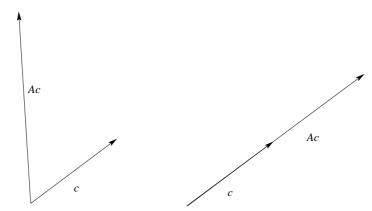
Capítulo 5

Valores e vectores próprios

5.1 Motivação e definições

Considere a matriz $A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$. Para $b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, obtemos $Ab = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Mas se tomarmos $c = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, temos que Ac = 2c. Ou seja, Ac é um múltiplo de c.



Dada uma matriz complexa A quadrada, $n \times n$, um vector $x \in \mathbb{C}^n$ não nulo diz-se um vector próprio de A se $Ax = \lambda x$, para algum $\lambda \in \mathbb{C}$. O complexo λ é denominado valor próprio, e dizemos que x é vector próprio associado a λ . O conjunto dos valores próprios de A é denotado por $\sigma(A)$ e é chamado de espectro de A.

No exemplo apresentado atrás, temos que $2 \in \sigma(A)$ e que $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ é vector próprio associado ao valor próprio 2.

Uma questão que colocamos desde já é:

Como encontrar $\sigma(A)$?

Ora, sendo A uma matriz complexa $n \times n$ e se λ é valor próprio de A então existe $x \in \mathbb{C}^n \setminus \{0\}$ para o qual $Ax = \lambda x$. Ou seja, $\lambda I_n x - Ax = \lambda x - Ax = 0$, o que equivale a $(\lambda I_n - A)x = 0$. Como $x \neq 0$, tal significa que a equação $(\lambda I_n - A)x = 0$ é consistente e que tem

solução não nula. Isto é, a matriz quadrada $\lambda I_n - A$ tem característica estritamente inferior ao número de colunas, o que acontece se e só se não é invertível, ou de forma equivalente, o seu determinante é nulo. Os valores próprios de A são os escalares λ que tornam $\lambda I_n - A$ uma matriz singular, ou seja, que satisfazem $|\lambda I_n - A| = 0$. Ora $|\lambda I_n - A|$ é um polinómio em λ , usando o teorema de Laplace, denominado polinómio característico de A, e denotado por Δ_A . Os valores próprios de A são as raizes do polinómio característico Δ_A , ou seja, as soluções da equação $\Delta_A(\lambda) = 0$. Esta equação é chamada a equação característica de A.

Determinar os valores próprios de uma matriz equivalente a determinar as raizes do seu polinómio característico. Usando o teorema de Laplace, este polinómio tem grau igual à ordem da matriz A, que assumimos $n \times n$, e é mónico: o coeficiente de λ^n de $\Delta_A(\lambda)$ é 1. Pelo Teorema Fundamental da Álgebra, sendo o grau de Δ_A igual a n este tem n raizes (contando as suas multiplicidades) sobre \mathbb{C} . Ou seja, a matriz A do tipo $n \times n$ tem então n valores próprios (contando com as suas multiplicidades). Sabendo que se $z \in \mathbb{C}$ é raiz de Δ_A então o conjugado \bar{z} de z é raiz de Δ_A , segue que se $\lambda \in \sigma(A)$ então $\bar{\lambda} \in \sigma(A)$. Em particular, se A tem um número ímpar de valores próprios (contado as suas multiplicidades) então tem pelo menos um valor próprio real. Isto é, $\sigma(A) \cap \mathbb{R} \neq \emptyset$. A multiplicidade algébrica de um valor próprio λ é a multiplicidade da raiz λ de Δ_A .

Vimos no que se discutiu acima uma forma de determinar os valores próprios de uma matriz. Dado um valor próprio λ ,

Como determinar os vectores próprios associados a $\lambda \in \sigma(A)$?

Recorde que os vectores próprios associados a $\lambda \in \sigma(A)$ são as soluções $n\~ao$ -nulas de $Ax = \lambda x$, ou seja, as soluções $n\~ao$ nulas de $(\lambda I_n - A)x = 0$. Isto é, os vectores próprios de A associados a λ são os elementos $n\~ao$ nulos de $N(\lambda I_n - A)$. Recorde que o núcleo de qualquer matriz é um espaço vectorial, e portanto $N(\lambda I_n - A)$ é o espaço vectorial dos vectores próprios de A associados a λ juntamente com o vector nulo, e denomina-se espaço próprio de A associado a λ . A multiplicidade geométrica de λ é a dimensão do espaço próprio associado a λ , isto é, dim $N(\lambda I_n - A)$.

