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Lúıs Antunes (Universidade do Porto, Portugal)
A crash course on computational complexity

Mário Edmundo (Universidade Aberta, Portugal)
Model theory (analytic part): from Grothendieck to André-Oort
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Real numbers in type theory

Alex Simpson
Alex.Simpson@ed.ac.uk

University of Edinburgh, U.K.

Abstract. The course will look at two different approaches to implement-
ing real-number computation in type theory. One approach is to encode
real numbers using any one of a range of standard encodings (Cauchy
sequences, signed binary, etc.). An alternative, which will be the main fo-
cus of the course, is to add real numbers as an abstract datatype, thereby
providing an implementation-independent interface for real-number com-
putation. One substantial issue concerning the second approach is how to
realise it at all: what is a suitable interface for real-number computation?
A second concern is to relate the two approaches.

To keep matters simple, much of the course will look at implementing
the closed interval [-1,1] of real numbers in the basic setting of simply-
typed lamda-caclculus with natural numbers (Goedel’s System T). But
the course will end by extending to the full real line, on the one hand,
and dependent type theory, on the other.

Lecture 1: Simply-typed lambda-calculus and System T. Encoding real-
number computation in System T. Adding an abstract datatype for [-1,1].
Programming using the abstract datatype. Equational reasoning with the
abstract datatype.

Lecture 2: Implementing the abstract datatype via compilation back to sys-
tem T. Completeness of the abstract datatype relative to T-computability.
Necessity of the double function.

Lecture 3: Implementing the full real line. Extending the type theory to
dependent type theory. Directions for further research.

The course is based longstanding but still ongoing joint work with Martin
Escardo (University of Birmingham).



A crash course on computational complexity

Lúıs Antunes
lfa@dcc.fc.up.pt

Universidade do Porto, Portugal

Abstract. Computational Complexity had its origin in the mid 60s. It
aims to investigate the intrinsic complexity of computational problems,
and is based on the amount of resources (such as time and/or space and/or
randomness and/or parallelism) necessary to solve a computational task
(or class of tasks). During these three lectures we will briefly describe
the motivation for the study of computational complexity and cover
some historical marks. Then we will survey the major classical results
and open problems. During the last lecture we will present the notion
of Kolmogorov complexity and show that it can be an useful tool in
computational complexity.



Model theory (analytic part): from Grothendieck
to André-Oort

Mário Edmundo
edmundo@cii.fc.ul.pt

Universidade Aberta and CMAF, Universidade de Lisboa, Portugal

Abstract. O-minimality is the analytic part of model theory and deals
with theories of ordered, hence topological, structures satisfying certain
tameness properties. O-minimality was isolated by van den Dries as the
requisite condition to prove the basic structural results of semialgebraic
geometry and then by Steinhorn and Pillay in its logical form. The
definition of o-minimality is rather simple and innocent looking, surpris-
ingly however this notion turned out to be very deep with somewhat
unexpected applications: it generalizes semi-algebraic geometry and glob-
ally sub-analytic geometry and it is claimed to be the formalization of
Grothendieck’s notion of tame topology (topologie modérée). In this short
course we will: (i) introduce the audience to the subject; (ii) mention the
recent development of the formalism of the Grothendieck six operations
on o-minimal sheaves (a generalization and a new approach to similar
formalisms for semi-algebraic sheaves (Delfs) and sub-analytic sheaves
(Kashiwara-Schapira)); (iii) mention the application of o-minimality to
a recent unconditional proof of the Andre-Oort conjecture for arbitrary
products of modular curves by J. Pila (previous proofs were known only in
some special cases and some under the Generalized Riemann Hypothesis).



Proof Theory: From arithmetic to set theory

Michael Rathjen
rathjen@maths.leeds.ac.uk

University of Leeds, U.K.

