Quantum vs classical:
 non-locality, contextuality, and informatic advantage

Rui Soares Barbosa

DEPARTMENT OF

COMPUTER SCIENCE

```
rui.soares.barbosa@cs.ox.ac.uk
```

Q DAYS 2019
CMAT - Centro de Matemática, Universidade do Minho 12th April 2019

Motivation

- Computers are physical machines

Motivation

- Computers are physical machines
- But Computer Science tends to ignore this...

Indeed, therein lies its great strength!

AN $\times 64$ PROCESSOR IS SCREAMING ALONG RT BIUIONS OF CYCLES PER SECOND TO RUN THE XNU KERNEL, WHICH IS FRANICALLY WORKING THROUGH ALL THE POSIX-SPECIFED ABSTRACTION TO CREATE THE DARWIN SYSTEM UNDERIYING OS X, WHICH IN TURN IS STRAINING ITSELF TO RUN FIREFOX AND ITS GECKO RENDERER, WHICH CREATES A PASH OBTECT WHICH RENDERS DOZENS OF VIDEO FRAMES EVERY SECOND

BECAUSE I LANTED TO SEEA CAT JUPP INTO A BOX AND FALL OVER.

I AM A GOD.

Indeed, therein lies its great strength!

AN $\times 64$ PROCESSOR IS SCREAMING ALONG RT BIUIONS OF CYCLES PER SECOND TO RUN THE XNU KERNEL, WHICH IS FRANICALLY WORKING THROUGH ALL THE POSIX-SPECIFED ABSTRACTION TO CREATE THE DARWIN SYSTEM UNDERIYING OS X, WHICH IN TURN IS STRAINING ITSELF TO RUN FIREFOX AND ITS GECKO RENDERER, WHICH CREATES A PASH OBTECT WHICH RENDERS DOZENS OF VIDEO FRAMES EVERY SECOND

BECAUSE I LANTED TO SEEA CAT JUPP INTO A BOX AND FALL OVER.

I AM A GOD.

Motivation

- use quantum resources for information-processing tasks
- delineate the scope of quantum advantage

Motivation

- use quantum resources for information-processing tasks
- delineate the scope of quantum advantage
- What non-classical features of quantum mechanics are responsible for quantum advantage?
- identify the essential structure
- theory-independent

Einstein-Podolsky-Rosen

- 'Spooky' action at a distance.

Einstein-Podolsky-Rosen

- 'Spooky' action at a distance.
- But is this so spooky?

Einstein-Podolsky-Rosen

- 'Spooky' action at a distance.
- But is this so spooky?
- EPR conclusion: QM is incomplete

Empirical data

Empirical data

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

A simple observation

(Abramsky-Hardy)

- Propositional formulae $\phi_{1}, \ldots, \phi_{N}$

A simple observation

(Abramsky-Hardy)

- Propositional formulae $\phi_{1}, \ldots, \phi_{N}$
- $p_{i}:=\operatorname{Prob}\left(\phi_{i}\right)$

A simple observation

(Abramsky-Hardy)

- Propositional formulae $\phi_{1}, \ldots, \phi_{N}$
- $p_{i}:=\operatorname{Prob}\left(\phi_{i}\right)$
- Not simultaneously satisfiable, hence

$$
\operatorname{Prob}\left(\bigwedge \phi_{i}\right)=0
$$

A simple observation

(Abramsky-Hardy)

- Propositional formulae $\phi_{1}, \ldots, \phi_{N}$
- $p_{i}:=\operatorname{Prob}\left(\phi_{i}\right)$
- Not simultaneously satisfiable, hence

$$
\operatorname{Prob}\left(\bigwedge \phi_{i}\right)=0
$$

- Using elementary logic and probability:

$$
\begin{aligned}
1 & =\operatorname{Prob}\left(\neg \bigwedge \phi_{i}\right)=\operatorname{Prob}\left(\bigvee \neg \phi_{i}\right) \\
& \leq \sum_{i=1}^{N} \operatorname{Prob}\left(\neg \phi_{i}\right)=\sum_{i=1}^{N}\left(1-p_{i}\right)=N-\sum_{i=1}^{N} p_{i}
\end{aligned}
$$

A simple observation

(Abramsky-Hardy)

- Propositional formulae $\phi_{1}, \ldots, \phi_{N}$
- $p_{i}:=\operatorname{Prob}\left(\phi_{i}\right)$
- Not simultaneously satisfiable, hence

$$
\operatorname{Prob}\left(\bigwedge \phi_{i}\right)=0
$$

- Using elementary logic and probability:

$$
\begin{aligned}
1 & =\operatorname{Prob}\left(\neg \bigwedge \phi_{i}\right)=\operatorname{Prob}\left(\bigvee \neg \phi_{i}\right) \\
& \leq \sum_{i=1}^{N} \operatorname{Prob}\left(\neg \phi_{i}\right)=\sum_{i=1}^{N}\left(1-p_{i}\right)=N-\sum_{i=1}^{N} p_{i}
\end{aligned}
$$

- Hence, $\sum_{i=1}^{N} p_{i} \leq N-1$.

Analysis of the Bell table

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Analysis of the Bell table

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

$$
\begin{aligned}
\phi_{1} & =a_{1} \leftrightarrow b_{1} \\
\phi_{2} & =a_{1} \leftrightarrow b_{2} \\
\phi_{3} & =a_{2} \leftrightarrow b_{1} \\
\phi_{4} & =a_{2} \oplus b_{2}
\end{aligned}
$$

Analysis of the Bell table

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

$$
\begin{aligned}
\phi_{1} & =a_{1} \leftrightarrow b_{1} \\
\phi_{2} & =a_{1} \leftrightarrow b_{2} \\
\phi_{3} & =a_{2} \leftrightarrow b_{1} \\
\phi_{4} & =a_{2} \oplus b_{2}
\end{aligned}
$$

These formulae are contradictory.

