On Quantum Error Correcting Codes

Pedro Patrício

CMAT- Centro de Matemática, Universidade do Minho, Portugal

Q Days, 2019
$|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right],|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right],|\psi\rangle|\phi\rangle=|\psi\rangle \otimes|\phi\rangle$, and concatenation of symbols denotes the concatenation of kets, i.e.,

$$
|01\rangle=|0\rangle|1\rangle=|0\rangle \otimes|1\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

$$
\text { For } H=\frac{\sqrt{2}}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \text { then }
$$

$$
H|0\rangle=\frac{\sqrt{2}}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{\sqrt{2}}{2}|0\rangle+\frac{\sqrt{2}}{2}|1\rangle=:|+\rangle
$$

$$
H|1\rangle=\frac{\sqrt{2}}{2}|0\rangle-\frac{\sqrt{2}}{2}|1\rangle=:|-\rangle
$$

$|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right],|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right],|\psi\rangle|\phi\rangle=|\psi\rangle \otimes|\phi\rangle$, and concatenation of symbols denotes the concatenation of kets, i.e.,

$$
|01\rangle=|0\rangle|1\rangle=|0\rangle \otimes|1\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

For $H=\frac{\sqrt{2}}{2}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ then

$$
\begin{aligned}
& H|0\rangle=\frac{\sqrt{2}}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{\sqrt{2}}{2}|0\rangle+\frac{\sqrt{2}}{2}|1\rangle=:|+\rangle \\
& H|1\rangle=\frac{\sqrt{2}}{2}|0\rangle-\frac{\sqrt{2}}{2}|1\rangle=:|-\rangle
\end{aligned}
$$

Take $|\psi\rangle=\frac{\sqrt{2}}{2}|00\rangle+\frac{\sqrt{2}}{2}|11\rangle$ and suppose we want to H the 1st qbit and keep the 2 nd qbit intact.
We use the fact $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$ and $A \otimes(B+C)=A \otimes B+A \otimes C$.

$$
\begin{aligned}
& (H \otimes I)\left(\frac{\sqrt{2}}{2}|0\rangle \otimes|0\rangle+\frac{\sqrt{2}}{2}|1\rangle \otimes|1\rangle\right) \\
= & (H \otimes I)\left(\frac{\sqrt{2}}{2}|0\rangle \otimes|0\rangle\right)+(H \otimes I)\left(\frac{\sqrt{2}}{2}|1\rangle \otimes|1\rangle\right) \\
= & \frac{\sqrt{2}}{2}(H|0\rangle) \otimes|0\rangle+\frac{\sqrt{2}}{2}(H|1\rangle) \otimes|1\rangle \\
= & (\ldots)=\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle .
\end{aligned}
$$

Pauli matrices

$$
\begin{gathered}
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
\sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]=i \sigma_{x} \sigma_{z}
\end{gathered}
$$

Note that $\sigma_{a} \sigma_{b}=-\sigma_{b} \sigma_{a}$ for $a \neq b, a, b \in\{x, y, z\}$.

$$
\begin{gathered}
\sigma_{x}|0\rangle=|1\rangle, \sigma_{x}|1\rangle=|0\rangle \\
\sigma_{z}|0\rangle=|0\rangle, \sigma_{z}|1\rangle=-|1\rangle
\end{gathered}
$$

For instance,

$$
\left(\sigma_{x} \otimes \sigma_{z}\right)(|01\rangle)=\left(\sigma_{x}|0\rangle\right) \otimes\left(\sigma_{z}|1\rangle\right)=|1\rangle \otimes(-|1\rangle)=-|11\rangle .
$$

Pauli matrices

$$
\begin{gathered}
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
\sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]=i \sigma_{x} \sigma_{z}
\end{gathered}
$$

Note that $\sigma_{a} \sigma_{b}=-\sigma_{b} \sigma_{a}$ for $a \neq b, a, b \in\{x, y, z\}$.

$$
\begin{gathered}
\sigma_{\chi}|0\rangle=|1\rangle, \sigma_{\chi}|1\rangle=|0\rangle \\
\sigma_{z}|0\rangle=|0\rangle, \sigma_{z}|1\rangle=-|1\rangle
\end{gathered}
$$

