From linear logic to types for implicit computational complexity

Patrick Baillot

CNRS / ENS Lyon

Days in Logic 2018 Aveiro

January 25, 2018

Patrick Baillot From linear logic to types for implicit computational complexity

- 4 同 ト 4 ヨ ト 4 ヨ

- Complexity classes are defined by:
 - a computational model, e.g. TM
 - a constraint on resources, e.g. time, space or size
- This does not say much about how to compute within a certain complexity class.

Complexity classes are defined "from the outside"

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction: some questions

- **How** can we compute within a certain complexity class, for instance in FPTIME?
- Which bricks of computation can we use? data structures, primitive operations, control structures (e.g. loops) . . .
- ... without the burden of managing explicit time annotations.

Introduction: more questions

- A related question: how and when can we compose and iterate functions of a given complexity class?
- Can we define a discipline for transparent and modular FPTIME programming?
- Can we give characterizations of complexity classes not relying on explicit resource bounds?

(人間) システレ イテレ

Introduction: implicit computational complexity

• Logic and recursion theory can help addressing some of these questions !

 They have triggered Implicit computational complexity (ICC) : characterizing complexity classes by logics / languages without explicit bounds, but instead by restricting the constructions

イロト イポト イラト イラト

Introduction: implicit computational complexity

- Logic and recursion theory can help addressing some of these questions !
- They have triggered Implicit computational complexity (ICC) : characterizing complexity classes by logics / languages without explicit bounds, but instead by restricting the constructions

- 4 回 ト 4 ヨト 4 ヨト

Introduction: ICC systems

- ICC can be both foundations-oriented or certification-oriented
- ICC systems can often be expressed by
 (i) a programming language or calculus, (ii) a criterion on programs

- 4 同 2 4 回 2 4 回 2 4

Various approaches to ICC

- recursion theory : safe recursion (Bellantoni-Cook) / ramified recursion (Leivant)
- linear logic (Girard) this talk
- types controlling sizes (non-size-increasing) (Hofmann)
- interpretation methods (Marion)
- . . .

(日)

The proofs-as-programs viewpoint

- our reference language here is λ-calculus untyped λ-calculus is Turing-complete
- type systems can guarantee termination ex: system F (polymorphic types)

・ 戸 ト ・ ヨ ト ・ ヨ

The proofs-as-programs viewpoint (2)

proofs-as-programs correspondence
 proof = type derivation
 normalization = execution

2nd order intuitionistic logic \leftrightarrow system F

 some characteristics of λ-calculus: higher-order types no distinction between data / program

(4月) (4日) (4日)

• linear logic (LL):

fine-grained decomposition of intuitionistic logic duplication is controlled with a specific connective ! (exponential modality)

 some variants of linear logic with weak rules for ! have bounded complexity: light logics

- 4 同 6 4 日 6 4 日 6

How to characterize complexity classes?

the computational engine logical system

variant of linear logic

- 4 同 🕨 - 4 目 🕨 - 4 目

the specification formula / type

ormula / type

How to characterize complexity classes?

the computational engine logical system

variant of linear logic

A (10) < A (10) </p>

the specification formula / type

formula / type

Outline of the course

- **(**) λ -calculus and system F in a nutshell
- elementary linear logic (ELL): elementary complexity
- some finer characterizations in ELL
- Iight linear logic (LLL): Ptime complexity
- other linear logic variants
- onclusion

- 4 同 6 4 日 6 4 日 6

Notations for complexity classes

We denote

- FDTIME(f(n)) : functions on binary words computable by a Turing machine in time O(f(n))
- $FPTIME = \bigcup_k FDTIME(n^k)$, feasible functions
- FEXPTIME = \cup_k FDTIME(2^{n^k})
- *Elementary*: functions computable in time 2_k^n , for some k, where

$$\begin{array}{rcl} 2_0^x & = & x \\ 2_{k+1}^x & = & 2^{2_k^x} \end{array}$$

- 4 同 6 4 日 6 4 日 6

λ -calculus

• λ -terms:

$$t, u ::= x \mid \lambda x.t \mid t \ u$$

notations: $\lambda x_1 x_2 . t$ for $\lambda x_1 . \lambda x_2 . t$ ($t \ u \ v$) for (($t \ u$) v) substitution: t[u/x]

• β -reduction:

 $\xrightarrow{1}$ relation obtained by context-closure of:

$$((\lambda x.t)u) \xrightarrow{1} t[u/x]$$

 \rightarrow reflexive and transitive closure of $\frac{1}{2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

system F types:

$$T, U ::= \alpha \mid T \to U \mid \forall \alpha. T$$

simple types: without \forall

simply typed terms, in Church-style:

$$x^{T} \qquad (\lambda x^{T} . M^{U})^{T \to U} \qquad ((M^{T \to U}) N^{T})^{U}$$

- 4 同 6 4 日 6 4 日 6

Proofs-as-programs correspondence (Curry-Howard)

formula

type

proof of $A_1, \ldots, A_n \vdash B$

 M^B , with free variables $x_i : A_i$, $1 \le i \le n$

normalization of proof (cut elimination) $\beta\text{-reduction}$ of term

イロト イポト イラト イラト

Data types in F

Booleans: $B^F = \forall \alpha. \alpha \rightarrow \alpha \rightarrow \alpha$ <u>true= $\lambda x. \lambda y. x$ </u> <u>false= $\lambda x. \lambda y. y$ </u>

