Medida e Integração

Mestrado em Matemática 2019/2020

Docente: José Joaquim Oliveira

Departamento de Matemática

Universidade do Minho

Conteúdo

1	Cor	njuntos e Funções	1		
	1.1	Generalidades sobre conjuntos	1		
	1.2	Recta acabada	3		
	1.3	Generalidades sobre funções	5		
	1.4	Sucessões	10		
2	Espaços Topológicos				
	2.1	Espaços topológicos	13		
	2.2	Espaços métricos	15		
3	Espaços Mensuráveis				
	3.1	σ -álgebra e conjuntos mensuráveis	19		
	3.2	Funções mensuráveis	26		
	3.3	Exercícios	36		
4	Espaços de Medida				
	4.1	Medida	41		
	4.2	Conjuntos de medida nula	46		
	4.3	Exercícios	50		
5	Integral de Lebesgue				
	5.1	Integral de Lebesgue	51		
	5.2	Teoremas de Convergência	63		
	\mathbf{Bib}	liography	69		

4 CONTEÚDO

Capítulo 1

Conjuntos e Funções

1.1 Generalidades sobre conjuntos

Entende-se por <u>conjunto</u> como sendo uma lista de objectos de natureza qualquer na qual é irrelevante a ordem e o número de vezes em que cada objecto é listado. Em lugar de *lista*, pode ser colocada a palavra *colecção*, *família*, *aglomerado*, ou mesmo *class*. Neste sentido, as palavras *lista*, *colecção*, *família*, *aglomerado*, *classe* são aqui nesta sebenta entendidas como sinónimos. Os objectos que compoêm os conjuntos designam-se por <u>elementos</u>. Usam-se letras maiúsculas para denotar conjuntos, A, B, \ldots , e os seus elementos são denotados por letras minúsculas, a, b, \ldots A afirmação "o elemento a pertence ao conjunto A" representa-se por $a \in A$; a afirmação "o elemento a não pertence ao conjunto A" representa-se por $a \notin A$.

Os conjuntos podem ser representados por extensão

$$X = \{x_1, x_2 \dots, x_n\},\$$

em que x_1, x_2, \ldots, x_n são os elementos pertencentes ao conjunto X, ou por compreensão

$$B = \{a \in A : P\} \text{ ou } B = \{a : P\},\$$

em que antes de ":" descreve-se a natureza dos elementos do conjunto B e depois de ":" apresenta-se a propriedade \mathcal{P} que identifica os elementos quer pertencem ao conjunto. Por vezes, em lugar de ":" usa-se uma barra vertical, "|".

Assume-se que existe um conjunto que não tem elementos, designado por conjunto <u>vazio</u> e representado por \emptyset , e usa-se a notação usual para representar os vários conjuntos de números:

- 1. $\mathbb{N} = \{1, 2, 3, \ldots\}$ o conjunto dos números naturais;
- 2. $\mathbb{N}_0 = \{0\} \cup \mathbb{N}$ o conjunto dos números inteiros não negativos;
- 3. $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \ldots\}$ o conjunto dos números inteiros;
- 4. $\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \right\}$ o conjunto dos números racionais;
- 5. \mathbb{R} o conjunto dos números reais;
- 6. C o conjunto dos números complexos.

Um conjunto X com um número finito de elementos diz-se <u>finito</u>, representando-se por #X o número de elementos de X. Caso #X = 1, o conjunto X designa-se por conjunto singular. Um conjunto que não seja finito diz-se <u>infinito</u>.

Diz-se que A é um <u>subconjunto</u> de B se todo o elemento de A é também elemento de B, i.e. $x \in A$ implica que $x \in B$, denotando-se por $A \subseteq B$. Caso $A \subseteq B$ e $B \subseteq A$, então os conjuntos A e B são o mesmo, i.e. A = B.

Dado um conjunto X, define-se o conjunto das partes de X como sendo

$$\mathcal{P}(X) = \{Y : Y \subseteq X\}.$$

Dados A e B conjuntos, define-se a <u>união</u>, representa-se por $A \cup B$, como sendo o conjunto constituído pelos elementos que pertencem a pelo menos um dos conjuntos A e B, e a <u>intersecção</u>, representada por $A \cap B$, como sendo o conjunto constituído pelos elementos que pertencem simultaneamente aos dois conjuntos A e B.

Se $\{A_{\alpha}\}_{{\alpha}\in I}$ é uma colecção de conjuntos e I um conjunto de índices, definemse a intersecção e a união respectivamento por

$$\bigcap_{\alpha \in I} A_\alpha = \left\{ x : x \in A_\alpha, \forall \alpha \in I \right\} \quad \text{ e } \quad \bigcup_{\alpha \in I} A_\alpha = \left\{ x : \exists \alpha \in I, x \in A_\alpha \right\}.$$

A união anterior diz-se dijunta caso $A_{\alpha} \cap A_{\beta} = \emptyset$ para todo $\alpha, \beta \in I$ com $\alpha \neq \beta$. Caso $I = \mathbb{N}$, usa-se a notação

$$\bigcap_{n=1}^{\infty} A_n = \bigcap_{n \in \mathbb{N}} A_n \quad \text{e} \quad \bigcup_{n=1}^{\infty} A_n = \bigcup_{n \in \mathbb{N}} A_n.$$

Dada uma colecção de conjuntos, $(A_n)_{n\in\mathbb{N}}$, definem-se:

(a) o <u>limite sup</u> de $(A_n)_{n\in\mathbb{N}}$ por

$$\limsup_{n} A_n = \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} A_k \right), \tag{1.1}$$

1.2 Recta acabada 3

isto é

$$\begin{split} a \in \limsup_n A_n & \Leftrightarrow & a \in \bigcup_{k=n}^\infty A_k, \forall n \in \mathbb{N} \\ & \Leftrightarrow & a \text{ pertence a uma infinidade de conjuntos } A_n; \end{split}$$

(b) o <u>limite inf</u> de $(A_n)_{n\in\mathbb{N}}$ por

$$\liminf_{n} A_n = \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} A_k \right), \tag{1.2}$$

isto é

$$a \in \liminf_{n} A_{n} \iff \exists n_{0} \in \mathbb{N} : a \in \bigcap_{k=n_{0}}^{\infty} A_{k}$$

$$\Leftrightarrow a \text{ pertence a todos os conjuntos } A_{n} \text{ a partir de certa}$$
ordem, n_{0} .