For instance,

$$
\left(\sigma_{x} \otimes \sigma_{z}\right)(|01\rangle)=\left(\sigma_{x}|0\rangle\right) \otimes\left(\sigma_{z}|1\rangle\right)=|1\rangle \otimes(-|1\rangle)=-|11\rangle
$$

Pauli group

Recall that σ_{x}, σ_{z} and σ_{y} anticommute.
Let

$$
\mathcal{G}_{n}=\left\{\alpha A_{1} \otimes \cdots \otimes A_{n}: A_{i} \in P, \alpha \in\{ \pm 1, \pm i\}\right\},
$$

called the (n-qubit) Pauli group.
Then \mathcal{G}_{n} consists of the 4^{n} tensor products of $I, \sigma_{x}, \sigma_{y}, \sigma_{z}$ and an overall phase of ± 1 or $\pm i$, for a total of $4^{n}+1$ elements.
\mathcal{G}_{n} is not abelian! This will be very usefull!
In any case, if $A, B \in \mathcal{G}_{n}$ then either $[A, B]=0$ or $\{A, B\}=0$. Also, $A^{2}= \pm I$.

The weight of $A, w t(A)$, is the number of factors different from I_{2}. $\mathrm{Eg}, w t\left(\sigma_{x} \otimes I \otimes \sigma_{z}\right)=2$.

Pauli group

Recall that σ_{x}, σ_{z} and σ_{y} anticommute.
Let

$$
\mathcal{G}_{n}=\left\{\alpha A_{1} \otimes \cdots \otimes A_{n}: A_{i} \in P, \alpha \in\{ \pm 1, \pm i\}\right\},
$$

called the (n-qubit) Pauli group.
Then \mathcal{G}_{n} consists of the 4^{n} tensor products of $I, \sigma_{x}, \sigma_{y}, \sigma_{z}$ and an overall phase of ± 1 or $\pm i$, for a total of $4^{n}+1$ elements.
\mathcal{G}_{n} is not abelian! This will be very usefull!
In any case, if $A, B \in \mathcal{G}_{n}$ then either $[A, B]=0$ or $\{A, B\}=0$. Also, $A^{2}= \pm l$.

The weight of $A, w t(A)$, is the number of factors different from I_{2}. $\mathrm{Eg}, w t\left(\sigma_{x} \otimes I \otimes \sigma_{Z}\right)=2$.

The theory of error-correcting codes, namely algebraic coding theory, is well established. But it doesn't apply here, at least not directly. A simple classical code is the repetition code:

$$
\begin{aligned}
& 0 \mapsto 000 \\
& 1 \mapsto 111
\end{aligned}
$$

Try a quantum repetition code:

$$
|\psi\rangle \mapsto|\psi\rangle \otimes|\psi\rangle \otimes|\psi\rangle
$$

That would violate the No-Cloning Theorem.

The theory of error-correcting codes, namely algebraic coding theory, is well established. But it doesn't apply here, at least not directly. A simple classical code is the repetition code:

$$
\begin{aligned}
& 0 \mapsto 000 \\
& 1 \mapsto 111
\end{aligned}
$$

Try a quantum repetition code:

$$
|\psi\rangle \mapsto|\psi\rangle \otimes|\psi\rangle \otimes|\psi\rangle
$$

That would violate the No-Cloning Theorem.

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \mapsto \alpha|000\rangle+\beta|111\rangle
$$

Alice sends $\alpha|000\rangle+\beta|111\rangle$ to Bob.
Bob receives $\alpha|010\rangle+\beta|101\rangle$ (i.e. there is a bit flip on the 2nd bit).

$$
\begin{aligned}
(\alpha|010\rangle+\beta|101\rangle)|00\rangle & =\alpha|010\rangle|00\rangle+\beta|101\rangle|00\rangle \\
& \mapsto \alpha|010\rangle|10\rangle+\beta|101\rangle|10\rangle \\
& =(\alpha|010\rangle+\beta|101\rangle)|10\rangle
\end{aligned}
$$

