion of a particle (planet) of mass m in a central force field F . Conservation of angular
momentum implies that the motion is planar, hence we may take r ∈ R2. In polar coordinates r = ρeiθ,
the equations reed

ρ̈− ρθ̇2 = F (ρ)/m
ρθ̈ + 2ρ̇θ̇ = 0 .

The second equation says that the “areal velocity” (“velocidade areal”) ` = ρ2θ̇ is a constant of the
motion (Kepler’s second law).

Taking Newton’s gravitational force F (ρ) = −GmMρ2 (where M is the mass of the Sun and G is the
gravitational constant), the first equation may be written as

mρ̈ = − ∂

∂ρ
V` (ρ) ,

where we defined the ”effective potential energy” as V` (ρ) = 1
2m

`2

ρ2 −G
mM
ρ . The conserved energy is

E =
1
2
mρ̇2 +

1
2
m
`2

ρ2
−GmM

ρ
.

Kepler’s effective potential and some energy level sets.

Now we set ρ = 1/x and look for a differential equation for x as a function of θ. Computation shows
that dx/dθ = −ρ̇/`, and, using conservation of `, that d2x/dθ2 = −ρ2ρ̈/`2. There follows that the first
Newton equation reads

d2x

dθ2
+ x = − 1

`2x2m
F (1/x) .

we get
d2x

dθ2
+ x = −GM

`2
.
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The general solution of this second order linear differential equation is

x (θ) =
GM

`2
(1 + e cos (θ − θ0)) ,

for some constants e and θ0. Back to the original radial variable we get the solution

ρ (θ) =
`2/GM

1 + e cos (θ − θ0)
,

Hence, orbits are conic sections with eccentricity (“excentricidade” ) e and focus at the origin: an ellipse
for 0 ≤ e < 1 (corresponding to negative energy, hence to planets, and this is Kepler’s first law), a
parabola for e = 1 (corresponding to zero energy), an hyperbola for e > 1 (corresponding to positive
energy). .

54



References

[Ahlfors] Lars V. Ahlfors, Complex analysis, McGraw-Hill 1979.

[Apostol] Tom M. Apostol, Calculus, John Wiley & Sons, New York 1969.

[Arnold78] Vladimir I. Arnold, Metodi geometrici della teoria delle equazioni differenziali
ordinarie, Editori Riuniti - MIR, Roma 1978.

[Arnold79] Vladimir I. Arnold, Metodi matematici della meccanica classica, Edizioni MIR -
Editori Riuniti, Roma 1978.

[Arnold85] Vladimir I. Arnold, Equações diferenciais ordinárias, MIR 1985.
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