Abstract. Ordinal analysis of theories is a core area of proof theory.
The origins of proof theory can be traced back to the second problem on
Hilbert’s famous list of problems. Proof theory was invented as the main
tool for carrying out Hilbert’s programme. In the main, ordinal-theoretic
proof theory came into existence in 1936, springing forth from Gentzen’s
consistency proof of arithmetic. The intent of the talks is to elucidate
the underlying notions, the ubiquitous tool of cut elimination and the
rationale of ordinal-theoretic proof theory by relating the developments
from Gentzen up to more recent advances in ordinal analysis of set
theories.
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Paraconsistency in hybrid logic

Diana Costa
Department of Mathematics, University of Aveiro

Manuel A. Martins
Center for R&D in Mathematics and Applications, Dep. of Mathematics, University of Aveiro

When collecting information one can come across with inconsistencies in various forms and there
must be a way to deal with them. In fact, databases, knowledgebases and software specifications very
often carry inconsistencies and we should be able to reason about this kind of data having, at the same
time, assertions of the form q and ¬q (local inconsistencies) without producing global inconsistency.
Paraconsistent reasoning is the natural way to deal with inconsistencies. There are several paraconsistent
logics studied in the literature [4]. One of them is the quasi-classical (QC) logic proposed in [1, 3]. This
logic turns out to be powerful since it provides a measure for the inconsistency of data represented as a set
of first-order formulas. Measuring inconsistency is crucial to an effective management of the information.
It is worth to be able to compare different knowledgebases in what concerns to inconsistencies and choose
the one with less conflicts.

In [3], the notion of Tarski’s satisfaction is decoupled by considering two interpretations for the
propositional symbols: one for positive literals and the other for negative literals. As in the standard
case, models (called bistructures) can be represented by a set of ground literals. The definition of minimal
QC models is introduced and it is proved that no useful information is lost when using only these models.
The main result of the paper is the way we can determine the inconsistency measure of a model; it is
given by the quotient between the number of inconsistencies on the bistructure and the total possible
number of inconsistencies on it.

In this talk we present an introduction to the study of paraconsistency in hybrid logic ([2]) following
the work by Grant and Hunter ([3]). One important result that allows this generalization is the existence
of Robinson diagrams in (global) hybrid logical. Moreover, we can represent hybrid models by a set of
hybrid formulas in an extended language with new nominals such that all worlds are named. In order to
avoid double negation, we assume that all formulas are in negation normal form. The generalization is
not straightforward as we will explain, but the analogue of many notions can also be formulated in this
context, for example: bistructure, conflict base, minimal model, etc.

Acknowledgements. This work was supported by the FCT project FCOMP-01-0124-FEDER-
028923 (Nasoni).
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Worms, Ordinal Worms and Ordinal Analysis

Eduardo Hermo Reyes, Joost J. Joosten, Laia Jornet Somoza

Department of Logic, History and Philosophy of Science - Universitat de Barcelona
Barcelona, Spain

ehermo.reyes@gmail.com,jjoosten@ub.edu,laiajornet@gmail.com

Gödel-Löb Polymodal logic GLP is a provability logic that has for each
ordinal α a modality [α], whose intended interpretation is a provability predicate
in a hierarchy of theories of increasing strength. The logic GLPω -that only
has modalities [n] for n < ω- was first introduced by Japaridze, and recently
applied by Beklemishev to give a Π0

1 -ordinal analysis of Peano Arithmetic and
related systems. This ordinal analysis was carried out within the closed fragment
of GLPω. Within this fragment, we find some particular terms; formulas of
the form 〈n0〉 . . . 〈nj〉> -so called worms- that constitute an alternative ordinal
notation system for ordinals below ε0.

Another interesting property of GLPω is that we have arithmetical complete-
ness for a wide range of interpretations of [n]. In particular, GLPω is sound
and complete when reading [n] as “provable in EA together with all true Π0

n

sentences”. This reading is closely related to Turing progressions, that are hi-
erarchies of theories such that given an initial theory T , we can construct a
transfinite sequence of extensions of T by iteratedly adding n-consistency state-
ments. Nevertheless, this link between GLP and Turing progressions is only by
approximating the progression, so that it requires many technical results.

A weaker system, called Reflection Calculus RC, was introduced by Beklem-
ishev and Dashkov. It is much simplier than GLP but yet expressive enough
to maintain its main proof theoretic applications as the ones mentioned above.
From the point of view of modal logic, RC can be seen as the positive frag-
ment of GLP. An advantage of going to a positive language is that we gain a
more general arithmetical interpretation. Since we discard some elements as the
negation, modal formulas can be interpreted as arithmetical theories rather than
arithmetical sentences.