Por último, considerados dois conjuntos A e B, define-se a <u>diferença</u> do conjunto A pelo conjunto B por

$$A \setminus B = \{x \in A : x \notin B\},\$$

a diferença simétrica entre os conjuntos A e B por

$$A \triangle B = (A \setminus B) \cup (B \setminus A),$$

e o produto cartesiano de A por B por

$$A \times B = \{(a, b) : a \in A \in b \in B\}.$$

Esta última noção pode ser generalizada para uma quantidade maior de conjuntos, a saber, para $n \in \mathbb{N}$ e A_1, \ldots, A_n conjuntos, define-se o produto cartesiano dos n conjuntos por

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, \dots, a_n) : a_i \in A_i, \forall i = 1, \dots, n\}$$

e, caso $A_1 = \cdots = A_n = A$, escreve-se apenas $A^n = A \times \cdots \times A$ (n factores).

1.2 Recta acabada

Na teoria da integração é inevitável lidar com o infinito. Consequentemente, é importante juntar ao conjunto $\mathbb R$ os símbolos $-\infty$ e ∞ de uma maneira relativamente óbvia por forma a não "alterar significativamente" a relação de ordem \leq e

as operação soma, +, e produto, \cdot , usualmente definidas no conjunto dos números reais.

Define-se <u>recta acabada</u>, denotando-se por $\overline{\mathbb{R}}$, como sendo o conjunto dos números reais em união com os símbolos $-\infty$ e ∞ , $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$, respeitando a seguinte ordem

$$-\infty \le x \le \infty, \quad \forall x \in \mathbb{R}.$$
 (1.3)

Desta forma o par $(\overline{\mathbb{R}}, \leq)$, com a relação de ordem usual em \mathbb{R} mais (1.3), é um conjunto totalmente ordenado.

Definição 1.1. Sejam $X \subseteq \overline{\mathbb{R}}$ e $a \in \overline{\mathbb{R}}$. Diz-se que:

1. o elemento a é ínfimo de X se

$$\begin{cases} a \le x, \forall x \in X \\ \forall y \in \overline{\mathbb{R}}, ((y \le x, \forall x \in X) \Rightarrow y \le a) \end{cases}$$

denotando-se por inf X;

2. o elemento a é supremo de X se

$$\begin{cases} x \le a, \forall x \in X \\ \forall y \in \overline{\mathbb{R}}, \left((x \le y, \forall x \in X) \Rightarrow a \le y \right) \end{cases},$$

 $denotando-se\ por\ \sup X;$

- 3. o elemento a é <u>mínimo</u> de X se $a = \inf X$ e $a \in X$, denotando-se por $\min X$;
- 4. o elemento a é <u>máximo</u> de X se $a = \sup X$ e $a \in X$, denotando-se por $\max X$.

No conjunto totalmente ordenado $(\overline{\mathbb{R}}, \leq)$, todo o conjunto não vazio $X \subseteq \overline{\mathbb{R}}$ possui ínfimo e supremo.

Definição 1.2. Define-se <u>intervalo</u> em $\overline{\mathbb{R}}$ como sendo um subconjunto X de $\overline{\mathbb{R}}$ para o qual existem $a, b \in \overline{\mathbb{R}}$, com $a \leq b$, tais que X assume uma das seguintes formas:

- 1. $X = [a, b] = \{x \in \overline{\mathbb{R}} : a \le x \le b\};$
- 2. $X =]a, b[= \{ x \in \overline{\mathbb{R}} : a < x < b \};$
- 3. $X = [a, b[= \{x \in \overline{\mathbb{R}} : a \le x < b\};$

4.
$$X = |a, b| = \{x \in \overline{\mathbb{R}} : a < x \le b\}.$$

As usuais operações da aritmética, soma e produto, em \mathbb{R} são de seguida extendidas aos elementos de $\overline{\mathbb{R}}$ da seguinte forma:

- 1. Para $a, b \in \mathbb{R}$ a operação soma, a+b, e a operação produto, a.b definem-se da forma usual;
- 2. Para $a \in \mathbb{R}$ define-se

$$\begin{cases} \infty + a = a + \infty = \infty \\ -\infty + a = a - \infty = -\infty \end{cases} \quad e \quad \frac{a}{\infty} = \frac{a}{-\infty} = 0;$$

3. Para a > 0 define-se

$$\begin{cases} \infty.a = a.\infty = \infty \\ (-\infty).a = a.(-\infty) = -\infty \end{cases};$$

4. Para a < 0 define-se

$$\begin{cases} \infty.a = a.\infty = -\infty \\ (-\infty).a = a.(-\infty) = \infty \end{cases};$$

5. Define-se

$$\begin{cases} \infty.0 = 0.\infty = 0\\ (-\infty).0 = 0.(-\infty) = 0 \end{cases};$$

6. Define-se

$$\begin{cases} \infty.\infty = \infty \\ (-\infty).(-\infty) = \infty \end{cases}; \quad \begin{cases} \infty.(-\infty) = -\infty \\ (-\infty).\infty = -\infty \end{cases}.$$

Não estão definidas as operações $\infty-\infty, -\infty+\infty, \frac{\infty}{-\infty}$, nem $\frac{-\infty}{+\infty}$. De referir que as propriedades comutativa e associativa da adição e do produto são válidade em $\overline{\mathbb{R}}$, assim como a propriedade distributiva. Contudo é importante ter em atenção o facto de as leis de cancelamento não serem válidas em $\overline{\mathbb{R}}$.

