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One Example

Theorem (L. Pontrjagin; 1934)
Ab ∼ CompHausAbop.

J. Isbell
That fact is a theorem of topological groups.

That character groups yield
an adjoint connection is a theorem of category theory.

John R. Isbell (1972). “General functorial semantics, I”. In: American
Journal of Mathematics 94.(2), pp. 535–596.
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Introduction

A seemingly paradoxical observation
“. . . an equation is only interesting or useful to the extent that the two
sides are different!”

John Baez and James Dolan (2001). “From finite sets to Feynman
diagrams”. In: Mathematics Unlimited – 2001 and Beyond. Ed. by
Björn Engquist and Wilfried Schmid. Springer Verlag, pp. 29–50.

Just compare

Numbers: 3 = 3 vs. eiω = cos(ω) + i sin(ω)
Spaces: R ' R vs. Cantor space ' 2N
Categories: Vec ∼ Vec vs. Vecfd ∼Mat

One more example
“ordered sets = Heyting algebras”: Posfin ∼ Heytopfin.
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. . . And Now for Something Completely Different!



Intuitionistic propositional logic

Heyting
“Instead of asking the question When is a sentence Φ true, we ask What
is a proof of Φ?”

. . .

A proof of ϕ ∧ ψ is a pair (p, q) consisting of a proof p of ϕ and a
proof q of ψ.
A proof of ϕ ∨ ψ is a pair (i , p) where either i = 0 and p is a proof
of ϕ or i = 1 and q is a proof of ψ.
. . .

Jean-Yves Girard, Paul Taylor, and Yves Lafont (1989). Proofs and types.
Vol. 7. Cambridge University Press Cambridge.
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More formally: Natural deduction

ϕ ψ
I∧

ϕ ∧ ψ
ϕ ∧ ψ

E1∧
ϕ

ϕ ∧ ψ
E2∧

ψ

ϕ
I1∨

ϕ ∨ ψ
ψ

I2∨
ϕ ∨ ψ

ϕ ∨ ψ

ϕ
····
θ

ψ
····
θ

E∨
θ

. . .

But not: ϕ ∨ ¬ϕ .



About ϕ ∨ ψ?

Question
6` ϕ and 6` ψ =⇒ 6` (ϕ ∨ ψ)?

Better argue semantically
6|= ϕ and 6|= ψ =⇒ 6|= (ϕ ∨ ψ)

Proof.
First recall: |= θ means JθK = >, for all interpretations J−K in
(finite) Heyting algebras H.

Hence our job is: If JϕKH1 < > and JψKH2 < >, construct an
interpretation in an Heyting algebra H so that ϕ ∨ ψ fails. . .
. . . does not seem to be easier!!?
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Kripke semantics

Definition
A Kripke model is a tuple of the form C = (C ,≤,) where (C ,≤) is a
partially ordered set and  is a binary relation between elements of C
and propositional variables so that:

if c ≤ c ′ and c  p then c ′  p.

Definition
For a Kripke model C = (C ,≤,):

c  ϕ ∨ ψ whenever c  ϕ or c  ψ.
. . .
c  ϕ→ ψ whenever c ′  ψ, for all c ≤ c ′ where c ′  ϕ.

C  ϕ whenever c  ϕ for all c ∈ C and  ϕ whenever C  ϕ for all C.

Theorem
|= ϕ ⇐⇒  ϕ.
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Returning to ϕ ∨ ψ

Theorem
6 ϕ and 6 ψ =⇒ 6 (ϕ ∨ ψ).

Proof.
If ϕ fails in C1 and ψ fails in C2, then ϕ ∨ ψ fails in C = (C ,≤,) where
“C = C1 + C2 + 1.”

Why “Kripke=Heyting”?

Kripke semantics in C = Heyting semantics in {upsets of C}:

Every Heyting algebra is of this form.
In fact: Posopfin ∼ Heytfin (∼ DLfin).

X Up(X ) H spec(H)

Y Up(Y ) K spec(K )

f gUp(f ) spec(g)
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What about the infinite case?

Stone’s slogan:
“A cardinal principle of modern mathematical research may be stated as
a maxim: One must always topologize.”

Marshall Harvey Stone (1938a). “The representation of Boolean algebras”.
In: Bulletin of the American Mathematical Society 44.(12), pp. 807–816.

Examples

Spec ∼ DLop (certain compact spaces vs. distributive lattices).
BooSp ∼ BAop (certain compact T2 spaces vs. Boolean algebras).
Priest ∼ DLop (certain ordered spaces vs. distributive lattices).
CompHaus ∼ C∗-Algop (compact T2 spaces vs. certain Banach
algebras).
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What about the infinite case?

Stone’s slogan:
“A cardinal principle of modern mathematical research may be stated as
a maxim: One must always topologize.”
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Category theory

Sammy Eilenberg (1913 – 1998) and Saunders MacLane (1909 – 2005)

Started in the 1940’s in their work about algebraic topology.

Is by now present in (almost) all areas of mathematics and also
extensively used in physics and in computer science.
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So what is it about?

Definition
A category X consists of

a collection of objects X , Y , . . . ,
arrows (morphisms) f : X → Y between objects,
arrows can be composed (associativity)

X Y Zf

g ·f

g

for every object there is an identity arrow 1X : X → Y .
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Examples

Every field of mathematics defines (at least) one category
Top, Ab, Vecfd,

Ban, Met, Met, . . . , Rel, Mat . . .