In order to get a logic which can be used to directly denote Turing progres-
sions, positive language together with some special worms, called ordinal worms,
seems to be appropriate. These ordinals worms are built up from a new modality
〈α,A〉, where α is an ordinal and A is a worm. The intended interpretation of
this new modality would be:

〈α,A〉ϕ ≡ 〈α〉o(A)ϕ ≡ 〈α〉〈α〉 . . .︸ ︷︷ ︸
o(A)−times

ϕ.

where o(A) is the ordinal corresponding to A. This way, since worms gives
us a nice ordinal notation system for ordinals below ε0, and positive language
allows us to interpret modal formulas as theories, we can easily use them to
denote transfinite levels in a progression.



New proof-theoretic facts about KPω

Fernando Ferreira
Universidade de Lisboa

Abstract

The Σ1-ordinal of KPω (Kripke-Platek set theory with infinity) is, by definition,

min{α : Lα |= ψ, for all Σ1-sentences ψ such that KPω ` ψ}.

It is well-known that this is the Bachmann-Howard ordinal. We introduce a finite-order
term language TΩ with two ground types: N for the natural numbers and Ω for the
countable construtive tree ordinals.

Let W the smallest set which contains 0 and is such that, whenever f is a function
that maps ω into W , then (1, f) ∈ W . Each element a of W has a (set-theoretical)
ordinal height |a|. Each closed term of TΩ of type Ω denotes an element of W . Each
closed term of type Ω → Ω denotes a function from W to W .

(a) The supremum of the ordinal heights of the (denotations of the) closed terms
of TΩ is the Σ1-ordinal of KPω. This is proved using a (bounded) functional
interpretation.

(b) If KPω ` ∀x∃y φ(x, y), where φ is a bounded formula, then there is a closed term
t of type Ω → Ω such that ∀a ∈W∀x ∈ L|a|∃y ∈ L|t(a)| φ(x, y).

The above two results also hold for a second-order version KPω2 of KPω together
with the schema of ∆1-comprehension and of strict-Π1

1 reflection. Moreover, this
second-order theory is Σ1-conservative over KPω. It is an open question whether this
conservativity result extends to Π2-sentences.
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SMT and Theory Combination Techniques

Filipe Casal

SQIG, Instituto de Telecomunicações, Lisboa

Recently, the Automated Reasoning community has turned its attention to the area of Satisfiabil-
ity Modulo Theories (SMT). Shortly, SMT deals with problems that are a generalization of boolean
SAT problems, in the sense that we are dealing with first-order formulas and not just propositional
formulas. This generalization is natural: SAT solving techniques are extensively studied and mean-
ingful improvements to SAT solvers are extremely hard to develop, and SMT problems arise ever
more frequently in fields such as Automated Theorem Proving and Software Verification.

Concretely, an SMT solver for a generic first-order theory generally consists of a Boolean Reasoner
that breaks down the formula and finds high level inconsistencies (the formula ϕ∧ψ ∧¬ϕ would be
automatically ruled out, independently of whether ϕ or ψ are satisfiable) and a Theory Solver that
verifies whether the formula is in fact satisfiable in the underlying theory. Essentially, the Boolean
Reasoners are formula simplification mechanisms with a SAT solver, and the Theory Solvers are the
decision procedures for decidable theories (usually Presburger arithmetic, arrays or bitvectors).

Suppose now we would like to formally verify an assertion that deals with both bitvectors as
well as with arithmetic. This formula contains symbols from both theories, so the respective Theory
Solvers would not be able to parse this formula. Here, we would like to modularly combine the
decision procedures for these theories into a decision procedure for the union of these theories. This
method of combination, the Nelson-Oppen method, requires the theories to satisfy many properties.

