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Motivation

In a Quantum Turing Machine the flow of execution is described
by a constant unitary operator.

Developing a notion of quantum control which permits the
superposition of finitely many quantum operations.

Building a programming construct which simplifies the presentation
of several quantum algorithms, preserving intuition.



Classical Alternaton

e We are all used to the ever present "if ... then ... else ..."
statement, which extracts a boolean value from a predicate and,
depending on its truth value, executes one of two statements.

if P(b) then T else Q

e Here b is a bit.



Classical Alternation of Quantum Programs

e The next statement for execution depends on a measurement
outcome.

e Construct of probabilistic nature.

o Still resorts to classical information. Therefore not quantum.

measure M[q] = m; — P;
m2 — P2

m, — P,
end

e Here g is a family of qubits.



What if ...

e Recall the definition of classical alternation but with the
following changes:

g+ 10)
q « Hldq]
qif g then P else Q

e What can we say about qif and the behaviour of this program?



Quantum Alternation

Closed Quantum Systems

e Let H be a Hilbert space and let Uy, U; : H —: H be unitary
operators. Given a qubit q define the alternation Alt,(Up, U1) with
respect to q by

A/tq(Ug, U1) =Mo® Uy + M1 ® U

e |t can be represented by a diagonal matrix

At ) = 0)(0] & Uy + 1)t th = (2 )

e Intuitively, quantum alternation creates a superposition of
execution paths of Uy, U; controlled by the basis states of q.



Examples

e Controlled unitary operations can be written in terms of
quantum alternation

qgif qo then skip else g; + U

e One can also write the toffoli gate as
qgif go then skip else gif g; then skip else g < N

e as well as the quantum fourier transform

for i = 1to n do
qgi < H
for k=2ton—i+1do
gif gx.;_1 then skip else g; < Ry

Here Ry is the phase shift gate defined by Ry = Mo + eIy with
6 = 2m/2k.



Open Quantum Systems

e States are density operators, and quantum operations are given
by superoperators.

e Superoperators represent the most general evolution that an
open quantum system can undergo.

e Mathematically superoperators are described by completely
positive trace-preserving maps.

e One way to picture superoperators is as the composition of three
maps.

ps(0) ® pp(0) —= U[ps(0) @ ps(0)] U’

ps(0) ----==-T--<=-5 ps(t)

Figure: Superoperator



Kraus representation theorem

e Any superoperator can be written in the form

T(p)=> EvpE]
P

o £, = <ek|U\e0> is an operator on the state space of the state
space of the principal system.

e The operators {Ex} are known as Kraus decompositions of the
quantum operation T. These operators must satisfie the
completeness relation

S EE <1
k

e These decompositions are not unique. One says that two Kraus
decompositions are extensionally equal if they represent the same
superoperator.



Lowner order on density matrices

e Let D, be the set of density matrices of dimension n:
D, = {A € C"™"| A positive hermitian and tr A <1}

e For matrices A, B € C"*" | define A C B if the matrix B — A is
positive. It follows that C defines a partial order.

e Moreover the poset (D,,C) is a complete partial order, i.e, it has
least upper bounds of increasing sequences.

e Least upper bounds of increasing sequences coincide with
topological limits in the Euclidean topology.

e Any order preserving function on operators will preserve lubs of
increasing sequences if it is topologically continuous.



QPL Programming language

Syntax

e high-level features such as loops, recursive procedures, and
structured data types.

e functional in nature, statically typed with denotational semantics
in terms of a complete partial order of superoperators.

QPL Terms P, Q :: = new bit b:= 0 | new gbit g := 0 | discard x
|b:=0|b:=1]|q1,....,.qnx =S
| skip | P; Q
| if b then P else Q |measure g then P else Q
| while b do P
| proc X : T = "{P}in Q

e A state for a typing context [ containing n bits and m qubits is
given by a 2" — tuple (Ao, ..., Apn_1) of density matrices.



QPL Programming Language

Formal Semantics

e We can assign to QPL a category Q which has as its objects
tuples of density matrices and whose morphisms are precisely
superoperators.

e |dentity morphisms are superoperators and, superoperatores are
closed under composition.

e Q is equipped with two categorical operations, concatenation
and tensor product.

e The Lowner order is naturally extended to matrix tuples. This
makes Q(o, o’) into a complete partial order.



QPL Programming Language

Q atomic morphisms

e The atomic statements in QPL are interpreted as the following
morphisms in Q,

[new bit b:=0] = newbit : I — bit : a s (a,0)
[new gbit ¢ := 0] = newgbit: 1 — gbit : a—+ ( :: ln) )
[discard b] = discardbit: bit —1: (a,b)r—a+b
[discard q] = discardgbit : qbit — I : (” I;) —a+d
ce

[b:= = selg: bit — bit : (a, b) — (a+ b,0)
[b:= l] = sely: bit — bit : (a,b) — (0, + b)
[G *+= 5] = unitaryg:  qbit" — qbit" : A SAS®
[branch b] = branch: bit — bit & bit : (a, b) — (a,0,0,b)

» - .. [ab al 0o
[measure q] = measure :  qbit — gbit @ gbit : (‘_ d ) | ( 00 )'(() 'I)J

Figure: Morphisms in Q



QPL Programming language

Recursion

e The recursion can be partially unwound.
e The successive unwindings are given by F(0), F2(0), ...

e Each unwinding is less than the next in the Lowner order,
because F is monotone.

e The recursion meaning is given by a least upper bound of the
increasing sequence.

e Because density matrices form a complete partial order we are
sure that the lubs exist.