Analysis of the Bell table

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

$$
\begin{aligned}
\phi_{1} & =a_{1} \leftrightarrow b_{1} \\
\phi_{2} & =a_{1} \leftrightarrow b_{2} \\
\phi_{3} & =a_{2} \leftrightarrow b_{1} \\
\phi_{4} & =a_{2} \oplus b_{2}
\end{aligned}
$$

These formulae are contradictory. But

$$
p_{1}+p_{2}+p_{3}+p_{4}=3.25
$$

Analysis of the Bell table

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{2}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{1}	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
a_{2}	b_{2}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

$$
\begin{aligned}
& \phi_{1}=a_{1} \leftrightarrow b_{1} \\
& \phi_{2}=a_{1} \leftrightarrow b_{2} \\
& \phi_{3}=a_{2} \leftrightarrow b_{1} \\
& \phi_{4}=a_{2} \oplus b_{2}
\end{aligned}
$$

These formulae are contradictory. But

$$
p_{1}+p_{2}+p_{3}+p_{4}=3.25
$$

The inequality is violated by $1 / 4$.

Contextuality

- But the Bell table can be realised in the real world.

Contextuality

- But the Bell table can be realised in the real world.
- What was our unwarranted assumption?

Contextuality

- But the Bell table can be realised in the real world.
- What was our unwarranted assumption?
- That all variables could in principle be observed simultaneously.

Snapshots

- Not all properties of a quantum system may be observed at once.
- Jointly measurable observables provide partial, classical snapshots.

Snapshots

- Not all properties of a quantum system may be observed at once.
- Jointly measurable observables provide partial, classical snapshots.

M. C. Escher, Ascending and Descending

Snapshots

- Not all properties of a quantum system may be observed at once.
- Jointly measurable observables provide partial, classical snapshots.

Local consistency

Snapshots

- Not all properties of a quantum system may be observed at once.
- Jointly measurable observables provide partial, classical snapshots.

Local consistency vs Global inconsistency

Abramsky-Brandenburger framework

Measurement scenario $\langle X, \mathcal{M}, O\rangle$:

- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- \mathcal{M} is a cover of X, indicating joint measurability (contexts)

Abramsky-Brandenburger framework

Measurement scenario $\langle X, \mathcal{M}, O\rangle$:

- X is a finite set of measurements or variables
- O is a finite set of outcomes or values
- \mathcal{M} is a cover of X, indicating joint measurability (contexts)

Example: $(2,2,2)$ Bell scenario

- The set of variables is $X=\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$.
- The outcomes are $O=\{0,1\}$.
- The measurement contexts are:

$$
\left\{\left\{a_{1}, b_{1}\right\}, \quad\left\{a_{1}, b_{2}\right\}, \quad\left\{a_{2}, b_{1}\right\}, \quad\left\{a_{2}, b_{2}\right\}\right\} .
$$

Measurement scenarios

Examples: Bell-type scenarios, KS configurations, and more.

Another example: 18-vector Kochen-Specker

- A set of 18 variables, $X=\{A, \ldots, O\}$

Another example: 18-vector Kochen-Specker

- A set of 18 variables, $X=\{A, \ldots, O\}$
- A set of outcomes $O=\{0,1\}$

Another example: 18-vector Kochen-Specker

- A set of 18 variables, $X=\{A, \ldots, O\}$
- A set of outcomes $O=\{0,1\}$
- A measurement cover $\mathcal{M}=\left\{C_{1}, \ldots, C_{9}\right\}$, whose contexts C_{i} correspond to the columns in the following table:

U_{1}	U_{2}	U_{3}	U_{4}	U_{5}	U_{6}	U_{7}	U_{8}	U_{9}
A	A	H	H	B	I	P	P	Q
B	E	I	K	E	K	Q	R	R
C	F	C	G	M	N	D	F	M
D	G	J	L	N	O	J	L	O

Empirical Models

Joint outcome or event in a context C is $s \in O^{C}$, e.g.

$$
s=\left[a_{1} \mapsto 0, b_{1} \mapsto 1\right] .
$$

Empirical Models

Joint outcome or event in a context C is $s \in O^{C}$, e.g.

$$
s=\left[a_{1} \mapsto 0, b_{1} \mapsto 1\right]
$$

Empirical model: family $\left\{e_{C}\right\}_{C \in \mathcal{M}}$ where $e_{C} \in \operatorname{Prob}\left(O^{C}\right)$ for $C \in \mathcal{M}$.
It specifies a probability distribution over the events in each context.
Each distribution is a row of the probability table.

Empirical Models

Joint outcome or event in a context C is $s \in O^{C}$, e.g.

$$
s=\left[a_{1} \mapsto 0, b_{1} \mapsto 1\right]
$$

Empirical model: family $\left\{e_{C}\right\}_{C \in \mathcal{M}}$ where $e_{C} \in \operatorname{Prob}\left(O^{C}\right)$ for $C \in \mathcal{M}$.
It specifies a probability distribution over the events in each context.
Each distribution is a row of the probability table.

Compatibility condition: the distributions "agree on overlaps"

$$
\forall C, C^{\prime} \in \mathcal{M} . \quad e_{C}\left|c \cap C^{\prime}=e_{C^{\prime}}\right| c \cap C^{\prime}
$$

Empirical Models

Joint outcome or event in a context C is $s \in O^{C}$, e.g.

$$
s=\left[a_{1} \mapsto 0, b_{1} \mapsto 1\right]
$$

Empirical model: family $\left\{e_{C}\right\} C \in \mathcal{M}$ where $e_{C} \in \operatorname{Prob}\left(O^{C}\right)$ for $C \in \mathcal{M}$.
It specifies a probability distribution over the events in each context.
Each distribution is a row of the probability table.