Since Nelson and Oppen introduced this combination procedure in 1979 [3], the study of the
classes of theories which decision procedures can be combined has been actively studied. In 2005, it
was shown that shiny [5] and polite [4] theories could be combined with an arbitrary theory. Later, a
stronger notion of polite theory was proposed, see [2], in order to overcome a subtle issue with a proof
in [4]. In [1], we analyse the relationship between shiny and strongly polite theories in the one-sorted
case. We show that a shiny theory with a decidable quantifier-free satisfiability problem is strongly
polite and provide two different sufficient conditions for a strongly polite theory to be shiny. Based
on these results, we derive a combination method for the union of a polite theory with an arbitrary
theory. Joint work with João Rasga, SQIG, Instituto de Telecomunicações and Departamento de
Matemática, Instituto Superior Técnico, Universidade de Lisboa.
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Completeness of Peano arithmetic
with the ω-rule

Jaime Gaspar∗

12 January 2014

Gödel’s first incompleteness theorem implies that Peano arithmetic
is incomplete (there is a sentence that cannot be proved nor refuted).
We take a fresh look at the following folklore result: if we add to Peano
arithmetic the ω-rule

F (0) F (1) F (2) . . .

∀nF (n)

(allowing to combine infinitely many proofs into a single infinite proof),
then Peano arithmetic becomes complete (every sentence can be proved
or refuted). Wee keep this talk short, simple and sweet.

∗Universitat Rovira i Virgili, Department of Computer Engineering
and Mathematics, Av. Päısos Catalans 26, E-43007 Tarragona, Catalonia,
jaime.gaspar@urv.cat. Centro de Matemática e Aplicações (CMA), FCT,
UNL. Financially supported by the Mart́ı Franquès Research Fellowship Programme
grant number 2013PMF-PIPF-24 of the Universitat Rovira i Virgili.



A new interpretation of ID1 in ID1(W)

João Enes
Universidade de Lisboa

Abstract

We consider the theories of (non-iterated) monotone inductive definitions
ID1 and ID1(W). The first includes inductive definitions for every positive
arithmetical operator, whereas the second is restricted to the inductive defi-
nition of the codes of well-founded recursive trees. We present a novel inter-
pretation of the theory ID1 in ID1(W).

It is known from the work of Kreisel that these theories are proof-theoretic
equivalent. However, unlike the interpretation of Kreisel, which is done via
the intuitionistic conterparts IDi

1 and IDi
1(W), our interpretation is direct from

ID1 to ID1(W).
We would like to thank Fernando Ferreira for suggesting the possibility of

the direct interpretation.
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Hybridize to Specify: institution-independent foundations for
reconfigurable systems specification

Alexandre Madeira
INESC TEC (HASLab), UMinho

Renato Neves
INESC TEC (HASLab), UMinho

Manuel A. Martins
CIDMA, University of Aveiro

Luis S. Barbosa
INESC TEC (HASLab),UMinho

This talks aims to overview our recent works on the study and development of formal logics and
semantics to specify reconfigurable systems, i.e., systems which behave differently in different modes
of operation (often called configurations) and commute between them along their lifetime. In the sug-
gested approach, models for reconfigurable software are structured transition systems described within
appropriate logical systems. Their states corresponds to the individual configurations with whatever
structure they have to bear in concrete applications. Transitions correspond to the admissible recon-
figurations. This constitutes what we called the ‘reconfigurations as transitions, configurations as local
models’ specification paradigm [4, 3]. Once chosen the semantics, the next issue concerns the definition
of a suitable specification logic(s). Modal languages are the natural choice to talk about transition sys-
tems. Modal logic, however, is not expressive enough to deal with properties holding in specific states,
a limitation which is overcome in hybrid logics [1] by considering a special set of symbols for naming
states. Additionally, we need to specify the local configurations, at each state, as a model of a given
(base) logic. The recent method for the hybridisation of institutions [6, 3] offer the source of logics for
this specification. Concretely, it consists in a systematic method to extend arbitrary logics (formalized
as institutions [2]) with hybrid logic features. Concretely, they are extended with Kripke semantics, for
multi-modalities with arbitrary arities, as well as nominals and local satisfaction operators. The rele-
vance of this generalisation step is in line with a basic engineering concern which recommends that the
choice of a specification framework should depend on the nature of the requirements one has to deal
with. For example, it may happen that, in a specific context, one would prefer to equip each local state
with a partial algebra, a hidden algebra, a propositional valuation or even a hybrid logic model (since the
method recurs).