An abstract category . . .
• • •

•

. . . and its dual
• • •

•

Definition
For every category X, there is the dual category Xop with the same
objects but all arrows point in the opposite direction.

Examples
Topop, Abop, Vecopfd , . . .
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Some typical categorical notions

Isomorphism
An arrow f : X → Y in a category X is called an isomorphism whenever
there is some arrow g : Y → X with

g · f = 1X and f · g = 1Y .

Product in X

X

Z X × Y

Y

pairing
π1

π2

Sum in X

= product in Xop

X

X + Y Z

Y

i1
if then else

i2
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When are two categories “equal”?

An equivalence X ∼ Y of categories consists of:

A functor F : X −→ Y:

(X1
f−→ X2) 7−→ (FX1

Ff−→ FX2)
so that F (g · f ) = Fg · Ff and F1X = 1FX .

A functor G : Y −→ X.
Natural isomorphisms η : 1 −→ GF and ε : FG −→ 1.

Adjunction
As above but the arrows ηX : X → GFX and εY : FGY → Y need not be
isomorphisms; moreover:

F FGF

F

Fη

1
εF

G GFG

G

ηG

1
Gε
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Representable functors

Example
For every category, X(−,−) : Xop × X→ Set is a functor.

In particular:

X X(A,−)−−−−→ Set, (f : X → Y ) 7−→ (X(A,X )→ X(A,Y ), h 7→ f · h)

Xop X(−,B)−−−−→ Set, (f : X → Y ) 7−→ (X(Y ,B)→ X(X ,B), k 7→ k · f ).

Note: X(−,B) = Xop(B,−)

Definition
A functor F : X→ Set is called representable whenever F ' X(X ,−).

Examples

For | − | : Ord→ Set: | − | ' Ord(1,−).
For | − | : Vec→ Set: | − | ' Vec(R,−).
For | − | : DL→ Set: | − | ' Vec(3,−).
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Next Goal

Analyse the structure of dual adjunctions and how to construct
them.



The mother of all dual equivalences. . .

Theorem
The category BA of Boolean algebras and homomorphisms is dually
equivalent to the category BooSp of Boolean spaces (=
zero-dimensional compact Hausdorff spaces) and continuous maps:

BooSp ∼ BAop.

References
Marshall Harvey Stone (1936). “The theory of
representations for Boolean algebras”. In:
Transactions of the American Mathematical Society
40.(1), pp. 37–111.
Marshall Harvey Stone (1937). “Applications of the
theory of Boolean rings to general topology”. In:
Transactions of the American Mathematical Society
41.(3), pp. 375–481.

M.H. Stone



How does this work?

Version 1
F : BooSp −→ BAop

FX = { clopen subsets of X}
Ff : FY → FX , B 7→ f −1(B)
G : BAop −→ BooSp
GX = { maximal ideals of X}
Gf : GY → GX , I 7→ f −1(I)
ηX : X → GFX ,

x 7→ {A | x ∈ A}.
εX : X → FGX ,

x 7→ {I | x ∈ I}.

Version 2
F : BooSp −→ BAop

FX = BooSp(X , 2)
Ff : FY → FX , ϕ 7→ ϕ · f
G : BAop −→ BooSp
GX = BA(X , 2)
Gf : GY → GX , ψ 7→ ψ · f
ηX : X → GFX ,

x 7→ (evx : FX → 2).
εX : X → FGX ,

x 7→ (evx : GX → 2).
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The structure of dual adjunctions

References
Georgi D. Dimov and Walter Tholen (1989). “A characterization of
representable dualities”. In: Categorical topology and its relation to
analysis, algebra and combinatorics: Prague, Czechoslovakia, 22-27
August 1988. Ed. by Jiří Adámek and Saunders MacLane. World
Scientific, pp. 336–357.

Hans-Eberhard Porst and Walter Tholen (1991). “Concrete dualities”.
In: Category theory at work. Ed. by Horst Herrlich and
Hans-Eberhard Porst. Berlin: Heldermann Verlag, pp. 111–136.

Theorem
We consider categories with respresentable forgetful functors

| − | ' X(X0,−) : X −→ Set and | − | ' A(A0,−) : A −→ Set.

and an adjunction X ⊥

F
((

G
hh Aop.

Put Ã = FX0 and X̃ = GA0.

1. |Ã| ' |X̃ | and |F | ' X(−, X̃ ) and |G | ' A(−, Ã).
2. The units are “essentially” given by

ηX : |X | −→ |GFX | ' A(FX , Ã), x 7−→ evx

with evx denoting the evaluation map (and similar for ε).
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2. The units are “essentially” given by

ηX : |X | −→ |GFX | ' A(FX , Ã), x 7−→ evx

with evx denoting the evaluation map (and similar for ε).
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How to construct dual adjunctions?

Assumption

We assume that X̃ and Ã are objects in X and A respectively, with the
same underlying set |X̃ | = |Ã|.

Goal
We wish to lift the hom-functors

hom(−, X̃ ) : Xop → Set and hom(−, Ã) : Aop → Set

to functors
F : Xop → A and G : Aop → X

in such a way that the maps defined by x 7→ evx underlay an
X-morphism respectively and A-morphism.
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How to construct dual adjunctions? (cont.)