Compatibility condition: the distributions "agree on overlaps"

$$
\forall C, C^{\prime} \in \mathcal{M} . \quad e_{C}\left|c \cap C^{\prime}=e_{C^{\prime}}\right| c \cap C^{\prime}
$$

In multipartite scenarios, compatibility $=$ the no-signalling principle.

Contextuality

A (compatible) empirical model is non-contextual if there exists a global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ on the joint assignments of outcomes to all measurements that marginalises to all the e_{C} :

$$
\exists d \in \operatorname{Prob}\left(O^{X}\right) . \forall C \in \mathcal{M} .\left.\quad d\right|_{C}=e_{C} .
$$

Contextuality

A (compatible) empirical model is non-contextual if there exists a global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ on the joint assignments of outcomes to all measurements that marginalises to all the e_{C} :

$$
\exists d \in \operatorname{Prob}\left(O^{X}\right) . \forall C \in \mathcal{M} .\left.\quad d\right|_{C}=e_{C} .
$$

i.e. all the local information can be glued into a consistent global description.

Contextuality

A (compatible) empirical model is non-contextual if there exists a global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ on the joint assignments of outcomes to all measurements that marginalises to all the e_{C} :

$$
\exists d \in \operatorname{Prob}\left(O^{X}\right) . \forall C \in \mathcal{M} .\left.\quad d\right|_{C}=e_{C} .
$$

i.e. all the local information can be glued into a consistent global description.

Contextuality:
family of data which is locally consistent but globally inconsistent.

Contextuality

A (compatible) empirical model is non-contextual if there exists a global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ on the joint assignments of outcomes to all measurements that marginalises to all the e_{C} :

$$
\exists d \in \operatorname{Prob}\left(O^{X}\right) . \forall C \in \mathcal{M} .\left.\quad d\right|_{C}=e_{C}
$$

i.e. all the local information can be glued into a consistent global description.

Contextuality:

family of data which is locally consistent but globally inconsistent.

The import of results such as Bell's and Bell-Kochen-Specker's theorems is that there are contextual empirical models arising from quantum mechanics.

Possibilistic collapse

- Given an empirical model e, define possibilistic model poss(e) by taking the support of each distributions.
- Contains the possibilistic, or logical, information of that model.

Possibilistic collapse

- Given an empirical model e, define possibilistic model poss(e) by taking the support of each distributions.
- Contains the possibilistic, or logical, information of that model.

	00	01	10	11							
$a_{1} b_{1}$	$1 / 2$	0	0	$1 / 2$							
$a_{1} b_{2}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$							
$a_{2} b_{1}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$							
$a_{2} b_{2}$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$	\quad		00	01	10	11	
:---	:---	:---:	:---:	:---:	:---:						
			$a_{1} b_{1}$	1	0						
0	1										
$a_{1} b_{2}$	1	1	1	1							
$a_{2} b_{1}$	1	1	1	1							
$a_{2} b_{2}$	1	1	1	1							

Possibilistic collapse

- Given an empirical model e, define possibilistic model poss(e) by taking the support of each distributions.
- Contains the possibilistic, or logical, information of that model.

	00	01	10	11			
$a_{1} b_{1}$		0	0				
$a_{1} b_{2}$		$1 / 8$	$1 / 8$				
$a_{2} b_{1}$		$1 / 8$	$1 / 8$				
a_{2}							
$a_{2} b_{2}$	$1 / 8$			$1 / 8$	\quad		
:---	:---						

In some instances, this is enough to witness contextuality!

Contextuality (topo)logically

Hardy model

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	1	1	1	1
a_{1}	b_{2}	0	1	1	1
a_{2}	b_{1}	0	1	1	1
a_{2}	b_{2}	1	1	1	0

Contextuality (topo)logically

Hardy model

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	1	1	1	1
a_{1}	b_{2}	0	1	1	1
a_{2}	b_{1}	0	1	1	1
a_{2}	b_{2}	1	1	1	0

Contextuality (topo)logically

Hardy model

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	1	1	1	1
a_{1}	b_{2}	0	1	1	1
a_{2}	b_{1}	0	1	1	1
a_{2}	b_{2}	1	1	1	0

Contextuality (topo)logically

Hardy model

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	1	1	1	1
a_{1}	b_{2}	0	1	1	1
a_{2}	b_{1}	0	1	1	1
a_{2}	b_{2}	1	1	1	0

Contextuality (topo)logically

Hardy model

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	1	1	1	1
a_{1}	b_{2}	0	1	1	1
a_{2}	b_{1}	0	1	1	1
a_{2}	b_{2}	1	1	1	0
$a_{2} \vee b_{1}$					

Contextuality (topo)logically

Hardy model

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	1	1	1	1
a_{1}	b_{2}	0	1	1	1
a_{2}	b_{1}	0	1	1	1
a_{2}	b_{2}	1	1	1	0
$a_{2} \vee b_{1}$					

Contextuality (topo)logically

Hardy model

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	1	1	1	1
a_{1}	b_{2}	0	1	1	1
a_{2}	b_{1}	0	1	1	1
a_{2}	b_{2}	1	1	1	0

$a_{2} \vee b_{1}$
$a_{1} \vee b_{2} \quad \neg\left(a_{2} \wedge b_{2}\right)$

Contextuality (topo)logically

Hardy model

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	1	1	1	1
a_{1}	b_{2}	0	1	1	1
a_{2}	b_{1}	0	1	1	1
a_{2}	b_{2}	1	1	1	0
$a_{2} \vee b_{1}$		$a_{1} \vee b_{2}$		$\neg\left(a_{2} \wedge b_{2}\right)$	

Contextuality (topo)logically

Hardy model

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	1	1	1	1
a_{1}	b_{2}	0	1	1	1
a_{2}	b_{1}	0	1	1	1
a_{2}	b_{2}	1	1	1	0
$a_{2} \vee b_{1}$		$a_{1} \vee b_{2}$		$\neg\left(a_{2} \wedge b_{2}\right)$	

There are some global sections,

Classical assignment: $\left[a_{1} \mapsto 1, a_{2} \mapsto 1, b_{1} \mapsto 1, b_{2} \mapsto 1\right]$

Contextuality (topo)logically

There are some global sections, but...

