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Motivation

In a Quantum Turing Machine the flow of execution is described
by a constant unitary operator.

Developing a notion of quantum control which permits the
superposition of finitely many quantum operations.

Building a programming construct which simplifies the presentation
of several quantum algorithms, preserving intuition.



Classical Alternaton

• We are all used to the ever present ”if ... then ... else ...”
statement, which extracts a boolean value from a predicate and,
depending on its truth value, executes one of two statements.

if P(b) then T else Q

• Here b is a bit.



Classical Alternation of Quantum Programs

• The next statement for execution depends on a measurement
outcome.

• Construct of probabilistic nature.

• Still resorts to classical information. Therefore not quantum.

measure M[q] = m1 → P1

m2→ P2

...

mn → Pn

end

• Here q is a family of qubits.



What if ...

• Recall the definition of classical alternation but with the
following changes:

q ← |0
〉

q ← H[q]

qif q then P else Q

• What can we say about qif and the behaviour of this program?



Quantum Alternation
Closed Quantum Systems

• Let H be a Hilbert space and let U0,U1 : H →: H be unitary
operators. Given a qubit q define the alternation Altq(U0,U1) with
respect to q by

Altq(U0,U1) = Π0 ⊗ U0 + Π1 ⊗ U1

• It can be represented by a diagonal matrix

Altq(U0,U1) = |0
〉〈

0| ⊗ U0 + |1
〉〈

1| ⊗ U1 =

(
U0 0
0 U1

)
• Intuitively, quantum alternation creates a superposition of
execution paths of U0,U1 controlled by the basis states of q.



Examples

• Controlled unitary operations can be written in terms of
quantum alternation

qif q0 then skip else q1 ← U

• One can also write the toffoli gate as

qif q0 then skip else qif q1 then skip else q2 ← N

• as well as the quantum fourier transform

for i = 1to n do

qi ← H

for k = 2to n − i + 1 do

qif qk+i−1 then skip else qi ← Rk

Here Rk is the phase shift gate defined by Rk = Π0 + e iθΠ1 with
θ = 2π/2k .



Open Quantum Systems

• States are density operators, and quantum operations are given
by superoperators.

• Superoperators represent the most general evolution that an
open quantum system can undergo.

• Mathematically superoperators are described by completely
positive trace-preserving maps.

• One way to picture superoperators is as the composition of three
maps.

Figure: Superoperator



Kraus representation theorem

• Any superoperator can be written in the form

T (ρ) =
∑
k

EkρE
†
k

• Ek =
〈
ek |U|e0

〉
is an operator on the state space of the state

space of the principal system.

• The operators {Ek} are known as Kraus decompositions of the
quantum operation T . These operators must satisfie the
completeness relation ∑

k

E †kEk ≤ I

• These decompositions are not unique. One says that two Kraus
decompositions are extensionally equal if they represent the same
superoperator.



Löwner order on density matrices

• Let Dn be the set of density matrices of dimension n:
Dσ = {A ∈ Cn×n| A positive hermitian and tr A ≤ 1}

• For matrices A,B ∈ Cn×n , define A v B if the matrix B − A is
positive. It follows that v defines a partial order.

• Moreover the poset (Dn,v) is a complete partial order, i.e, it has
least upper bounds of increasing sequences.

• Least upper bounds of increasing sequences coincide with
topological limits in the Euclidean topology.

• Any order preserving function on operators will preserve lubs of
increasing sequences if it is topologically continuous.



QPL Programming language
Syntax

• high-level features such as loops, recursive procedures, and
structured data types.

• functional in nature, statically typed with denotational semantics
in terms of a complete partial order of superoperators.

QPL Terms P,Q :: = new bit b := 0 | new qbit q := 0 | discard x

| b := 0 | b := 1 | q1, ..., qn∗ = S

| skip | P;Q

| if b then P else Q |measure q then P else Q

| while b do P

| proc X : Γ→ Γ′{P} in Q

• A state for a typing context Γ containing n bits and m qubits is
given by a 2n − tuple (A0, ...,A2n−1) of density matrices.



QPL Programming Language
Formal Semantics

• We can assign to QPL a category Q which has as its objects
tuples of density matrices and whose morphisms are precisely
superoperators.

• Identity morphisms are superoperators and, superoperatores are
closed under composition.

• Q is equipped with two categorical operations, concatenation
and tensor product.

• The Löwner order is naturally extended to matrix tuples. This
makes Q(σ, σ′) into a complete partial order.



QPL Programming Language
Q atomic morphisms

• The atomic statements in QPL are interpreted as the following
morphisms in Q,

Figure: Morphisms in Q



QPL Programming language
Recursion

• The recursion can be partially unwound.

• The successive unwindings are given by F (0),F 2(0), ...

• Each unwinding is less than the next in the Löwner order,
because F is monotone.

• The recursion meaning is given by a least upper bound of the
increasing sequence.