1.3 Generalidades sobre funções

Nesta sebenta considera-se a usual definição de <u>função</u>, f, de um conjunto X para um conjunto Y, não vazios, em que a cada elemento $x \in X$, designado por <u>objecto</u>, associa um só elemento $f(x) \in Y$, designado por <u>imagem</u> de x. Usa-se a notação

$$\begin{array}{ccc} f: & X & \longrightarrow & Y \\ & x & \mapsto & f(x) \end{array},$$

ou simplesmente $f: X \to Y$ quando não há necessidade de explicitar a regra de correspondência, f(x). Ao conjunto X chama-se domínio de f e ao conjunto Y chama-se conjunto de chegada de f.

Dados $A \subseteq X$ e $B \subseteq Y$, define-se imagem de A por f como sendo o conjunto

$$f(A) = \{ f(x) : x \in A \} \subseteq Y,$$

e imagem recíproco de B por f como sendo o conjunto

$$f^{-1}(B) = \{x \in X : f(x) \in B\} \subseteq X.$$

Ao conjunto f(X) chama-se <u>contradomínio</u> de f.

Para simplificar a notação, caso $\mathcal{F} \subseteq \mathcal{P}(Y)$ escrever-se-á $f^{-1}(\mathcal{F})$ para representar o conjunto

$$f^{-1}(\mathcal{F}) = \left\{ f^{-1}(B) : B \in \mathcal{F} \right\} \subseteq \mathcal{P}(X),$$

e se $\mathcal{T} \subseteq \mathcal{P}(X)$, então escrever-se-á $f(\mathcal{T})$ para representar o conjunto

$$f(\mathcal{T}) = \{ f(A) : A \in \mathcal{T} \} \subseteq \mathcal{P}(Y).$$

Definição 1.3. *Uma função* $f: X \rightarrow Y$ *diz-se:*

1. injectiva se

$$\forall x_1, x_2 \in X : (f(x_1) = f(x_2)) \Rightarrow (x_1 = x_2);$$

2. sobrejectiva se

$$f(X) = Y;$$

3. bijectiva se é injectiva e sobrejectiva.

De uma forma sucinta, descrevem-se de seguida processos para operar funções. Começando com a composição, dadas $f:X\to Y$ e $g:Y\to Z$ funções, define-se a função composta de g após f, como sendo a função

$$\begin{array}{cccc} g\circ f: & X & \longrightarrow & Z \\ & x & \mapsto & g(f(x)) \end{array}.$$

No caso em que uma função $f:X\to Y$ é bijectiva, existe a chamada função inversa definida como a única função $g:Y\to X$ tal que

$$f \circ g = id_Y$$
 e $g \circ f = id_X$

onde $\begin{matrix} id_X: X & \longrightarrow & X \\ x & \mapsto & x \end{matrix}$ e $\begin{matrix} id_Y: Y & \longrightarrow & Y \\ y & \mapsto & y \end{matrix}$ são, respectivamente, a função identidade em X e a função identidade em Y. A notação usual para a função

inversa de $f \in f^{-1}$. De referir que, apesar de idênticas, não existe ambiguidade com a notação adoptada para conjunto imagem recíproca de uma função.

Para funções com imagens em \mathbb{R} , designadas por <u>funções reais</u>, ou com imagens na recta acabada, de uma forma natural define-se a seguinte relação de ordem parcial.

Definição 1.4. Seja X um conjunto não vazio.

Em cada um dos conjunto

$$F(X,\mathbb{R}) = \{ f : X \to \mathbb{R} | f \text{ \'e função } \}$$

e

$$F(X, \overline{\mathbb{R}}) = \{ f : X \to \overline{\mathbb{R}} | f \text{ \'e funç\~ao } \}$$

define-se a relação de ordem parcial "\le "por

$$f \le g \Leftrightarrow (f(x) \le g(x), \forall x \in X).$$

Quer em $F(X,\mathbb{R})$, quer em $F(X,\overline{\mathbb{R}})$, há a possibilidade de se construirem diversas operações de funções. Neste sentido, apresentam-se as seguintes definições.

Definição 1.5. Sejam $X \neq \emptyset$ e $f, g: X \to \mathbb{R}$ (ou $\overline{\mathbb{R}}$) funções e $\alpha \in \mathbb{R}$.

Caso a regra de correspondência esteja bem definida para todo o ponto do domínio, X, define-se:

- 1. função <u>máximo</u> de f e g por $\max\{f,g\}(x) = \max\{f(x),g(x)\}$, para todo $x \in X$;
- 2. função <u>mínimo</u> de f e g por $\min\{f,g\}(x) = \min\{f(x),g(x)\}$, para todo $x \in X$:
- 3. $função \underline{soma} de f com g por (f+g)(x) = f(x) + g(x), para todo x \in X;$
- 4. função produto de f com g por (f.g)(x) = f(x).g(x), para todo $x \in X$;
- 5. função <u>quociente</u> de f por g por $(f/g)(x) = \frac{f(x)}{g(x)}$, para todo $x \in X$;
- 6. função módulo de f por |f|(x) = |f(x)|, para todo $x \in X$;
- 7. função produto escalar de α com f por $(\alpha f)(x) = \alpha f(x)$, para todo $x \in X$;
- 8. função parte positiva de f por $f^+(x) = \max\{f(x), 0\}$, para todo $x \in X$;
- 9. função parte negativa de f por $f^-(x) = -\min\{f(x), 0\}$, para todo $x \in X$.