Contextuality (topo)logically

There are some global sections, but...

Contextuality (topo)logically

There are some global sections, but...

Contextuality (topo)logically

There are some global sections, but...

Contextuality (topo)logically

There are some global sections, but...

Contextuality (topo)logically

There are some global sections, but...

Contextuality (topo)logically

There are some global sections, but...

Contextuality (topo)logically

There are some global sections, but...

Contextuality (topo)logically

There are some global sections, but...

Logical contextuality: Not all sections extend to global ones.

Contextuality (topo)logically

Popescu-Rohrlich box

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{1}	b_{1}	1	0	0	1
a_{1}	b_{2}	1	0	0	1
a_{2}	b_{1}	1	0	0	1
a_{2}	b_{2}	0	1	1	0

Strong contextuality:

no event can be extended to a global assignment.

$$
a_{1} \leftrightarrow b_{1} \quad a_{1} \leftrightarrow b_{2} \quad a_{2} \leftrightarrow b_{1} \quad a_{2} \oplus b_{2}
$$

What does this have to do with
quantum advantage?

Non-local games

Alice and Bob cooperate in solving a task set by Verifier May share prior information,

Non-local games

Alice and Bob cooperate in solving a task set by Verifier May share prior information,

Non-local games

Alice and Bob cooperate in solving a task set by Verifier
May share prior information, but cannot communicate once game starts

Non-local games

Alice and Bob cooperate in solving a task set by Verifier
May share prior information, but cannot communicate once game starts

Non-local games

Alice and Bob cooperate in solving a task set by Verifier
May share prior information, but cannot communicate once game starts

Non-local games

Alice and Bob cooperate in solving a task set by Verifier
May share prior information, but cannot communicate once game starts

Non-local games

Alice and Bob cooperate in solving a task set by Verifier
May share prior information, but cannot communicate once game starts

Non-local games

Alice and Bob cooperate in solving a task set by Verifier
May share prior information, but cannot communicate once game starts

Non-local games

Alice and Bob cooperate in solving a task set by Verifier
May share prior information, but cannot communicate once game starts

A strategy is described by the probabilities $P\left(o_{A}, o_{B} \mid i_{A}, i_{B}\right)$.

Non-local games

Alice and Bob cooperate in solving a task set by Verifier
May share prior information, but cannot communicate once game starts

A strategy is described by the probabilities $P\left(o_{A}, o_{B} \mid i_{A}, i_{B}\right)$.
A perfect strategy is one that wins with probability 1.

The AND game

- Verifier sends a bit to each of Alice and Bob, i_{A} and i_{B}.
- Each returns an output bit, O_{A} and o_{B}.
- Their outputs are combined by verifier: $o_{A} \oplus o_{B}$.
- They win if they implement the AND function: $o_{A} \oplus o_{B}=o_{A} \wedge o_{B}$

The AND game

- Verifier sends a bit to each of Alice and Bob, i_{A} and i_{B}.
- Each returns an output bit, O_{A} and o_{B}.
- Their outputs are combined by verifier: $o_{A} \oplus o_{B}$.
- They win if they implement the AND function: $o_{A} \oplus o_{B}=o_{A} \wedge o_{B}$

Classically, they can win with probablity at most $3 / 4$

Quantumly, the Bell table allows for a higher probability.
In fact, one can reach $(2+\sqrt{2}) / 4 \approx 0.85$

Binary constraint systems games

Magic square:

- Fill with 0s and 1s
- rows and first two columns: even parity
- last column: odd parity

Binary constraint systems games

A	B	C
D	E	F
G	H	I

Magic square:

- Fill with 0 s and 1 s
- rows and first two columns: even parity
- last column: odd parity

System of linear equations over \mathbb{Z}_{2} :

$$
\begin{array}{ll}
A \oplus B \oplus C=0 & A \oplus D \oplus G=0 \\
D \oplus E \oplus F=0 & B \oplus E \oplus H=0 \\
G \oplus H \oplus I=0 & \\
C \oplus F \oplus I=1
\end{array}
$$

Binary constraint systems games

A	B	C
D	E	F
G	H	I

Magic square:

- Fill with 0 s and 1 s
- rows and first two columns: even parity
- last column: odd parity

System of linear equations over \mathbb{Z}_{2} :

$$
\begin{array}{ll}
A \oplus B \oplus C=0 & A \oplus D \oplus G=0 \\
D \oplus E \oplus F=0 & B \oplus E \oplus H=0 \\
G \oplus H \oplus I=0 & \\
C \oplus F \oplus I=1
\end{array}
$$

Clearly, this is not satisfiable in \mathbb{Z}_{2}.

E.g.: Binary contraint satisfaction game

- Verifier sends an equation to Alice
- and a variable to Bob

E.g.: Binary contraint satisfaction game

- Verifier sends an equation to Alice
- and a variable to Bob
- Alice returns an assignment for the variables in her equation
- Bob returns a value for his variable

E.g.: Binary contraint satisfaction game

- Verifier sends an equation to Alice
- and a variable to Bob
- Alice returns an assignment for the variables in her equation
- Bob returns a value for his variable
- They win the play if:
- Alice's assignment satisfies the equation
- Bob's value is consistent with Alice's assigment

E.g.: Binary contraint satisfaction game

- Verifier sends an equation to Alice
- and a variable to Bob
- Alice returns an assignment for the variables in her equation
- Bob returns a value for his variable
- They win the play if:
- Alice's assignment satisfies the equation
- Bob's value is consistent with Alice's assigment

Classically, Alice and Bob have a perfect strategy if and only if there is an assignment to all variables satisfying the system of equations.

