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Introduction

Complexity classes are defined by:

a computational model, e.g. TM
a constraint on resources, e.g. time, space or size

This does not say much about how to compute within a
certain complexity class.
Complexity classes are defined “from the outside” . . .
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Introduction: some questions

How can we compute within a certain complexity class, for
instance in FPTIME?

Which bricks of computation can we use?
data structures, primitive operations, control structures (e.g.
loops) . . .

. . . without the burden of managing explicit time annotations.
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Introduction: more questions . . .

A related question: how and when can we compose and
iterate functions of a given complexity class?

Can we define a discipline for transparent and modular
FPTIME programming?

Can we give characterizations of complexity classes not relying
on explicit resource bounds?
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Introduction: implicit computational complexity

Logic and recursion theory can help addressing some of these
questions !

They have triggered
Implicit computational complexity (ICC) :
characterizing complexity classes by logics / languages
without explicit bounds,
but instead by restricting the constructions
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Introduction: ICC systems

ICC can be both foundations-oriented or certification-oriented

ICC systems can often be expressed by
(i) a programming language or calculus, (ii) a criterion on
programs
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Various approaches to ICC

recursion theory : safe recursion (Bellantoni-Cook) / ramified
recursion (Leivant)

linear logic (Girard) this talk

types controlling sizes (non-size-increasing) (Hofmann)

interpretation methods (Marion)

. . .
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The proofs-as-programs viewpoint

our reference language here is λ-calculus
untyped λ-calculus is Turing-complete

type systems can guarantee termination
ex: system F (polymorphic types)

Patrick Baillot From linear logic to types for implicit computational complexity



λ-calculus and system F in a nutshell
Elementary linear logic

Some finer characterizations in ELL
Light linear logic

Other linear logic variants

The proofs-as-programs viewpoint (2)

proofs-as-programs correspondence
proof = type derivation

normalization = execution

2nd order intuitionistic logic ↔ system F

some characteristics of λ-calculus:
higher-order types
no distinction between data / program
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Linear logic

linear logic (LL):
fine-grained decomposition of intuitionistic logic
duplication is controlled with a specific connective !
(exponential modality)

some variants of linear logic with weak rules for ! have
bounded complexity: light logics
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How to characterize complexity classes?

the computational engine the specification
logical system formula / type

variant of linear logic formula / type
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Outline of the course

1 λ-calculus and system F in a nutshell

2 elementary linear logic (ELL): elementary complexity

3 some finer characterizations in ELL

4 light linear logic (LLL): Ptime complexity

5 other linear logic variants

6 conclusion
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Notations for complexity classes

We denote

FDTIME (f (n)) : functions on binary words computable by a
Turing machine in time O(f (n))

FPTIME = ∪kFDTIME (nk), feasible functions

FEXPTIME = ∪kFDTIME (2n
k
)

Elementary : functions computable in time 2nk , for some k,
where

2x0 = x
2xk+1 = 22xk
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λ-calculus

λ-terms:
t, u ::= x | λx .t | t u

notations: λx1x2.t for λx1.λx2.t
(t u v) for ((t u) v)
substitution: t[u/x ]

β-reduction:
1−→ relation obtained by context-closure of:

((λx .t)u)
1−→ t[u/x ]

→ reflexive and transitive closure of
1−→.
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Typed λ-terms

system F types:

T ,U ::= α | T → U | ∀α.T

simple types: without ∀

simply typed terms, in Church-style:

xT (λxT .MU)T→U ((MT→U)NT )U
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Proofs-as-programs correspondence (Curry-Howard)

2nd-order intuitionistic ⇒ typed term
logic proof

formula type

proof of A1, . . . ,An ` B MB , with
free variables xi : Ai , 1 ≤ i ≤ n

normalization of proof β-reduction of term
(cut elimination)
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Data types in F