Initial structures
A family C = (fi : A→ Ai )i∈I in A is called initial with respect to
| − | : A→ Set if for every family D = (gi : B → Ai )i∈I and every map
h : |B| → |A| such that |D| = |C| · h, there exists a unique A-morphism
h̄ : D → C with D = C · h̄ and h = |h̄|.

Examples

In Top: initial = weak topology.
In Grp: point-separating =⇒ initial.

Main conditions
(Init X) For each object X in X, the cone

(evx : hom(X , X̃ )→ |Ã|, ψ 7→ ψ(x))x∈|X |

admits an initial lift (evx : F (X )→ Ã)x∈|X |.
(Init A) . . .
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How to construct dual adjunctions? (cont.)

Theorem
If conditions (InitX) and (InitA) are fulfilled, then these initial lifts define

the object parts of an adjunction X ⊥

F
((

G
hh Aop.

Proof.
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How to construct dual adjunctions? (cont.)

Theorem
If conditions (InitX) and (InitA) are fulfilled, then these initial lifts define

the object parts of an adjunction X ⊥

F
((

G
hh Aop.

Proof.
Consider f : X → Y in X. Then

X(Y , X̃ ) X(X , X̃ )

|Ã|

X(f ,X̃)

evfx
evx

commutes, hence X(f , X̃ ) is an A-morphism Ff : FY → FX .



How to construct dual adjunctions? (cont.)

Theorem
If conditions (InitX) and (InitA) are fulfilled, then these initial lifts define

the object parts of an adjunction X ⊥

F
((

G
hh Aop.

Proof.
For every ψ : X → X̃ , the diagram

|X | ηX //

ψ ##

|G(FX )|
evψ
��
|X̃ |

commutes. Hence ηX is an X-morphism.



How to guarantee (InitX) and (InitA)?

The trivial case
If | − | : X→ Set admits all initial lifts (is topological), then (InitX).
Examples: Top, Ord, Met, . . .

Proposition
Let A be the category of algebras for a signature Ω of operation symbols
and assume that X is complete and | − | : X→ Set preserves limits.
Furthermore, assume that, for every operation symbol ω ∈ Ω, the
corresponding operation |Ã|I → |Ã| underlies an X-morphism X̃ I → X̃ .
Then both (InitX) and (InitA) are fulfilled.

Proof.
For (InitA): Define the operations on X(X , X̃ ) “pointwise”.

For instance, ω(h1, h2) is the composite X 〈h1,h2〉−−−−→ X̃ × X̃ ω−→ X̃ .
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duality”. In: Transactions of the American Mathematical Society 248.(1),
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From Adjunctions to Equivalences

Theorem

Every adjunction X ⊥

F
((

G
hh Aop can be restricted to the full

subcategories Fix(η) and Fix(ε) of X respectively A, defined by the
classes of objects

{X | ηX is an isomorphism} and {A | εA is an isomorphism},

where it yields an equivalence Fix(η) ∼ Fix(ε)op.

Remark
These fixed subcategories might be empty.
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Improving the adjunction

Assumption
Assume that the dual adjunction is constructed using (InitX) and (InitA).

Remark
For every X in X:

ηX is an embedding ⇐⇒ (ψ : X → X̃ )ψ is point-separating and initial.

Definition
We put

InitCog(X̃ ) = {X | (ψ : X → X̃ )ψ is point-separating and initial}.

X̃ is an initial cogenerator of X if X = InitCog(X̃ ).

Remark
Our adjunction restricts to InitCog(X̃ ) and InitCog(Ã).
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Our leading Example: Stone duality

Here we consider:
X = CompHaus and X̃ = {0, 1}.

A = BA and Ã = {0 ≤ 1}.
Every operation on Ã is continuous, hence we get an adjunction

CompHaus ⊥

F
((

G
hh BAop.

Ã is an initial cogenerator of BA.
X̃ is not an initial cogenerator of CompHaus; in fact

InitCog(X̃ ) = {zero-dimensional compact Hausdorff spaces}
= BooSp.

Hence, we obtain an adjunction

BooSp ⊥

F
((

G
hh BAop.

where the units are pointwise embeddings.
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Marshall Harvey Stone (1938b). “Topological representations of
distributive lattices and Brouwerian logics”. In: Časopis pro
pěstování matematiky a fysiky 67.(1), pp. 1–25.
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Stone duality (continuation)

Theorem (Stone-Weierstraß type)
Let X be a Boolean space and m : B → FX be an embedding in BA so
that (m(x) : X → X̃ )x∈B is (initial and) point-separating. Then m is an
isomorphism.

Apply this to:
εB : B −→ F (GB), x 7−→ evx .

Theorem (Stone-Weierstraß type)
Let B be a Boolean algebra and m : X → GB be an embedding in
BooSp so that (m(x) : B → Ã)x∈X is (initial and) point-separating.
Then m is an isomorphism.

Apply this to:
ηX : X −→ G(FX ), x 7−→ evx .
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Stone-Priestley duality

Theorem
Spec ∼ DLop.

Marshall Harvey Stone (1938b). “Topological representations of distributive
lattices and Brouwerian logics”. In: Časopis pro pěstování matematiky a fysiky
67.(1), pp. 1–25.

Theorem
Priest ∼ DLop.

Hilary A. Priestley (1970). “Representation of distributive lattices by means
of ordered stone spaces”. In: Bulletin of the London Mathematical Society
2.(2), pp. 186–190.