E.g.: Binary contraint satisfaction game

- Verifier sends an equation to Alice
- and a variable to Bob
- Alice returns an assignment for the variables in her equation
- Bob returns a value for his variable
- They win the play if:
- Alice's assignment satisfies the equation
- Bob's value is consistent with Alice's assigment

Classically, Alice and Bob have a perfect strategy if and only if there is an assignment to all variables satisfying the system of equations.

But using quantum resources, they can win the Magic Square game with probability 1 , using Mermin's construction.

E.g.: Binary contraint satisfaction game

- Verifier sends an equation to Alice
- and a variable to Bob
- Alice returns an assignment for the variables in her equation
- Bob returns a value for his variable
- They win the play if:
- Alice's assignment satisfies the equation
- Bob's value is consistent with Alice's assigment

Classically, Alice and Bob have a perfect strategy if and only if there is an assignment to all variables satisfying the system of equations.

But using quantum resources, they can win the Magic Square game with probability 1 , using Mermin's construction.

The system has a quantum solution but no classical solution!

Contextual fraction and quantum advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.

Contextual fraction and quantum advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.
- Non-local games

XOR games (CHSH; Cleve-Høyer-Toner-Watrous)
quantum graph homomorphisms (Mančinska-Roberson) constraint satisfaction (Cleve-Mittal)
etc. (Abramsky-B-de Silva-Zapata)

Contextual fraction and quantum advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.
- Non-local games

XOR games (CHSH; Cleve-Høyer-Toner-Watrous)
quantum graph homomorphisms (Mančinska-Roberson) constraint satisfaction (Cleve-Mittal)
etc. (Abramsky-B-de Silva-Zapata)

- MBQC

Raussendorf (2013)
"Contextuality in measurement-based quantum computation"

Contextual fraction and quantum advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.
- Non-local games

XOR games (CHSH; Cleve-Høyer-Toner-Watrous)
quantum graph homomorphisms (Mančinska-Roberson) constraint satisfaction (Cleve-Mittal)
etc. (Abramsky-B-de Silva-Zapata)

- MBQC

Raussendorf (2013)
"Contextuality in measurement-based quantum computation"

- MSD

Howard-Wallman-Veith-Emerson (2014)
"Contextuality supplies the 'magic' for quantum computation"

Contextual fraction and quantum advantages

- Contextuality has been associated with quantum advantage in information-processing and computational tasks.
- Non-local games

XOR games (CHSH; Cleve-Høyer-Toner-Watrous) quantum graph homomorphisms (Mančinska-Roberson) constraint satisfaction (Cleve-Mittal)
etc. (Abramsky-B-de Silva-Zapata)

- MBQC

Raussendorf (2013)
"Contextuality in measurement-based quantum computation"

- MSD

Howard-Wallman-Veith-Emerson (2014)
"Contextuality supplies the 'magic' for quantum computation"

- Measure of contextuality \rightsquigarrow quantify such advantages.

Measuring contextuality

We introduce the contextual fraction
(generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

Measuring contextuality

We introduce the contextual fraction
(generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario

Measuring contextuality

We introduce the contextual fraction (generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality

Measuring contextuality

We introduce the contextual fraction (generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming

Measuring contextuality

We introduce the contextual fraction (generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities (Dual LP)

Measuring contextuality

We introduce the contextual fraction (generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities (Dual LP)
- Monotone wrt operations that don't introduce contextuality \rightsquigarrow resource theory

Measuring contextuality

We introduce the contextual fraction (generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

- General, i.e. applicable to any measurement scenario
- Normalised, allowing comparison across scenarios 0 for non-contextuality ... 1 for strong contextuality
- Computable using linear programming
- Precise relationship to violations of Bell inequalities (Dual LP)
- Monotone wrt operations that don't introduce contextuality \rightsquigarrow resource theory
- Relates to quantifiable advantages in QC and QIP tasks

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot d\right|_{C}=e_{C} .
$$

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot d\right|_{C}=e_{C} .
$$

Which fraction of a model admits a non-contextual explanation?

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot d\right|_{C}=e_{C} .
$$

Which fraction of a model admits a non-contextual explanation?
Consider subdistributions $c \in \operatorname{SubProb}\left(O^{X}\right)$ such that:

$$
\left.\forall_{C \in \mathcal{M}} \cdot c\right|_{C} \leq e_{C} .
$$

Non-contextual fraction: maximum weight of such a subdistribution.

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot d\right|_{C}=e_{C} .
$$

Which fraction of a model admits a non-contextual explanation?
Consider subdistributions $c \in \operatorname{SubProb}\left(O^{X}\right)$ such that:

$$
\forall c \in \mathcal{M} \cdot c \mid c \leq e_{C} .
$$

Non-contextual fraction: maximum weight of such a subdistribution.
Equivalently, maximum weight λ over all convex decompositions

$$
e=\lambda e^{N C}+(1-\lambda) e^{\prime}
$$

where $e^{N C}$ is a non-contextual model.

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot d\right|_{C}=e_{C} .
$$

Which fraction of a model admits a non-contextual explanation?
Consider subdistributions $c \in \operatorname{SubProb}\left(O^{X}\right)$ such that:

$$
\forall c \in \mathcal{M} \cdot c \mid c \leq e_{C} .
$$

Non-contextual fraction: maximum weight of such a subdistribution.
Equivalently, maximum weight λ over all convex decompositions

$$
e=\lambda e^{N C}+(1-\lambda) e^{\prime}
$$

where $e^{N C}$ is a non-contextual model.