This output string is called the syndrome; in this case it tells us that a bit-flip error occurred on qubit number 2 (or 10 in binary). So, Bob corrects the error by applying σ_{x} to the 2 nd qubit:

$$
\alpha|010\rangle+\beta|101\rangle \mapsto \alpha|000\rangle+\beta|111\rangle
$$

The same procedure works in the case that we have a bit-flip in the first or third qubits:

State	$\|000\rangle$	$\|001\rangle$	$\|010\rangle$	$\|011\rangle$	$\|100\rangle$	$\|101\rangle$	$\|110\rangle$	$\|111\rangle$
Syndrome	00	11	10	01	01	10	11	00

If no errors occur, or a single bit-flip occurs, the syndrome will correctly diagnose the errors (or lack of errors):

- No errors \rightarrow Syndrome $=00$
- σ_{x} applied to qubit number $j \in\{1,2,3\} \rightarrow$ Syndrome $=j$ (in binary).

The code corrects up to one bit-flip error. If two or more bit-flip errors occurred, there are no guarantees...

Suppose we have a phase-flip error. For instance, we have

$$
\alpha|000\rangle+\beta|111\rangle \mapsto \alpha|000\rangle-\beta|111\rangle
$$

if any odd number of phase-flips occur.
This error is represented by $\sigma_{z}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
We could change the encoding

$$
\alpha|0\rangle+\beta|1\rangle \mapsto \alpha|+++\rangle+\beta|---\rangle
$$

Just encode as previously and then apply a Hadamard transform on each qubit. The effect of a phase-flip on the basis $\{|+\rangle,|-\rangle\}$ is similar to the effect of a bit-flip on the standard basis $\{|0\rangle,|1\rangle\}$:

$$
\sigma_{z}|+\rangle=|-\rangle, \sigma_{z}|-\rangle=|+\rangle .
$$

Bob can easily correct against a phase-flip on a single qubit by first applying Hadamard transforms to all three qubits, and then correcting as before.

For instance, if a phase-flip happens on the 1st qubit, then

$$
\alpha|+++\rangle+\beta|---\rangle
$$

becomes

$$
\alpha|-++\rangle+\beta|+--\rangle .
$$

Bob applies Hadamard transforms to all three qubits and obtains

$$
\alpha|100\rangle+\beta|011\rangle
$$

and he then corrects just as before to obtain $\alpha|0\rangle+\beta|1\rangle$.
Although the new code protects against phase-flips, it fails to protect against bit-flips.
Is there any way to protect against both bit flips and phase flips simultaneously?

The 9-qubit Shor algoritm encodes

$$
\begin{aligned}
|0\rangle & \mapsto \quad|\overline{0}\rangle
\end{aligned}=(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)(|000\rangle+|111\rangle),
$$

Suppose the channel flips a single qubit, i.e., $|0\rangle \leftrightarrow|1\rangle$; assume it flips the 1 st qubit. We compare the first 2 qbits, and then the 1 st and 3 rd qbits. Note that we do not actually measure the first and second qubits, since this would destroy the superposition in the codeword.
So, how do we compare?
Recall that $\sigma_{z}|0\rangle=|0\rangle$ and $\sigma_{z}|1\rangle=-|1\rangle$. Then

$$
\begin{aligned}
\left(\sigma_{z} \otimes \sigma_{z} \otimes I\right)|100\rangle & =-|100\rangle \\
\left(\sigma_{z} \otimes I \otimes \sigma_{z}\right)|100\rangle & =-|100\rangle \\
\left(\sigma_{z} \otimes \sigma_{z} \otimes I\right)|011\rangle & =-|011\rangle \\
\left(\sigma_{z} \otimes I \otimes \sigma_{z}\right)|011\rangle & =-|011\rangle
\end{aligned}
$$

"This is equivalent to measuring the eigenvalues of $\sigma_{z 1} \sigma_{z 2}$ and $\sigma_{z 1} \sigma_{z 3}$ ", where

$$
\sigma_{z 1} \sigma_{z 2}=\sigma_{z} \otimes \sigma_{z} \otimes I^{\otimes^{7}} \text { and } \sigma_{z 1} \sigma_{z 3}=\sigma_{z} \otimes I \otimes \sigma_{z} \otimes I^{\otimes^{6}}
$$