Spectral spaces also appear in:
Melvin Hochster (1969). “Prime ideal structure in commutative rings”.
In: Transactions of the American Mathematical Society 142, pp. 43–60.
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Spec ∼ DLop.

Theorem
Priest ∼ DLop.

Hilary A. Priestley (1970). “Representation of distributive lattices by means
of ordered stone spaces”. In: Bulletin of the London Mathematical Society
2.(2), pp. 186–190.

“The topological spaces which arise as duals of Boolean algebras
may be characterized as those which are compact and totally
disconnected (i.e. the Stone spaces); the corresponding purely
topological characterization of the duals of distributive lattices
obtained by Stone is less satisfactory. In the present paper we
show that a much simpler characterization in terms of ordered
topological spaces is possible.”

Spectral spaces also appear in:
Melvin Hochster (1969). “Prime ideal structure in commutative rings”.
In: Transactions of the American Mathematical Society 142, pp. 43–60.
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Stone-Priestley duality

Here we consider:
X = PosComp and X̃ = {0 ≤ 1}.

A = DL and Ã = {0 ≤ 1}.
Every operation on Ã is monotone and continuous, hence we get an
adjunction

PosComp ⊥

F
((

G
hh DLop.

Ã is an initial cogenerator of DL.
X̃ is not an initial cogenerator of PosComp; in fact

InitCog(X̃ ) = Priest.
Hence, we obtain an adjunction

Priest ⊥

F
((

G
hh DLop.

where the units are pointwise embeddings (in fact isomorphisms).
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Duality for compact Hausdorff spaces

Q: For X = CompHaus, find a category A with X ∼ Aop.

A: Easy!! Take A = Xop.
Q: Right . . . that’s not what I meant. I want something familiar, say, a

category of “sets with structures”.
A: Ah, you mean with faithful functor A→ Set. Take

CompHausop hom(−,[0,1])−−−−−−−→ Set,
it is faithful since [0, 1] is a cogenerator in CompHaus
(Tietze-Urysohn).

Q: Well . . . I want something more concrete: a variety of algebras.
A: Is that possible?
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The algebraic theory of CompHausop

CompHausop hom(−,[0,1])−−−−−−−−−−−→ Set is algebraic (monadic).
John Duskin (1969). “Variations on Beck’s tripleability criterion”.
In: Reports of the Midwest Category Seminar III. Springer Berlin
Heidelberg, pp. 74–129.

[0, 1] is ℵ1-copresentable in CompHaus.
The algebraic theory of CompHausop can be generated by 5
operations.
A complete description of the algebraic theory of CompHausop was
obtain by V. Marra and L. Reggio based on the theory of
MV-algebras.

Vincenzo Marra and Luca Reggio (2017). “Stone duality above
dimension zero: Axiomatising the algebraic theory of C(X )”. In:
Advances in Mathematics 307, pp. 253–287.

Remark
CompHausop embeds fully into a finitary variety, the infinitary
operation is only needed to describe the objects.
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Gelfand duality

Izrail Gelfand (1941). “Normierte Ringe”. In: Recueil Mathématique.
Nouvelle Série 9.(1), pp. 3–24.

Here we consider:
X = CompHaus and A = C∗-Alg (normed C-algebras . . . ).

C : CompHaus→ C∗-Algop sends X to CX = {h : X → C} and
S : C∗-Alg→ CompHausop maps A to C∗-Alg(X ,C).
Something is wrong . . .

C is not compact!!

We have not specified the forgetful functors: It is better to consider
| − | : C∗-Alg→ Set sending A to {x ∈ A | ‖x‖ ≤ 1}.
Hence |C | = CompHaus(−,D) (the unit disk).
D is a cogenerator in CompHaus (Tietze-Urysohn) and C is a
cogenerator in C∗-Alg (Gelfand): for every x ∈ A,

‖x‖ = sup{|ϕ(x)| |ϕ ∈ C∗-Alg(A,C)}.

In fact, (D,C) induces an equivalence CompHaus ∼ C∗-Algop.
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Next Goal
We are now going to present conditions which guarantee that our
adjunction

X ⊥

F
((

G
hh Aop

is already an equivalence provided that its restriction to the full
subcategories Xfin and Afin of finite objects of X and A respectively is.
Some References:
Peter T. Johnstone (1986). Stone spaces. Vol. 3. Cambridge Studies in
Advanced Mathematics. Cambridge: Cambridge University Press. xxii +
370. Reprint of the 1982 edition.
David M. Clark and Brian A. Davey (1998). Natural dualities for the
working algebraist. Vol. 57. Cambridge Studies in Advanced
Mathematics. Cambridge: Cambridge University Press. xii + 356.
Dirk Hofmann (2002). “A generalization of the duality compactness
theorem”. In: Journal of Pure and Applied Algebra 171.(2-3),
pp. 205–217.



Describing the strategy

Assumptions
We consider

X ⊥

F
((

G
hh Aop

induced by finite objects (X̃ , Ã).

The “todo-list”

1. Each object A in A is a filtered colimit of finite objects.
2. F sends cofiltered limits of finite objects to colimits.
3. Each object X in X is a cofiltered limit of finite objects.

Remark
Being part of an adjunction, G preserves limites (sends colimits in A to
limits in X).



Describing the strategy

Assumptions
We consider

X ⊥

F
((

G
hh Aop

induced by finite objects (X̃ , Ã).
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The “todo-list”
1. Each object A in A is a filtered colimit of finite objects.

