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Motivation

I Computers are physical machines

I But Computer Science tends to ignore this . . .
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Indeed, therein lies its great strength!

Higher levels should be uncluttered from details!
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Motivation

I use quantum resources for information-processing tasks

I delineate the scope of quantum advantage

I What non-classical features of quantum mechanics are responsible for
quantum advantage?

I identify the essential structure
I theory-independent
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Einstein–Podolsky–Rosen

I ‘Spooky’ action at a distance.

I But is this so spooky?

I EPR conclusion: QM is incomplete
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Empirical data
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Empirical data
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A simple observation
(Abramsky–Hardy)

I Propositional formulae φ1, . . . , φN

I pi := Prob(φi )

I Not simultaneously satisfiable, hence

Prob(
∧
φi ) = 0

I Using elementary logic and probability:

1 = Prob(¬
∧
φi ) = Prob(

∨
¬φi )

≤
N∑
i=1

Prob(¬φi ) =
N∑
i=1

(1− pi ) = N −
N∑
i=1

pi .

I Hence,
∑N

i=1 pi ≤ N − 1.
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Analysis of the Bell table

A B (0, 0) (0, 1) (1, 0) (1, 1)
a1 b1

1/2 0 0 1/2

a1 b2
3/8 1/8 1/8 3/8

a2 b1
3/8 1/8 1/8 3/8

a2 b2
1/8 3/8 3/8 1/8

φ1 = a1 ↔ b1

φ2 = a1 ↔ b2

φ3 = a2 ↔ b1

φ4 = a2 ⊕ b2

These formulae are contradictory.
But

p1 + p2 + p3 + p4 = 3.25

The inequality is violated by 1/4.
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Contextuality

I But the Bell table can be realised in the real world.

I What was our unwarranted assumption?

I That all variables could in principle be observed simultaneously.

R S Barbosa Quantum vs classical: non-locality, contextuality, and informatic advantage 8/34



Contextuality

I But the Bell table can be realised in the real world.

I What was our unwarranted assumption?

I That all variables could in principle be observed simultaneously.

R S Barbosa Quantum vs classical: non-locality, contextuality, and informatic advantage 8/34



Contextuality

I But the Bell table can be realised in the real world.

I What was our unwarranted assumption?

I That all variables could in principle be observed simultaneously.

R S Barbosa Quantum vs classical: non-locality, contextuality, and informatic advantage 8/34



Snapshots

I Not all properties of a quantum system may be observed at once.

I Jointly measurable observables provide partial, classical snapshots.

Local consistency vs Global inconsistency

R S Barbosa Quantum vs classical: non-locality, contextuality, and informatic advantage 9/34



Snapshots

I Not all properties of a quantum system may be observed at once.

I Jointly measurable observables provide partial, classical snapshots.

M. C. Escher, Ascending and Descending

Local consistency vs Global inconsistency
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Abramsky–Brandenburger framework

Measurement scenario 〈X ,M,O〉:
I X is a finite set of measurements or variables

I O is a finite set of outcomes or values

I M is a cover of X , indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario

I The set of variables is X = {a1, a2, b1, b2}.
I The outcomes are O = {0, 1}.
I The measurement contexts are:

{ {a1, b1}, {a1, b2}, {a2, b1}, {a2, b2} }.
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Measurement scenarios

a1 a2

b1

b2

a1 a2

b1

b2

c1

c2

Examples: Bell-type scenarios, KS configurations, and more.
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Another example: 18-vector Kochen–Specker

I A set of 18 variables, X = {A, . . . ,O}

I A set of outcomes O = {0, 1}

I A measurement cover M = {C1, . . . ,C9}, whose contexts Ci

correspond to the columns in the following table:

U1 U2 U3 U4 U5 U6 U7 U8 U9

A A H H B I P P Q
B E I K E K Q R R
C F C G M N D F M
D G J L N O J L O
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Empirical Models

Joint outcome or event in a context C is s ∈ OC , e.g.

s = [a1 7→ 0, b1 7→ 1] .

Empirical model: family {eC}C∈M where eC ∈ Prob(OC ) for C ∈M.

It specifies a probability distribution over the events in each context.

Each distribution is a row of the probability table.

Compatibility condition: the distributions “agree on overlaps”

∀C ,C ′ ∈M. eC |C∩C ′ = eC ′ |C∩C ′ .

In multipartite scenarios, compatibility = the no-signalling principle.
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Contextuality

A (compatible) empirical model is non-contextual if there exists a global
distribution d ∈ Prob(OX ) on the joint assignments of outcomes to all
measurements that marginalises to all the eC :

∃ d ∈ Prob(OX ). ∀C ∈M. d |C = eC .

i.e. all the local information can be glued into a consistent global description.