If the first 2 qbits are the same, the eigenvalue of $\sigma_{z 1} \sigma_{z 2}$ is +1 . If they are different, then the eigenvalue is -1 .
In order to detect a phase-flip, we compare the signs of the 1st and 2 nd block, and of the 1st and 3rd block. I.e. the eigenvalues of

$$
\sigma_{x_{1}} \sigma_{x_{2}} \sigma_{x_{3}} \sigma_{x_{4}} \sigma_{x_{5}} \sigma_{x_{6}} \text { and } \sigma_{x_{1}} \sigma_{x_{2}} \sigma_{x_{3}} \sigma_{x_{7}} \sigma_{x_{8}} \sigma_{x_{9}}
$$

If the signs agree, that corresponds to obtaining the eigenvalue +1 ; otherwise, we get -1 .
In order to correct flip and phase errors we hence need 8 matrices.

M_{1}	σ_{z}	σ_{z}	1	1	1	1	1	1	1
M_{2}	σ_{z}	1	σ_{z}	1	1	I	1	1	I
M_{3}	I	1	1	σ_{z}	σ_{z}	1	1	1	1
M_{4}	1	1	1	σ_{z}	1	σ_{z}	1	1	I
M_{5}	1	1	1	1	1	1	σ_{z}	σ_{z}	1
M_{6}	1	1	1	1	1	1	σ_{z}	1	σ_{z}
M_{7}	σ_{x}	σ_{x}	σ_{x}	σ_{x}	σ_{x}	σ_{x}	1	1	
M_{8}	σ_{x}	σ_{x}	σ_{x}	1	1	1	σ_{x}	σ_{x}	

The codewords $|\overline{0}\rangle$ and $|\overline{1}\rangle$ are eigenvectors of these M_{i} corresponding to the eigenvalue 1 .
Set $\mathcal{G}_{n}=\left\{\alpha A_{1} \otimes \cdots \otimes A_{n}: A_{i} \in P, \alpha \in\{ \pm 1, \pm i\}\right\}, w t(H)$ the number of factor different from I_{2}, for $H \in \mathcal{G}_{n}$.
If $H \in \mathcal{G}_{8}$ s.t. $H|\overline{0}\rangle=|\overline{0}\rangle, H|\overline{1}\rangle=|\overline{1}\rangle$ then $H \in\left\langle M_{1}, M_{2}, \ldots, M_{7}, M_{8}\right\rangle$.
These operators that fix $|\overline{0}\rangle$ and $|\overline{1}\rangle$ form a group \mathcal{S}, called the stabilizer of the code.

When we measure the eigenvalue of

$$
M_{1}=\sigma_{z} \otimes \sigma_{z} \otimes I \otimes I \otimes I \otimes I \otimes I \otimes I \otimes I
$$

we determine if a bit flip error has occurred on qubit one or two, i.e., if $\sigma_{x 1}$ or $\sigma_{\times 2}$ has occurred. Both of these errors anticommute with M_{1}, while $\sigma_{x 3}, \ldots, \sigma_{x 9}$, which cannot be detected by just M_{1}, commute with it. Similarly, M_{2} detects $\sigma_{\times 1}$ or $\sigma_{\times 3}$, which anticommute with it, and M_{7} detects $\sigma_{z 1}$ through $\sigma_{z 6}$. In general,

$$
\text { if } M \in \mathcal{S},\{M, E\}=0,|\psi\rangle \in T \text { then } M E|\psi\rangle=-E M|\psi\rangle=-E|\psi\rangle
$$

so $E|\psi\rangle$ is an eigenvector of M corresponding to the eigenvalue -1 .

Theorem

If a quantum code corrects errors A and B, it also corrects any linear combination of A and B. In particular, if it corrects all weight t Pauli errors, then the code corrects all t-qubit errors.
Suppose now that every qubit in our 9 -qubit code has some small error. For instance, error $I+\epsilon E_{i}$ acts on qubit i, where E_{i} is some single qubit error. Then the overall error is

$$
\bigotimes\left(I+\epsilon E_{i}\right)=I+\epsilon\left(E_{1} \otimes I^{\otimes 8}+I \otimes E_{2} \otimes I^{\otimes 7}+\cdots\right)+O\left(\epsilon^{2}\right)
$$

To order ϵ, the actual error is the sum of single-qubit errors, which we can correct. While the code cannot completely correct this error, it still produces a significant improvement over not doing error correction when ϵ is small. A code correcting more errors would do even better.

