QGRAPHICS: QUANTUM SEARCHING FOR RAY TRIANGLE INTERSECTION

Carolina Alves
Integrated Master in Physics Engineering
Q Days, April 2019
University of Minho, HASLab

Ray Tracing

- Calculates the color of pixels by tracing the path that light would take through a virtual 3D scene which is described by a collection of geometric primitives (e.g., triangles).
- The algorithm returns, for a given ray, which triangle it intersects closer to its origin.

The problem

■ Determine which rays intersect a geometric primitive.

- For simplification the primitives will be 1D and perpendicular to the rays.
- A higher dimensional approach would require a large number of qubits/gates because of the great amount of calculations needed.

Classical Algorithm

- Complexity: $\mathrm{O}(\mathrm{R} * \mathrm{P})$

```
for each ray{
    intersect with primitives{
    if intersect continue to next ray;
    }
}
```

- Note: The primitives can be ordered, resulting in a $O\left(R^{*} \log (P)\right)$ complexity although it requires a setup time and more memory.

Can we gain in complexity with a quantum strategy?

- Finding an intersection is a search algorithm so we'll use Grover's Algorithm in our problem.

3. Inversion about average

$$
|\psi\rangle=|11\rangle
$$

One query = marking \& inversion In general, need $\sqrt{ } \mathrm{N}$ queries

Two Approaches

- Superposition of the rays
- Superposition of the primitives

Superposition of the rays

$$
\text { geom }=[(1,3),(5,7),(9,11),(14,15)]
$$

Superposition of the rays

i from 0 to $\mathrm{P}-1$

Superposition of the rays

i from 0 to $\mathrm{P}-1$

Superposition of the rays

Superposition of the rays

- If we measure the control bit as 1 it is necessary to repeat the circuit without that ray from the superposition so we don't measure it again.
- Complexity: $\mathrm{O}\left(\mathrm{R} * \sqrt{\frac{R}{\# s o l s}}\right)$

Superposition of the primitives

primitives

lows \qquad

$$
\text { geom }=[(1,3),(5,7),(9,11),(14,15)]
$$

upps \qquad

Superposition of the primitives


```
geom = [(1,3),(5,7),(9,11),(14,15)]
```


Superposition of the primitives

Superposition of the primitives

Superposition of the primitives

Superposition of the primitives

- Number of solutions: 0 or 1
- Complexity: $\mathrm{O}(\mathrm{R} * \sqrt{ } \mathrm{P})$
- Quadratic gain over the classical algorithm

Comparison

S. RAYS

■ Multiple solutions

- $\mathrm{O}\left(\mathrm{R} * \sqrt{\frac{R}{\# s o l s}}\right)$
S. PRIMITIVES
- Only 1 solution (or 0)
- $O(R * \sqrt{ } P)$

Future Work

- Expand the geometric configuration:
- Rays on a plane
- More complex primitives (2D primitives, inclined
or intersecting primitives)

Future Work

- Expand the geometric configuration:
- Rays on a plane
- More complex primitives (2D primitives, inclined or intersecting primitives)
- Non-parallel rays

Depends on the capacity of the quantum machine to perform calculations.

Future Work

- Change the problem to:
- For each ray, what is the geometric primitive closest to the origin of the ray?

■ Error tolerance - real machine:

- Quantum error correction

QGRAPHICS: QUANTUM SEARCHING FOR RAY TRIANGLE INTERSECTION

Carolina Alves
Integrated Master in Physics Engineering
Q Days, April 2019
University of Minho, HASLab

