

~3 INESCTEC

 Luís Paulo Santos
Problem Statement: function inversion

- Let $f:\left\{0,1, . ., 2^{n}-1\right\} \rightarrow\{0,1\}$, with $f(x)=\left\{\begin{array}{l}0 \text { if } x \neq x^{*} \\ 1 \text { if } x=x^{*}\end{array}\right.$
- Grover's algorithm returns, with high probability, $x^{*}: f\left(x^{*}\right)=1$
- On its simplest form requires that there is a single solution x^{*}

Problem Statement Example: Search

- Let v be a vector (array) with 2^{n} elements
- Grover's algortihm can be thought as searching for the index, x^{*}, of some unique key, y, within this vector:

$$
f(x, y)=\left\{\begin{array}{l}
0 \text { if } v[x] \neq y \\
1 \text { if } v[x]=y
\end{array}\right.
$$

Classical Problem Complexity

Given that:

- Nothing is known about $f(x)$-- black box analogy
- The value of $f(x)$ for each x can only be known by evaluating $f(x)$
then a classical solution for finding $x^{*}: f\left(x^{*}\right)=1$ requires, in the worst case, exhaustive search, i.e., evaluating all $N=2^{n}$ values of x;
- its complexity is $\mathcal{O}(N)$

Quantum Problem Definition: Oracle

- $f(x)$ becomes the operator \hat{O}, which is applied to an uniform superposition of all

$$
N=2^{n} \text { states } \quad|s\rangle=\widehat{H}|0\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle
$$

- The "Oracle", \hat{O}, negates state $\left|x^{*}\right\rangle$ sign:

$$
\hat{O}|s\rangle=\frac{1}{\sqrt{N}} \sum_{x=0, x \neq x^{*}}^{N-1}|x\rangle-\frac{1}{\sqrt{N}}\left|x^{*}\right\rangle
$$

- \hat{O} is often denoted as the reflection operator \hat{S}_{f}, conditionally changing the signal of the good state:

$$
\hat{S}_{f}|x\rangle= \begin{cases}|x\rangle & \text { if } f(|x\rangle)=0 \\ -|x\rangle \text { if } f(|x\rangle)=1\end{cases}
$$

Oracle Graphical Interpretation

- The oracle negates the sign of the desired state $\left|x^{*}\right\rangle$:

The probability of measuring each state doesn't change: $P(x)=\left|\alpha_{x}\right|^{2}$

Grover's Diffusion Operator

- Grover's diffusion operator, \widehat{D}, amplifies the magnitude of $\left|x^{*}\right\rangle$
- It reflects the coefficients over their mean:

$$
\sum_{x=0}^{N-1} \alpha_{x}|x\rangle \xrightarrow{\widehat{D}} \sum_{x=0}^{N-1}\left(2 \mu-\alpha_{x}\right)|x\rangle, \text { with } \mu=\frac{1}{N} \sum_{x=0}^{N-1} \alpha_{x}
$$

- After the oracle \hat{O} the mean is

$$
\mu=\frac{1}{N}\left(\frac{N-1}{\sqrt{N}}-\frac{1}{\sqrt{N}}\right)=\frac{N-2}{N \sqrt{N}}=\frac{1}{\sqrt{N}}-\epsilon, \quad \epsilon=\frac{2}{N \sqrt{N}} \approx 0
$$

Grover's Diffusion operator

- Given:

$$
\sum_{x=0}^{N-1} \alpha_{x}|x\rangle \xrightarrow{\widehat{D}} \sum_{x=0}^{N-1}\left(2 \mu-\alpha_{x}\right)|x\rangle, \text { with } \mu \approx \frac{1}{\sqrt{N}}
$$