The stabilizer \mathcal{S} is some abelian subgroup of \mathcal{G} (that is, all commute with each other, $I \in \mathcal{S}$ and it is closed under products) such that $-I \notin \mathcal{S}$.
The coding space T (also called the stabilizer subspace \mathcal{H}) is the space of vectors fixed by \mathcal{S}.

$$
\mathcal{H}=T=\{|\psi\rangle: M|\psi\rangle=|\psi\rangle, \forall M \in \mathcal{S}\}
$$

An example of a stabilizer group on three qubits is

$$
\mathcal{S}=\left\{I \otimes I \otimes I, \sigma_{z} \otimes \sigma_{z} \otimes I, \sigma_{z} \otimes I \otimes \sigma_{z}, I \otimes \sigma_{z} \otimes \sigma_{z}\right\}
$$

We simplify the notation by

$$
\mathcal{S}=\{I I I, Z Z I, Z I Z, I Z Z\} .
$$

Note that $\mathcal{S}=\langle Z Z I, Z I Z\rangle$.

A well known quantum code is the $[[5,1,3]]$ code.
Its stabilizer is given by

$$
\begin{array}{ccccc}
X & Z & Z & X & I \\
I & X & Z & Z & X \\
X & I & X & Z & Z \\
Z & X & I & X & Z
\end{array}
$$

Of course, we should verify that it commutes.

Consider the parity check matrix of the Hamming code [7, 4, 3]:

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

and replace 1 by Z and 0 by l. The generated group identifies bit-flip errors (X).
Analogously, replacing 1 by X and 0 by I will detect phase-flip errors $(Z) . Y$ errors are distinguished by showing up in both halves.
The stabilizer group \mathcal{S} is generated by

$$
\begin{aligned}
& \text { ZZZZIII } \\
& \text { ZZIIZZI } \\
& \text { ZIZIZIZ } \\
& \text { XXXXIII } \\
& \text { XXIIXXI } \\
& \text { XIXIXIX }
\end{aligned}
$$

One needs to check: the stabilizer must be abelian; but that is easily verified.
The stabilizer has 6 generators on 7 qubits, so it encodes 1 qubit and the quantum code $\mathcal{H}_{\mathcal{S}}$ corrects 1 single qbit. It is a $[[7,1,3]]$ code.

This is the Steane 7 qubit quantum code.

For the 7 -qubit code, we used the same classical code for both the X and Z generators.

But we could have used any two classical codes

Remember: we need that the X and Z generators to commute. This corresponds to $C_{2}^{\perp} \subseteq C_{1}$.
If C_{1} is an [n, k_{1}, d_{1}] code, and C_{2} is an [n, k_{2}, d_{2}] code with $C_{2}^{\perp} \subseteq C_{1}$ then
the corresponding quantum code is an $\left[\left[n, k_{1}+k_{2} n, \min \left(d_{1}, d_{2}\right)\right]\right]$ code.
This gives a CSS code, due to Calderbank, Shor and Steane.
D. Gottesman, Stabilizer codes and quantum error correction, Ph.D. thesis, Caltech, 2002.

D Daniel Gottesman, An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation, Proceedings of Symposia in Applied Mathematics, https://arxiv.org/abs/0904.2557v1, 2009.

宣
John Watrous, Notes of CPSC 519/619: Quantum Computation, University of Calgary, 2006.

- Dave Bacon, Notes of CSE 599d - Quantum Computing, University of Washington.

國 Salah A. Aly, On Quantum and Classical Error Control Codes: Constructions and Applications, Ph.D. thesis, Department of Computer Science at Texas A\&M University, 2007.

Mark McMahon Wilde, Quantum Coding with Entanglement, Ph.D. thesis, University of Southern California, 2008.

Lisa Steiner, A C*-Algebraic Approach to Quantum Coding Theory, Ph.D. thesis, Darmstadt, 2008.

