
Classical computation Quantum computation Final remarks

Quantum Turing Machines

José Esṕırito Santo

CMAT, Universidade do Minho

Q DAYS

11 April 2019

Classical computation Quantum computation Final remarks

Overview

1 Classical computation

2 Quantum computation

3 Final remarks

Classical computation Quantum computation Final remarks

Goals

Models of computation

Introduction to (quantum) Turing machines in 40 minutes

Smooth transition from classical to quantum

Background material for other tutorial talks of Q Days

Classical computation Quantum computation Final remarks

CLASSICAL COMPUTATION

Classical computation Quantum computation Final remarks

Models of computation

The models in 1936

Turing machines (Turing)
λ-calculus (Church)
Recursive functions (Kleene)

Church-Turing thesis

The fate of the models after the II World War

Turing machines: basis for complexity theory
λ-calculus: rediscovered as a programming language
Recursive functions: recursion theory

How about boolean circuits?

Classical computation Quantum computation Final remarks

A Turing machine

// 0
, ,> //

%,%,=

YY

0,0,>

��
1

,1,= // 2

0. read; if 0 then write 0 ; move > ; goto 0
else if % then write % ; move = ; goto 0
else if then write ; move > ; goto 1

1. read; if then write 1 ; move = ; goto 2

0 0 0 > 0
0 % % = 0
0 > 1
1 1 = 2

Classical computation Quantum computation Final remarks

Turing machines

A Turing machine consists of

a set of states Q

an input alphabet

a tape alphabet (containing the input alphabet)

a designated initial state

designated acceptance states

and a transition (partial) function

δ : Q × Γ ↪→ Γ× {<,=, >} × Q

Classical computation Quantum computation Final remarks

Back to the example

set of states Q = {0, 1, 2}
input alphabet A = {0, 1}
tape alphabet Γ = {0, 1, ,%}

initial state 0
acceptance state 2

transition function

δ : Q × Γ ↪→ Γ× {<,=, >} × Q

given by

// 0
, ,> //

%,%,=

YY

0,0,>

��
1

,1,= // 2 or

0 0 0 > 0
0 % % = 0
0 > 1
1 1 = 2

Classical computation Quantum computation Final remarks

Turing machines

A configuration of a TM M is a snapshot of M consisting of:

the contents of the tape

the current state (contents of the “program counter”)

the location of the head

By convention, input x determines an initial configuration Cx
M determines a time evolution function

UM : Configs ↪→ Configs

where Configs is the set of configurations of M
Input x determines a computation path

Cx = C0 → C1 → C2 → · · · (Ci+1 = UM(Ci))

If the path is finite, we can read output YES or NO

Classical computation Quantum computation Final remarks

Back to the example - 1

// 0
, ,> //

%,%,=

YY

0,0,>

��
1

,1,= // 2

0 0 0 > 0
0 % % = 0
0 > 1
1 1 = 2

Input x = 00

config. current state tape and head

Cx 0 0 0

C1 0 0 0
C2 0 00
C3 1 00

C4 2 00 1

Output = YES

Classical computation Quantum computation Final remarks

Back to the example - 2

// 0
, ,> //

%,%,=

YY

0,0,>

��
1

,1,= // 2

0 0 0 > 0
0 % % = 0
0 > 1
1 1 = 2

Input x = 000100

config. current state tape and head

Cx 0 0 00100

C1 0 0 0 0100

C2 0 00 0 100

C3 0 000 1 00

Output = NO

Classical computation Quantum computation Final remarks

Back to the example - 3

// 0
, ,> //

%,%,=

YY

0,0,>

��
1

,1,= // 2

0 0 0 > 0
0 % % = 0
0 > 1
1 1 = 2

config. current state tape and head

C1 0 0 %

C2 0 0 %

C3 0 0 %

C4 0 0 %
· · · · · · · · ·

Non-termination

Classical computation Quantum computation Final remarks

Boolean circuits

��
x1

��

¬

��
L1 = {0, 1} ∨

~~
∧

��

�� ��
x1

��

x2

��

¬

��
∨

��

L2 = {01, 11}

∧

��

(x1 ∨ ¬x1) ∧ (x1 ∨ ¬x1) (x1 ∨ ¬x1) ∧ x2

Classical computation Quantum computation Final remarks

Families of circuits

Languages L ⊆ (0 + 1)∗ are decided by families of circuits (Cn)n∈N
with each Cn taking care of the “slice” Ln of L

Every language is decided by some family of circuits...