Seguem-se algumas propriedades da parte positiva e parte negativa de funções que serão utilizadas posteriormente.

Teorema 1.1. Sejam $X \neq \emptyset$ e $f, g: X \to \mathbb{R}$ (ou $\overline{\mathbb{R}}$) funções.

- 1. Se $f \le g$, então $f^+ \le g^+$ e $g^- \le f^-$;
- 2. Tem-se $(-f)^+ = f^- e f^+ = (-f)^-$;
- 3. Tem-se $f = f^+ f^- e |f| = f^+ + f^-$.

Demonstração. Prove-se cada item separadamente.

1. Seja $x \in X$.

Se
$$f(x) \ge 0$$
, então $g(x) \ge f(x) \ge 0$, logo $g^+(x) = g(x) \ge f(x) = f^+(x)$.
Suponha-se que $f(x) < 0$. Se $g(x) \ge 0$, então $g^+(x) = g(x) \ge 0 = f^+(x)$.
Se $g(x) < 0$, então $g^+(x) = 0 = f^+(x)$.

Conclui-se assim que $f^+ \leq g^+$.

De forma análoga se prova que $g^- \leq f^-$.

2. Seja $x \in X$.

Se
$$f(x) \ge 0$$
, então $-f(x) \le 0$, logo $f^-(x) = 0 = (-f)^+(x)$.
Se $f(x) < 0$, então $-f(x) > 0$, logo $f^-(x) = -f(x) = (-f)^+(x)$.

Conclui-se assim que $f^- = (-f)^+$.

De forma análoga se prova que $f^+ = (-f)^-$.

3. Consequência imediata das definições de função parte positiva e de função parte negativa.

Definição 1.6. Sejam $X \neq \emptyset$ e $(f_n)_{n \in \mathbb{N}}$ uma colecção de funções em $F(X, \overline{\mathbb{R}})$. Define-se:

1. a função ínfimo de $(f_n)_n$ por

$$\left(\inf_{n} f_{n}\right)(x) = \inf_{n} \{f_{n}(x)\} = \inf\{f_{n}(x) : n \in \mathbb{N}\}, \quad \forall x \in X;$$

2. a função supremo de $(f_n)_n$ por

$$\left(\sup_{n} f_{n}\right)(x) = \sup_{n} \{f_{n}(x)\} = \sup\{f_{n}(x) : n \in \mathbb{N}\}, \quad \forall x \in X;$$

3. a função limite inferior de $(f_n)_n$ por

$$\left(\liminf_{n} f_{n}\right)(x) = \left(\sup_{n} \left(\inf_{k \ge n} f_{k}\right)\right)(x), \quad \forall x \in X;$$

4. a função limite superior de $(f_n)_n$ por

$$\left(\limsup_{n} f_{n}\right)(x) = \left(\inf_{n} \left(\sup_{k \ge n} f_{k}\right)\right)(x), \quad \forall x \in X.$$

A Definição 1.6 também é aplicável quando $(f_n)_{n\in\mathbb{N}}$ são funções em $F(X,\mathbb{R})$, desde que os ínfimos e/ou supremos existam.

Nota 1.1 É importante notar que as funções $\limsup_{n} f_n$ e $\liminf_{n} f_n$ podem também ser obtidas, respectivamente, por

$$\left(\limsup_{n} f_{n}\right)(x) = \inf \left\{ \sup \{f_{k}(x) : k \geq n\} : n \in \mathbb{N} \right\}, \quad \forall x \in X$$

e por

$$\left(\liminf_{n} f_{n}\right)(x) = \sup \left\{\inf\left\{f_{k}(x) : k \geq n\right\} : n \in \mathbb{N}\right\}, \quad \forall x \in X.$$

Umas funções muito usada na teoria de integração são as funções características e as funções simples.

Definição 1.7. Sejam X um conjunto não vazio e $A \subseteq X$. Define-se <u>função</u> <u>característica</u> de A como sendo a função

$$\begin{array}{cccc} \chi_{\scriptscriptstyle A}: & X & \longrightarrow & \mathbb{R} \\ & & \\ & x & \mapsto & \left\{ \begin{array}{ll} 1, & x \in A \\ 0, & x \not\in A \end{array} \right. . \end{array}$$

Definição 1.8. Seja X um conjunto não vazio.

 $Uma\ função\ s:X\to\mathbb{R}\ diz$ -se $\underline{simples}\ se\ o\ seu\ contradomínio\ for\ um\ conjunto\ finito.$

Sendo $S: X \to \mathbb{R}$ uma função simples, então, por definição, o seu contradomínio, s(X), é um conjunto finito, logo existem $n \in \mathbb{N}$ e $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tais que o

$$s(X) = \{\alpha_1, \dots, \alpha_n\}.$$

Considerando, para cada $i \in \{1, ..., n\}$, a imagem recíproca de $\{\alpha_i\}$, ou seja

$$A_i = s^{-1}(\{\alpha_i\}) = \{x \in X : s(x) = \alpha_i\},\$$

facilmente se obtém $s(x)=\sum_{i=1}^n\alpha_i\chi_{A_i}(x)$, para qualquer $x\in X$, ou seja, qualquer função simples assume a forma

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i}, \tag{1.4}$$

com
$$A_i = s^{-1}(\{\alpha_i\})$$
, para cada $i \in \{1, ..., n\}$.