Contextuality:
family of data which is locally consistent but globally inconsistent.

The import of results such as Bell’s and Bell–Kochen–Specker’s theorems is that

there are contextual empirical models arising from quantum mechanics.
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Possibilistic collapse

I Given an empirical model e, define possibilistic model poss(e) by
taking the support of each distributions.

I Contains the possibilistic, or logical, information of that model.

00 01 10 11
a1b1 0 0
a1b2

1/8 1/8

a2b1
1/8 1/8

a2b2
1/8 1/8

7−→

00 01 10 11
a1b1 1 0 0 1
a1b2 1 1 1 1
a2b1 1 1 1 1
a2b2 1 1 1 1

In some instances, this is enough to witness contextuality!
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Contextuality (topo)logically

Hardy model

A B (0, 0) (0, 1) (1, 0) (1, 1)

a1 b1 1 1 1 1
a1 b2 0 1 1 1
a2 b1 0 1 1 1
a2 b2 1 1 1 0

a2 ∨ b1 a1 ∨ b2 ¬(a2 ∧ b2)

[a1 7→ 0, b1 7→ 0]
•a1

•
b1

• a2

•
b2

•0

•1
•

•
1

• 0

• 1

•0

•

There are some global sections,

but . . .
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Classical assignment: [a1 7→ 1, a2 7→ 1, b1 7→ 1, b2 7→ 1]
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There are some global sections, but . . .

Logical contextuality: Not all sections extend to global ones.
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Contextuality (topo)logically

Popescu–Rohrlich box

A B (0, 0) (0, 1) (1, 0) (1, 1)

a1 b1 1 0 0 1
a1 b2 1 0 0 1
a2 b1 1 0 0 1
a2 b2 0 1 1 0

•a1

• b1

• a2

•b2

•0

•1
•

•
1

• 0

• 1

•0

•

Strong contextuality:
no event can be extended to a global assignment.

a1 ↔ b1 a1 ↔ b2 a2 ↔ b1 a2 ⊕ b2
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What does this have to do with
quantum advantage?
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Non-local games
Alice and Bob cooperate in solving a task set by Verifier

May share prior information,

but cannot communicate once game starts

Alice

Alice

Bob

Bob

Alice Bob

VerifierVerifier

iA iB

oA oB

Verifier
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier

May share prior information, but cannot communicate once game starts

Alice Bob

iA iB

oA oB

A strategy is described by the probabilities P( oA, oB | iA, iB ).

A perfect strategy is one that wins with probability 1.
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The AND game

I Verifier sends a bit to each of Alice and Bob, iA and iB .

I Each returns an output bit, oA and oB .

I Their outputs are combined by verifier: oA ⊕ oB .

I They win if they implement the AND function:
oA ⊕ oB = oA ∧ oB

Classically, they can win with probablity at most 3/4

Quantumly, the Bell table allows for a higher probability.
In fact, one can reach (2 +

√
2)/4 ≈ 0.85
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Binary constraint systems games

A B C

D E F

G H I

Magic square:

I Fill with 0s and 1s

I rows and first two columns: even parity

I last column: odd parity

System of linear equations over Z2:

A ⊕ B ⊕ C = 0 A ⊕ D ⊕ G = 0

D ⊕ E ⊕ F = 0 B ⊕ E ⊕ H = 0

G ⊕ H ⊕ I = 0 C ⊕ F ⊕ I = 1

Clearly, this is not satisfiable in Z2.
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E.g.: Binary contraint satisfaction game

I Verifier sends an equation to Alice

I and a variable to Bob

I Alice returns an assignment for the variables in her equation

I Bob returns a value for his variable

I They win the play if:
I Alice’s assignment satisfies the equation
I Bob’s value is consistent with Alice’s assigment

Classically, Alice and Bob have a perfect strategy if and only if there is an
assignment to all variables satisfying the system of equations.

But using quantum resources, they can win the Magic Square game with
probability 1, using Mermin’s construction.

The system has a quantum solution but no classical solution!
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Contextual fraction and quantum advantages

I Contextuality has been associated with quantum advantage in
information-processing and computational tasks.