Church unary integers:

$$N^F$$
 = $\forall \alpha.(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$
example
 $\underline{2}$ = $\lambda f^{\alpha \rightarrow \alpha}.\lambda x^{\alpha}.(f(f x)): N^F$
Church binary words:

example
$$< 1, 1, 0 >$$

$$= \quad \forall \alpha. (\alpha \to \alpha) \to (\alpha \to \alpha) \to (\alpha \to \alpha)$$

$$= \lambda s_0^{\alpha \to \alpha} . \lambda s_1^{\alpha \to \alpha} . \lambda x_{\Box}^{\alpha} . \left(s_1 \left(s_1 \left(s_0 x \right) \right) \right) := W_{\text{scale}}^F$$

From linear logic to types for implicit computational complexity

Examples of terms (1)

addition <i>add</i>	= :	$\lambda nmfx.(n f) (m f x)$ $N \rightarrow N \rightarrow N$
multiplication		
mult	=	$\lambda nmf.(n(mf))$
	:	$N \to N \to N$
squaring		
square	=	$\lambda nf.(n(nf))$
	:	$N \rightarrow N \rightarrow N$

< 日 > < 同 > < 三 > < 三 >

э

Iteration

For each inductive data type an associated iteration principle. For instance, for $N = \forall \alpha.(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$, we can define an iterator *iter*:

then

$$(iter \ t \ u \ \underline{n}) \rightarrow (t \ (t \dots (t \ u) \dots)) \quad (n \ times)$$

examples:

$$egin{aligned} ext{double} &: extsf{N} o extsf{N} \ ext{exp} &= \lambda n.(ext{iter double } extsf{1} \ n) \ : extsf{N} o extsf{N} \ ext{tower} &= \lambda n.(ext{iter exp } extsf{1} \ n) \ : extsf{N} o extsf{N} \end{aligned}$$

Examples of terms (2)

=	$\lambda u^{W} \cdot \lambda v^{W} \cdot \lambda s_{0} \cdot \lambda s_{1} \cdot \lambda x \cdot (u s_{0} s_{1}) (v s_{0} s_{1} x)$
:	W ightarrow W ightarrow W
	14/
=	$\lambda u^{W} . \lambda f^{\alpha \to \alpha} . (u f f)^{\alpha \to \alpha}$
:	W ightarrow N
	= : = :

repeated concatenation

rep $= \lambda n^{\prime\prime}$

$$= \lambda n^{N} . \lambda v^{W} . [iter (conc v)^{W \to W} \underline{nil}^{W} n^{N}]$$

= $\lambda n^{N} . \lambda v^{W} . [n (conc v) \underline{nil}]^{W}$
: $N \to W \to W$

< 日 > < 同 > < 三 > < 三 >

э

System F and termination

Theorem (Girard)

If a term is well typed in F, then it is strongly normalizable.

Thus a type derivation can be seen as a termination witness. In particular, a term $t: W \to W$ represents a function on words which terminates on all inputs.

Can we refine this system in order to guarantee feasible termination, that is to say in polynomial time?

・ロト ・同ト ・ヨト ・ヨト

• Linear logic (LL) arises from the decomposition

 $A \Rightarrow B \equiv !A \multimap B$

- the ! modality accounts for duplication (contraction)
- ! satisfies the following principles:

$$|A \multimap |A \otimes |A \qquad \frac{A \vdash B}{|A \vdash |B} \qquad |A \multimap A \\ |A \otimes |B \multimap |(A \otimes B) \quad |A \multimap ||A$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Elementary linear logic (ELL)

[Girard95]

• Language of formulas:

$$A, B := \alpha \mid A \multimap B \mid !A \mid \forall \alpha. A$$

Denote $!^k A$ for k occurrences of !.

• The system is designed in such a way that the following principles are **not** provable

$$|A \multimap A, |A \multimap ||A$$

 Defined to characterize elementary time complexity, that is to say in time bounded by 2ⁿ_k, for arbitrary k.

(4月) (4日) (4日)

Elementary linear logic rules

$$\overline{x:A \vdash x:A}$$
 (Id)

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A \multimap B} (\multimap i) \qquad \qquad \frac{\Gamma_1 \vdash t : A \multimap B \quad \Gamma_2 \vdash u : A}{\Gamma_1, \Gamma_2 \vdash (t \ u) : B} (\multimap e$$

$$\frac{x_1 : !A, x_2 : !A, \Gamma \vdash t : B}{x : !A, \Gamma \vdash t[x/x_1, x/x_2] : B} (Cntr) \quad \frac{\Gamma \vdash t : A}{\Gamma, x : B \vdash t : A} (Weak)$$

$$\frac{x_1 : B_1, \dots, x_n : B_n \vdash t : A}{x_1 : !B_1 \dots x_n : !B_n \vdash t : !A} (! i) \quad \frac{\Gamma_1 \vdash u : !A \quad \Gamma_2, x : !A \vdash t : B}{\Gamma_1, \Gamma_2 \vdash t[u/x] : B} (! e)$$

- 4 同 2 4 日 2 4 日 2

Elementary linear logic rules (2/2)

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall \alpha. A} (\forall i) (*) \frac{\Gamma \vdash t : \forall \alpha. A}{\Gamma \vdash t : A[B/\alpha]} (\forall e)$$

where (*) : $\alpha \notin \Gamma$.

▲□ ▶ ▲ □ ▶ ▲ □

Elementary linear logic rules: remarks

- This is actually elementary **affine** logic (EAL), because of the unrestricted weakening (not only on !*A* formulas).
- However throughout this talk we will say linear instead of affine, so ELL will mean EAL ...
- These rules are natural deduction style rules. There is also a sequent calculus presentation of ELL.

(人間) システレ イテレ

Forgetful map from ELL to F

Consider $(.)^-$: *ELL* \rightarrow *F* defined by:

$$(!A)^- = A^-, (A \multimap B)^- = A^- \to B^-, (\forall \alpha.A)^- = \forall \alpha.A^-, \alpha^- = \alpha.$$

Proposition

If $\Gamma \vdash_{ELL} t$: A then t is typable in F with type A^- .