Com base na forma (1.4), facilmente se conlui que quer a soma, quer o produto de funções simples são também funções simples.

Seguem-se algumas propriedades, facilmente verificáveis, sobre as funções características.

Teorema 1.2. Sejam X um conjunto não vazio e $A, B \subseteq X$.

 $Ent\~ao$

1.
$$A \subseteq B \Leftrightarrow \chi_A \leq \chi_B$$
;

2. Se
$$A \cap B = \emptyset$$
, então $\chi_A + \chi_B = \chi_{A \cup B}$;

3.
$$\chi_A + \chi_B = \chi_{A \cup B} + \chi_{A \cap B}$$
;

4.
$$\chi_A \cdot \chi_B = \chi_{A \cap B}$$
;

5.
$$\chi_{(X \setminus A)} = 1 - \chi_A;$$

6.
$$(\chi_A f)^+ = \chi_A \cdot (f^+) \ e \ (\chi_A f)^- = \chi_A \cdot (f^-);$$

Demonstração. Proposta de exercício.

1.4 Sucessões

Dado um conjunto X, designa-se por <u>sucessão</u> em X uma função cujo domínio é o conjunto \mathbb{N} e o conjunto de chegada é X, isto é

$$\begin{array}{cccc} u: & \mathbb{N} & \longrightarrow & X \\ & n & \mapsto & u(n) \end{array}.$$

Na prática, uma sucessão num conjunto X define uma sequência ordenada de elementos de X,

$$u(1), u(2), \ldots, u(n), \ldots,$$

formada pelas imagens. A terminomogia usual nas sucessões é a seguinte: para cada $n \in \mathbb{N}$ a imagem de n designa-se por <u>termo de ordem</u> n e denota-se por u_n ; a sucessão u denota-se por $(u_n)_{n \in \mathbb{N}}$, ou simplesmente por $(u_n)_n$.

Definição 1.9. Seja $(a_n)_{n\in\mathbb{N}}$ uma sucessão em \mathbb{R} , ou em $\overline{\mathbb{R}}$.

1. Diz-se que $(a_n)_{n\in\mathbb{N}}$ é <u>monótona crescente</u> se

$$a_n \le a_{n+1}, \quad \forall n \in \mathbb{N};$$

1.4 Sucessões 11

2. Diz-se que $(a_n)_{n\in\mathbb{N}}$ é monótona decrescente se

$$a_{n+1} \le a_n, \quad \forall n \in \mathbb{N};$$

3. Diz-se que $(a_n)_{n\in\mathbb{N}}$ é <u>limitada</u> se existe L>0 tal que

$$|a_n| \le L, \quad \forall n \in \mathbb{N}.$$

Relembra-se de seguida a noção de limite de uma sucessão real.

Definição 1.10. Um sucessão $(a_n)_{n\in\mathbb{N}}$ em \mathbb{R} diz-se convergente para $a\in\mathbb{R}$ se

$$\forall \delta > 0, \exists p \in \mathbb{N} : n \ge p \Rightarrow |a_n - a| < \delta.$$

O valor "a" designa-se por <u>limite</u> da sucessão $(a_n)_{n\in\mathbb{N}}$ e representa-se por

$$a = \lim_{n} a_n$$
.

De forma natural, as definições 1.9 e 1.10 são estendidas à recta acabada $\overline{\mathbb{R}}$. Um dos resultado importante sobre sucessões é o seguinte.

Teorema 1.3. Seja $(a_n)_{n\in\mathbb{N}}$ uma sucessão em \mathbb{R} limitada.

1. se $(a_n)_{n\in\mathbb{N}}$ é monótona crescente, então

$$\lim_{n} a_n = \sup\{a_n : n \in \mathbb{N}\};$$

2. se $(a_n)_{n\in\mathbb{N}}$ é monótona decrescente, então

$$\lim_{n} a_n = \inf\{a_n : n \in \mathbb{N}\}.$$

Demonstração. Consultar prova em [6].

Uma vez que qualquer subconjunto de $\overline{\mathbb{R}}$ possui supremo e ínfimo, então imediatamente se observa que qualquer sucessão monótona com valores na recta acabada é convergente.

Não sendo objectivo deste texto fazer um estudo sobre sucessões reais, é importante o leitor estar a par dos resultados relevantes sobre limites de sucessões, destacando as propriedades da aritmética de limites. A referência [6] é certamente uma boa referência para consulta. Uma tarefa importante que deixo aqui ao leitor é de fazer uma análise da aritmética de limites quando as sucessões têm termos na recta acabada.

No que se segue, apresentam-se diversas noções de limite para sucessões de funções, isto é, de sucessões em $F(X,\mathbb{R})$ ou em $F(X,\overline{\mathbb{R}})$.

Definição 1.11. Sejam $X \neq \emptyset$, $(f_n)_{n \in \mathbb{N}}$ uma sucessão em $F(X, \mathbb{R})$ (ou em $F(X, \overline{\mathbb{R}})$) e $f: X \to \mathbb{R}$ uma função (ou $f: X \to \overline{\mathbb{R}}$).

1. A sucessão de funções $(f_n)_{n\in\mathbb{N}}$ diz-se <u>pontualmente convergente</u> para a função f se

$$\forall x_0 \in X, \forall \varepsilon > 0, \exists p \in \mathbb{N}, \forall n \in \mathbb{N} : n \ge p \Rightarrow |f_n(x_0) - f(x_0)| < \varepsilon,$$

ou seja, para qualquer $x_0 \in X$, tem-se

$$\lim_{n} f_n(x_0) = f(x_0).$$

A convergência pontual denota-se por $f_n \xrightarrow{p} f$.