Booleans:
BF = ∀α.α→ α→ α
true=λx .λy .x false=λx .λy .y

Church unary integers:
NF = ∀α.(α→ α)→ (α→ α)
example
2 = λf α→α.λxα.(f (f x)) : NF

Church binary words:
W F = ∀α.(α→ α)→ (α→ α)→ (α→ α)
example
< 1, 1, 0 > = λsα→α0 .λsα→α1 .λxα.(s1 (s1 (s0 x))) : W F
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Examples of terms (1)

addition
add = λnmfx .(n f ) (m f x)

: N → N → N

multiplication
mult = λnmf .(n (m f ))

: N → N → N
squaring
square = λnf .(n (n f ))

: N → N → N
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Iteration

For each inductive data type an associated iteration principle.
For instance, for N = ∀α.(α→ α)→ (α→ α), we can define an
iterator iter :

iter = λfxn. (n f x) : (A→ A)→ A→ N → A, for any A

then
(iter t u n)→ (t (t . . . (t u) . . . ) (n times)

examples:
double : N → N
exp = λn.(iter double 1 n) : N → N
tower = λn.(iter exp 1 n) : N → N
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Examples of terms (2)

concatenation
conc = λuW .λvW .λs0.λs1.λx .(u s0 s1) (v s0 s1 x)

: W →W →W

length
length = λuW .λf α→α.(u f f )α→α

: W → N
repeated concatenation

rep = λnN .λvW .[iter (conc v)W→W nilW nN ]
= λnN .λvW .[n (conc v) nil ]W

: N →W →W
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System F and termination

Theorem (Girard)

If a term is well typed in F , then it is strongly normalizable.

Thus a type derivation can be seen as a termination witness.
In particular, a term t : W →W represents a function on words
which terminates on all inputs.

Can we refine this system in order to guarantee feasible
termination, that is to say in polynomial time?
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Linear logic

Linear logic (LL) arises from the decomposition

A⇒ B ≡ !A ( B

the ! modality accounts for duplication (contraction)

! satisfies the following principles:

!A ( !A⊗ !A
A ` B

!A ` !B !A ( A
!A⊗ !B ( !(A⊗ B) !A ( !!A
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Elementary linear logic (ELL) [Girard95]

Language of formulas:

A,B := α | A ( B | !A | ∀α.A

Denote !kA for k occurrences of !.

The system is designed in such a way that the following
principles are not provable

!A ( A, !A (!!A

Defined to characterize elementary time complexity, that is to
say in time bounded by 2nk , for arbitrary k .
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Elementary linear logic rules

x : A ` x : A
(Id)

Γ, x : A ` t : B

Γ ` λx .t : A ( B
(( i)

Γ1 ` t : A ( B Γ2 ` u : A

Γ1, Γ2 ` (t u) : B
(( e)

x1 :!A, x2 :!A, Γ ` t : B

x :!A, Γ ` t[x/x1, x/x2] : B
(Cntr) Γ ` t : A

Γ, x : B ` t : A
(Weak)

x1 : B1, . . . , xn : Bn ` t : A

x1 :!B1, . . . , xn :!Bn ` t :!A
(! i)

Γ1 ` u :!A Γ2, x :!A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)
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Elementary linear logic rules (2/2)

Γ ` t : A
Γ ` t : ∀α.A (∀ i) (*)

Γ ` t : ∀α.A
Γ ` t : A[B/α]

(∀ e)

where (∗) : α /∈ Γ.
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Elementary linear logic rules: remarks

This is actually elementary affine logic (EAL), because of the
unrestricted weakening (not only on !A formulas).

However throughout this talk we will say linear instead of
affine, so ELL will mean EAL . . .

These rules are natural deduction style rules. There is also a
sequent calculus presentation of ELL.
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Forgetful map from ELL to F

Consider (.)− : ELL→ F defined by:

(!A)− = A−, (A ( B)− = A− → B−, (∀α.A)− = ∀α.A−, α− = α.

