Quantum Logic

Carlos Fitas

CMAT

Q DAYS

April 11, 2019

Introduction

- Intuitive overview
- Ortholattices

2 Semantics

Algebraic Semantics

3 Calculus

Axiomatization of Quantum Logic

4 Implication Problem

Introduction	Calculus	
Introduction		

Quantum logic was created by Birkhoff and von Neumann in the thirties as a extrapolation from the algebraic structure of the set of closed subspaces of a Hilbert space.

Introduction		Calculus	
Intuitive overview			
Classical particle	e mechanics		

Let σ be a classical physical system (let's say one classical particle).

One can associate to σ , as a mathematical representation, a **phase-space** *P*.

P is the set of all 6-tuples $(x_1 \dots x_6)$ of real numbers:

- x_1, x_2, x_3 representing three *position* coordinates;
- x_4, x_5, x_6 representing three *momentum* coordinates.

Any $p \in P$ represents a **pure state**.

Introduction		Calculus	
Intuitive overview			
	, maabaniaa		
Classical particle	e mechanics		

In this framework, it's natural to assume that the power-set $\mathcal{P}(P)$ of P represents all of the possible **properties** of the pure states.

For instance, the property "no momentum" is simply the set

 $\{(x_1, x_2, x_3, 0, 0, 0) : x_1, x_2, x_3 \in \mathbb{R}\}$

Introduction		Calculus	
Intuitive overview			
Classical particle m	echanics		

Using terminology from logic we may say that any property $X \in \mathcal{P}(P)$ represents a **proposition** which may be **true** or **false** for any given pure state *p*:

- X is true if $p \in X$;
- X is false if $p \in P \setminus X$.

For instance, the property "no momentum"

$$\{(x_1, x_2, x_3, 0, 0, 0) : x_1, x_2, x_3 \in \mathbb{R}\}$$

seen as a proposition is

- true for the pure state (2, 3, 6, 0, 0, 0);
- false for the pure state (2, 3, 6, 0, 0, 1).

Introduction		Calculus	
Intuitive overview			
Classical particle	mechanics		

Since $\mathcal{P}(P)$ has a Boolean structure, it's governed by classical logic, with the set-theoretical operations seen as logical connectives:

complement	\sim
intersection	\wedge
union	V

Introduction	Calculus	
Intuitive overview		
Quantum theory		

In the standard formalism of quantum theory:

- the role of the phase-space P is played by a Hilbert space \mathcal{H} ;
- the pure states of a system are the unit vectors in \mathcal{H} ;

We are only interested in properties that can in principle be tested by a measurement. These are called **testable properties**. In our Hilbert space \mathcal{H} , the set of testable properties is the set $\mathcal{C}(\mathcal{H})$ of closed linear subspaces of \mathcal{H} .

However, unlike $\mathcal{P}(P)$, $\mathcal{C}(\mathcal{H})$ is not closed under the set-theoretical operations.

Consequently we cannot define a Boolean structure on $\mathcal{C}(\mathcal{H}),$ using the set-theoretical operations.

Introduction	Calculus	
Intuitive overview		
Quantum theory		

Nevertheless, we will see that $\mathcal{C}(\mathcal{H})$ can be extended, in a natural way, to a certain "quasi-Boolean" algebraic structure.

These structures are called **ortholattices**.

Introduction	Calculus	
Ortholattices		
Ortholattices		

Definition (Ortholattice)

An ortholattice is a structure $\mathcal{O} = (\mathcal{O}, \leq, \sqcap, \sqcup, \neg, \bot, \top)$, where

• $(\mathcal{O}, \leq, \sqcap, \sqcup, \bot, \top)$ is lattice with maximum (\top) and minimum (\bot) ;

¬ is a 1−ary operation, called orthocomplement, satisfying:
 ¬¬A = A,

•
$$A \leq B \Rightarrow \neg B \leq \neg A$$
,

$$\bullet \ A \sqcap \neg A = 0$$

•
$$A \sqcup \neg A = 1$$
,
for all $A, B \in \mathcal{O}$.