If $A^- = T$, say A is a decoration of T in ELL.

Data types in ELL

• Church unary integers system F: ELL: N^{F} N^{ELL} $\forall \alpha.(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$ $\forall \alpha.!(\alpha \multimap \alpha) \multimap !(\alpha \multimap \alpha)$

Example: integer 2, in F:

$$\underline{2} = \lambda f^{(\alpha \to \alpha)} . \lambda x^{\alpha} . (f(f x)) .$$

Church binary words
 system F: ELL:
 W^F W^{ELL}

 $\begin{array}{l} \forall \alpha.(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha) \\ \\ \text{Example: } w = \langle 1, 0, 0 \rangle, \text{ in F:} \end{array}$

$$\underline{w} = \lambda s_0^{(\alpha \to \alpha)} . \lambda s_1^{(\alpha \to \alpha)} . \lambda x^{\alpha} . (s_1 \ (s_0 \ (s_0 \ x))) \ .$$

イロト イポト イヨト イヨト

-

Representation of functions

- a term t of type !^kN →!^lN, for some k, l, represents a function over unary integers
- $!^{k}W \multimap !^{l}W$, for some k, l: function over binary words

伺 ト イ ヨ ト イ ヨ ト

Examples of ELL terms (1)

• some examples of terms

addition add = $\lambda nmfx.(n f) (m f x)$: $N \multimap N \multimap N$

multiplication mult = $\lambda nmf.(n(m f))$: $N \multimap N \multimap N$ squaring square = $\lambda nf.(n(n f))$: $!N \multimap !N$

・ロト ・同ト ・ヨト ・ヨト

Iteration in ELL

recall the iterator iter:

$$iter = \lambda f \times n. (n f \times) : !(A \multimap A) \multimap !A \multimap N \multimap !A$$

with $(iter \ t \ u \ \underline{n}) \rightarrow (t \ (t \ \dots (t \ u) \dots)) \quad (n \text{ times})$

examples:

double : $N \multimap N$ exp = (iter double <u>1</u>) : $N \multimap !N$

remark: *exp* cannot be iterated; *tower* = (*iter* exp $\underline{1}$) non ELL typable.

coercion = (iter succ $\underline{0}$) : $N \rightarrow !N$: an identity, but changes the type

- 4 同 6 4 日 6 4 日 6

Iteration in ELL

recall the iterator iter:

$$iter = \lambda f \times n. (n f \times) : !(A \multimap A) \multimap !A \multimap N \multimap !A$$

with $(iter \ t \ u \ \underline{n}) \rightarrow (t \ (t \ \dots (t \ u) \dots)) \quad (n \text{ times})$

examples:

double : $N \rightarrow N$ exp = (iter double <u>1</u>) : $N \rightarrow !N$ remark: exp cannot be iterated; tower = (iter exp <u>1</u>) non ELL typable.

coercion = (iter succ $\underline{0}$) : $N \rightarrow N$: an identity, but changes the type

Iteration in ELL

recall the iterator iter:

$$iter = \lambda f \times n. (n f \times) : !(A \multimap A) \multimap !A \multimap N \multimap !A$$

with $(iter \ t \ u \ \underline{n}) \rightarrow (t \ (t \ \dots (t \ u) \dots)) \quad (n \text{ times})$

examples:

double : $N \rightarrow N$ exp = (iter double <u>1</u>) : $N \rightarrow !N$ remark: exp cannot be iterated; tower = (iter exp <u>1</u>) non ELL typable.

 $coercion = (iter \ succ \ \underline{0}) : N \multimap !N :$ an identity, but changes the type

イロト イポト イヨト イヨト

Examples of ELL terms (2)

concatenation

conc	=	$\lambda u.\lambda v.\lambda s_0.\lambda s_1.\lambda x.(u \ s_0 \ s_1) (v \ s_0 \ s_1 \ x) W \multimap W \multimap W$
length <i>length</i>	=	$\lambda u.\lambda f.(u f f)$
8		

repeated concatenation

rep

$$= \lambda n.\lambda v.[iter (conc v) nil n] = \lambda n.\lambda v.[n (conc v) nil]$$

$$: N \multimap ! W \multimap ! W$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶
From derivations to proof-nets

・ 同 ト ・ ヨ ト ・ ヨ

Elementary linear logic rules, again

$$\frac{1}{x:A\vdash x:A} \; (\mathsf{Id})$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A \multimap B} (\multimap i) \qquad \qquad \frac{\Gamma_1 \vdash t : A \multimap B \quad \Gamma_2 \vdash u : A}{\Gamma_1, \Gamma_2 \vdash (t \ u) : B} (\multimap e$$

$$\frac{x_1 : !A, x_2 : !A, \Gamma \vdash t : B}{x : !A, \Gamma \vdash t [x/x_1, x/x_2] : B} (Cntr) \quad \frac{\Gamma \vdash t : A}{\Gamma, x : B \vdash t : A} (Weak)$$
$$\frac{x_1 : B_1, \dots, x_n : B_n \vdash t : A}{x_1 : !B_1, \dots, x_n : !B_n \vdash t : !A} (! i) \quad \frac{\Gamma_1 \vdash u : !A \quad \Gamma_2, x : !A \vdash t : B}{\Gamma_1, \Gamma_2 \vdash t [u/x] : B} (! e)$$

(日) (同) (三) (三)

ELL Proof-Nets

ELL proof-net : example

Proof-net R_3 representing Church integer <u>3</u>:

→ Ξ → < Ξ</p>

ELL proof-net: depth

- Depth of an edge *e* in a proof-net *R*: number of boxes it is contained in.
- Depth d(R) of proof-net R: maximal depth of its edges.
- Example:

The previous proof-net R_3 has depth 1. Any proof-net R_n representing n has depth 1.