2. F sends cofiltered limits of finite objects to colimits.
3. Each object X in X is a cofiltered limit of finite objects.

Remark
Being part of an adjunction, G preserves limites (sends colimits in A to
limits in X).



Describing the strategy

Assumptions
We consider

X ⊥

F
((

G
hh Aop

induced by finite objects (X̃ , Ã).
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Describing the strategy (cont.)

The “todo-list”
1. Each object A in A is a filtered (directed) colimit of finite objects.
2. F sends cofiltered limits of finite objects to colimits.
3. Each object X in X is a cofiltered limit of finite objects.

Remark
We have the following commutative diagram:

A εA // FG(A)

Ai

ci

OO

εAi
// FG(Ai )

FG(ci )

OO

where the left hand side and the right hand side are colimit cones.
Then, if all εAi are isomorphisms, also εA is an isomorphism (and similar
for η).



Regarding (1)

Recall:
In many categories A with “algebraic flavour” (i.e. sets equipped with
finitary operations or relations; more technical: a model category of a
limit sketch in Seta), every object is a directed colimit of finitely
presentable objects.

aPeter Gabriel and Friedrich Ulmer (1971). Lokal präsentierbare Kategorien.
Lecture Notes in Mathematics, Vol. 221. Berlin: Springer-Verlag, pp. v + 200.
Jiří Adámek and Jiří Rosický (1994). Locally presentable and accessible
categories. Vol. 189. London Mathematical Society Lecture Note Series.
Cambridge: Cambridge University Press. xiv + 316.

Examples

Every vector space is a directed colimit of its finite-dim. subspaces.
Every distributive lattice space is a directed colimit of its finite
(=finitely generated) sublattices.
Every ordered set is a directed colimit of its finite (ordered) subsets.

Proposition

Under “mild” conditions, every object of InitCog(Ã) is a directed colimit
of finite objects.
(Since the reflector R : A → InitCog(Ã) sends finitely presentable to finite objects.)
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of finite objects.
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of finite objects.
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Regarding (2)

Proposition

Assume A = InitCog(Ã). Let D : I → X be a diagram in X with a
concrete limit (pi : L→ D(i))i∈I such that, for each i ∈ I, ηD(i) is an
isomorphism.
Then (F (pi ) : F (L)→ FD(i))i∈I is a colimit of FD : Iop → A if X(−, X̃ )
sends (pi : L→ D(i))i∈I to a colimit of X(D(−), X̃ ) : Iop → Set.

Theorem
Assume that X is a category of Boolean spaces equipped with finitary
operations or relations (more technical: a model category of a limit
sketch in BooSp).
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Proposition

Assume A = InitCog(Ã). Let D : I → X be a diagram in X with a
concrete limit (pi : L→ D(i))i∈I such that, for each i ∈ I, ηD(i) is an
isomorphism.
Then (F (pi ) : F (L)→ FD(i))i∈I is a colimit of FD : Iop → A if X(−, X̃ )
sends (pi : L→ D(i))i∈I to a colimit of X(D(−), X̃ ) : Iop → Set.

Theorem
Assume that X is a category of Boolean spaces equipped with finitary
operations or relations (more technical: a model category of a limit
sketch in BooSp).
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Regarding (3)

Theorem
Let D : I → CompHaus be a cofiltered diagram and consider
(pi : X → D(i))i∈I . The following assertions are equivalent.
(i) (pi : X → D(i))i∈I is a limit of D.
(ii) The following two conditions are fulfilled.

1. (pi : X → D(i))i∈I is point separating.
2. For each i ∈ I, im pi =

⋂
j k→i

imD(k).

Nicolas Bourbaki (1942). Éléments de mathématique. 3. Pt. 1: Les
structures fondamentales de l’analyse. Livre 3: Topologie générale. Paris:
Hermann & Cie.

Remark

BooSp is closed in CompHaus under limits, therefore this
characterization holds for cofiltered limits in BooSp as well.
If we have a “nice” | − | : X→ BooSp, then (pi : L→ D(i))i∈I is a
limit in X iff it is a limit in BooSp and initial with respect to | − |.
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Regarding (3) (cont.)

Recall the “Bourbaki conditions”:
1. (pi : X → D(i))i∈I is point separating.
2. For each i ∈ I, im pi =

⋂
j k→i

imD(k).

Proposition

Let X be in InitCog(X̃ ). Put
I = all finite objects of InitCog(X̃ ).
(pi : X → D(i))i∈I = all morphisms into finite objects.

Then (pi : X → D(i))i∈I is
point-separating and initial since it “contains” (X → X̃ ), and
if X has image factorisations, im(pi ) ↪→ D(i) is in I;

hence (pi : X → D(i))i∈I is a limit.
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Putting everything together

Assumption
For our adjunction, we assume that

A is the model category of finitary limit sketch in Set.
X is the model category of finitely generated finitary limit sketch in
BooSp.
X has image factorisations.

Theorem
Then the adjunction

InitCog(X̃ ) ⊥

F
((

G
hh InitCog(Ã)op

is an equivalence provided that its restriction to the finite objects is an
equivalence.
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The “two for the price of one” principle

Recall
Priest ∼ DLop (a Priestley space is a special ordered Boolean space).

Now
We consider X = BooSpDL, X̃ = {0, 1}, A = Pos, Ã = {0, 1}, and

obtain an adjunction X ⊥

F
((

G
hh Aop.