Proposition

If Γ `ELL t : A then t is typable in F with type A−.

If A− = T , say A is a decoration of T in ELL.
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Data types in ELL

Church unary integers

system F: ELL:
NF NELL

∀α.(α→ α)→ (α→ α) ∀α.!(α( α) ( !(α( α)
Example: integer 2, in F:

2 = λf (α→α)
.λxα.(f (f x)) .

Church binary words
system F: ELL:

W F W ELL

∀α.(α → α) → (α → α) → (α → α) ∀α.!(α ( α) ( !(α ( α) ( !(α ( α)

Example: w = 〈1, 0, 0〉, in F:

w = λs
(α→α)
0 .λs

(α→α)
1 .λxα.(s1 (s0 (s0 x))) .
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Representation of functions

a term t of type !kN (!lN, for some k, l , represents a
function over unary integers

!kW (!lW , for some k, l : function over binary words
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Examples of ELL terms (1)

some examples of terms

addition
add = λnmfx .(n f ) (m f x)

: N ( N ( N

multiplication
mult = λnmf .(n (m f ))

: N ( N ( N
squaring
square = λnf .(n (n f ))

: !N ( !N
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Iteration in ELL

recall the iterator iter :

iter = λf xn. (n f x) : !(A ( A) ( !A ( N ( !A

with (iter t u n)→ (t (t . . . (t u) . . . )) (n times)

examples:
double : N ( N
exp = (iter double 1) : N ( !N
remark: exp cannot be iterated; tower = (iter exp 1) non ELL
typable.

coercion = (iter succ 0) : N ( !N : an identity, but changes the
type

Patrick Baillot From linear logic to types for implicit computational complexity
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Examples of ELL terms (2)

concatenation
conc = λu.λv .λs0.λs1.λx .(u s0 s1) (v s0 s1 x)

: W ( W ( W

length
length = λu.λf .(u f f )

: W ( N
repeated concatenation
rep = λn.λv .[iter (conc v) nil n]

= λn.λv .[n (conc v) nil ]
: N (!W (!W
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From derivations to proof-nets
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Elementary linear logic rules, again

x : A ` x : A
(Id)

Γ, x : A ` t : B

Γ ` λx .t : A ( B
(( i)

Γ1 ` t : A ( B Γ2 ` u : A

Γ1, Γ2 ` (t u) : B
(( e)

x1 :!A, x2 :!A, Γ ` t : B

x :!A, Γ ` t[x/x1, x/x2] : B
(Cntr) Γ ` t : A

Γ, x : B ` t : A
(Weak)

x1 : B1, . . . , xn : Bn ` t : A

x1 :!B1, . . . , xn :!Bn ` t :!A
(! i)

Γ1 ` u :!A Γ2, x :!A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)
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ELL Proof-Nets

depth of an edge: number of boxes it is contained in.
depth of proof-net: maximal depth of its edges.
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ELL proof-net : example

Proof-net R3 representing Church integer 3:
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ELL proof-net: depth

Depth of an edge e in a proof-net R: number of boxes it is
contained in.

Depth d(R) of proof-net R: maximal depth of its edges.

Example:
The previous proof-net R3 has depth 1.
Any proof-net Rn representing n has depth 1.
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ELL proof-net reduction : cut elimination
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ELL proof-net reduction : cut elimination
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Methodology

write programs with ELL typed λ-terms

evaluate them by:
compiling them into proof-nets, and then performing
proof-net reduction

beware:

proof-net reduction does not exactly match β-reduction
ELL does not satisfy subject reduction

but that’s all right for our present goal . . .
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ELL proof-net reduction properties

Recall: depth of an edge e in a proof-net R = number of
boxes it is contained in.

We have

Proposition (Stratification)

The depth of an edge does not change during reduction.

Consequence: the depth d of a proof-net does not increase
during reduction.