- Applying \widehat{D} to the oracle's output yields:

$$
\left\{\begin{array}{c}
\alpha_{x, x \neq x^{*}}=\frac{1}{\sqrt{N}} \xrightarrow{\widehat{D}} \alpha_{x, x \neq x^{*}}=\left(2 \mu-\alpha_{x}\right) \approx \frac{2}{\sqrt{N}}-\frac{1}{\sqrt{N}}=\frac{1}{\sqrt{N}} \\
\alpha_{x^{*}}=-\frac{1}{\sqrt{N}} \xrightarrow{\widehat{D}} \alpha_{x^{*}}=\left(2 \mu-\alpha_{x^{*}}\right) \approx \frac{2}{\sqrt{N}}+\frac{1}{\sqrt{N}}=\frac{3}{\sqrt{N}}
\end{array}\right.
$$

Grover's Diffusion Operator

Grover's diffusion operator \widehat{D} reflects the coefficients over their mean

The probability of measuring state $\left|x^{*}\right\rangle$ is amplified $\mathrm{P}\left(\left|x^{*}\right\rangle\right)=\frac{9}{N}$

Grover's Iterations

- The operators $\widehat{D} \widehat{O}$ are iteratively applied r times: $\left|\Psi^{(r)}\right\rangle=(\widehat{D} \widehat{O})^{(r)}|s\rangle$

Example: 2nd iteration

Grover's Iterations

Grover's Iterations

- Goal: compute $|\Psi(r)\rangle=(\widehat{D} \widehat{O})^{(r)}|s\rangle$, such that $\mathrm{P}\left(\left|x^{*}\right\rangle\right) \approx 1$
- What is the number of iterations r ?

Grover's Iterations

- $r=\left\lceil\sqrt{2^{n}}\right\rceil$, meaning the oracle is evaluated $\mathcal{O}\left(\sqrt{2^{n}}\right)$ times, representing a quadratic advantage over classical $\left(\mathcal{O}\left(2^{n}\right)\right.$)
- Note that iterating more than r times reduces the probability of measuring $\left|x^{*}\right\rangle$

Grover's Implementation

Grover's Implementation: Initial State

The state qubits are set onto an uniform superposition:

$$
|x\rangle=\widehat{H}^{(n)}|0\rangle
$$

$$
\widehat{H}^{(1)}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] ;
$$

$$
\widehat{H}^{(n)}=\widehat{H}^{(1) \otimes(n)}=\frac{1}{\sqrt{2^{n}}}(\underbrace{\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \otimes \cdots \otimes\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]}_{n \text { times }})
$$

- Example for 2 qubits: $|x\rangle=\widehat{H}|0\rangle=\frac{1}{2}\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right]$

Grover's cZ Implementation: Oracle

$$
\sum_{x=0,0}^{N-1} \alpha_{x}|x\rangle=\stackrel{\hat{o}}{\rightarrow} \sum_{x=0, x \neq x^{*}}^{N-1} \alpha_{x}|x\rangle-\alpha_{x^{*}}\left|x^{*}\right\rangle
$$

Z gate:
flips the signal of the $|1\rangle$ basis state coefficient:

$$
\hat{Z}|\Psi\rangle=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{0} \\
-\alpha_{1}
\end{array}\right]
$$

$c^{m Z}$ gate:
flips the signal of the $|1\rangle^{\otimes(m+1)}=|\mathbf{1}\rangle$ basis state coefficient:

$$
c \hat{Z}|\Psi\rangle=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
-\alpha_{3}
\end{array}\right]
$$

symmetric on the position of Z

Grover's cZ Implementation: Oracle

Grover's cZ Implementation: Oracle

Example circuit for 3 qubits and $\left|x^{*}\right\rangle=|010\rangle$

Grover's cZ Implementation: Oracle

Example circuit for 3 qubits and $\left|x^{*}\right\rangle=|010\rangle$
$c^{m} Z$ gates are equivalent to:

1. applying Hadamard to the target qubit
2. then a $c^{m} N O T$ gate
3. then Hadamard again
(since the Hadamard transform rotates the X axis to Z and Z to X, and $c N O T$ is a $c X$)