The contextual fraction

Non-contextuality: global distribution $d \in \operatorname{Prob}\left(O^{X}\right)$ such that:

$$
\left.\forall C \in \mathcal{M} \cdot d\right|_{C}=e_{C} .
$$

Which fraction of a model admits a non-contextual explanation?
Consider subdistributions $c \in \operatorname{SubProb}\left(O^{X}\right)$ such that:

$$
\left.\forall_{C \in \mathcal{M}} \cdot c\right|_{C} \leq e_{C} .
$$

Non-contextual fraction: maximum weight of such a subdistribution.
Equivalently, maximum weight λ over all convex decompositions

$$
e=\lambda e^{N C}+(1-\lambda) e^{S C}
$$

where $e^{N C}$ is a non-contextual model. $e^{S C}$ is strongly contextual!

$$
\operatorname{NCF}(e)=\lambda \quad \operatorname{CF}(e)=1-\lambda
$$

Contextuality and MBQC

E.g. Raussendorf (2013) $\ell 2-\mathrm{MBQC}$

Contextuality and MBQC

E.g. Raussendorf (2013) $\ell 2-\mathrm{MBQC}$

- measurement-based quantum computing scheme (m input bits, $/$ output bits, n parties)

Contextuality and MBQC

E.g. Raussendorf (2013) $\ell 2-\mathrm{MBQC}$

- measurement-based quantum computing scheme (m input bits, $/$ output bits, n parties)
- classical control:
- pre-processes input
- determines the flow of measurements
- post-processes to produce the output only \mathbb{Z}_{2}-linear computations.

Contextuality and MBQC

Contextuality and MBQC

- Additional power to compute non-linear functions resides in using resources displaying contextual correlations.
$\oplus \mathbf{L} \longrightarrow \mathbf{P}$

Contextuality and MBQC

- Additional power to compute non-linear functions resides in using resources displaying contextual correlations.

- Raussendorf (2013): If an $\ell 2-M B Q C$ deterministically computes a non-linear Boolean function $f: 2^{m} \longrightarrow 2^{\prime}$ then the resource must be strongly contextual.

Contextuality and MBQC

- Additional power to compute non-linear functions resides in using resources displaying contextual correlations.

- Raussendorf (2013): If an $\ell 2-M B Q C$ deterministically computes a non-linear Boolean function $f: 2^{m} \longrightarrow 2^{\prime}$ then the resource must be strongly contextual.
- Probabilistic version: non-linear function computed with sufficently large probability of success implies contextuality.

Contextual fraction and MBQC

- Goal: Compute Boolean function $f: 2^{m} \longrightarrow 2^{\prime}$ using $\ell 2-M B Q C$

Contextual fraction and MBQC

- Goal: Compute Boolean function $f: 2^{m} \longrightarrow 2^{\prime}$ using $\ell 2$-MBQC
- Hardness of the problem

$$
\nu(f):=\min \left\{d(f, g) \mid g \text { is } \mathbb{Z}_{2} \text {-linear }\right\}
$$

(average distance between f and closest \mathbb{Z}_{2}-linear function)
where for Boolean functions f and $g, d(f, g):=2^{-m} \mid\left\{\mathbf{i} \in 2^{m} \mid f(\mathbf{i}) \neq g(\mathbf{i})\right\}$.

Contextual fraction and MBQC

- Goal: Compute Boolean function $f: 2^{m} \longrightarrow 2^{\prime}$ using $\ell 2$-MBQC
- Hardness of the problem

$$
\nu(f):=\min \left\{d(f, g) \mid g \text { is } \mathbb{Z}_{2} \text {-linear }\right\}
$$

(average distance between f and closest \mathbb{Z}_{2}-linear function)
where for Boolean functions f and $g, d(f, g):=2^{-m} \mid\left\{\mathbf{i} \in 2^{m} \mid f(\mathbf{i}) \neq g(\mathbf{i})\right\}$.

- Average probability of success computing f (over all 2^{m} possible inputs): \bar{p}_{S}.

Contextual fraction and MBQC

- Goal: Compute Boolean function $f: 2^{m} \longrightarrow 2^{\prime}$ using $\ell 2$-MBQC
- Hardness of the problem

$$
\nu(f):=\min \left\{d(f, g) \mid g \text { is } \mathbb{Z}_{2} \text {-linear }\right\}
$$

(average distance between f and closest \mathbb{Z}_{2}-linear function)
where for Boolean functions f and $g, d(f, g):=2^{-m} \mid\left\{\mathbf{i} \in 2^{m} \mid f(\mathbf{i}) \neq g(\mathbf{i})\right\}$.

- Average probability of success computing f (over all 2^{m} possible inputs): \bar{p}_{S}.
- Then,

$$
1-\bar{p}_{S} \geq \operatorname{NCF}(e) \nu(f)
$$

Contextuality as a resource: Algebra of empirical models

- Think of empirical models as black boxes

Contextuality as a resource: Algebra of empirical models

- Think of empirical models as black boxes
- What operations can we perform (non-contextually) on them?

Contextuality as a resource: Algebra of empirical models

- Think of empirical models as black boxes
- What operations can we perform (non-contextually) on them?
- We write type statements

$$
e:\langle X, \mathcal{M}, O\rangle
$$

to mean that e is a (compatible) emprical model on $\langle X, \mathcal{M}, O\rangle$.

Contextuality as a resource: Algebra of empirical models

- Think of empirical models as black boxes
- What operations can we perform (non-contextually) on them?
- We write type statements

$$
e:\langle X, \mathcal{M}, O\rangle
$$

to mean that e is a (compatible) emprical model on $\langle X, \mathcal{M}, O\rangle$.

- The operations remind one of process algebras.