Level-by-level reduction strategy:
R proof-net of depth d
perform reduction successively at depth 0, 1 . . . , d .
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Level-by-level reduction of ELL proof-nets

let R be an ELL proof-net of depth d
|R|i = number of nodes at depth i = size at depth i
|R| = total size
round i : reduction at depth i
there are d + 1 rounds for the reduction of R

what happens during round i?
|R|i decreases at each step
thus there are at most |R|i steps (size bounds time)
but |R|i+1 can increase at each step, in fact it can double
hence round i can cause an exponential size increase

on the whole we have a 2
|R|
d size increase

this yields a O(2
|R|
d ) bound on the number of steps
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ELL complexity results

Theorem (Proof-net complexity)

If R is an ELL proof-net of depth d , then it can be reduced to its

normal form in O(2
|R|
d ) steps.

Theorem (Representable functions)

The functions representable by a term of type N (!kN, where
k ≥ 0 , are exactly the elementary time functions.
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Proof of the representability theorem

⊆ (soundness):
if t : N (!kN for some k, then t represents an elementary
function f .

proof: compute (tn) by proof-net reduction.

⊇ (completeness):
if f : N→ N is an elementary function, then there exists k
and t : N (!kN such that t represents f .

proof: simulation of O(2ni )-time bounded Turing machine, for
any i .
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Introduction: recap

Implicit computational complexity (ICC) :
characterizing complexity classes by logics / languages
without explicit bounds,
but instead by restricting the constructions

we are considering here the proofs-as-programs approach for
ICC . . .

. . . illustrating the use of linear logic and its weak variants.
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Elementary linear logic (ELL) [Girard95]

Language of formulas:

A,B := α | A ( B | !A | ∀α.A

We denote !kA for k occurrences of !.
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Elementary linear logic rules

x : A ` x : A
(Id)

Γ, x : A ` t : B

Γ ` λx .t : A ( B
(( i)

Γ1 ` t : A ( B Γ2 ` u : A

Γ1, Γ2 ` (t u) : B
(( e)

x1 :!A, x2 :!A, Γ ` t : B

x :!A, Γ ` t[x/x1, x/x2] : B
(Cntr) Γ ` t : A

Γ, x : B ` t : A
(Weak)

x1 : B1, . . . , xn : Bn ` t : A

x1 :!B1, . . . , xn :!Bn ` t :!A
(! i)

Γ1 ` u :!A Γ2, x :!A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)
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Elementary linear logic rules (2/2)

Γ ` t : A
Γ ` t : ∀α.A (∀ i) (*)

Γ ` t : ∀α.A
Γ ` t : A[B/α]

(∀ e)

where (∗) : α /∈ FV (Γ).
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Data types in ELL

Church unary integers

system F: ELL:
NF NELL

∀α.(α→ α)→ (α→ α) ∀α.!(α( α) ( !(α( α)
Example: integer 2, in F:

2 = λf (α→α)
.λxα.(f (f x)) .

Church binary words
system F: ELL:

W F W ELL

∀α.(α → α) → (α → α) → (α → α) ∀α.!(α ( α) ( !(α ( α) ( !(α ( α)

Example: w = 〈1, 0, 0〉, in F:

w = λs
(α→α)
0 .λs

(α→α)
1 .λxα.(s1 (s0 (s0 x))) .
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ELL complexity results

Theorem (Proof-net complexity)

If R is an ELL proof-net of depth d , then it can be reduced to its

normal form in O(2
|R|
d ) steps.