(人間) システレ イテレ

ELL proof-net reduction : cut elimination

Patrick Baillot From linear logic to types for implicit computational complexity

▶ ∢ ≣ ▶

ELL proof-net reduction : cut elimination

- write programs with ELL typed $\lambda\text{-terms}$
- evaluate them by: compiling them into proof-nets, and then performing proof-net reduction
- beware:
 - proof-net reduction does not exactly match β -reduction
 - ELL does not satisfy subject reduction

but that's all right for our present goal ...

- 4 同 6 4 日 6 4 日 6

ELL proof-net reduction properties

- Recall: depth of an edge *e* in a proof-net *R* = number of boxes it is contained in.
- We have

Proposition (Stratification)

The depth of an edge does not change during reduction.

Consequence: the depth d of a proof-net does not increase during reduction.

Level-by-level reduction strategy:

R proof-net of depth dperform reduction successively at depth 0, 1 ..., d.

Level-by-level reduction of ELL proof-nets

let R be an ELL proof-net of depth d
 |R|_i = number of nodes at depth i = size at depth i
 |R| = total size
 round i: reduction at depth i
 there are d + 1 rounds for the reduction of R

• what happens during round i?

- |R|i decreases at each step thus there are at most |R|i steps (size bounds time)
- but $|R|_{i+1}$ can increase at each step, in fact it can double
- hence round *i* can cause an exponential size increase
- on the whole we have a $2_d^{|R|}$ size increase
- this yields a $O(2_d^{|R|})$ bound on the number of steps

ELL complexity results

Theorem (Proof-net complexity)

If R is an ELL proof-net of depth d, then it can be reduced to its normal form in $O(2_d^{|R|})$ steps.

Theorem (Representable functions)

The functions representable by a term of type $N - 0!^k N$, where $k \ge 0$, are exactly the elementary time functions.

- 4 同 6 4 日 6 4 日 6

Proof of the representability theorem

• \subseteq (soundness):

if $t : N \multimap !^k N$ for some k, then t represents an elementary function f.

proof: compute $(t\underline{n})$ by proof-net reduction.

- ⊇ (completeness):
 if f : N → N is an elementary function, then there exists k and t : N → !^kN such that t represents f.
 - **proof**: simulation of $O(2_i^n)$ -time bounded Turing machine, for any *i*.

・ロト ・ 同ト ・ ヨト ・ ヨト ・

From linear logic to types for implicit computational complexity (Part 2)

Patrick Baillot

CNRS / ENS Lyon

Days in Logic 2018 Aveiro

January 26, 2018

- 4 同 6 4 日 6 4 日 6

Introduction: recap

- Implicit computational complexity (ICC) : characterizing complexity classes by logics / languages without explicit bounds, but instead by restricting the constructions
- we are considering here the proofs-as-programs approach for ICC . . .
- ... illustrating the use of linear logic and its weak variants.

[Girard95]

Elementary linear logic (ELL)

Language of formulas:

$$A, B := \alpha \mid A \multimap B \mid !A \mid \forall \alpha. A$$

We denote $!^k A$ for k occurrences of !.

伺 ト イ ヨ ト イ ヨ

Elementary linear logic rules

$$\overline{x:A\vdash x:A} \ (\mathsf{Id})$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A \multimap B} (\multimap i) \qquad \qquad \frac{\Gamma_1 \vdash t : A \multimap B \quad \Gamma_2 \vdash u : A}{\Gamma_1, \Gamma_2 \vdash (t \ u) : B} (\multimap e)$$

$$\frac{x_1 : !A, x_2 : !A, \Gamma \vdash t : B}{x : !A, \Gamma \vdash t[x/x_1, x/x_2] : B} (Cntr) \quad \frac{\Gamma \vdash t : A}{\Gamma, x : B \vdash t : A} (Weak)$$
$$\frac{x_1 : B_1, \dots, x_n : B_n \vdash t : A}{x_1 : !B_1, \dots, x_n : !B_n \vdash t : !A} (! i) \quad \frac{\Gamma_1 \vdash u : !A \quad \Gamma_2, x : !A \vdash t : B}{\Gamma_1, \Gamma_2 \vdash t[u/x] : B} (! e)$$

(日) (同) (三) (三)

э

Elementary linear logic rules (2/2)

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall \alpha . A} \; (\forall i) \; (*) \quad \frac{\Gamma \vdash t : \forall \alpha . A}{\Gamma \vdash t : A[B/\alpha]} \; (\forall e)$$

where (*) : $\alpha \notin FV(\Gamma)$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Data types in ELL

• Church unary integers system F: ELL: N^{F} $\forall \alpha.(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$ $\forall \alpha.!(\alpha \rightarrow \alpha) \rightarrow !(\alpha \rightarrow \alpha)$

Example: integer 2, in F:

$$\underline{2} = \lambda f^{(\alpha \to \alpha)} . \lambda x^{\alpha} . (f(f x)) .$$

Church binary words
 system F: ELL:
 W^F W^{ELL}

 $\begin{array}{l} \forall \alpha.(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha) \\ \\ \text{Example: } w = \langle 1, 0, 0 \rangle, \text{ in F:} \end{array}$

$$\underline{w} = \lambda s_0^{(\alpha \to \alpha)} . \lambda s_1^{(\alpha \to \alpha)} . \lambda x^{\alpha} . (s_1 \ (s_0 \ (s_0 \ x))) \ .$$

イロト イポト イヨト イヨト

-

ELL complexity results

Theorem (Proof-net complexity)

If R is an ELL proof-net of depth d, then it can be reduced to its normal form in $O(2_d^{|R|})$ steps.