Restriction to finite objects

Xfin = DLfin and Afin = Posfin = Priestfin.
Our adjunction restricts to an equivalence between finite objects.

Back to all objects

Ã is an initial cogenerator in Pos (easy) and X̃ is an initial cogenerator
in BooSpDL (not so easy); hence BooSpDL ∼ Pos.
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obtain an adjunction X ⊥

F
((

G
hh Aop.

Restriction to finite objects
Xfin = DLfin and Afin = Posfin = Priestfin.

Our adjunction restricts to an equivalence between finite objects.

Back to all objects
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Next Goal

We consider now “categories of relations” (instead of functions). This
way we include Heyting algebras and modal algebras.



Motivating Example: CoAlg(V ) ∼ BAOop

References:
Bjarni Jónsson and Alfred Tarski (1951). “Boolean algebras with
operators. I”. In: American Journal of Mathematics 73.(4), pp. 891–939.
Bjarni Jónsson and Alfred Tarski (1952). “Boolean algebras with
operators. II”. In: American Journal of Mathematics 74.(1),
pp. 127–162.
Giovanni Sambin and Virginia Vaccaro (1988). “Topology and duality in
modal logic”. In: Annals of Pure and Applied Logic 37.(3), pp. 249–296.
Clemens Kupke, Alexander Kurz, and Yde Venema (2004). “Stone
coalgebras”. In: Theoretical Computer Science 327.(1-2), pp. 109–134.

Definitions

The Vietoris functor V : BooSp→ BooSp sends X to the space
VX of all closed subsets of X , and Vf : VX → VY , A 7→ f [A].
A coalgebra for V is a Boolean space X with α : X → VX .
A coalgebra homomorphism f : (X , α)→ (Y , β) for V is a
continuous map f : X → Y such that VX Vf // VY

X

α

OO

f
// Y

β

OO commutes.

A Boolean algebra with operator is a Boolean algebra B with an
additionally unary operation h : B → B preserving finite suprema.

Proof of CoAlg(V ) ∼ BAOop.
The functor F : CoAlg(V )→ BAO sends (X , α) to BooSp(X , 2) . . .



Motivating Example: CoAlg(V ) ∼ BAOop

Definitions
The Vietoris functora V : BooSp→ BooSp sends X to the space
VX of all closed subsets of X , and Vf : VX → VY , A 7→ f [A].

A coalgebra for V is a Boolean space X with α : X → VX .
A coalgebra homomorphism f : (X , α)→ (Y , β) for V is a
continuous map f : X → Y such that VX Vf // VY

X

α

OO

f
// Y

β

OO commutes.

A Boolean algebra with operator is a Boolean algebra B with an
additionally unary operation h : B → B preserving finite suprema.

aLeopold Vietoris (1922). “Bereiche zweiter Ordnung”. In: Monatshefte für
Mathematik und Physik 32.(1), pp. 258–280.
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A better way . . .

“A posteriori, the first and fundamental result in duality theory is
Jónsson-Tarski representation theorem for modal algebras [19], which
was substantially improved by Halmos [20], who implicitly introduced
categories.” a

aGiovanni Sambin and Virginia Vaccaro (1988). “Topology and duality in
modal logic”. In: Annals of Pure and Applied Logic 37.(3), pp. 249–296.

Theorem (Halmos duality, 1956)
Consider the category BooSpRel of Boolean spaces and continuous
relations and the category BA⊥,∨ of Boolean algebras and
hemimorphisms. Then

BooSpRel ∼ BAop
⊥,∨.

Corollary
BooSp ∼ BAop.

Corollary
CoAlg(V ) ∼ BAOop since

BAO is the category of “endomorphisms in BA⊥,∨”; and

CoAlg(V ) is the category of “endomorphisms in BooSpRel”.
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relationsa and the category BA⊥,∨ of Boolean algebras and
hemimorphismsb. Then

BooSpRel ∼ BAop
⊥,∨.

awill be explained in a minute (or two or three . . . )
bmaps preserving finite suprema

Paul R. Halmos (1956). “Algebraic logic I. Monadic Boolean algebras”.
In: Compositio Mathematica 12, pp. 217–249.
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A short trip to algebra

Universal algebras

Fix a collection of operation symbols

and equations.

Algebra: (X , α : TX → X ) such that X

1X !!

eX // TX
α
��

TTXTαoo

mX
��

X TXα
oo

TX = { terms on X }/ ∼
eX : X → TX , x 7→ [x ], mX : TTX → TX (remove inner brackets)
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The Kleisli construction

Adjunctions induce monads
Every adjunction

F : X→ A, G : A→ X, ηX : X → GFX , εA : FGA→ A

induces a monad (T , e,m) on X with T = GF , e = η and m = GεF .

Monads come from adjunctions: the Kleisli construction
For a monad T = (T ,m, e) on X, we have the Kleisli category XT:

objects of XT = objects of X;
arrow r : X −→7 Y in XT means s : X → TY in X;
composition s ◦ r = mZ · Ts · r with identity eX : X −→7 X .

We get an adjunction XT >

G
((

F
hh X which induces T = (T ,m, e).
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Heinrich Kleisli (1965). “Every standard construction is induced by a pair of
adjoint functors”. In: Proceedings of the American Mathematical Society
16.(3), pp. 544–546.
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Adjunctions vs. monads

Examples
SetP ∼ Rel and BooSpV ∼ BooSpRel

(and hence a coalgebra α : X → VX is an endomorphism in BooSpRel).