The usual De Morgan's laws are valid:

 $\neg \bot = \top \qquad \neg (A \sqcup B) = \neg B \sqcap \neg A$ $\neg \top = \bot \qquad \neg (A \sqcap B) = \neg B \sqcup \neg A$

Introduction	Calculus	
Ortholattices		

Ortholattice of closed linear subspaces

It's easy to check that $(\mathcal{C}(\mathcal{H}), \subseteq, \cap, +, \neg, \mathbf{0}, \mathcal{H})$ is a ortholattice, where:

- $A \cap B$ is the set theoretical intersection;
- $A + B := \langle A \cup B \rangle$, the linear subspace generated by the set-theoretical union $A \cup B$;

• $\neg A$ is the subspace orthogonal to A, $\neg A = \{y \in \mathcal{H} \mid \forall x \in A \langle x, y \rangle = 0\}.$

Introduction	Calculus	
Ortholattices		
Example		

Example

Consider the ortholattice $(\mathcal{C}(\mathbb{R}^2), \subseteq, \cap, +, \neg, \mathbf{0}, \mathbb{R}^2)$.

In this case $C(\mathbb{R}^2)$ is simply the set containing all the straight lines through the origin, the whole plane (\mathbb{R}^2) and the origin (**0**):

where r, s, t are straight lines through the origin.

Introduction		Calculus	
Ortholattices			
Violation of meta	-tertium non datu	<i>.</i>	

Remember that each $A \in C(H)$ represents a proposition which is, for a given pure state p,

- true if $p \in A$;
- false if $p \in \neg A$.

It's perfectly possible that a proposition is neither true nor false.

In other words, we have a violation of the meta-theoretical tertium non datur.

At the same time $A + \neg A$ is true for any pure state p and any proposition A.

Which means that the theoretical tertium non datur holds!

Introduction		Calculus	
Ortholattices			
Violation of mota	tortium non datu	r	

This can be explained by the fact that, the truth of a disjunction does not imply the truth of at least one member.

While this result is counter-intuitive it mirrors some "logical anomalies" of quantum mechanics.

Consider the famous "two-slit experiment". In this physical experiment we have a certain particle p and we know that:

"p has gone trough slit A" or "p has gone trough slit B"

Yet, we can neither maintain that it is true that,

"p has gone trough slit A"

nor that it is true that

"p has gone trough slit B"

Introduction	Calculus	
Ortholattices		
Orthomodularity		

While we don't generally have distributivity in ortholattices we do have a weak form of modularity for the class of ortholattices corresponding to C(H).

Recall that a lattice is modular if the following identity holds

$$A \leq B \Rightarrow (A \lor C) \land B \leq A \lor (C \land B)$$

Orthomodularity only requires this identity for the special case $C = \neg A$:

Definition (Orthomodularity)

An ortholattice \mathcal{O} is orthomodular if

$$A \leq B \Rightarrow B \leq (A \sqcup (\neg A \sqcap B))$$

holds for any $A, B \in \mathcal{O}$.

Introduction	Calculus	
Ortholattices		
Quantum Logic		

There are two variants of quantum logic:

- Orthomodular quantum logic (OQL)
 - It's associated to the class of orthomodular ortholattices.
 - It's a more faithful representation of the formalism of quantum theory.

Minimal quantum logic (MQL)

- It's associated to the class of ortholattices.
- Has much better logical proprieties than orthomodular quantum logic.

	Semantics	Calculus	
Algebraic Semantics			
Algebraic Semantics			

There are well-known algebraic semantics for classic, intuitionistic, and many other logics.

For instance, classic logic and intuitionistic logic can be interpreted with boolean lattices and Heyting lattices, respectively.

We can, analogously, interpret OQL and MQL with orthomodular lattices.

In sum:

Logic

Algebra

Classic Logic Intuitionistic Logic Quantum Logic Boolean lattices Heyting lattices Orthomodular lattices

	Semantics	Calculus	
Algebraic Semantics			
Syntax			

The formulas for OQL and MQL are built using only two connectives:

$$A ::= x \mid A \sqcap A \mid \neg A,$$

where x ranges over elements of a given countable set \mathcal{X} of **variables**.