O resultado seguinte resume o que foi afirmado na discussão anterior.

Teorema 5.1.1. Sejam A uma matriz $n \times n$ e $\lambda \in \mathbb{C}$. As afirmações seguintes são equivalentes:

- 1. $\lambda \in \sigma(A)$;
- 2. $(\lambda I_n A)x = 0$ é uma equação possível indeterminada;
- 3. $\exists_{x \in \mathbb{C}^n \setminus \{0\}} Ax = \lambda x;$
- 4. λ é solução de $|\tilde{\lambda}I_n A| = 0$.

Para a matriz considerada acima, $A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$, o seu polinómio característico é

 $\Delta_A(\lambda) = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda + 2 \end{vmatrix} = \lambda^2 + \lambda - 6$, cujas raizes são -3, 2. Portanto, $\sigma(A) = \{-3, 2\}$, e cada valor próprio de A tem multiplicidade algébrica igual a 1.

Teorema 5.1.2. Sejam A uma matriz quadrada e $\lambda \in \sigma(A)$ com multiplicidade algébrica ν_{λ} e multiplicidade geométrica η_{λ} . Então

 $\nu_{\lambda} \geq \eta_{\lambda}$.

Octave

Defina a matriz A no Octave:

1 2

2 -2

Os coeficientes do polinómio característico de A, por ordem decrescente do expoente de λ , são obtidos assim:

Ou seja, $\Delta_A(\lambda)=\lambda^2+\lambda-6$. As raizes de Δ_A são os elementos de $\sigma(A)$:

ans =

-3

A multiplicidade algbébrica de cada um deles é 1.

Os valores próprios de uma matriz dada são calculados de forma directa fazendo uso de

2

Resta-nos determinar vectores próprios associados a cada um destes valores próprios. Recorde que os vectores próprios associados a -3 [resp. 2] são os elementos não nulos de $N(-3I_2-A)$ [resp. $N(2I_2-A)$], pelo que nos basta pedir uma base para cada espaço próprio:

```
> null(-3*eye(2)-A)
ans =
     0.44721
    -0.89443
> null(2*eye(2)-A)
ans =
     0.89443
     0.44721
```

Ora a dimensão de cada um desses espaços vectoriais é 1, pelo que, neste caso, as multiplicidades algébrica e geométrica de cada um dos valores próprios são iguais. Mais adiante mostraremos uma forma mais expedita de obtermos estas informações.

5.2 Propriedades

Nos resultados que se seguem descrevemos algumas propriedades dos valores própios.

Teorema 5.2.1. Dada uma matriz quadrada A,

$$\sigma(A) = \sigma(A^T).$$

Demonstração. Recorde que $|\lambda I - A| = |(\lambda I - A)^T| = |\lambda I - A^T|$.

Teorema 5.2.2. Os valores próprios de uma matriz triangular (inferior ou superior) são os seus elementos diagonais.

Demonstração. Seja $A = [a_{ij}]$ triangular superior, $n \times n$. Ora $\sigma(A)$ é o conjunto das soluções de $|\lambda I_n - A|$. Mas $\lambda I_n - A$ é de novo uma matriz triangular superior já que λI_n é diagonal. Portanto $|\lambda I_n - A|$ é o produto dos seus elementos diagonais, ou seja, $(\lambda - a_{11})(\lambda - a_{22}) \cdots (\lambda - a_{nn})$, que tem como raizes $a_{11}, a_{22}, \ldots, a_{nn}$.

Teorema 5.2.3. Uma matriz A, quadrada, é invertível se e só se $0 \notin \sigma(A)$.

Demonstração. Sejam A uma matriz quadrada de ordem n e $\Delta_A(\lambda) = \lambda^n + c_1\lambda^{n-1} + \cdots + c_{n-1}\lambda + c_n$ o polinómio característico de A. Ora $0 \in \sigma(A)$ se e só se 0 é raiz de Δ_A , ou de forma equivalente, $c_n = 0$.