Theorem (Representable functions)

The functions representable by a term of type N (!kN, where
k ≥ 0 , are exactly the elementary time functions.
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Characterization of complexity classes

the computational engine the specification
logical system formula / type

Elementary linear logic (ELL) {N (!kN}k≥0 ≡ Elementary
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Characterization of complexity classes

the computational engine the specification
logical system formula / type

Elementary linear logic (ELL) {N (!kN}k≥0 ≡ Elementary
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ELL: towards finer characterizations

We have seen a characterization of the Elementary class
(elementary complexity) in ELL

But can we get more fined-grained characterizations?
Characterize smaller complexity classes ?
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The system ELLµ

we can extend ELL by adding a new construction µα.A for
formula fixpoints, with the following rules:

Γ ` t : A[µα.A/α]

Γ ` t : µα.A
(µf )

Γ ` t : µα.A

Γ ` t : A[µα.A/α]
(µu)

We call ELLµ this system.

the previous results on ELL also hold for ELLµ (same
bound on cut-elimination).
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Refine the complexity bounds

By the previous analysis we know that a term t :!W (!2B
can be evaluated in O(2n2), so it is in 2-EXPTIME . . .

but actually it is in ... PTIME
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New characterization in ELLµ
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New characterization in ELLµ

Theorem

We consider the system ELLµ.
The functions representable by proofs of !W ( !2B are exactly the
class PTIME, of polynomial time predicates.
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Key Lemma for the soundness proof

For proving complexity soundness we use a more precise bound
than before:

Lemma (Size bound)

Let R be a proof-net with:

only exponential cuts at depth 0,

k cuts at depth 0.

Let R ′ be the proof-net obtained by reducing R at depth 0. Then
we have:

|R ′|1 ≤ |R|k0 .|R|1.
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Fixpoints and Scott integers

in ELLµ we can define new data types, eg Scott integers:

NS = µα.∀β.(α( β) ( β ( β

in λ-calculus notation:

0 = λs.λx .x
n + 1 = λs.λx .(s n)

They allows for constant time predecessor and zero-test, but . . . no
iterator.

Similarly one defines WS for Scott binary words.
We get:

case : ∀α.(WS ( α) ( (WS ( α) ( α( (WS ( α)
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Proof of completeness for !W (!!B and PTIME

any polynomial can be represented with a proof of !N ( !N.
we have length : W ( N.
using type fixpoints we can define a type ConfigS for TM
configurations, based on Scott words, with:

proofs

init : W ` ConfigS

accept? : ConfigS ` B

for any TM M a proof

step : ConfigS ` ConfigS

then, by iterating step q(|w |) times on input (init(w)) we get:

!W ` !2ConfigS .

composing with accept? we get: !W ` !2B.
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Why do we need type fixpoints?

Without type fixpoints we can define using second-order a type
Config based on Church integers (following [Asperti-Roversi2002]).
We get the same types for length, init, step, and we also obtain by
iteration:

!W ` !2Config .

However the problem is then that:

accept? : Config ` !B

So this gives:

!W ` !3B,

which is not the type needed . . .
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General characterization theorem

Theorem

We consider the system ELLµ.

The functions representable by proofs of !W ( !2B are
exactly the class PTIME;

The functions representable by proofs of !W ( !k+2B are
exactly the class k-EXPTIME (k ≥ 1).

where k-EXPTIME = ∪i∈NDTIME (2n
i

k )
Note that we do not use fixpoints in the types above . . . but they
are used in the proofs.
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What about function classes ?

Theorem

We consider the system ELLµ. The functions representable by
proofs of !W ( !2WS are exactly the class FPTIME;

recall:
W : type of Church binary words
WS : type of Scott binary words

However this characterization is not so satisfactory because of the
I/O distinct data-types : these programs cannot be composed!
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An alternative view on function classes
[B.-DeBenedetti-RonchiDellaRocca2017]

Let us define a new data-type:

Wk =def !kN⊗!k+1WS

Theorem

We consider the system ELLµ.
For k ≥ 0, the functions representable by proofs of W1 ( Wk+1

are exactly the class k-FEXPTIME.