Theorem (Representable functions)

The functions representable by a term of type $N - 0!^k N$, where $k \ge 0$, are exactly the elementary time functions.

- 4 同 6 4 日 6 4 日 6

Characterization of complexity classes

the computational engine logical system

the specification formula / type

Elementary linear logic (ELL)

 $\{N \multimap !^k N\}_{k \ge 0} \equiv Elementary$

Characterization of complexity classes

the computational engine logical system

Elementary linear logic (ELL)

the specification formula / type

 $\{N \multimap !^k N\}_{k \ge 0} \equiv Elementary$

- 4 同 1 4 日 1 4 日

ELL: towards finer characterizations

- We have seen a characterization of the *Elementary* class (elementary complexity) in ELL
- But can we get more fined-grained characterizations? Characterize smaller complexity classes ?

・ 同 ト ・ ヨ ト ・ ヨ ト

 we can extend ELL by adding a new construction μα.A for formula fixpoints, with the following rules:

$$\frac{\Gamma \vdash t : A[\mu \alpha. A/\alpha]}{\Gamma \vdash t : \mu \alpha. A} (\mu f) \qquad \frac{\Gamma \vdash t : \mu \alpha. A}{\Gamma \vdash t : A[\mu \alpha. A/\alpha]} (\mu u)$$

We call ELL_{μ} this system.

 the previous results on ELL also hold for ELL_μ (same bound on cut-elimination).

・ロト ・同ト ・ヨト ・ヨト

Refine the complexity bounds

• By the previous analysis we know that a term $t : !W \multimap !^2B$ can be evaluated in $O(2_2^n)$, so it is in 2-EXPTIME ...

• but actually it is in ... PTIME

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

New characterization in ELL_{μ}

Patrick Baillot From linear logic to types for implicit computational complexity

/□ ▶ < 글 ▶ < 글

New characterization in ELL_{μ}

Theorem

We consider the system ELL_{μ} .

The functions representable by proofs of $!W \multimap !^2B$ are exactly the class PTIME, of polynomial time predicates.

| 4 同 1 4 三 1 4 三 1

Key Lemma for the soundness proof

For proving complexity soundness we use a more precise bound than before:

Lemma (Size bound)

Let R be a proof-net with:

- only exponential cuts at depth 0,
- k cuts at depth 0.

Let R' be the proof-net obtained by reducing R at depth 0. Then we have:

 $|R'|_1 \leq |R|_0^k \cdot |R|_1.$

- 4 同 6 4 日 6 4 日 6

Fixpoints and Scott integers

in \textit{ELL}_{μ} we can define new data types, eg Scott integers:

$$N_{S} = \mu \alpha . \forall \beta . (\alpha \multimap \beta) \multimap \beta \multimap \beta$$

in λ -calculus notation:

$$\underline{0} = \lambda s.\lambda x.x \underline{n+1} = \lambda s.\lambda x.(s \underline{n})$$

They allows for constant time predecessor and zero-test, but \dots no iterator.

Similarly one defines W_S for Scott binary words. We get:

case :
$$\forall \alpha.(W_S \multimap \alpha) \multimap (W_S \multimap \alpha) \multimap \alpha \multimap (W_S \multimap \alpha)$$

伺 ト イ ヨ ト イ ヨ ト

Proof of completeness for |W - 0||B and PTIME

- any polynomial can be represented with a proof of $!N \multimap !N$. we have *length* : $W \multimap N$.
- **using type fixpoints** we can define a type *Configs* for TM configurations, based on Scott words, with:

proofs

init : $W \vdash Config_S$ accept? : $Config_S \vdash B$

 $\bullet\,$ for any TM $\,\mathcal{M}\,$ a proof

 $step : Config_{S} \vdash Config_{S}$

then, by iterating step q(|w|) times on input (init(w)) we get: $|W \vdash !^2 Config_s.$

composing with *accept*? we get: $!W \vdash !^2B$.

Why do we need type fixpoints?

Without type fixpoints we can define using second-order a type *Config* based on Church integers (following [Asperti-Roversi2002]). We get the same types for *length*, *init*, *step*, and we also obtain by iteration:

 $|W \vdash |^2 Config.$

However the problem is then that:

accept? : Config $\vdash !B$

So this gives:

 $!W \vdash !^3B$,

which is not the type needed

イロト イポト イラト イラト

General characterization theorem

Theorem

We consider the system ELL_{μ} .

- The functions representable by proofs of !W → !²B are exactly the class PTIME;
- The functions representable by proofs of $!W \multimap !^{k+2}B$ are exactly the class k-EXPTIME $(k \ge 1)$.

where k-EXPTIME = $\bigcup_{i \in \mathbb{N}} DTIME(2_k^{n^i})$ Note that we do not use fixpoints in the types above ... but they are used in the proofs.

What about function classes ?

Theorem

We consider the system ELL_{μ} . The functions representable by proofs of $!W \multimap !^2W_S$ are exactly the class FPTIME;

recall:

W: type of Church binary words

 W_S : type of Scott binary words

However this characterization is not so satisfactory because of the I/O distinct data-types : these programs cannot be composed!

・ロト ・同ト ・ヨト ・ヨト

An alternative view on function classes

[B.-DeBenedetti-RonchiDellaRocca2017]

Let us define a new data-type:

$$\mathbb{W}_k =_{def} !^k N \otimes !^{k+1} W_S$$

Theorem

We consider the system ELL_{μ} .

For $k \ge 0$, the functions representable by proofs of $\mathbb{W}_1 \multimap \mathbb{W}_{k+1}$ are exactly the class *k*-FEXPTIME.