• Because density matrices form a complete partial order we are
sure that the lubs exist.



Quantum Alternation

• We can define Quantum Alternation in terms of superoperators
as follows :

Given a qubit q and two superoperators T0,T1 : S(H)→ S(K )
then the alternation of T0 and T1 with respect to q should be the
superoperator Altq(T0,T1) : S(qbit⊗ H)→ S(qbit⊗ K ),

Altq(T0,T1) :: ρ =

[
A B
C D

]
7→
[
T0A ∗
∗ T1D

]
ρ is a state on qbit⊗ H.

• Quantum alternation should use the information incoded in the
classical states of q. If the qubit q is in a classical state Πi with i
∈ {0, 1}, the {Altq(T0,T1)} = I ⊗ Ti . The alternation reduces to
a local operation on qbit ⊗ S(H).



Quantum Alternation
Kraus Semantics

• One general way of defining the semantics of quantum
alternation would be in terms of Kraus decompositions.

• Define a new category K with Hilbert spaces as objects and
Kraus decompositions as morphisms.

• Composition S o T is defined to be the set obtained from the
multiset X = {E . F |E ∈ S ,F ∈ T} by replacing l ocurrences of
operator K ∈ X with

√
lK .

• Identity is the singleton set containing the usual Identity operator
idH = {I}.



Quantum Alternation
Kraus Semantics

• Finally we are in a position to define quantum alternation of two
morphisms S ,T : H → K to be the morphism
Altq(S ,T ) : qbit ⊗ H → qbit ⊗ K :

Altq(S ,T ) =

{
Π0 ⊗

E√
|T |

+ Π1 ⊗
F√
|S |
|E ∈ S ,F ∈ T

}



QPL and Quantum Alternation

• The semantics of quantum alternation are given by Kraus
decompositions.

• The sematics of quantum alternation cannot be lifted to
semantics of superoperators because Quantum alternation does
not preserve extensional equality.

• Quantum alternation is not compatible with recursion defined in
QPL because quantum alternation is not monotone with respect to
the Löwner order.



A different approach
Random walks

The simplest random walk is the one-dimensional walk in which a
particle moves ona lattice marked by integers Z, and at each step
it moves one position left or right, depending on the flip of a fair
coin.



Quantum Walks

• Hilbert space Hd ⊗ Hp.

• Hd = span{|L
〉
, |D
〉
} denotes the direction space.

• Hp = span{|n
〉

: n ∈ Z} denotes the position space.

• One step of the walk is represented by the unitary operator
W = T (H ⊗ I ).

• T is a unitary operator in Hd ⊗ Hp defined by

T |L, n
〉

= |L, n − 1
〉

T |R, n
〉

= |R, n + 1
〉

• H is the Hadamard transform in the direction space Hd ,

H =
1√
2

(
1 1
1 −1

)



Quantum Walks
Quantum Alternation

• Quantum alternation is disguised in the quantum walk.

• Consider the operators in position space Hp

TL|n
〉

= |n − 1
〉

TR |n
〉

= |n + 1
〉

• The translation operator T can be written as

qif d then TL[p] else TR [p]

• d represents the direction space and is employed by an external
coin system. p represents the position space which we denote as
the principal system.

• Furthermore, the single-step walk operator W can be seen as

d ← H[d ]

qif d then TL[p] else TR [p]



Quantum Recursion

• We already established that quantum alternation is not
compatible with recursion defined in QPL.

• QPL recursion is defined with procedure calls controlled
classicaly.

• We may consider this type of recursion as classical recursion of
quantum programs.

• Is there a quantum counterpart?

• Consider the program

X ⇐ H[d ];qif d then (TL[p];X ) else (TR [p];X )



Quantum Recursion

• This program represents a recursive quantum walk.

• The major difference between random and quantum walks is
caused by quantum interference.

• Recursive quantum walks exibit a higher-level interference, i.e.,
interference between infinite paths. Paths containing the recursive
walk itself may cancell each other.

• How do we solve the recursive quantum equation above?



Quantum Recursion

• The number of coin ”particles” needed in running a recursive
walk is unknown beforehand.

• Need for a method that describes quantum systems with variable
number of identical particles.

• Solution: Second Quantization!

• Principle of symmetrisation: States of n identical particles are
either completely symmetric or completely antisymmetric with
respect to the permutation of the particles.

• Implementation will depend on the specific choice of coin
”particle” : bosons or fermions.



Examples
Quantum while loops

• In classical programming the while-loop

while b do S

can be written as the recursive program

X ⇐ if b then X else skip

• Similarly one can write a quantum version

qwhile [c] = |1
〉
do U[q]

as

X ⇐ if c then skip else U[q];X

• Obviously this two versions are equivalent.



Examples
Quantum while loops

• A more intersting quantum loop would be

qwhile V[c] = |1
〉
do U[q]

as well as

qwhile W[c;q] = |1
〉
do U[q]
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