For FPTIME we have the type W1 ( W1, and now these
programs can be composed !
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Characterization of complexity classes

the computational engine the specification
logical system formula / type

Elementary linear logic ELLµ !W ( !k+2B ≡ k-EXPTIME

W1 ( Wk+1 ≡ k-FEXPTIME
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Characterization of complexity classes

the computational engine the specification
logical system formula / type

Elementary linear logic ELLµ !W ( !k+2B ≡ k-EXPTIME

W1 ( Wk+1 ≡ k-FEXPTIME
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Characterization of complexity classes

the computational engine the specification
logical system formula / type

Elementary linear logic ELLµ !W ( !k+2B ≡ k-EXPTIME

W1 ( Wk+1 ≡ k-FEXPTIME
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Comparison with previous works

Jones 2001:
read-only functional programs with arguments of order ≤ k

≡ k-EXP

Leivant 2002:
second-order intuitionistic logic with comprehension restricted
to order ≤ k formulas
≡ k-EXP

in these settings: restriction of a particular operation inside the
proof or program

by contrast in EALµ the condition is only on the conclusion (type)
of the proof.
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Questioning the robustness of ELL

Can we enrich the language by adding new primitives, and
keep the properties?

We already saw that for type fixpoints

What about adding an FPTIME primitive F , with type
F : W ( W ?
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Extending ELL [B.-Ghyselen2018]

Proposition

Consider an extension of ELL with a finite number of FPTIME
primitives Fi of type W ( W . Then the functions in !W (!B
(resp. !W (!2B) are in FPTIME (resp. 2-FEXPTIME).
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Improve the expressivity of ELL?

Denote nA ( B for A ( A ( · · ·( A ( B, with n
occurrences of A.

There are only few functions of type nW ( W IN ELL.

We would like a generic way of adding new primitives of type
nW ( W to the language.
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Linear sized types

Consider the language s`T given by:

terms: λ-terms + constructors + iterators

types:

indexes I , J : = a | n ∈ N∗ | I + J | I · J

types D,D ′ : = N I |W I | D ( D ′ | D ⊗ D ′

typing rules
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Linear sized types (2)

Examples of s`T terms:

λx .s0(s1(x)) : W a ( W a+2

add = λx .itern(λy .succ(y), x) : N I ( NJ ( N I+J

We have:

Proposition

The functions representable by s`T terms are exactly the class
FPTIME.
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Enriched ELL

Consider the language of ELL+ (enriched ELL) defined by:

s`T typing rules,

the rules

` t : W a1 , . . . ,W an ( W I

` t : W , . . . ,W ( W

ELL typing rules.

This is a kind of 2-layers language.

Patrick Baillot From linear logic to types for implicit computational complexity (Part 2)



λ-calculus and system F in a nutshell
Elementary linear logic

Some finer characterizations in ELL
Light linear logic

Other linear logic variants

Enriched ELL [B.-Ghyselen2018]

Theorem

In ELL+ we have:

The functions representable by terms of type !W (!B are
exactly PTIME.

For k ≥ 0 the functions representable by terms of type
!W (!k+1B are exactly 2k-EXPTIME.
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Some terms in ELL+

In ELL+ we can write terms for:

SAT : N ( W (!B,
where a CNF formula is given by the number of distinct
variables and the encoding as a word.

QBFk : kN ( B ( W (!B,
for testing satisfiability of quantified boolean formulas with k
alternations of quantifiers.

SUBSET SUM : W ( W (!B,
where the first word represents an integer and the second one
a set of integers.
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Introduction: recap

Implicit computational complexity (ICC) :
characterizing complexity classes by logics / languages
without explicit bounds,
but instead by restricting the constructions

We are considering here the proofs-as-programs approach for
ICC, with linear logic.