I Non-local games
XOR games (CHSH; Cleve–Høyer–Toner–Watrous)
quantum graph homomorphisms (Mančinska–Roberson)
constraint satisfaction (Cleve–Mittal)
etc. (Abramsky–B–de Silva–Zapata)

I MBQC
Raussendorf (2013)
“Contextuality in measurement-based quantum computation”

I MSD
Howard–Wallman–Veith–Emerson (2014)
“Contextuality supplies the ‘magic’ for quantum computation”

I Measure of contextuality  quantify such advantages.
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Measuring contextuality

We introduce the contextual fraction
(generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

I General, i.e. applicable to any measurement scenario

I Normalised, allowing comparison across scenarios
0 for non-contextuality . . . 1 for strong contextuality

I Computable using linear programming

I Precise relationship to violations of Bell inequalities (Dual LP)

I Monotone wrt operations that don’t introduce contextuality
 resource theory

I Relates to quantifiable advantages in QC and QIP tasks
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The contextual fraction
Non-contextuality: global distribution d ∈ Prob(OX ) such that:

∀C∈M. d |C = eC .

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions c ∈ SubProb(OX ) such that:

∀C∈M. c |C ≤ eC .

Non-contextual fraction: maximum weight of such a subdistribution.

Equivalently, maximum weight λ over all convex decompositions

e = λeNC + (1− λ)e′

where eNC is a non-contextual model.

NCF(e) = λ CF(e) = 1− λ
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Contextuality and MBQC

E.g. Raussendorf (2013) `2-MBQC

I measurement-based quantum computing scheme
(m input bits, l output bits, n parties)

I classical control:
I pre-processes input
I determines the flow of measurements
I post-processes to produce the output

only Z2-linear computations.

Impact of contributions

Classical
Dependence logics
(Hyttinen, Paolini, Väänänen ’15)

Binary constraint systems
(Kolaitis ’16)

Complexity
(Abramsky, Gottlob, Kolaitis ’13)

Quantum

Stronger no-go theorems
Unifies non-locality and
contextuality
Power of computational models
(Raussendorf ’13)

“MBQC” models
(Raussendorf, Briegel ’01)

Using our framework: “non-linearity implies contextuality”
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Contextuality and MBQC

I Additional power to compute non-linear functions resides in using
resources displaying contextual correlations.

⊕L −→ P

I Raussendorf (2013): If an `2-MBQC deterministically computes a
non-linear Boolean function f : 2m −→ 2l then the resource must be
strongly contextual.

I Probabilistic version: non-linear function computed with sufficently
large probability of success implies contextuality.
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Contextual fraction and MBQC

I Goal: Compute Boolean function f : 2m −→ 2l using `2-MBQC

I Hardness of the problem

ν(f ) := min {d(f , g) | g is Z2-linear}

(average distance between f and closest Z2-linear function)

where for Boolean functions f and g , d(f , g) := 2−m| {i ∈ 2m | f (i) 6= g(i)}.

I Average probability of success computing f (over all 2m possible
inputs): p̄S .

I Then,

1− p̄S ≥ NCF(e) ν(f )
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Contextuality as a resource: Algebra of empirical models

I Think of empirical models as black boxes

I What operations can we perform (non-contextually) on them?

I We write type statements

e : 〈X ,M,O〉

to mean that e is a (compatible) emprical model on 〈X ,M,O〉.

I The operations remind one of process algebras.
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Operations and the contextual fraction

Relabelling

Restriction

Coarse-graining

Mixing

Choice

Tensor

NCF(e1 ⊗ e2) = NCF(e1) NCF(e2)

Sequencing

NCF(e1; e2) ≥ NCF(e1) NCF(e2)
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Resource theory of contextuality
(some work in progress)

I Resource theory a la Coecke–Fritz–Spekkens.
(resource theory of combinable processes)

I Device-independent processes
I Operations remind one of process algebra
I Process calculus:

operational semantics by (probabilistic) transitions
I bissimulation, metric / approximation
I (modal) logic for device-independent processes

I Sequencing:
I so far, it hides middle steps
I not doing so leads to notion of causal empirical models.

I Allow natural expression of measurement-based computation with
feed-forward, in a device-independent form:

I One can measure a non-maximal context (face σ of complex)
I leaving a model on scenario lkσM
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Resource theory of contextuality
(some work in progress)

I Resource theory a la Coecke–Fritz–Spekkens.
(resource theory of combinable processes)

I Device-independent processes
I Operations remind one of process algebra
I Process calculus:

operational semantics by (probabilistic) transitions
I bissimulation, metric / approximation
I (modal) logic for device-independent processes

I Sequencing:
I so far, it hides middle steps
I not doing so leads to notion of causal empirical models.

I Allow natural expression of measurement-based computation with
feed-forward, in a device-independent form:

I One can measure a non-maximal context (face σ of complex)
I leaving a model on scenario lkσM
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Questions...

?
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