On this talk we make an overview in the method, and we discuss a general construction of first-order
encodings of hybridized institutions [6] as well as a suitable bisimulation notion for hybrid models [5].
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Liquid Types Revisited

Mário Pereira, Sandra Alves, and Mário Florido

University of Porto, Department of Computer Science & LIACC,
R. do Campo Alegre 823, 4150-180, Porto, Portugal

Refinement types [2] state complex program’s invariants, by simplying aug-
menting type systems with logical predicates. A refinement type of the form
{ν : B | φ} stands for the set of values from basic type B restricted to the fil-
tering predicate (refinement) φ. However, the use of arbitrary boolean terms as
refinement expressions leads to undecidable type systems, both for type checking
and inference.

Liquid Types [4] (Logically Qualified Data Types) present a system capable
of automatically infer refinement types, by means of two main restrictions to a
general refinement type system: every refinement predicate is a conjunction of
expressions exclusively taken from a global, user-supplied set of logical qualifiers
(simple predicates over program variables, the value variable ν and the variable
placeholder ?); and a conservative (ence decidable) notion of subtyping.

The Liquid Types system is defined as an extension to the Damas-Milner type
system, with the term language extended with an if-then-else constructor and
constants. A key idea behind this system is that the refinement type of every
term is a refinement of the corresponding ML type.

We propose a refinement type system based on Liquid Types, with the addi-
tion of intersection types [1]. Our intersections are at the refinement expressions
level only, i.e. for the type σ∩ τ both σ and τ are of the same form, solely differ-
ing in the refinement predicates. As an example, the identity function id = λx.x
(considered to act only over integer values) could be typed within our system as
(x : {ν : int | ν ≥ 0} → {ν : int | ν ≥ 0}) ∩ (x : {ν : int | ν ≤ 0} → {ν : int | ν ≤ 0}).
Our use of intersections for refinement types draws some inspiration from [3].

With our type system we are able to derive more precise types than in the
original system, leading to a detailed description of programs’ behaviour.
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Phridoni Alshibaia
Tbilisi State University-Georgia
palshibaia@yahoo.com
On Finitely Valued Bimodal Symmetric Gödel Logics

A ”symmetric” formulation of intuitionistic propositional calculus Int2, sug-
gested by various authors (G. Moisil, A. Kuznetsov, C. Rauszer), presupposes that
each of the connectives &,∨,⇀,>,⊥ has its dual ∨,&,⇁, ⊥,>, and the duality
principle of the classical logic is restored. Gödel logic is the extension of intuition-
istic logic by linearity axiom: (p→ q)∨ (q → p). Denote by Gn the n valued Gödel
logic.

We investigate symmetric Gödel logic G2
n, the language of which is enriched by

two modalities �1,�2. The resulting system is named bimodal symmetric Gödel
logic and is denoted by MG2

n. MG2
n-algebras represent algebraic models of the

logic MG2
n. The variety MG2

n of all MG2
n-algebras is generated by finite linearly

ordered MG2-algebras of finite height m, where 1 ≤ m ≤ n. We focus on MG2
n

algebras, which correspond to n valued MG2
n logic.

A description and characterization of m-generated free and projective MG2-
algebras in the variety MG2

n is given.

1



FINITENESS AND RATIONAL DATATYPES, CONSTRUCTIVELY

TARMO UUSTALU

In constructive logic, finiteness of a set [or of a subset of a given set] can be
defined in several inequivalent ways, and there is no obvious “right” definition. The
situation is especially subtle, if equality on the set [or equality on the encompassing
set] is not decidable [or the predicate defining the subset is not decidable]. Two
of the most fundamental notions of finiteness are listability and Noetherianness,
listability being generally stronger.

For a given a branching type, rational trees are by definition those non-wellfounded
trees that have a finite number of distinct subtrees, extensional equality between
non-wellfounded trees being given by bisimilarity. Since this definition refers to
finiteness, different notions of finiteness could a priori lead to different notions of
rationality.

In this talk, I explain the relationship between different notions of finiteness gener-
ally and in the special case of subsequences of a given sequence. I demonstrate that,
for subsequences of a sequence, listability and Noetherianness are equivalent and
exactly this equivalence leads to useful function definition and reasoning principles
for rational sequences, including an inductive representation. Similar considerations
apply to rational datatypes generally.

We are formalizing this development in the dependently typed programming lan-
guage Agda.

This is ongoing joint work with James Chapman and Niccolò Veltri.
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