... including every undecidable language

In fact, there are undecidable language which are decided by linear
size families of circuits

The question is not about size, it’s about uniformity

A family of circuits (Cn)n∈N is uniform if the function

n 7→ Cn

may be calculated efficiently by some Turing machine

Classical computation Quantum computation Final remarks

QUANTUM COMPUTATION

Classical computation Quantum computation Final remarks

Smooth transition from classical to quantum

From Bernstein-Vazirani 1997, Fortnow 2003

deterministic δ : Q × Γ ↪→ Γ× {<,=, >} × Q
non-deterministic δ : Q × Γ→ ℘(Γ× {<,=, >} × Q)

δ : Q × Γ→ (Γ× {<,=, >} × Q → {0, 1})
δ : Q × Γ× Γ× {<,=, >} × Q → {0, 1}

probabilistic δ : Q × Γ× Γ× {<,=, >} × Q → [0, 1]
quantum δ : Q × Γ× Γ× {<,=, >} × Q → C

Classical computation Quantum computation Final remarks

More precisely...

δ : Q × Γ× Γ× {<,=, >} × Q → C̃

where C̃ is the set of complex numbers whose real and imaginary
parts can be computed by a deterministic algorithm to within 2−n

in time polynomial in n.

For BQP it suffices

δ : Q × Γ× Γ× {<,=, >} × Q → {−1,−4
5 ,−

3
5 , 0,

3
5 ,

4
5 , 1}

(Adleman, DeMarrais and Huang, 1997)

Classical computation Quantum computation Final remarks

Additionally...

For each state q and scanned symbol σ

probabilistic
∑

σ′,d ,q′ δ(q, σ, σ′, d , q′) = 1

quantum
∑

σ′,d ,q′ |δ(q, σ, σ′, d , q′)|2 = 1

In fact, for each QTM M one requires more: the time evolution
operator UM must be unitary.

Classical computation Quantum computation Final remarks

Time evolution operator

Like any TM, a QTM M determines a time evolution operator

Given a configuration C of M with current state q and scanned
symbol σ

each trio σ′, d and q′ such that δ(q, σ, σ′, d , q′) is a nonzero
probability amplitude αi ∈ C determines a configuration Ci
therefore C and δ determine a linear combination

α1C′1 + · · ·+ αkC′k

understood as a superpositions of configurations

Recall
∑

i |αi |2 = 1

Classical computation Quantum computation Final remarks

Time evolution operator

Let Configs be the complex vector space of the finite complex
linear combinations of configurations of M

(understood as superpositions of configurations of M)

M’s time evolution is the linear application

UM : Configs → Configs

that extends the map

C 7→ α1C′1 + · · ·+ αkC′k
of the previous slide

Classical computation Quantum computation Final remarks

Computation paths

Measuring a superposition α1C′1 + · · ·+ αkC′k collapses the
superposition to a configuration C′i with probability |αi |2

C′1

C � UM // α1C′1 + · · ·+ αkC′k

|α1|2
BB

|αk |2 ��

...