Operations and the contextual fraction

Operations and the contextual fraction

Relabelling
$e[\alpha]$

Operations and the contextual fraction

Relabelling $\quad e[\alpha]$

Restriction $\quad e \upharpoonright \mathcal{M}^{\prime}$

Operations and the contextual fraction

Relabelling $\quad e[\alpha]$

Restriction $\quad e \upharpoonright \mathcal{M}^{\prime}$

Coarse-graining e/f

Operations and the contextual fraction

Relabelling $\quad e[\alpha]$

Restriction $\quad e \upharpoonright \mathcal{M}^{\prime}$

Coarse-graining e/f

Mixing $\quad \lambda e+(1-\lambda) e^{\prime}$

Operations and the contextual fraction

Relabelling $\quad e[\alpha]$

Restriction $\quad e \upharpoonright \mathcal{M}^{\prime}$

Coarse-graining e/f

Mixing $\quad \lambda e+(1-\lambda) e^{\prime}$

Choice $\quad e \& e^{\prime}$

Operations and the contextual fraction

Relabelling	$e[\alpha]$
Restriction	$e \upharpoonright \mathcal{M}^{\prime}$
Coarse-graining	e / f
Mixing	$\lambda e+(1-\lambda) e^{\prime}$
Choice	$e \& e^{\prime}$
Tensor	$e_{1} \otimes e_{2}$

Operations and the contextual fraction

Relabelling	$e[\alpha]$
Restriction	$e \upharpoonright \mathcal{M}^{\prime}$
Coarse-graining	e / f
Mixing	$\lambda e+(1-\lambda) e^{\prime}$
Choice	$e \& e^{\prime}$
Tensor	$e_{1} \otimes e_{2}$
Sequencing	$e_{1} ; e_{2}$

Sequencing $\quad e_{1} ; e_{2}$

Operations and the contextual fraction

Relabelling	$C F(e[\alpha])=C F$
Restriction	$e \upharpoonright \mathcal{M}^{\prime}$
Coarse-graining	e / f
Mixing	$\lambda e+(1-\lambda) e^{\prime}$
Choice	$e \& e^{\prime}$
Tensor	$e_{1} \otimes e_{2}$
Sequencing	$e_{1} ; e_{2}$

Operations and the contextual fraction

Relabelling	$\mathrm{CF}(e[\alpha])=\mathrm{CF}$
Restriction	$\mathrm{CF}\left(e \upharpoonright \mathcal{M}^{\prime}\right) \leq \mathrm{C}$
Coarse-graining	e / f
Mixing	$\lambda e+(1-\lambda) e^{\prime}$
Choice	$e \& e^{\prime}$
Tensor	$e_{1} \otimes e_{2}$
Sequencing	$e_{1} ; e_{2}$

Sequencing $\quad e_{1} ; e_{2}$

Operations and the contextual fraction

$$
\begin{array}{ll}
\text { Relabelling } & \mathrm{CF}(e[\alpha])=\mathrm{CF}(e) \\
\text { Restriction } & \mathrm{CF}\left(e \upharpoonright \mathcal{M}^{\prime}\right) \leq \mathrm{CF}(e)
\end{array}
$$

Coarse-graining $\mathrm{CF}(e / f) \leq C F(e)$

Mixing $\quad \lambda e+(1-\lambda) e^{\prime}$

Choice $\quad e \& e^{\prime}$

Tensor $\quad e_{1} \otimes e_{2}$

Sequencing $\quad e_{1} ; e_{2}$

Operations and the contextual fraction

$$
\begin{array}{ll}
\text { Relabelling } & C F(e[\alpha])=\operatorname{CF}(e) \\
\text { Restriction } & C F\left(e \upharpoonright \mathcal{M}^{\prime}\right) \leq \operatorname{CF}(e) \\
\text { Coarse-graining } & C F(e / f) \leq C F(e) \\
\text { Mixing } & C F\left(\lambda e+(1-\lambda) e^{\prime}\right) \leq \lambda C F(e)+(1-\lambda) \operatorname{CF}\left(e^{\prime}\right) \\
\text { Choice } & e \& e^{\prime} \\
\text { Tensor } & e_{1} \otimes e_{2} \\
\text { Sequencing } & e_{1} ; e_{2}
\end{array}
$$

Operations and the contextual fraction

Relabelling $\quad \mathrm{CF}(e[\alpha])=\mathrm{CF}(e)$
Restriction $\mathrm{CF}\left(e \upharpoonright \mathcal{M}^{\prime}\right) \leq \mathrm{CF}(e)$

Coarse-graining $\mathrm{CF}(e / f) \leq C F(e)$

Mixing

$$
C F\left(\lambda e+(1-\lambda) e^{\prime}\right) \leq \lambda \operatorname{CF}(e)+(1-\lambda) \operatorname{CF}\left(e^{\prime}\right)
$$

Choice
$\operatorname{CF}\left(e \& e^{\prime}\right)=\max \left\{\operatorname{CF}(e), \operatorname{CF}\left(e^{\prime}\right)\right\}$

Tensor
$e_{1} \otimes e_{2}$
$\operatorname{NCF}\left(e_{1} \otimes e_{2}\right)=\operatorname{NCF}\left(e_{1}\right) \operatorname{NCF}\left(e_{2}\right)$

Sequencing $\quad e_{1} ; e_{2}$

Operations and the contextual fraction

Relabelling $\quad \mathrm{CF}(e[\alpha])=\mathrm{CF}(e)$
Restriction $\mathrm{CF}\left(e \upharpoonright \mathcal{M}^{\prime}\right) \leq \mathrm{CF}(e)$

Coarse-graining $\mathrm{CF}(e / f) \leq C F(e)$

Mixing
$C F\left(\lambda e+(1-\lambda) e^{\prime}\right) \leq \lambda \operatorname{CF}(e)+(1-\lambda) \operatorname{CF}\left(e^{\prime}\right)$
Choice
$\operatorname{CF}\left(e \& e^{\prime}\right)=\max \left\{\operatorname{CF}(e), \operatorname{CF}\left(e^{\prime}\right)\right\}$