2. A sucessão de funções $(f_n)_{n\in\mathbb{N}}$ diz-se <u>uniformemente convergente</u> para a função f se

$$\forall \varepsilon > 0, \exists p \in \mathbb{N}, \forall x \in X, \forall n \in \mathbb{N} : n \ge p \Rightarrow |f_n(x) - f(x)| < \varepsilon.$$

A convergência uniforme denota-se por $f_n \xrightarrow{u} f$.

Das definições de convergência pontual e uniforme de sucessões de funções, imediatamente se observa que a convergência uniforme implica a convergência pontual. O reverso é falso. Para um estudo sobre sucessões de funções, aponta-se a referência [6].

Teorema 1.4. Sejam $X \neq \emptyset$, $(f_n)_{n \in \mathbb{N}}$ uma sucessão em $F(X, \mathbb{R})$ (ou em $F(X, \overline{\mathbb{R}})$) e $f: X \to \mathbb{R}$ uma função (ou $f: X \to \overline{\mathbb{R}}$) tais que $f_n \xrightarrow{p} f$.

Então

$$\limsup_{n} f_n = \liminf_{n} f_n = f.$$

Demonstração. Proposta de exercício.

Capítulo 2

Espaços Topológicos

Nesta secção apresentam-se noções e resultados sobre espaços topológicos essenciais para se entender os fundamentos básicos dos espaços de medida e a teoria de integração que se pretendem expor nestas notas. Desta forma, estes assuntos são aqui descritos de uma forma muito leve, devendo o leitor colocar-se a par destes assunto em referências complementares. A título exemplificativo são deixadas aqui algumas [?adicionar referências?].

2.1 Espaços topológicos

A apresentação inicia-se com a definição de espaço topológico.

Definição 2.1. Sejam X um conjunto e $\mathcal{T} \subseteq \mathcal{P}(X)$.

Diz-se que $\mathcal T$ é uma topologia em X se:

1.
$$\{\emptyset, X\} \subseteq \mathcal{P}(X)$$
;

2. Se
$$V_1, \ldots, V_n \in \mathcal{T}$$
, então $\left(\bigcap_{i=1}^n V_i\right) \in \mathcal{T}$;

3. Se
$$\{V_{\alpha}\}_{{\alpha}\in I}$$
 é uma colecção de conjuntos em \mathcal{T} , então $\left(\bigcup_{{\alpha}\in I}V_{\alpha}\right)\in\mathcal{T}$.

O par (X, \mathcal{T}) designa-se por espaço topológico.

As noções topológicas presentes nestas notas, são aqui descritas.

Definição 2.2. Considere-se (X, \mathcal{T}) um espaço topológico.

- 1. Um conjunto $A \subseteq X$ diz-se <u>aberto</u> se $A \in \mathcal{T}$;
- 2. Um conjunto $F \subseteq X$ diz-se fechado se $X \setminus F \in \mathcal{T}$;

- 3. Para $Y \subseteq X$, designa-se por <u>aderência</u> de Y, denotada por \overline{Y} , como o menor fechado em X que contém Y, no sentido da inclusão de conjuntos;
- 4. Um conjunto $A \subseteq X$ diz-se denso se $\overline{A} = X$;
- 5. Um conjunto $K \subseteq X$ diz-se <u>compacto</u> se, para qualquer colecção $(V_{\alpha})_{\alpha \in I}$ em \mathcal{T} tal que $K \subseteq \bigcup_{\alpha \in I} V_{\alpha}$, existe $J \subseteq I$ finito tal que $K \subseteq \bigcup_{\alpha \in J} V_{\alpha}$. Dito de uma forma diferente, toda a cobertura aberta de K admite uma subcobertura finita;

Com o objectivo de definir subespaço topológico, apresenta-se em seguida um resultado de fácil verificação.

Teorema 2.1. Seja (X, \mathcal{T}) um espaço topológico.

Se $Y \subseteq X$, então

$$\mathcal{T}_{|_{V}} = \{ Y \cap V : V \in \mathcal{T} \} \tag{2.1}$$

é uma topologia em Y.

Demonstração. Proposta como exercício.

Definição 2.3. Seja (X, \mathcal{T}) um espaço topológico.

Define-se <u>subespaço topológico</u> de (X,\mathcal{T}) como sendo um espaço topológico $(Y,\mathcal{T}_{|_Y})$ em que $Y\subseteq X$ e a topologia $\mathcal{T}_{|_Y}$ está definida por (2.1).

Com a definição seguinte classificam-se alguns espaços topológicos:

Definição 2.4. Considere-se (X, \mathcal{T}) um espaço topológico.

- 1. O espaço diz-se de <u>Hausdorff</u> se possui a seguinte propriedade: Se $x, y \in X$ tais que $x \neq y$, então existem $U, V \in \mathcal{T}$ tais que $U \cap V = \emptyset$, $x \in U$ e $y \in V$;
- 2. O espaço diz-se de <u>localmente compacto</u> se para todo o ponto $x \in X$, existe $V \in \mathcal{T}$ tal que $x \in \overline{V}$ é compacto.

Segue-se a importante noção de continuidade de funções entre espaços topológicos.

Definição 2.5. Sejam (X, \mathcal{T}_X) e (Y, \mathcal{T}_Y) espaços topológicos e $f: X \to Y$ uma função.

A função f diz-se <u>contínua</u> se

$$\forall B \in \mathcal{T}_Y, \quad f^{-1}(B) \in \mathcal{T}_X$$

Dois espaços topológicos são considerados essencialmente idênticos se a sua natureza topológica for a mesma e diferirem apenas na natureza dos seus elementos. Formalmente isto ocorre quando estamos perante dois espaços topológicos homeomorfos.