In the 2 first lectures we investigated Elementary linear logic
(ELL).
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Characterization of complexity classes

the computational engine the specification
logical system formula / type

Elementary linear logic ELLµ !W ( !k+2B ≡ k-EXPTIME

W1 ( Wk+1 ≡ k-FEXPTIME
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Taming the exponential blow-up in ELL?
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Light linear logic (LLL) [Girard95]

Language of formulas:

A,B := α | A ( B | ∀α.A | !A | §A

intuition: § a new modality for non-duplicable boxes

The following principles are still not provable

!A ( A, !A (!!A
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Light linear logic rules

rules (Id), (( i), (( e), (Cntr), (Weak): as in ELL.

new rules (! i), (! e), (§ i), (§ e):

x : B ` t : A
x :!B ` t :!A

(! i)
Γ1 ` u :!A Γ2, x :!A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(! e)

Γ,∆ ` t : A

!Γ, §∆ ` t : §A (§ i)
Γ1 ` u : §A Γ2, x : §A ` t : B

Γ1, Γ2 ` t[u/x ] : B
(§ e)

at most one free variable in the premise judgement of (! i)
rule.
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Light linear logic principles

The following formulas are provable:

!A ( §A §A⊗ §B ( §(A⊗ B)

The following one is not provable in LLL, though it is in ELL:

!A⊗!B (!(A⊗ B)
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Forgetful map from LLL to ELL

Consider (.)e : LLL→ ELL defined by:

(§A)e =!Ae , (!A)e =!Ae

and other connectives unchanged.

Proposition

If Γ `LLL t : A then Γe `ELL t : Ae .
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Data types in LLL

Church unary integers

system F: LLL:
NF NLLL

∀α.(α→ α)→ (α→ α) ∀α.!(α( α) ( §(α( α)
Example: integer 2, in F:

2 = λf (α→α)
.λxα.(f (f x)) .

Church binary words
system F: LLL:

W F W LLL

∀α.(α → α) → (α → α) → (α → α) ∀α.!(α ( α) ( !(α ( α) ( §(α ( α)

Example: w = 〈1, 0, 0〉, in F:

w = λs
(α→α)
0 .λs

(α→α)
1 .λxα.(s1 (s0 (s0 x))) .
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Representation of functions

a term t of type !kN ( §lN, for some k, l , represents a
function over unary integers
!kW ( §lW : function over binary words.

some examples of terms

addition
add = λnmfx .(n f ) (m f x)

: N ( N ( N

double
double = λnfx .(n f ) (n f x)

: !N ( §N
concatenation
conc : W ( W ( W
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Iteration in LLL

we can type the iterator iter :

iter = λfxn. (n f x) : !(A ( A) ( !A ( N ( §A

examples:
(add3) : N ( N can be iterated

double :!N ( §N cannot be iterated

thus some exponentially growing terms are not typable
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LLL proof-nets
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LLL proof-net reduction
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Level-by-level reduction of LLL proof-nets

as in ELL we use a level-by-level strategy

let R be an LLL proof-net of depth d
round i : reduction at depth i
there are d + 1 rounds for the reduction of R
what happens during round i?

|R|i decreases at each step
thus there are at most |R|i steps (size bounds time)
yet |R|i+1 can increase:
during round i we can have a quadratic increase:

|R ′|i+1 ≤ |R|2i+1

this repeats d times, so on the whole we have a |R|2d size
increase

this yields a O(|R|2d ) bound on the number of steps
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LLL complexity results

Theorem (Proof-net complexity)

If R is an LLL proof-net of depth d , then it can be reduced to its
normal form in O(|R|2d ) steps.

Thus at fixed depth d we have a polynomial bound.

Theorem (Representable functions)

The functions representable by a term of type W ( §kW , for
k ≥ 0, are exactly the functions of FP (polynomial time functions).
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Characterization of complexity classes

the computational engine the specification
logical system formula / type

Light linear logic LLL {W ( §kW }k≥0 ≡ FPTIME
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Light linear logic and typing

Is LLL a good type system for lambda calculus . . . ?