An adjunction from adjunctions

(Adjunctions over X) >

induced monad
((

Kleisli
hh (Monads on X)

Here a left morphism of adjunctions over X is a functor J : A→ A′ with
F ′ = JF .

This adjunction restricts to an “equivalence” between monads and Kleisli
adjunctions (i.e. where F is surjective on objects).
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Halmos revisited

Using Kleisli adjunctions

BooSpV
C=hom(−,1) //

��

BAop
⊥,∨

��
BooSp

ZZ

C=hom(−,2)

EE

induces a monad morphism with components

VX −→ hom(CX , 2), A 7−→ {B ∈ CX | B ∩ A 6= ∅};

which is indeed an isomorphism. Hence

BooSpRel ∼ BAop
⊥,∨.

Similarly:
PriestV ∼ DL⊥,∨, TopV ∼ Frm∨, . . .
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Duality for (co)Heyting algebras

Theorem
A distributive lattice L is a co-Heyting algebra iff L is a split subobject of
a Boolean algebra in DL⊥,∨.a

Hence, the category coHeyt⊥,∨ is the
idempotent split completion of BA⊥,∨.

aJ. C. C. McKinsey and Alfred Tarski (1946). “On closed elements in
closure algebras”. In: Annals of Mathematics. Second Series 47.(1),
pp. 122–162.

Definition
A Priestley X is called an Esakia space whenever, for every open subset
A of X , its down-closure ↓A is open in X .

Theorem
A Priestley space X is an Esakia space iff X is a split subobject of a
Boolean space Y in PriestV.

Hence, EsaRel is the idempotent split
completion of BooSpV.

Theorem
From BooSpV ∼ BAop

⊥,∨ we get EsaRel ∼ coHeyt⊥,∨op (∼ Heyt>,∧op).
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Nauk SSSR 214, pp. 298–301.
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Next Goal

Start with X ⊥

F
((

G
hh Aop (with units embeddings).

If (for instance) F is not an equivalence, then A has to many
morphisms. . .
. . . or X too few!!
Find a “nice” monad T on X and
hope for the best.
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Liftings to Kleisli categories

Theorem
Let be T = (T ,m, e) a monad on X and F a G an adjunction

X ⊥

F
((

G
hh Aop induced by (X̃ , Ã). The following data are in bijection.

(i) Functors F : XT → Aop so that XT F // Aop

X

FT

OO

F

<< commutes.

(ii) Monad morphisms j : T→ D (the later induced by F a G).
(iii) T-algebra structures σ : TX̃ → X̃ such that the map

hom(X , X̃ ) −→ hom(TX , X̃ ), ψ 7−→ σ · Tψ

is an A-morphism κX : FX → FTX, for every object X in X.
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Duality for PosCompop

We consider the Vietoris monad V on X = PosComp, with X̃ = [0, 1]op
and V-algebra structure

V ([0, 1]op) −→ [0, 1]op, A 7−→ sup
x∈A

x .

Then, for a category A and an adjunction

PosComp ⊥

C
((

G
hh Aop

induced by ([0, 1]op, [0, 1]) and compatible with the V-algebra structure
on [0, 1]op, the corresponding monad morphism j has as components the
maps

jX : VX −→ G(CX ), A 7−→ (ΦA : CX → [0, 1], ψ 7→ sup
x∈A

ψ(x)).

We wish to find an appropriate category A so that j is an isomorphism.



Duality for PosCompop

Our approach
First recall: Compare metrics a : X × X → [0,∞] with order relations
X × X → 2:

0 > a(x , x) and a(x , y) + a(y , z) > a(x , z).
> =⇒ (x ≤ x) and (x ≤ y) & (y ≤ z) =⇒ (x ≤ z).

F. William Lawvere (1973). “Metric spaces, generalized logic, and closed
categories”. In: Rendiconti del Seminario Matemàtico e Fisico di Milano
43.(1), pp. 135–166. Republished in: Reprints in Theory and
Applications of Categories, No. 1 (2002), 1–37.

Felix Hausdorff (1914). Grundzüge der Mengenlehre. Leipzig: Veit &
Comp. viii + 476.
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with monoid structure ⊗ and neutral element 1, laxly preserved.
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Thinking of an order relation on a set M as a function

f : M ×M −→ {<,>,=},

Hausdorff observes that

“Nun steht einer Verallgemeinerung dieser Vorstellung nichts im
Wege, und wir können uns denken, daß eine beliebige Funktion
der Paare einer Menge definiert, d.h. jedem Paar (a, b) von El-
ementen einer Menge M ein bestimmtes Element n = f (a, b)
einer zweiten Menge N zugeordnet sei. In noch weiterer Ver-
allgemeinerung können wir eine Funktion der Elementtripel, El-
ementfolgen, Elementkomplexe, Teilmengen u. dgl. von M in
Betracht ziehen.”



Hausdorff (1914), Grundzüge der Mengenlehre

Thinking of an order relation on a set M as a function

f : M ×M −→ {<,>,=},

Hausdorff observes that

Now there stands nothing in the way of a generalisation of this
idea, and we can think of an arbitrary function of pairs of points
which associates to each pair (a, b) of elements of a set M a
specific element n = f (a, b) of a second set N. Generalising fur-
ther, we can consider a function of triples, sequences, complexes,
subsets, etc.