Por definição, $\Delta_A(\lambda) = |\lambda I_n - A|$. Tomando $\lambda = 0$ obtemos $(-1)^n |A| = |-A| = c_n$. tal implica que |A| = 0 se e só se $c_n = 0$. Portanto A não é invertível se e só se $c_n = 0$ o que por sua vez vimos ser equivalente a $0 \in \sigma(A)$.

Teorema 5.2.4. Sejam A uma matriz quadrada e $k \in \mathbb{N}$. Se $\lambda \in \sigma(A)$ e x é vector próprio associado a λ então $\lambda^k \in \sigma(A^k)$ e x é vector próprio de A^k associado a λ^k .

Demonstração. Se $\lambda \in \sigma(A)$ e x é vector próprio associado a λ então $Ax = \lambda x$. Desta igualdade segue que, para qualquer $k \in \mathbb{N}$, se tem

$$A^k x = A^{k-1} A x = A^{k-1} \lambda x = \lambda A^{k-1} x = \dots = \lambda^k x$$

e portanto $\lambda \in \sigma(A^k)$ e x é vector próprio de A^k associado a λ^k .

Recordamos que uma matriz $N,\ n\times n,$ se diz nilpotente se existir um natural k para o qual $N^k=0_{n\times n}.$

Alertamos ainda para o facto de $\sigma(0_{n\times n}) = \{0\}$; isto é, a matriz nula só tem um valor próprio: o zero.

Corolário 5.2.5. Se N é uma matriz nilpotente então $\sigma(N) = \{0\}$.

Demonstração. Suponha que k é tal que $N^k = 0_{n \times n}$. Seja $\lambda \in \sigma(N)$. Então λ^k é valor próprio de $N^k = 0_{n \times n}$; portanto, $\lambda^k = 0$, do que segue que $\lambda = 0$.

Terminamos esta secção com duas observações, omitindo a sua prova:

- (i) O determinante de uma matriz iguala o produto dos seus valores próprios.
- (ii) O traço de uma matriz (ou seja, a soma dos elementos diagonais de uma matriz) iguala a soma dos seus valores próprios.

5.3 Matrizes diagonalizáveis

Nesta secção, vamo-nos debruçar sobre dois problemas, que aliás, e como veremos, estão relacionados. Assume-se que A é uma matriz $n \times n$ sobre \mathbb{C} . Essas questões são:

- # 1. Existe uma base de \mathbb{C}^n constituída por vectores próprios de A?
- # 2. Existe uma matriz U invertível para a qual $U^{-1}AU$ é uma matriz diagonal?

Recordamos a noção de semelhança entre matrizes. As matriz A e B dizem-se semelhantes, e denota-se por $A \approx B$, se existir uma matriz invertível U para a qual $B = U^{-1}AU$. Repare que as matrizes A, B são necessariamente quadradas.

E óbvio que se $A \approx B$ então $B \approx A$; de facto, se $B = U^{-1}AU$ então $UBU^{-1} = A$.

Definição 5.3.1. Uma matriz quadrada A diz-se diagonalizável se existir uma matriz diagonal D tal que $A \approx D$. Isto é, $A = UDU^{-1}$, para alguma matriz U invertível. À matriz U chamamos matriz diagonalizante.

É óbvio que uma matriz diagonal é diagonalizável, bastando tomar a matriz identidade como matriz diagonalizante.

O resultado seguinte não só nos caracteriza as matrizes diagonalizáveis, mas também, à custa da sua prova, obtemos um algoritmo para encontrar a matriz diagonal e a a respectiva matriz diagonalizante.

Teorema 5.3.2. Uma matriz $n \times n$ é diagonalizável se e só se tiver n vectores próprios linearmente independentes.

Demonstração. Em primeiro lugar, assumimos que A é diagonalizável; ou seja, existe uma

matriz
$$U = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$$
 invertível tal que $U^{-1}AU = D = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{bmatrix}$.