Actually there are two problems:

it does not satisfy subject-reduction,

it does not ensure polynomial time complexity for
β-reduction . . .
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Light linear logic and typing (2)

Example:

y :!(!A−◦!A−◦!A), z :!!A `LLL (λx .yxx)nz : §!A
tn = (λx .yxx)nz ,

tn
β−→ un with

u0 = z , un = y un−1 un−1.
we have: |tn| ∼ c .n, |un| ∼ 2n.

hence: any beta-reduction of tn to un costs exponential space on a
Turing Machine !

even though: using proof-nets these reductions are done in
polynomial time.
culprit : sharing allowed by !,
it entails that: for D type derivation for t, we might have
|t| � |D|.
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How to fix this problem?
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Type system DLAL

To overcome the problems with typing in LLL:
we restrict the use of ! to !A ( B.

The DLAL (Dual Light Affine Logic) type system:

A,B ::= α | A ( B | !A ( B | §A | ∀α.A

Typing judgements of the form: Γ; ∆ ` t : A, where
Γ contains duplicable variables,
∆ contains linear variables.
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DLAL: complexity bounds

DLAL satisfies the subject-reduction property.

Theorem (Strong Ptime bound)

If t is typable in DLAL with a derivation of depth d , then any β
reduction of t can be performed in time O((d + 1) · |t|2d+1

).

Remarks:

one in fact shows a bound O((d + 1) · |t|2d ) on the number of
β-steps and then uses the fact that the cost of each step is
here bounded;

this bound holds for any reduction strategy;

in particular, if ` t : W ( §kW then t is Ptime.
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DLAL: PTIME extensional completeness

Theorem (Completeness)

For any polynomial time function f : {0, 1}∗ → {0, 1}∗, there
exists a term t representing it and typable in DLAL with a type
W ( §kW , for a certain integer k ∈ N.
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Can we check DLAL typability?

DLAL type inference problem for system F terms:

input: system F term t
problem: does there exist a DLAL derivation for t ?

main issue:

decorate the F derivation with ! / §
for that, find out where to put boxes

. . . boils down to constructing a proof-net.
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Lambda term to proof-net: the difficulties

How can we find out the boxes needed ?
At first sight there are several difficulties

1 no a priori bound on the number of boxes needed

2 even for box positions there is an exponential number of
possibilities

3 furthermore: distinguish between ! and § boxes

Idea: we search for doors instead of boxes.
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Example: term with doors
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Example: parameterized term

§m1(§b2,m2α→ §m3α), with boolean parameters b2 and integer
parameters m1.
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Type inference

We express typability by a set of constraints on parameters,
expressing e.g. : boxes are well-formed, a !-box has at most
one auxilliary door etc

We get mixed boolean-linear constraints.

We give a resolution procedure for deciding whether the
constraints system is decidable, using linear programming.

This resolution procedure is PTIME.
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DLAL type inference

Finally we get:

Theorem

The DLAL type inference problem for system F terms can be
decided in PTIME.
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About the expressivity of LLL and DLAL

The completeness result is an extensional one,
but the intensional expressivity of LLL and DLAL is limited.

Indeed: rich features (higher-order, polymorphism) but
”pessimistic” account of iteration . . .
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A glimpse of the linear logics zoo

for FPTIME

soft linear logic: [Lafont04]

a simple system, but with more constrained programming
bounded linear logic: [GSS92]

!P(~x)A : more explicit, but more flexible

for PSPACE

STAB [GMRdR08] : extends soft linear logic with a craftly typed
conditional

for LOGSPACE

IntML [DLS10]: evaluation by computation by interaction

for P/poly (non-uniform computation):
parsimonious λ-calculus [MazzaTerui15]
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Conclusions and perspectives

linear logic can be used for implicit complexity

with two ingredients:

choice of the logic

choice of the formulas/types

these systems lead to type systems for λ-calculus, ensuring
complexity properties

w.r.t. other ICC approaches:

handle higher-order computation
but limited intensional expressivity

relations with other ICC systems still to explore
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