Grover's Implementation: Diffusion Operator

- Geometric analysis of \widehat{D}-> reflection over the uniform sobreposition (see slide again):

$$
\widehat{D}=2|s\rangle\langle s|-\hat{I}
$$

- By using the Hadamard transform this can be made into a reflection over $|0\rangle$
(remember that $|s\rangle=\widehat{H}|0\rangle$ and \widehat{H} is its own inverse):

$$
\widehat{D}=2 \widehat{H}|0\rangle\langle 0| \widehat{H}-\hat{I}
$$

- Let $-\hat{S}_{0}$ be the negated reflector over $|0\rangle$: changes the sign of state $|0\rangle$

$$
-\hat{S}_{0}|x\rangle=\left\{\begin{array}{c}
|x\rangle \text { if }|x\rangle \neq|0\rangle \\
-|0\rangle \text { if }|x\rangle=|0\rangle
\end{array}\right.
$$

- Then $-\widehat{D}|x\rangle=-\widehat{H} \hat{S}_{0} \widehat{H}|x\rangle$
(the sign is not relevant, since the probability is given by the squared amplitude)

Grover's implementation: DIFFUSION OPERATOR

$-\widehat{D}=-\widehat{H} \hat{S}_{0} \widehat{H}-$ Example circuit for 3 qubits (ccZ gate):

Grover's implementation: DIFFUSION OPERATOR

Example circuit for 3 qubits (which as seen here can be designed with ccX gates):

Grover's Implementation

Grover's Circuit: 2 qubits and $\left|x^{*}\right\rangle=|01\rangle$

Grover: multiple solutions

- If there are $M<N\left(N=2^{n}\right)$ solutions, then the number of iterations r to search for 1 solution is

$$
r \approx \sqrt{N / M}
$$

- r can not exceed the ideal number of iterations, therefore the above applies for M known
- If the number of solutions, M, is unknown then [Brassard2000] use either :
- a probabilistic algorithm
- an approximate counting algorithm to estimate N / M, using an approach similar to Shor's algorithm (period finding via Quantum Fourier Transform)

```
Brassard, Gilles; Hoyer, Peter; Mosca, Michele;Tapp, Alain; " Quantum Amplitude Amplification and
Estimation", May }200
```


Grover multiple solutions: probabilistic Qsearch [Brassardzooou

1. $l=0 ; 1<c<2$
2. $l=l+1 ; S=\left\lceil c^{l}\right\rceil$
3. $|s\rangle=\widehat{H}|0\rangle ; x=$ measure $(|s\rangle)$; if $f(x)==1$ then stop
4. $|s\rangle=\widehat{H}|0\rangle$
5. $j=$ random_integer ($1 . . S$)
6. $|\psi\rangle=(\widehat{D} \hat{O})^{j}|s\rangle$
7. $x=$ measure $(|s\rangle)$; if $f(x)==1$ then stop
8. goto 2

Exponential searching: S, the search space, increases exponentially $\mathcal{O}(\sqrt{N / M})$

Grover: arbitrary initial state [Brassardzooo]

- Generalized: initial state $|\psi\rangle$ different from uniform sobreposition $|s\rangle \quad$ [Brassard2000]
- Grover:
- Generalized:

$$
\begin{aligned}
& |s\rangle=\widehat{H}|0\rangle ; \hat{O}=\hat{S}_{f} ; \widehat{D}=-\widehat{H} \hat{S}_{0} \widehat{H} \\
& |\psi\rangle=\mathcal{A}|0\rangle ; \hat{O}=\hat{S}_{f} ; \widehat{D}=-\mathcal{A} \hat{S}_{0} \mathcal{A}^{-1}
\end{aligned}
$$

$$
\text { number of iterations } r \approx \frac{1}{\sqrt{a}} ; a=P\left(\left|x^{*}\right\rangle\right)
$$

Grover: finding the minimum

1. Select initial minimum threshold index

$$
y=\text { random_integer }(0 . . N-1)
$$

2. Run the QSearch algorithm
3. If $v(x)<v(y)$ then $y=x$
4. If timeSteps $<22.5 \sqrt{N}+1.4 \log _{2} N$ goto 2
5. Output y