Como é óbvio, de $U^{-1}AU = D$ segue que AU = UD. Portanto,

$$\begin{bmatrix} Au_1 & Au_2 & \cdots & Au_n \end{bmatrix} = AU = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 u_1 & \lambda_2 u_2 & \cdots & \lambda_n u_n \end{bmatrix}$$

e portanto

$$\begin{cases}
Au_1 &= \lambda_1 u_1 \\
Au_2 &= \lambda_2 u_2 \\
\vdots &\vdots \\
Au_n &= \lambda_n u_n
\end{cases}$$

Como U é invertível, então não pode ter colunas nulas, pelo que $u_i \neq 0$. Portanto, $\lambda_1, \lambda_2, \ldots, \lambda_n$ são valores próprios de A e u_1, u_2, \ldots, u_n são respectivos vectores próprios. Sendo U invertível, as suas colunas são linearmente independentes, e portanto A tem n vectores próprios linearmente independentes.

Reciprocamente, suponha que A tem n vectores próprios linearmente independentes. Sejam eles os vectores u_1,u_2,\ldots,u_n , associados aos valores próprios (não necessariamente distintos) $\lambda_1,\lambda_2,\ldots,\lambda_n$. Seja U a matriz cujas colunas são os vectores próprios considerados acima. Ou seja, $U=\begin{bmatrix}u_1&u_2&\cdots&u_n\end{bmatrix}$. Ora esta matriz quadrada $n\times n$ tem característica igual a n, pelo que é invertível. De

$$\begin{cases}
Au_1 &= \lambda_1 u_1 \\
Au_2 &= \lambda_2 u_2 \\
\vdots &\vdots \\
Au_n &= \lambda_n u_n
\end{cases}$$

segue que $\begin{bmatrix} Au_1 & Au_2 & \cdots & Au_n \end{bmatrix} = \begin{bmatrix} \lambda_1 u_1 & \lambda_2 u_2 & \cdots & \lambda_n u_n \end{bmatrix}$ e portanto

$$A\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}.$$

Multiplicando ambas as equações, à esquerda, por $\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}^{-1}$, obtemos

$$\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}^{-1} A \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}.$$

Realçamos o facto da demonstração do teorema nos apresentar um algoritmo de diagonalização de uma matriz $n \times n$ com n vectores linearmente independentes. De facto, de

$$\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}^{-1} A \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$
 obtemos

$$A = \left[\begin{array}{cccc} u_1 & u_2 & \cdots & u_n \end{array} \right] \left[\begin{array}{cccc} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{array} \right] \left[\begin{array}{cccc} u_1 & u_2 & \cdots & u_n \end{array} \right]^{-1}.$$

Uma matriz diagonalizante é a matriz cujas colunas são os vectores próprios linearmente independentes dados, e a matriz diagonal correspondente é a matriz cuja entrada (i,i) é o valor próprio λ_i correspondente à coluna i (e portanto ao i–ésimo vector próprio) da matriz diagonalizante.

Para a matriz $A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$, vimos atrás que $\sigma(A) = \{-3, 2\}$. Será A diagonalizável? Um vector próprio associado ao valor próprio -3 é um elemento não nulo de $N(-3I_2 - A)$. Encontrar um vector próprio associado a -3 é equivalente a encontrar uma solução não nula de $(-3I_2 - A)x = 0$. Fica ao cargo do leitor verificar que $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ é vector próprio associado ao valor próprio -3, e fazendo o mesmo raciocínio, que $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ é vector próprio associado ao valor próprio 2. Ora estes dois vectores são linearmente independentes, visto car $\begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix} = 2$. Portanto, a matriz A é diagonalizável, sendo a matriz diagonalizante $U = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$ e a matriz diagonal $\begin{bmatrix} -3 & 0 \\ 0 & 2 \end{bmatrix}$.

Octave .