Quantum Alternation

e We can define Quantum Alternation in terms of superoperators
as follows :

Given a qubit q and two superoperators To, T1 : S(H) — S(K)
then the alternation of Ty and T7 with respect to q should be the
superoperator Alty(To, T1) : S(gbit ® H) — S(qbit ® K),

A B ToA =
A/tq(To,Tl)::p:[C D]H[Z TID]

p is a state on gbit ® H.

e Quantum alternation should use the information incoded in the
classical states of q. If the qubit q is in a classical state [1; with i
€ {0,1}, the {Altq(To, T1)} = | ® T;. The alternation reduces to
a local operation on gbit ® S(H).



Quantum Alternation

Kraus Semantics

e One general way of defining the semantics of quantum
alternation would be in terms of Kraus decompositions.

e Define a new category K with Hilbert spaces as objects and
Kraus decompositions as morphisms.

e Composition S o T is defined to be the set obtained from the
multiset X = {E . F|[E € S, F € T} by replacing / ocurrences of
operator K € X with VIK.

e Identity is the singleton set containing the usual ldentity operator
idy = {I}.



Quantum Alternation

Kraus Semantics

e Finally we are in a position to define quantum alternation of two
morphisms S, T : H — K to be the morphism
Alty(S,T) : gbit @ H— qbit @ K :

Altg(S, T):{I‘Io® |E€S,F e T}

T f



QPL and Quantum Alternation

e The semantics of quantum alternation are given by Kraus
decompositions.

e The sematics of quantum alternation cannot be lifted to
semantics of superoperators because Quantum alternation does
not preserve extensional equality.

e Quantum alternation is not compatible with recursion defined in
QPL because quantum alternation is not monotone with respect to
the Lowner order.



A different approach

Random walks

The simplest random walk is the one-dimensional walk in which a
particle moves ona lattice marked by integers Z, and at each step

it moves one position left or right, depending on the flip of a fair
coin.



Quantum Walks

e Hilbert space Hy ® H,.
e Hy = span{|L),|D)} denotes the direction space.
e H, = span{|n) : n € Z} denotes the position space.

e One step of the walk is represented by the unitary operator
W=THI).

e T is a unitary operator in Hy ® H, defined by
T|L,ny=|L,n—1) TI|R,n)=|R,n+1)

e H is the Hadamard transform in the direction space Hy,

=5 4)



Quantum Walks

Quantum Alternation
e Quantum alternation is disguised in the quantum walk.
e Consider the operators in position space Hp
Teln) =|n—1) Tgln)=|n+1)
e The translation operator T can be written as
qif d then T,[p] else Tg[p]

e d represents the direction space and is employed by an external
coin system. p represents the position space which we denote as
the principal system.

e Furthermore, the single-step walk operator W can be seen as

d + H|d]
qif d then T,[p] else Tg[p]



Quantum Recursion

e We already established that quantum alternation is not
compatible with recursion defined in QPL.

e QPL recursion is defined with procedure calls controlled
classicaly.

e We may consider this type of recursion as classical recursion of
quantum programs.

e Is there a quantum counterpart?
e Consider the program

X < HI[d]; qif d then (T[p]; X) else ( Tr[p]; X)



Quantum Recursion

e This program represents a recursive quantum walk.

e The major difference between random and quantum walks is
caused by quantum interference.

e Recursive quantum walks exibit a higher-level interference, i.e.,
interference between infinite paths. Paths containing the recursive
walk itself may cancell each other.

e How do we solve the recursive quantum equation above?



Quantum Recursion

e The number of coin "particles” needed in running a recursive
walk is unknown beforehand.

e Need for a method that describes quantum systems with variable
number of identical particles.

e Solution: Second Quantization!

e Principle of symmetrisation: States of n identical particles are
either completely symmetric or completely antisymmetric with
respect to the permutation of the particles.

e Implementation will depend on the specific choice of coin
" particle” : bosons or fermions.



Examples

Quantum while loops

e In classical programming the while-loop
while b do S

can be written as the recursive program

X < if b then X else skip
e Similarly one can write a quantum version

qwhile [c] = [1) do U[q]
as

X < if c then skip else U[q]; X

e Obviously this two versions are equivalent.



Examples

Quantum while loops

e A more intersting quantum loop would be
qwhile V[c] = [1) do U[q]
as well as

qwhile W[c;q] = |1) do U[q]
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