We now use \sqcap and \neg to define the following:

$$A \sqcup B := \neg (\neg A \sqcap \neg B)$$
$$\bot := \neg x \sqcap x$$
$$\top := \neg \bot$$

	Semantics	Calculus	
Algebraic Semantics			
Algebraic realizati	on		

Definition (Algebraic realization)

An algebraic realization for MQL (resp. OQL) is a pair $\mathcal{R} = (\mathcal{O}, v)$ where

- *O* is an ortholattice (resp. orthomodular ortholattice);
- *v* is a **valuation-function** which associates with any formula *A* an element of *O* and satisfies the following conditions:

•
$$v(\neg A) = \neg v(A),$$

• $v(A \sqcap B) = v(A) \sqcap v(B)$.

	Semantics	Calculus	
Algebraic Semantics			
Logical Truth			

Definition (Logical Truth)

Let A be a formula.

A is **true** in a algebraic realization $\mathcal{R} = (\mathcal{O}, v)$ if $v(A) = \top$. In that case we write $\models_{\overline{\mathcal{R}}} A$.

A is a **logical truth** of **MQL** (resp. **OQL**) if A is true for any algebraic realization. In that case we write $|_{MQL} A$ (resp. $|_{\overline{OQL}} A$).

	Semantics	Calculus	
Algebraic Semantics			
Logical Consegu	ience		

Definition (Logical Consequence)

Let Γ be a set of formulas.

A is a **logical consequence** of Γ if, for any algebraic realization $\mathcal{R} = (\mathcal{O}, v)$, any $o \in \mathcal{O}$

any
$$B \in \Gamma$$
, $o \leq v(B) \Rightarrow o \leq v(A)$.

In that case we write $\Gamma \models_{MQL} A$ (resp. $\Gamma \models_{OQL} A$).

We will write $B \models_{-\mathbf{QL}} A$ instead of $\{B\} \models_{-\mathbf{QL}} A$.

It's easy to check that $B \models_{-\mathbf{QL}} A \Leftrightarrow v(B) \leq v(A)$ for any algebraic realization.

Axiomatization of Minimal Quantum Logic

We will now axiomatize the consequence relation \vdash of minimal quantum logic.

Naturally, we want

$$A \vdash B$$
 to be derivable if and only if $A \models B$.

Equivalently, we want

$$A \vdash B$$
 to be derivable if and only if $v(A) \leq v(B)$,

for any algebraic realization.

	Calculus	
Axiomatization of Quantum Logic		

Goldblatt's axiomatization [1974]

		Calculus	
Axiomatization of Quantum Logic			
Goldblatt's axion	natization [1974]		

To obtain a calculus for **OQL** we simply have to add another rule:

	Calculus	
Axiomatization of Quantum Logic		

A problem of Goldblatt's axiomatization

It's not possible to eliminate the cut rule:

$$\frac{A \vdash B \qquad B \vdash C}{A \vdash C} cut$$

This makes studying the derivability of $A \vdash C$ very complicated, since we may need to invent some *B* seemingly unrelated to *A* and *C*.

On the other hand, cut-free systems usually satisfy the **sub-formula property**: every formula appearing in a derivation of $A \vdash C$ is a sub-formula of A or C.

	Calculus	
Axiomatization of Quantum Logic		

Oliver Laurent's axiomatization [2017]

For this calculus we have that

 $\neg A, B$ is derivable if and only if $v(A) \leq v(B)$,

for any algebraic realization.

Implication in Classic Logic

In classical logic we can define an implication connective using the classic negation \sim and classic disjunction \lor :

$$A \rightarrow B := \sim A \lor B$$

This implication is generally called material implication.

Implication in Classic Logic

In the classical calculus:

modus ponens holds:

$$A \wedge (A \rightarrow B) \vdash B$$

deduction theorem is provable:

$$\Gamma, A \vdash B \Rightarrow \Gamma \vdash A \to B$$

The deduction theorem together with modus ponens can be stated simply as the following **implicative rule**:

$$A \land B \vdash C \Leftrightarrow B \vdash A \to C$$

	Calculus	Implication Problem
The Problem		

It is known that any logic with a binary connective satisfying the implicative rule is distributive.