Definição 2.6. Dois espaços topológicos, (X, \mathcal{T}_X) e (Y, \mathcal{T}_Y) , dizem-se homeomorfos se existe um homeomorfismo entre eles, ou seja, um função $f: X \to \overline{Y}$ contínua, bijectiva cuja função inversa é contínua.

2.2 Espaços métricos

Os espaços topológicos mais conhecidos são os espaços métricos.

Definição 2.7. Chama-se espaço métrico a um par (X,d) em que X é um conjunto não vazio e $d: X \times X \to [0,\infty[$ uma função, designada de <u>métrica</u> ou <u>distância</u>, que verifica as seguinte propriedades: Para quaisquer $x,y,z \in X$,

- 1. d(x,y) = 0 se e só se x = y;
- 2. d(x,y) = d(y,x) (simetria);
- 3. $d(x,y) \le d(x,z) + d(z,y)$ (designal dade triangular).

Para a construção da topologia induzida por uma métrica, são fundamentais as definições que se seguem.

Definição 2.8. Chama-se <u>bola</u> de um espaço métrico (X, \mathcal{T}) a um conjunto da forma

$$B(x_0, r) = \{x \in X : d(x_0, x) < r\},\$$

onde r > 0 é o <u>raio</u> e $x_0 \in X$ é o <u>centro</u>.

Definição 2.9. Sejam (X, d) um espaço métrico e $A \subseteq X$.

Diz-se que A é <u>aberto</u> em (X, d) se

$$\forall a \in A, \exists r > 0 : B(a, r) \subseteq A.$$

O resultado que se segue é de fácil verificação, como tal a sua prova é deixada a cargo do leitor.

Teorema 2.2. Seja(X, d) um espaço métrico.

Então o conjunto

$$\mathcal{T}_d = \left\{ A \subseteq X : A \ \acute{e} \ aberto \ em \ (X, d) \right\} \tag{2.2}$$

 \acute{e} uma topologia em X.

Demonstração. Proposta como exercício.

Dado um espaço métrico (X, d), a topologia definida em (2.2) designa-se por topologia induzida em X pela métrica d, \mathcal{T}_d . Desta forma (X, \mathcal{T}_d) é o espaço topológico induzido pela métrica d.

Definição 2.10. Duas métricas, d_1 e d_2 , definidas em X dizem-se <u>equivalentes</u> se induzem no conjunto X a mesma topologia.

Teorema 2.3. Seja (X, d) um espaço métrico.

Então o espaço topológico induzido por d, (X, \mathcal{T}_d) , é um espaço de Hausdorff.

Demonstração. Proposta como exercício.

Não sendo uma noção topológica, é importante referir que um conjunto $A \subseteq X$ diz-se <u>limitado</u>, num espaço métrico (X,d), se existe uma bola $B(x,\delta)$ tal que $A \subseteq B(x,\delta)$.

A noção de continuidade de uma função entre dois espaços métricos pode ser descrita da forma que se segue.

Teorema 2.4. Sejam (X, d_X) e (Y, d_Y) espaço métricos e $f: X \to Y$ uma função.

A função f é contínua se e só se

$$\forall x_0 \in X, \forall \varepsilon > 0, \exists \delta > 0, \forall x \in X : d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \varepsilon.$$

Demonstração. Proposta como exercício.

No conjunto \mathbb{R}^k , com $k \in \mathbb{N}$, está definida a <u>métrica euclidiana</u> $d_e : \mathbb{R}^k \times \mathbb{R}^k \to [0, \infty[$, definida por

$$d_e((x_1,\ldots,x_k),(y_1,\ldots,y_k)) = \sqrt{\sum_{i=1}^k (x_i-y_i)^2},$$

que induz em \mathbb{R}^k uma topologia, conhecida como a topologia euclidiana, \mathcal{E} .

Daqui em diante, não estando explicita qual a topologia considerada em \mathbb{R}^k , assume-se sempre o espaço topológico euclidiano $(\mathbb{R}^k, \mathcal{E})$.

Descrevem-se em seguida algumas noções e propriedades do espaço euclidiano relevantes para o estudo que se seguirá.

Definição 2.11. Designa-se por <u>rectângulo aberto</u> em \mathbb{R}^k a qualquer conjunto da forma

$$R = I_1 \times \cdots \times I_k$$

em que, para cada $i \in \{1, ..., n\}$, se tem $I_i =]a_i, b_i[$, para certos $a_i, b_i \in \mathbb{R}$ com $a_i < b_i$.

Facilmente se verifica que os rectângulos abertos de \mathbb{R}^k são conjuntos abertos no espaço topológico euclidiano $(\mathbb{R}^k, \mathcal{E})$.

Teorema 2.5. Seja $V \neq \emptyset$ um aberto em \mathbb{R}^k .

Então existe $(R_n)_{n\in\mathbb{N}}$ uma sucessão de rectângulos abertos em \mathbb{R}^k tal que

$$V = \bigcup_{n=1}^{\infty} R_n.$$

Demonstração. Proposta de exercício.

Com o objectivo de introduzir uma métrica no conjunto $\overline{\mathbb{R}}$, considere-se a função bijectiva

$$f: \overline{\mathbb{R}} \longrightarrow [-1,1]$$

$$x \mapsto \begin{cases} 1, & x = \infty \\ -1, & x = -\infty \\ \frac{x}{\sqrt{x^2+1}}, & x \in \mathbb{R} \end{cases}$$

$$(2.3)$$

A função

$$\overline{d}: \overline{\mathbb{R}} \times \overline{\mathbb{R}} \longrightarrow [0, \infty[$$

$$(x, y) \mapsto |f(x) - f(y)|$$

$$(2.4)$$

define em $\overline{\mathbb{R}}$ uma métrica e consequentemente induz uma topologia no conjunto $\overline{\mathbb{R}}$.

