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Problem Statement: function inversion

• Let 𝑓: 0,1, . . , 2𝑛 − 1 → {0,1}, with 𝑓 𝑥 =  
0 𝑖𝑓 𝑥 ≠ 𝑥∗

1 𝑖𝑓 𝑥 = 𝑥∗

• Grover’s algorithm returns, with high probability, 𝑥∗: 𝑓 𝑥∗ = 1

• On its simplest form requires that there is a single solution 𝑥∗
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Problem Statement Example: Search

• Let v be a vector (array) with 2𝑛 elements

• Grover’s algortihm can be thought as searching for the index, 𝑥∗,

of some unique key, 𝑦, within this vector:

𝑓 𝑥, 𝑦 =  
0 𝑖𝑓 𝑣[𝑥] ≠ 𝑦
1 𝑖𝑓 𝑣[𝑥] = 𝑦
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Classical Problem Complexity

Given that:

• Nothing is known about 𝑓(𝑥) -- black box analogy

• The value of 𝑓(𝑥) for each 𝑥 can only be known by evaluating 𝑓(𝑥)

then a classical solution for finding 𝑥∗: 𝑓 𝑥∗ = 1 requires, in the worst case, exhaustive 

search, i.e., evaluating all 𝑁 = 2𝑛 values of 𝑥 ; 

• its complexity is 𝒪(𝑁)
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Quantum Problem Definition: Oracle

• 𝑓(𝑥) becomes the operator  𝑂, which is applied to an uniform superposition of all 

𝑁 = 2𝑛 states   𝑠 =  𝐻   0 =
1

𝑁
 𝑥=0

𝑁−1   𝑥

• The “Oracle”,  𝑂 , negates state   𝑥∗ sign:

 𝑂   𝑠 =
1

𝑁
 𝑥=0,𝑥≠𝑥∗

𝑁−1   𝑥 −
1

𝑁
  𝑥∗

•  𝑂 is often denoted as the reflection operator  𝑆𝑓,

conditionally changing the signal of the good state:

 𝑆𝑓   𝑥 = 
  𝑥 if 𝑓   𝑥 = 0

 − 𝑥 if 𝑓   𝑥 = 1
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Oracle Graphical Interpretation

The probability of measuring each state doesn’t change: 𝑃 𝑥 = 𝛼𝑥
2
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• The oracle negates the sign of the desired state   𝑥∗ :

 𝑂   𝑠 =
1

𝑁
 𝑥=0,𝑥≠𝑥∗

𝑁−1   𝑥 −
1

𝑁
  𝑥∗

  0   1   2   𝑥∗   𝑁 − 1

𝛼𝑥

1

𝑁

  0   1   2

  𝑥∗

  𝑁 − 1

𝛼𝑥

→
 𝑂 1

𝑁

−
1

𝑁



Grover’s Diffusion Operator

• Grover’s diffusion operator,  𝐷, amplifies the magnitude of   𝑥∗

• It reflects the coefficients over their mean:

 𝑥=0
𝑁−1 𝛼𝑥   𝑥 →

 𝐷
 𝑥=0

𝑁−1 2𝜇 − 𝛼𝑥   𝑥 , with 𝜇 =
1

𝑁
 𝑥=0

𝑁−1 𝛼𝑥

• After the oracle  𝑂 the mean is

𝜇 =
1

𝑁

𝑁 − 1

𝑁
−

1

𝑁
=

𝑁 − 2

𝑁 𝑁
=

1

𝑁
− 𝜖, 𝜖 =

2

𝑁 𝑁
≈ 0
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Grover’s Diffusion operator

• Given:

 𝑥=0
𝑁−1 𝛼𝑥   𝑥 →

 𝐷
 𝑥=0

𝑁−1 2𝜇 − 𝛼𝑥   𝑥 , with 𝜇 ≈
1

𝑁

• Applying  𝐷 to the oracle’s output yields:

𝛼𝑥,𝑥≠𝑥∗ =
1

𝑁
→
 𝐷

𝛼𝑥,𝑥≠𝑥∗ = 2𝜇 − 𝛼𝑥 ≈
2

𝑁
−

1

𝑁
=

1

𝑁

𝛼𝑥∗ = −
1

𝑁
→
 𝐷

𝛼𝑥∗ = 2𝜇 − 𝛼𝑥∗ ≈
2

𝑁
+

1

𝑁
=

3

𝑁
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Grover’s Diffusion Operator

Grover’s diffusion operator 𝐷 reflects the coefficients over their mean

9

The probability of measuring state   𝑥∗ is amplified P(   𝑥∗ ) =
9

𝑁

→
 𝐷

  0   1   2

  𝑥∗

  𝑁 − 1

𝛼𝑥

1

𝑁

−
1

𝑁

  0   1   2   𝑥∗   𝑁 − 1

𝛼𝑥

1

𝑁

3

𝑁



Grover’s Iterations
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• The operators  𝐷  𝑂 are iteratively applied 𝑟 times:   Ψ(𝑟) =  𝐷  𝑂
(𝑟)