Hence it comes as no surprise that the implicative rule cannot be encountered in quantum logic because of the failure of distributivity.

This is the so called **implication problem**.

At the end of the seminal paper "The Logic of Quantum Mechanics":

"Our conclusion agrees perhaps more with those critiques of logic, which find most objectionable the assumption that $a' \cup b = \top$ implies $a \subset b$."

G. Birkhoff and J. von Neumann

It is natural to wonder if possible to define some other kind of implication in quantum logic.

Let us first assume that any implication operation should satisfy the **law of entailment**:

 $A \vdash B \Leftrightarrow \vdash A \to B$

Under this assumption, there are exactly five possible definitions for a binary implication (in terms of \neg and \sqcap):

$$A \to_1 B := (\neg A \sqcap B) \sqcup (\neg A \sqcap \neg B) \sqcup (A \sqcap (\neg A \sqcup B))$$
$$A \to_2 B := (\neg A \sqcap B) \sqcup (A \sqcap B) \sqcup ((\neg A \sqcup B) \sqcap \neg B)$$

$$\blacksquare A \rightarrow_3 B := \neg A \sqcup (A \sqcap B)$$

$$\blacksquare A \rightarrow_4 B := B \sqcup (\neg A \sqcap \neg B)$$

 $\blacksquare A \rightarrow_5 B := (\neg A \sqcap B) \sqcup (A \sqcap B) \sqcup (\neg A \sqcap \neg B)$

Note that the classical material implication is not one these five implication operations as it violates the law of entailment.

Consider the following orthomodular lattice:

It's clear that we have $\vdash \neg A \sqcup B$ but not $A \vdash B$.

	Calculus	Implication Problem
Sasaki Hook		

One of these five implications operations is particularly interesting:

$$A \to_3 B := \neg A \sqcup (A \sqcap B),$$

the so called Sasaki hook.

This implication is "better" than the other candidates because it perfectly matches classical implication if the elements are **compatible**:

$$A \rightarrow_3 B = \neg A \sqcup B$$
 if $A = (A \sqcap B) \sqcup (A \sqcap \neg B)$

	Calculus	Implication Problem
Sasaki Hook		

In the case of **OQL**, the Sasaki Hook also satisfies modus ponens:

 $A \sqcap (A \rightarrow_3 B) \vdash B$

which is exactly the orthomodular rule:

$$A \sqcap (\neg A \sqcup (A \sqcap B)) \vdash B$$
 om

Sasaki Hook - Non-properties

It's worth stressing that the Sasaki hook lacks many properties typically associated with implication operations:

Transitivity
$$A \rightarrow_{3} B \sqcap B \rightarrow_{3} C \models A \rightarrow_{3} C$$
weakening
$$A \rightarrow_{3} C \models (A \sqcap B) \rightarrow_{3} C$$
The contraposition
$$A \rightarrow_{3} B \models \neg B \rightarrow_{3} \neg A$$

		Calculus	
Referen	ces		
Þ	Garrett Birkhoff & John Von Neumann <i>The Logic of Quantum Mechanics.</i> The Annals of Mathematics, 2nd Series, V	/ol. 37, No. 4, 1936	
•	Dalla Chiara <i>Quantum Logic.</i> Handbook of Philosophical Logic, Vol. 16	6, Springer, 1986	
•	Robert Goldblatt <i>Semantics of Orthologic.</i> Journal of Philosophical Logic Vol. 3, No.	1/2, 2010	
•	Herman, Marsden & Piziak <i>Implication connectives in orthomodular I.</i> Notre Dame J. Formal Logic, Vol. 16, 197		
•	Gudrun Kalmbach <i>Orthomodular Lattices</i> Academic Press, London, 1983		

- Oliver Laurent Focusing in Orthologic. Logical Methods in Computer Science Vol. 13, 2017
- Sonja Smets Logic and Quantum Physics. Journal of the Indian Council of Philosophical Research, Vol. 27, 2010