Categories are everywhere . . .

The kinds of structures which actually arise in the practice of geometry
and analysis are far from being ‘arbitrary’ . . . , as concentrated in the
thesis that fundamental structures are themselves categories.

F. William Lawvere (1973). “Metric spaces, generalized logic, and closed
categories”. In: Rendiconti del Seminario Matemàtico e Fisico di Milano
43.(1), pp. 135–166. Republished in: Reprints in Theory and
Applications of Categories, No. 1 (2002), 1–37.



Quantales and enriched categories

Definition
A quantale V = (V,⊗, k) is a (commutative) monoid in Sup.

A V-category (X , a) is given by a : X × X → V with
k ≤ a(x , x) and a(x , y)⊗ a(y , z) ≤ a(x , z).

A V-functor f : (X , a)→ (Y , b) satisfies a(x , y) ≤ b(f (x), f (y)).

Examples
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Enriched categories as actions

Some facts about V-categories
“x ≤ y whenever k ≤ a(x , y)” defines a functor V-Cat→ Ord.

X is called copowered whenever the V-functor a(x ,−) : X → V has
a left adjoint x ⊗− : V → X in V-Cat, for every x ∈ X .

V-categories via actions

For X copowered and separated, we have ⊗ : X × V → X with

x ⊗ k = x , (x ⊗ u)⊗ v = x ⊗ (u ⊗ v), x ⊗
∨
i∈I

ui =
∨
i∈I

(x ⊗ ui ).

Given a partially ordered set X with such an action ⊗ : X × V → X ,
one defines a map a : X × X → V by x ⊗− a a(x ,−), for all x ∈ X .

The bottom line
copowered V-categories = ordered sets with an action of V.
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Duality for PosCompop (part II)

PosCompV
C // LaxMon([0, 1]-FinSup)op,

PosComp

hh

C=hom(−,[0,1]op)

44

The induced monad morphism j is precisely given by the family of maps
jX : VX −→ [CX , [0, 1]], A 7−→ ΦA, ΦA(ψ) = sup

x∈A
ψ(x).

Dirk Hofmann and Pedro Nora (2016). Enriched Stone-type dualities.
Tech. rep. arXiv: 1605.00081 [math.CT].

Theorem
For ⊗ = ∗ or ⊗ = �, the monad morphism j is an isomorphism.

Corollary (For ⊗ = ∗ and ⊗ = �)

C : PosCompV −→ LaxMon([0, 1]-FinSup)op is fully faithful.
C : PosComp −→ Mon([0, 1]-FinSup)op is fully faithful.

Remark
Does not work for ⊗ = ∧ (but can be fixed by adding unary operations).

http://arxiv.org/abs/1605.00081
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A Stone–Weierstraß theorem for [0, 1]�-categories

Let A be the category with objects all [0, 1]�-powered objects in
Mon([0, 1]�-FinSup)

and morphisms all those arrows which preserve powers.

Theorem (Stone–Weierstraß type)
Let m : A→ CX be a mono in A so that the cone
(m(a) : X → [0, 1]op)a∈A is point-separating and initial w.r.t.
PosComp→ Set. Then m is an isomorphism in A if and only if A is
Cauchy-complete (as [0, 1]�-category).

Definition
We say that an object A of A has enough characters whenever the cone
(ϕ : A→ [0, 1])ϕ of all morphisms into [0, 1] separates the points of A.

Theorem
For ⊗ = �, PosCompop

V
' LaxA[0,1],cc and PosCompop ' A[0,1],cc.
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Definition
We say that an object A of A has enough characters whenever the cone
(ϕ : A→ [0, 1])ϕ of all morphisms into [0, 1] separates the points of A.

Theorem
For ⊗ = �, PosCompop

V
' LaxA[0,1],cc and PosCompop ' A[0,1],cc.
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Where to go from here?

Recall
We went from

Priestop hom(−,2)−−−−−−−−−→ DL ↪→ Mon(2-FinSup)

to
PosCompop hom(−,[0,1])−−−−−−−−−−−→ Mon([0, 1]-FinSup)

where we substituted finitely cocomplete ordered sets
(a.k.a. 2-categories) by finitely cocomplete metric spaces
(a.k.a. [0, 1]-categories) on the right hand side.

That is, all of 2 is occupied by the [0, 1]. All? Not quite!

We still have work to do on the left hand side:

ordered space  [0, 1]-category + topology.
Vietoris space “2X”  Vietoris space “[0, 1]X”.
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Duality for metric compact Hausdorff spaces (main idea)

A brief description of the setting

U-Rep

��
([0, 1]-Cat)U //

'
44

U-Cat

“metric compact Hausdorff space” “metric topological space”
with convergence UX × X → [0, 1]a

aRobert Lowen (1997). Approach Spaces: The Missing Link in the
Topology-Uniformity-Metric Triad. Oxford Mathematical Monographs. Oxford:
Oxford University Press. x + 253.

Theorem (for ⊗ = � the Łukasiewicz tensor)

The functor C :
(
U-Rep[0,1]op

)
V
−→ [0, 1]-FinSupop is fully faithful.

A morphism ϕ : X −→◦ Y in U-RepV between partially ordered
compact spaces is in PosCompV iff Cϕ preserves laxly the tensor.
ϕ : X −→◦ Y in U-RepV is a map iff Cϕ preserves finite weighted
limits.
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