For FPTIME we have the type $\mathbb{W}_1\multimap\mathbb{W}_1,$ and now these programs can be composed !

(日)

Characterization of complexity classes

the computational engine logical system

Elementary linear logic ELL_{μ}

the specification formula / type

 $W \multimap !^{k+2}B \equiv k$ -EXPTIME

 $\mathbb{W}_1 woheadrightarrow \mathbb{W}_{k+1} \equiv k ext{-FEXPTIME}$

< ロ > < 同 > < 回 > < 回 >

Characterization of complexity classes

the computational engine logical system

Elementary linear logic ELL_{μ}

the specification formula / type

 $!W \multimap !^{k+2}B \equiv k$ -EXPTIME

 $\mathbb{W}_1 woheadrightarrow \mathbb{W}_{k+1} \equiv k ext{-FEXPTIME}$

< ロ > < 同 > < 回 > < 回 >

Characterization of complexity classes

the computational engine logical system

Elementary linear logic ELL_{μ}

the specification formula / type

 $!W \multimap !^{k+2}B \equiv k$ -EXPTIME

 $\mathbb{W}_1 \multimap \mathbb{W}_{k+1} \equiv k$ -FEXPTIME

< ロ > < 同 > < 回 > < 回 >
Comparison with previous works

• Jones 2001:

read-only functional programs with arguments of order $\leq k \equiv k$ -EXP

• Leivant 2002:

second-order intuitionistic logic with comprehension restricted to order $\leq k$ formulas = k-FXP

in these settings: restriction of a particular operation inside the proof or program

by contrast in EAL_{μ} the condition is only on the conclusion (type) of the proof.

Questioning the robustness of ELL

- Can we enrich the language by adding new primitives, and keep the properties?
- We already saw that for type fixpoints
- What about adding an FPTIME primitive *F*, with type
 F : *W* → *W*?

・ロト ・同ト ・ヨト ・ヨト

Extending ELL [B.-Ghyselen2018]

Proposition

Consider an extension of ELL with a finite number of FPTIME primitives F_i of type $W \multimap W$. Then the functions in $|W \multimap |B|$ (resp. $|W \multimap |^2B$) are in FPTIME (resp. 2-FEXPTIME).

・ロト ・同ト ・ヨト ・ヨト

Improve the expressivity of ELL?

- Denote nA → B for A → A → ··· → A → B, with n occurrences of A.
- There are only few functions of type $nW \rightarrow W$ IN ELL.
- We would like a generic way of adding new primitives of type nW → W to the language.

(日) (同) (日) (日) (日)

Linear sized types

Consider the language $s\ell T$ given by:

- terms: λ -terms + constructors + iterators
- types:

indexes $I, J := a \mid n \in \mathbb{N}^* \mid I + J \mid I \cdot J$

types $D, D' := N' | W' | D \multimap D' | D \otimes D'$

typing rules

Linear sized types (2)

• Examples of $s\ell T$ terms:

$$\begin{array}{rcl} \lambda x.s_0(s_1(x)) & : & W^a \multimap W^{a+2} \\ add &= \lambda x.itern(\lambda y.succ(y), x) & : & N^I \multimap N^J \multimap N^{I+J} \end{array}$$

• We have:

Proposition

The functions representable by $\mathsf{s}\ell\mathsf{T}$ terms are exactly the class FPTIME.

(日) (同) (三) (三)

Consider the language of ELL⁺ (enriched ELL) defined by:

- $s\ell T$ typing rules,
- the rules

$$\frac{\vdash t: W^{a_1}, \ldots, W^{a_n} \multimap W'}{\vdash t: W, \ldots, W \multimap W}$$

ELL typing rules.

This is a kind of 2-layers language.

伺 ト イヨト イヨト

Enriched ELL [B.-Ghyselen2018]

Theorem

In ELL⁺ we have:

- The functions representable by terms of type !W −∞!B are exactly PTIME.
- For $k \ge 0$ the functions representable by terms of type $!W \multimap !^{k+1}B$ are exactly 2k-EXPTIME.

< ロ > < 同 > < 三 > < 三 > 、

Some terms in ELL⁺

In ELL⁺ we can write terms for:

- SAT : N → W →!B, where a CNF formula is given by the number of distinct variables and the encoding as a word.
- $QBF_k : kN \multimap B \multimap W \multimap !B$, for testing satisfiability of quantified boolean formulas with kalternations of quantifiers.
- SUBSET_SUM : W → W →!B, where the first word represents an integer and the second one a set of integers.

・ロト ・同ト ・ヨト ・ヨト

Some references

- J.-Y. Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998.
- V. Danos, J.-B. Joinet. Linear logic and elementary time. Inf. Comput. 183(1): 123-137, 2003.
- P. B. On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy. Information and Computation, 241:3 -31, 2015.
- P. B., E. De Benedetti, S. Ronchi Della Rocca. Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-calculus. To appear in Information and Computation, 2017 (conference version in IFIP TCS 2014).
- P. B., A. Ghyselen. Combining Linear Logic and Size Types for Implicit Complexity. Tech Report HAL, 2018.

(口) (同) (三) (三) …

From linear logic to types for implicit computational complexity (Part 3)

Patrick Baillot

CNRS / ENS Lyon

Days in Logic 2018 Aveiro

January 27, 2018

Patrick Baillot From linear logic to types for implicit computational complexity

- 4 同 2 4 日 2 4 日 2

Introduction: recap

- Implicit computational complexity (ICC) : characterizing complexity classes by logics / languages without explicit bounds, but instead by restricting the constructions
- We are considering here the proofs-as-programs approach for ICC, with linear logic.
- In the 2 first lectures we investigated Elementary linear logic (ELL).