Tensor $\quad \operatorname{CF}\left(e_{1} \otimes e_{2}\right)=\operatorname{CF}\left(e_{1}\right)+\operatorname{CF}\left(e_{2}\right)-\operatorname{CF}\left(e_{1}\right) \operatorname{CF}\left(e_{2}\right)$
$\operatorname{NCF}\left(e_{1} \otimes e_{2}\right)=\operatorname{NCF}\left(e_{1}\right) \operatorname{NCF}\left(e_{2}\right)$

Sequencing $\quad e_{1} ; e_{2}$

Operations and the contextual fraction

Relabelling $\quad \mathrm{CF}(e[\alpha])=\mathrm{CF}(e)$
Restriction $\quad \mathrm{CF}\left(e \upharpoonright \mathcal{M}^{\prime}\right) \leq \mathrm{CF}(e)$

Coarse-graining $\mathrm{CF}(e / f) \leq C F(e)$
Mixing
$C F\left(\lambda e+(1-\lambda) e^{\prime}\right) \leq \lambda \operatorname{CF}(e)+(1-\lambda) \operatorname{CF}\left(e^{\prime}\right)$
Choice
$\operatorname{CF}\left(e \& e^{\prime}\right)=\max \left\{\operatorname{CF}(e), \operatorname{CF}\left(e^{\prime}\right)\right\}$
Tensor $\quad \operatorname{CF}\left(e_{1} \otimes e_{2}\right)=\operatorname{CF}\left(e_{1}\right)+\operatorname{CF}\left(e_{2}\right)-\operatorname{CF}\left(e_{1}\right) \operatorname{CF}\left(e_{2}\right)$
$\operatorname{NCF}\left(e_{1} \otimes e_{2}\right)=\operatorname{NCF}\left(e_{1}\right) \operatorname{NCF}\left(e_{2}\right)$
Sequencing $\quad \operatorname{CF}\left(e_{1} \otimes e_{2}\right) \leq \operatorname{CF}\left(e_{1}\right)+\operatorname{CF}\left(e_{2}\right)-\operatorname{CF}\left(e_{1}\right) \operatorname{CF}\left(e_{2}\right)$
$\operatorname{NCF}\left(e_{1} ; e_{2}\right) \geq \operatorname{NCF}\left(e_{1}\right) \operatorname{NCF}\left(e_{2}\right)$

Resource theory of contextuality

(some work in progress)

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens.
(resource theory of combinable processes)

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens.
(resource theory of combinable processes)
- Device-independent processes

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens. (resource theory of combinable processes)
- Device-independent processes
- Operations remind one of process algebra

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens. (resource theory of combinable processes)
- Device-independent processes
- Operations remind one of process algebra
- Process calculus:
operational semantics by (probabilistic) transitions

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens.
(resource theory of combinable processes)
- Device-independent processes
- Operations remind one of process algebra
- Process calculus:
operational semantics by (probabilistic) transitions
- bissimulation, metric / approximation

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens. (resource theory of combinable processes)
- Device-independent processes
- Operations remind one of process algebra
- Process calculus:
operational semantics by (probabilistic) transitions
- bissimulation, metric / approximation
- (modal) logic for device-independent processes

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens.
(resource theory of combinable processes)
- Device-independent processes
- Operations remind one of process algebra
- Process calculus:
operational semantics by (probabilistic) transitions
- bissimulation, metric / approximation
- (modal) logic for device-independent processes
- Sequencing:

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens.
(resource theory of combinable processes)
- Device-independent processes
- Operations remind one of process algebra
- Process calculus:
operational semantics by (probabilistic) transitions
- bissimulation, metric / approximation
- (modal) logic for device-independent processes
- Sequencing:
- so far, it hides middle steps

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens.
(resource theory of combinable processes)
- Device-independent processes
- Operations remind one of process algebra
- Process calculus:
operational semantics by (probabilistic) transitions
- bissimulation, metric / approximation
- (modal) logic for device-independent processes
- Sequencing:
- so far, it hides middle steps
- not doing so leads to notion of causal empirical models.

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens. (resource theory of combinable processes)
- Device-independent processes
- Operations remind one of process algebra
- Process calculus:
operational semantics by (probabilistic) transitions
- bissimulation, metric / approximation
- (modal) logic for device-independent processes
- Sequencing:
- so far, it hides middle steps
- not doing so leads to notion of causal empirical models.
- Allow natural expression of measurement-based computation with feed-forward, in a device-independent form:

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens. (resource theory of combinable processes)
- Device-independent processes
- Operations remind one of process algebra
- Process calculus:
operational semantics by (probabilistic) transitions
- bissimulation, metric / approximation
- (modal) logic for device-independent processes
- Sequencing:
- so far, it hides middle steps
- not doing so leads to notion of causal empirical models.
- Allow natural expression of measurement-based computation with feed-forward, in a device-independent form:
- One can measure a non-maximal context (face σ of complex)

Resource theory of contextuality

(some work in progress)

- Resource theory a la Coecke-Fritz-Spekkens. (resource theory of combinable processes)
- Device-independent processes
- Operations remind one of process algebra
- Process calculus:
operational semantics by (probabilistic) transitions
- bissimulation, metric / approximation
- (modal) logic for device-independent processes
- Sequencing:
- so far, it hides middle steps
- not doing so leads to notion of causal empirical models.
- Allow natural expression of measurement-based computation with feed-forward, in a device-independent form:
- One can measure a non-maximal context (face σ of complex)
- leaving a model on scenario $\mathrm{Ik}_{\sigma} \mathcal{M}$

Questions...