  𝑠

  0   1   2   𝑥∗   𝑁 − 1

𝛼𝑥

1

𝑁

3

𝑁

  0   1   2

  𝑥∗

  𝑁 − 1

𝛼𝑥

1

𝑁

−
3

𝑁

→
 𝑂

Example: 2nd iteration



Grover’s Iterations
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  0   1   2   𝑥∗   𝑁 − 1

𝛼𝑥

<
1

𝑁

≈
5

𝑁

  0   1   2

  𝑥∗

  𝑁 − 1

𝛼𝑥

1

𝑁

−
3

𝑁

→
 𝐷

Example: 2nd iteration (continued)

P(   𝑥∗ ) ≈
25

𝑁



Grover’s Iterations

• Goal: compute   Ψ(𝑟) =  𝐷  𝑂
(𝑟)

  𝑠 , such that P(   𝑥∗ ) ≈ 1

• What is the number of iterations 𝑟?
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𝜑(0) = 𝜃
  𝑥′

  𝑥∗

  Ψ(0) =   𝑠
 1 2𝑛

-  1 2𝑛
-𝜃

 𝑂 - oracle
 𝐷 - diffusion  Ψ(1)

𝜑(1) = 𝜑(0) + 2 ∗ 𝜃
 3 2𝑛

𝜑(𝑟) = 2𝑟 + 1 𝜃 ≈  𝜋 2

sin 𝜃 =  1 2𝑛 ; 𝑛 ≫ 1 ⇒ 𝜃 ≈  1 2𝑛

2𝑟 + 1

2𝑛
≈  𝜋 2 ⇔ 2𝑟 ≈

𝜋

2
2𝑛 − 1 ⇒

⇒ 𝑟 =
𝜋

4
2𝑛 − 1

2 ≈ 2𝑛 , 𝑛 ≫ 1

𝒔𝒊𝒏𝜽

To diffusion slide



Grover’s Iterations

• 𝑟 = 2𝑛 , meaning the oracle is evaluated 𝒪 2𝑛 times, 

representing a quadratic advantage over classical ( 𝒪 2𝑛 )

• Note that iterating more than 𝑟 times reduces the probability of measuring   𝑥∗
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  𝑥′

  𝑥∗

  Ψ(𝑟)

  Ψ(𝑟+1)



Grover’s Implementation
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Initial
State

 𝑂  𝐷  𝑂  𝐷

r times

Measure
State
qubits

Classical
bits



Grover’s Implementation: Initial State

• Example for 2 qubits:   𝑥 =  𝐻   0 =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

1
0
0
0

=

 1 2
 1 2
 1 2
 1 2
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State
qubits

 𝐻

 𝐻

 𝐻 𝑛 =  𝐻 1 ⊗(𝑛)
=

1

2𝑛

1 1
1 −1

⊗ ⋯ ⊗
1 1
1 −1

𝑛 𝑡𝑖𝑚𝑒𝑠

 𝐻 1 =
1

2

1 1
1 −1

;

The state qubits are set onto an uniform superposition:
  𝑥 =  𝐻(𝑛)   0



Grover’s cZ Implementation: Oracle

 𝑥=0,
𝑁−1 𝛼𝑥   𝑥 = →

 𝑂
 𝑥=0,𝑥≠𝑥∗

𝑁−1 𝛼𝑥   𝑥 − 𝛼𝑥∗   𝑥∗

Z gate: 

flips the signal of the   1 basis state coefficient:

 𝑍   Ψ =
1 0
0 −1

𝛼0

𝛼1
=

𝛼0

−𝛼1

cmZ gate: 

flips the signal of the   1 ⊗(𝑚+1) =   𝟏 basis state coefficient:

𝑐  𝑍   Ψ =

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

𝛼0

𝛼1
𝛼2

𝛼3

=

𝛼0

𝛼1
𝛼2

−𝛼3
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Z
Z

⇔ ⇔

symmetric on the 
position of Z



Grover’s cZ Implementation: Oracle
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 𝐻

 𝐻

State
qubits   𝑥∗   𝑥∗



Grover’s cZ Implementation: Oracle
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 𝐻

 𝐻

State
qubits

Example circuit for 3 qubits and   𝑥∗ =   010

 𝐻

 𝑋

 𝑋

 𝑋

 𝑋

Initial State Oracle



Grover’s cZ Implementation: Oracle
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 𝐻

 𝐻

State
qubits

Example circuit for 3 qubits and   𝑥∗ =   010

cmZ gates are equivalent to:
1. applying Hadamard to the target qubit
2. then a cmNOT gate
3. then Hadamard again 
(since the Hadamard transform rotates the X axis to Z and Z to X, and cNOT is a cX)