・ロト ・同ト ・ヨト ・ヨト

Characterization of complexity classes

the computational engine logical system

Elementary linear logic ELL_{μ}

the specification formula / type

 $W \multimap V^{k+2}B \equiv k$ -EXPTIME

 $\mathbb{W}_1 \multimap \mathbb{W}_{k+1} \equiv k$ -FEXPTIME

< ロ > < 同 > < 回 > < 回 >

Taming the exponential blow-up in ELL?

ъ

Taming the exponential blow-up in ELL?

Patrick Baillot From linear logic to types for implicit computational complexity

→ < ∃→

Light linear logic (LLL)

[Girard95]

• Language of formulas:

$$A, B := \alpha \mid A \multimap B \mid \forall \alpha. A \mid !A \mid \S A$$

intuition: \S a new modality for non-duplicable boxes

• The following principles are still not provable

$$|A \multimap A, |A \multimap ||A$$

- 4 同 2 4 日 2 4 日 2

Light linear logic rules

- rules (Id), (\multimap i), (\multimap e), (Cntr), (Weak): as in ELL.
- new rules (! i), (! e), (§ i), (§ e):

$$\frac{x:B\vdash t:A}{x:!B\vdash t:!A} (! i) \qquad \frac{\Gamma_1\vdash u:!A \quad \Gamma_2, x:!A\vdash t:B}{\Gamma_1, \Gamma_2\vdash t[u/x]:B} (! e)$$

$$\frac{\Gamma, \Delta \vdash t : A}{!\Gamma, \S \Delta \vdash t : \S A} (\S i) \quad \frac{\Gamma_1 \vdash u : \S A \quad \Gamma_2, x : \S A \vdash t : B}{\Gamma_1, \Gamma_2 \vdash t[u/x] : B} (\S e)$$

at most one free variable in the premise judgement of (! i) rule.

Light linear logic principles

• The following formulas are provable:

$$A \longrightarrow A$$
 $A \otimes B \longrightarrow A \otimes A \otimes B$

• The following one is **not** provable in LLL, though it is in ELL:

$$|A \otimes |B \multimap | (A \otimes B)$$

伺 ト イ ヨ ト イ ヨ

Forgetful map from LLL to ELL

Consider
$$(.)^e : LLL \rightarrow ELL$$
 defined by:

$$(\S A)^e = !A^e, \quad (!A)^e = !A^e$$

and other connectives unchanged.

Proposition

If $\Gamma \vdash_{LLL} t : A$ then $\Gamma^e \vdash_{ELL} t : A^e$.

(日) (同) (日) (日) (日)

Data types in LLL

• Church unary integers system F: LLL: N^{F} N^{LLL} $\forall \alpha.(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)$ $\forall \alpha.!(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha)$

Example: integer 2, in F:

$$\underline{2} = \lambda f^{(\alpha \to \alpha)} . \lambda x^{\alpha} . (f(f x)) .$$

Church binary words
 system F: LLL:
 W^F W^{LLL}

 $\begin{array}{l} \forall \alpha.(\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha) \\ \\ \text{Example: } w = \langle 1, 0, 0 \rangle, \text{ in } F: \end{array}$

$$\underline{w} = \lambda s_0^{(\alpha \to \alpha)} . \lambda s_1^{(\alpha \to \alpha)} . \lambda x^{\alpha} . (s_1 \ (s_0 \ (s_0 \ x))) \ .$$

イロト イポト イヨト イヨト

-

Representation of functions

- a term t of type !^kN → §^lN, for some k, l, represents a function over unary integers
 !^kW → §^lW: function over binary words.
- some examples of terms

addition add = $\lambda nmfx.(n f) (m f x)$: $N \multimap N \multimap N$

double = $\lambda nfx.(n f) (n f x)$: $!N \rightarrow \S N$

concatenation

conc : $W \multimap W \multimap W$

→ 4 同 → 4 回 → 4 回 →

Iteration in LLL

we can type the iterator *iter*:

iter =
$$\lambda fxn. (n f x) : !(A \multimap A) \multimap !A \multimap N \multimap \SA$$

examples:

 $(add3): N \multimap N$ can be iterated double $:!N \multimap \S N$ cannot be iterated

thus some exponentially growing terms are not typable

・ 同 ト ・ ヨ ト ・ ヨ ト

ae.

From linear logic to types for implicit computational complexity

э

э

Patrick Baillot

LLL proof-net reduction

Level-by-level reduction of LLL proof-nets

- as in ELL we use a level-by-level strategy
- let R be an LLL proof-net of depth d round i: reduction at depth i there are d + 1 rounds for the reduction of R

• what happens during round i?

- |R|_i decreases at each step thus there are at most |R|_i steps (size bounds time)
- yet $|R|_{i+1}$ can increase: during round *i* we can have a quadratic increase:

$$|R'|_{i+1} \le |R|_{i+1}^2$$

- this repeats *d* times, so on the whole we have a $|R|^{2^d}$ size increase
- this yields a $O(|R|^{2^d})$ bound on the number of steps

LLL complexity results

Theorem (Proof-net complexity)

If R is an LLL proof-net of depth d, then it can be reduced to its normal form in $O(|R|^{2^d})$ steps.

Thus at fixed depth d we have a polynomial bound.

Theorem (Representable functions)

The functions representable by a term of type $W \multimap \S^k W$, for $k \ge 0$, are exactly the functions of FP (polynomial time functions).

・ロト ・得ト ・ヨト ・ヨト

Characterization of complexity classes

the computational engine logical system

the specification formula / type

Light linear logic LLL

 $\{W \multimap \S^k W\}_{k \ge 0} \equiv \mathsf{FPTIME}$

(4月) (1日) (1日)

Light linear logic and typing

Is LLL a good type system for lambda calculus ...? Actually there are two problems:

- it does not satisfy subject-reduction,
- it does not ensure polynomial time complexity for β -reduction . . .