C′k

By measuring after every computation step, we generate a tree of
computation paths and, at each path, M runs like a probabilistic
machine

Classical computation Quantum computation Final remarks

Quantum computation

Quantum execution of QTM M:

The time evolution operator UM acts on superpositions

No measurement/observation until the end of computation

C � UM // UM(C) � UM // U2
M(C) � UM // · · ·

Since UM is unitary

the successive superpositions are unit vectors of Configs

the computation is reversible

Classical computation Quantum computation Final remarks

Tree of computation paths vs quantum computation

• // (· · ·) // •

•

;;

##

(· · ·) // C′

C

99

//

%%

•

##

•

;;

// (· · ·)

##
•

##

• // (· · ·)

DD

##

•

• // (· · ·) // •

C = U0
M (C)

� // U1
M (C)

� // U2
M (C)

� // (· · ·) � // Uk
M (C)

Classical computation Quantum computation Final remarks

Interference

The following are not necessarily equal

(1) The sum of the probabilities of the computations paths of
length k from C to C′

(2) |α|2, where α is the amplitude of C′ in the superposition
Uk
M(C)

(1) The probability of M reaching configuration C′ when M is run
like a probabilistic machine
(2) The probability of observing configuration C′ at the end of the
quantum computation of M

Explanations

Observing/measuring the machine during its execution
changes its behavior

In the quantum computation, there is interference between
computation paths

Classical computation Quantum computation Final remarks

A simple example of interference

For simplicity, consider C2 instead of Configs

Regard C2 as the space of superpositions

α0|0> +α1|1>

where

|0>=

[
1
0

]
is classical bit 0 seen as an element of C2

|1>=

[
0
1

]
is classical bit 1 seen as an element of C2

The unit vectors of C2 are called qubits

When measured, qubit
[
α0 α1

]T
collapses to the classical bit |i>

with probability |αi |2 (for i = 0, 1)

Classical computation Quantum computation Final remarks

A simple example of interference

For simplicity, rather than some UM , consider the linear map
U : C2 → C2 given by the unitary matrix

U =
1√
2

[
1 1
−1 1

]
Let us calculate

U|0>=

[
1√
2

− 1√
2

]
U|1>=

[
1√
2
1√
2

]

For each i ∈ {0, 1}, U|i> collapses to any |j> with probability 1
2

Classical computation Quantum computation Final remarks

A simple example of interference

Now let us compute k = 2 steps

Starting from C = |0>, each of the four computation paths has
probability 1/4, and so the probability of a computation path
ending with |j> is 1/2 (for j = 0, 1)

The same is true if we start from C = |1>

However

U2|0>=

[
0
−1

]
U2|1>=

[
1
0

]
If we observe U2|0> we obtain |1> with probability 1

If we observe U2|1> we obtain |0> with probability 1

Classical computation Quantum computation Final remarks

FINAL REMARKS

Classical computation Quantum computation Final remarks

Timeline

1985 D. Deutsch, Quantum theory, the Church-Turing thesis and
the universal quantum computer

1989 D. Deutsch, Quantum computational networks

1995 Universal quantum gates

1997 E. Bernstein and U. Vazirani, Quantum complexity theory

Classical computation Quantum computation Final remarks

Bibliography

D. Deutsch, Quantum theory, the Church-Turing thesis and
the universal quantum computer, Proc. Roy. Soc. London
Ser. A, 400, pp. 97 - 117, 1985

D. Deutsch, Quantum computational networks, Proc. Roy.
Soc. London Ser. A, 425, pp. 73 - 90, 1989

E. Bernstein and U. Vazirani, Quantum complexity theory,
SIAM J. Comput., vol. 26, no. 5, pp. 1411 - 1473, 1997

L. Adleman, J. DeMarrais and M. Huang, Quantum
computability, SIAM J. Comput., vol. 26, no. 5, pp. 1524 -
1540, 1997

L. Fortnow, One complexity theorist’s view on quantum
computing, Theoretical Computer Science, 292, pp. 597 -
610, 2003

N. Yanofsky and M. Mannucci, Quantum Computing for
Computer Scientists, Cambridge University Press, 2008

Classical computation Quantum computation Final remarks

OBRIGADO

	Classical computation
	Quantum computation
	Final remarks