A diagonalização, se possível, pode ser obtida de forma imediata como Octave:

Aqui, a matriz q, ou seja, o primeiro argumento de saída de eig, indica uma matriz diagonalizante, e o segundo argumento, i.e., e, indica a matriz diagonal cujas entradas diagonais são os valores próprios. Repare, ainda, que a coluna i de q é um vector próprio associado ao valor próprio que está na entrada (i,i) de e. Façamos, então, a verificação:

```
> q*e*inverse (q)
ans =

1.0000  2.0000
2.0000  -2.0000
```

Considere agora a matriz $B=\begin{bmatrix}0&0\\1&0\end{bmatrix}$. Esta matriz é nilpotente, pelo que $\sigma(B)=\{0\}$. O espaço próprio associado a 0 é N(-B)=N(B). Ora $\operatorname{car}(B)=1$, pelo que $\operatorname{nul}(B)=1$, e portanto a multiplicidade geométrica do valor próprio 0 é 1 (repare que a multiplicidade algébrica do valor próprio 0 é 2). Ou seja, não é possível encontrar 2 vectores próprios linearmente independentes.

Octave

Considere a matriz C=[2 1; 0 2]. Sendo triangular superior, os seus valores próprios são os elementos diagonais da matriz. Isto é, $\sigma(C)=\{2\}$. Repare que a multiplicidade algébrica do valor próprio 2 é 2.

2

2

Repare que $\operatorname{car}(2*I_2-C)=\operatorname{car}\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right]=1$, pelo que $\operatorname{nul}(2*I_2-C)=1$. Logo, não é possível encontrar 2 vectores próprios de C linearmente independentes, e portanto C não é diagonalizável.

- 1 NaN
- 0 NaN

e =

- 2 0
- 0 2

É, todavia, apresentada uma base do espaço próprio de C associado ao valor próprio 2, nomeadamente a primeira coluna da matriz ${\bf q}$.

Considere agora a matriz $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -2 & 2 \\ 0 & 0 & -3 \end{bmatrix}$.

Octavo

Para A=[1 2 1;2 -2 2; 0 0 -3] tem-se $\sigma(A)=\{-3,2\}$, sendo as multiplicidades algébricas de -3 e 2, respectivamente, 2 e 1.

2

-3

-3

Como $\operatorname{car}(-3I_3-A)=2$, temos que $\operatorname{nul}(-3I_3-A)=1$, e portanto a multiplicidade geométrica do valor próprio -3 é 1. Portanto, a matriz não é diagonalizável pois não é possível encontrar 3 vectores próprios linearmente independentes.

0.89443 -0.44721

NaN

0.44721 0.89443 NaN 0.00000 0.00000 NaN

e =

2 0 0 0 -3 0

A primeira coluna de q é um vector próprio associado a 2 e a segunda coluna de q é um vector próprio associado a -3

O que se pode dizer em relação à independência linear de um vector próprio associado a -3 e um vector próprio associado a 2?

Teorema 5.3.3. Sejam v_1, v_2, \ldots, v_k vectores próprios associados a valores próprios $\lambda_1, \lambda_2, \ldots, \lambda_k$ distintos entre si. Então $\{v_1, v_2, \ldots, v_k\}$ é um conjunto linearmente independente.

Demonstração. Suponhamos que $\{v_1, v_2, \dots, v_k\}$ é um conjunto linearmente dependente, sendo v_1, v_2, \dots, v_k vectores próprios associados a valores próprios $\lambda_1, \lambda_2, \dots, \lambda_k$ distintos entre si. Pretendemos, desta forma, concluir um absurdo.

Seja r o menor inteiro para o qual o conjunto $\{v_1, v_2, \ldots, v_r\}$ é linearmente independente. Ora $r \geq 1$ já que $v_1 \neq 0$ (pois é v_1 é vector próprio) e r < k já que o conjunto dos vectores próprios é linearmente dependente. Sendo o conjunto $\{v_1, v_2, \ldots, v_{r+1}\}$ linearmente dependente, existem escalares $\alpha_1, \alpha_2, \ldots, \alpha_r, \alpha_{r+1}$ não todos nulos para os quais

$$\sum_{i=1}^{r+1} \alpha_i v_i = 0$$

o que implica que $A\sum_{i=1}^{r+1}\alpha_iv_i=\sum_{i=1}^{r+1}\alpha_iAv_i=0$, e portanto