 𝐻

 𝑋

 𝑋

 𝑋

 𝑋

Initial State Oracle

 𝐻  𝐻



Grover’s Implementation: Diffusion Operator

• Geometric analysis of  𝐷 -> reflection over the uniform sobreposition (see slide again):

 𝐷 = 2   𝑠   𝑠 −  𝐼

• By using the Hadamard transform this can be made into a reflection over   0

(remember that   𝑠 =  𝐻   0 and  𝐻 is its own inverse):

 𝐷 = 2  𝐻   0   0  𝐻 −  𝐼

• Let −  𝑆0 be the negated reflector over   0 : changes the sign of state   0

−  𝑆0   𝑥 =  
  𝑥 𝑖𝑓   𝑥 ≠   0
 − 0 𝑖𝑓   𝑥 =   0

• Then − 𝐷   𝑥 = − 𝐻  𝑆0
 𝐻   𝑥

(the sign is not relevant, since the probability is given by the squared amplitude)
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Grover’s implementation: DIFFUSION OPERATOR
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State
qubits

− 𝐷 = −  𝐻  𝑆0
 𝐻 - Example circuit for 3 qubits (ccZ gate):

 𝐻

 𝐻

 𝐻

 𝑋

 𝑋

 𝑋

 𝑋

 𝐻

 𝐻

 𝐻

 𝑋

 𝑋



Grover’s implementation: DIFFUSION OPERATOR
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State
qubits

Example circuit for 3 qubits (which as seen here can be designed with ccX gates):

 𝐻

 𝐻

 𝐻

 𝑋

 𝑋

 𝑋

 𝐻  𝑋 𝐻

 𝐻

 𝐻

 𝐻

 𝑋

 𝑋



Grover’s Implementation
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Initial
State

 𝑂  𝐷  𝑂  𝐷

r times

Measure
State
qubits

Classical
bits



Grover’s Circuit: 2 qubits and   𝑥∗ =   01
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 𝐻

State
qubits

 𝐻  𝑋  𝑋

Initial State Oracle

 𝐻

 𝐻

 𝑋

 𝑋

 𝑋 𝐻

 𝐻  𝑋

Diffusion



Grover: multiple solutions

• If there are 𝑀 < 𝑁 (𝑁 = 2𝑛) solutions, then the number of iterations r to 

search for 1 solution is 

𝑟 ≈  𝑁 𝑀

• r can not exceed the ideal number of iterations, therefore the above applies for 

M known

• If the number of solutions, M, is unknown then [Brassard2000] use either :

• a probabilistic algorithm

• an approximate counting algorithm to estimate  𝑁 𝑀, using an approach similar to Shor’s
algorithm (period finding via Quantum Fourier Transform)  
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Brassard, Gilles; Hoyer, Peter; Mosca, Michele;Tapp, Alain; “Quantum Amplitude Amplification and 
Estimation”, May 2000



Grover multiple solutions: probabilistic Qsearch [Brassard2000]

1. 𝑙 = 0 ; 1 < 𝑐 < 2

2. 𝑙 = 𝑙 + 1 ; 𝑆 = 𝑐𝑙

3.   𝑠 =  𝐻   0 ; 𝑥 = measure (   𝑠 ) ; if 𝑓 𝑥 == 1 then stop

4.   𝑠 =  𝐻   0

5. 𝑗 = random_integer 1. . 𝑆

6.   𝜓 =  𝐷  𝑂
𝑗

  𝑠

7. 𝑥 = measure (   𝑠 ) ; if 𝑓 𝑥 == 1 then stop

8. goto 2
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Exponential searching: S, the search space, increases exponentially

𝒪(  𝑁 𝑀)



Grover: arbitrary initial state [Brassard2000]

• Generalized: initial state   𝜓 different from uniform

sobreposition   𝑠 [Brassard2000]

• Grover:   𝑠 =  𝐻   0 ;  𝑂 =  𝑆𝑓 ;  𝐷 = −  𝐻  𝑆0
 𝐻

• Generalized:   𝜓 = 𝒜   0 ;  𝑂 =  𝑆𝑓 ;  𝐷 = −𝒜  𝑆0 𝒜−1

number of iterations 𝑟 ≈
1

𝑎
; 𝑎 = 𝑃   𝑥∗
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Grover: finding the minimum

1. Select initial minimum threshold index

𝑦 = random_integer(0. . 𝑁 − 1)

2. Run the QSearch algorithm

3. If 𝑣 𝑥 < 𝑣(𝑦) then 𝑦 = 𝑥

4. If 𝑡𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝑠 < 22.5 𝑁 + 1.4 𝑙𝑜𝑔2𝑁 goto 2

5. Output 𝑦
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