- 同 ト - ヨ ト - - ヨ ト

Light linear logic and typing (2)

Example:

 $y :!(!A \multimap !A \multimap !A), z :!!A \vdash_{LLL} (\lambda x.yxx)^n z : \S!A$ $t_n = (\lambda x.yxx)^n z,$ $t_n \xrightarrow{\beta} u_n \quad \text{with}$ $u_0 = z, \qquad u_n = y \ u_{n-1} \ u_{n-1}.$ we have: $|t_n| \sim c.n, \qquad |u_n| \sim 2^n.$

hence: any beta-reduction of t_n to u_n costs exponential space on a Turing Machine !

even though: using proof-nets these reductions are done in polynomial time.

culprit : sharing allowed by !,

it entails that: for $\mathcal D$ type derivation for t, we might have

 $|t| \gg |\mathcal{D}|.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

How to fix this problem?

Patrick Baillot From linear logic to types for implicit computational complexity

/□ ▶ < 글 ▶ < 글

Type system DLAL

To overcome the problems with typing in LLL: we restrict the use of ! to $|A \multimap B|$.

The DLAL (Dual Light Affine Logic) type system:

$$A, B ::= \alpha \mid A \multimap B \mid !A \multimap B \mid \S A \mid \forall \alpha. A$$

Typing judgements of the form: Γ ; $\Delta \vdash t : A$, where Γ contains duplicable variables, Δ contains linear variables.

・ 同 ト ・ ヨ ト ・ ヨ ト

DLAL: complexity bounds

DLAL satisfies the subject-reduction property.

Theorem (Strong Ptime bound)

If t is typable in DLAL with a derivation of depth d, then any β reduction of t can be performed in time $O((d+1) \cdot |t|^{2^{d+1}})$.

Remarks:

- one in fact shows a bound $O((d+1) \cdot |t|^{2^d})$ on the number of β -steps and then uses the fact that the cost of each step is here bounded;
- this bound holds for any reduction strategy;
- in particular, if $\vdash t : W \multimap \S^k W$ then t is Ptime.

・ロト ・得ト ・ヨト ・ヨト

DLAL: PTIME extensional completeness

Theorem (Completeness)

For any polynomial time function $f : \{0, 1\}^* \to \{0, 1\}^*$, there exists a term *t* representing it and typable in DLAL with a type $W \multimap \S^k W$, for a certain integer $k \in \mathbb{N}$.

Can we check DLAL typability?

DLAL type inference problem for system F terms:

input: system F term tproblem: does there exist a DLAL derivation for t ?

main issue:

- decorate the F derivation with $! / \S$
- for that, find out where to put boxes
- ... boils down to constructing a proof-net.

伺 ト イ ヨ ト イ ヨ ト

Lambda term to proof-net: the difficulties

How can we find out the boxes needed ? At first sight there are several difficulties

- In a priori bound on the number of boxes needed
- even for box positions there is an exponential number of possibilities
- **③** furthermore: distinguish between ! and § boxes
- Idea: we search for doors instead of boxes.

伺 ト イ ヨ ト イ ヨ ト

Example: term with doors

э
Example: parameterized term

 $\S^{m_1}(\S^{b_2,m_2}\alpha \to \S^{m_3}\alpha)$, with boolean parameters b_2 and integer parameters m_1 .

Type inference

- We express typability by a set of constraints on parameters, expressing e.g. : boxes are well-formed, a !-box has at most one auxilliary door etc
- We get mixed boolean-linear constraints.
- We give a resolution procedure for deciding whether the constraints system is decidable, using linear programming.
- This resolution procedure is PTIME.

DLAL type inference

Finally we get:

Theorem

The DLAL type inference problem for system F terms can be decided in PTIME.

Patrick Baillot From linear logic to types for implicit computational complexity

(日) (同) (日) (日) (日)

э

About the expressivity of LLL and DLAL

The completeness result is an extensional one, but the intensional expressivity of LLL and DLAL is limited. Indeed: rich features (higher-order, polymorphism) but "pessimistic" account of iteration ...

Some references

- J.-Y. Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998.
- Andrea Asperti, Luca Roversi. Intuitionistic Light Affine Logic. ACM Trans. Comput. Log. 3(1): 137-175 (2002).
- P. B., Kazushige Terui. Light types for polynomial time computation in lambda calculus. Inf. Comput. 207(1): 41-62 (2009)
- Vincent Atassi, P. B., Kazushige Terui. Verification of Ptime Reducibility for system F Terms: Type Inference in Dual Light Affine Logic. Logical Methods in Computer Science 3(4) (2007)
- Ugo Dal Lago. Context semantics, linear logic, and computational complexity. ACM Trans. Comput. Log. 10(4): 25:1-25:32 (2009)

A glimpse of the linear logics zoo

for FPTIME

- soft linear logic: [Lafont04]
 - a simple system, but with more constrained programming
- bounded linear logic: [GSS92]
 - $!_{P(\vec{x})}A$: more explicit, but more flexible
- for PSPACE
 - STA_B [GMRdR08] : extends soft linear logic with a craftly typed conditional
- for LOGSPACE
 - IntML [DLS10]: evaluation by computation by interaction
- for P/poly (non-uniform computation):
 - parsimonious λ -calculus [MazzaTerui15]

Conclusions and perspectives

- linear logic can be used for implicit complexity
- with two ingredients:

choice of the logic

choice of the formulas/types

1

- these systems lead to type systems for λ -calculus, ensuring complexity properties
- w.r.t. other ICC approaches:
 - handle higher-order computation
 - but limited intensional expressivity

relations with other ICC systems still to explore