$$\sum_{i=1}^{r+1} \alpha_i \lambda_i v_i = 0.$$

Por outro lado, $\sum_{i=1}^{r+1}\alpha_iv_i=0$ implica que $\lambda_{r+1}\sum_{i=1}^{r+1}\alpha_iv_i=0$ e portanto

$$\sum_{i=1}^{r+1} \alpha_i \lambda_{r+1} v_i = 0.$$

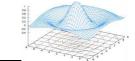
Fazendo a diferença das duas equações, obtemos $\sum_{i=1}^{r+1} \alpha_i (\lambda_i - \lambda_{r+1}) v_i = 0$, e portanto $\sum_{i=1}^r \alpha_i (\lambda_i - \lambda_{r+1}) v_i = 0$. Como $\{v_1, v_2, \dots, v_r\}$ é linearmente independente, segue que $\alpha_i (\lambda_i - \lambda_{r+1}) = 0$, o que implica, e visto $\lambda_i - \lambda_{r+1} \neq 0$ já que os valores próprios são distintos, que $\alpha_i = 0$, com $i = 1 \dots, r$. Mas $\sum_{i=1}^{r+1} \alpha_i v_i = 0$, o que juntamente com as igualdades $\alpha_i = 0$, com $i = 1 \dots, r$, leva a que $\alpha_{r+1} v_{r+1} = 0$. Como $v_{r+1} \neq 0$ já que é vector próprio, segue que $\alpha_{r+1} = 0$. Tal contradiz o facto de existirem escalares $\alpha_1, \alpha_2, \dots, \alpha_r, \alpha_{r+1}$ não todos nulos para os quais $\sum_{i=1}^{r+1} \alpha_i v_i = 0$.

Alertamos para o facto do recíproco do teorema ser falso. Repare que a matriz identidade I_n tem 1 como único valor próprio, e a dimensão de $N(I_n - I_n)$ ser n, e portanto há n vectores próprios linearmente independentes associados a 1.

Se uma matriz $n \times n$ tem os seus n valores próprios distintos então, pelo teorema, tem n vectores próprios linearmente independentes, o que é equivalente a afirmar que a matriz é diagonalizável.

Corolário 5.3.4. Uma matriz com os seus valores próprios distintos é diagonalizável.

Mais uma vez alertamos para o facto do recíproco do corolário ser *falso*. Isto é, há matrizes diagonalizáveis que têm valores próprios com multiplicidade algébrica *superior* a 1.



Octave

Considere a matriz $A=[0\ 0\ -2;\ 1\ 2\ 1;\ 1\ 0\ 3]$. Esta matriz tem dois valores próprios distintos.

```
> A=[0 0 -2; 1 2 1; 1 0 3];
> eig(A)
ans =

2
1
2
```

Repare que o valor próprio 2 tem multiplicidade algébrica igual a 2, enquanto que a multiplicidade algébrica do valor próprio 1 é 1. Pelo teorema anterior, um vector próprio associado a 2 e um vector próprio associado a 1 são linearmente independentes. Repare que a multiplicidade geométrica de 2 é também 2, calculando rank(2*eye(3)-A).

```
> rank(2*eye(3)-A)
ans = 1
```

Como a característica de $2I_3-A$ é 1 então $\mathrm{nul}(2I_3-A)=2$, e portanto existem dois vectores próprios linearmente independentes associados a 2. Uma base do espaço próprio associado a 2 pode ser obtida assim:

```
> null(2*eye(3)-A)
ans =

-0.70711   0.00000
   0.00000   1.00000
   0.70711   0.00000
```

Estes juntamente com um vector próprio associado ao valor próprio 1 formam um conjunto linearmente independente, pois vectores próprios associados a valor próprios distintos são linearmente independentes. Ou seja, há 3 vectores próprios linearmente independentes, donde segue que a matriz A é diagonalizável.

```
> [v,e]=eig (A)
   0.00000 -0.81650
                       0.70656
   1.00000
             0.40825
                       0.03950
   0.00000
             0.40825 -0.70656
e =
     0
       0
    1
       0
     0
        2
> v*e*inverse(v)
ans =
  -0.00000
             0.00000 -2.00000
   1.00000
             2.00000
                       1.00000
   1.00000
             0.00000
                       3.00000
```