Teorema 2.6. São homeomorfos os espaços topológicos $(\overline{\mathbb{R}}, \mathcal{T}_{\overline{d}})$ e $([-1, 1], \mathcal{T}_{d_e})$, em que as topologias $\mathcal{T}_{\overline{d}}$ e \mathcal{T}_{d_e} são, respectivamente, as topologias induzidas pelas métricas \overline{d} e d_e .

Demonstração. Proposta de exercício. Para isso, basta verificar que a função f, definida em (2.3), é um homeomorfismo entre os espaços topológicos $(\overline{\mathbb{R}}, \mathcal{T}_{\overline{d}})$ e $([-1,1], \mathcal{T}_{d_e})$.

Como consequência do resultado anterior, obtém-se que o conjunto das bolas em $(\overline{\mathbb{R}},\overline{d})$ é

$$\mathcal{A} = \{ [a, b[, [-\infty, a[,]a, \infty], \overline{\mathbb{R}} : a, b \in \overline{\mathbb{R}} \text{ com } a < b \}.$$
 (2.5)

Mais, é válido o seguinte resultado.

Teorema 2.7. Seja $V \neq \emptyset$ um aberto em $(\overline{\mathbb{R}}, \overline{d})$.

Então existe $(A_n)_{n\in\mathbb{N}}$ sucessão em \mathcal{A} , definida em (2.5), tal que

$$V = \bigcup_{n=1}^{\infty} A_n.$$

Demonstração. Proposta de exercício. Para isso, usa-se o Teorema 2.5 e o homeomorfismo f, definido em (2.3), entre os espaços topológicos $(\overline{\mathbb{R}}, \mathcal{T}_{\overline{d}})$ e $([-1, 1], \mathcal{T}_{d_e})$.

Capítulo 3

Espaços Mensuráveis

Neste capítulo introduzem-se os espaços mensuráveis, espaços estes que estão preparados para receberem uma medida. Na prática, ao estabelecer-se um espaço mensurável, está-se a considerar um conjunto X e a identificar quais os seus subconjuntos que serão medidos através de uma qualquer medida que o espaço venha a receber.

3.1 σ -álgebra e conjuntos mensuráveis

Definição 3.1. Seja X um conjunto $e \mathcal{M} \subseteq \mathcal{P}(X)$. Diz-se que \mathcal{M} é uma σ -álgebra em X se

- (i) $X \in \mathcal{M}$;
- (ii) Se $A \in \mathcal{M}$, então $(X \setminus A) \in \mathcal{M}$;

(iii) Se
$$A = \bigcup_{n=1}^{\infty} A_n$$
, com $A_n \in \mathcal{M}$ para cada $n \in \mathbb{N}$, então $A \in \mathcal{M}$.

Definição 3.2. Seja X um conjunto $e \mathcal{M}$ um σ -álgebra em X.

O par (X, \mathcal{M}) diz-se <u>espaço mensurável</u> e os elementos de \mathcal{M} chamam-se conjuntos mensuráveis.

Dado um qualquer conjunto X, é imediato verificar que são σ -álgrbras em X, a σ -álgebra trivial, $\{\emptyset, X\}$, e a σ -álgebra grosseira, $\mathcal{P}(X)$.

Teorema 3.1. Seja (X, \mathcal{M}) um espaço mensurável. Tem-se:

- 1. $\emptyset \in \mathcal{M}$;
- 2. Se $(A_n)_{n\in\mathbb{N}}$ é uma sucessão em \mathcal{M} , então $\left(\bigcap_{n=1}^{\infty}A_n\right)\in\mathcal{M}$;

- 3. Se $A, B \in \mathcal{M}$, então $(A \setminus B) \in \mathcal{M}$;
- 4. Se $A, B \in \mathcal{M}$, então $(A \triangle B) \in \mathcal{M}$.

Demonstração. Seja (X, \mathcal{M}) um espaço mensurável.

- 1. Pelo ponto (i) da definição de σ -álgebra, Definição 3.1, $X \in \mathcal{M}$ e, pelo ponto (ii) da definição de σ -álgebra, conclui-se que $\emptyset = (X \setminus X) \in \mathcal{M}$;
- 2. Seja $(A_n)_{n\in\mathbb{N}}$ uma sucessão em \mathcal{M} . Pelo ponto (iii) da definição de σ -álgebra tem-se $\left(\bigcup_{n=1}^{\infty}A_n\right)\in\mathcal{M}$.

Pelas propriedades da teoria de conjuntos e pelo ponto (ii) da definição de σ -álgebra obtém-se

$$\left(\bigcap_{n=1}^{\infty} A_n\right) = \left[X \setminus \left(\bigcup_{n=1}^{\infty} A_n\right)\right] \in \mathcal{M}.$$

- 3. Sejam $A, B \in \mathcal{M}$. Pelo ponto (ii) da definição de σ -álgebra, $X \setminus B \in \mathcal{M}$ e, pelo ponto demonstrado anteriormente, $(X \setminus B) \cap A \in \mathcal{M}$ (basta considerar $A_1 = A; A_2 = B; A_n = X$, para n > 2). Das propriedades da teoria de conjuntos sabe-se que $A \setminus B = (X \setminus B) \cap A$, donde $A \setminus B \in \mathcal{M}$;
- 4. Por definição tem-se que $(A \triangle B) = (A \setminus B) \cup (B \setminus A)$. Pelo ponto anterior tem-se $(A \setminus B), (B \setminus A) \in \mathcal{M}$, donde, considerando $A_1 = (A \setminus B); A_2 = (B \setminus A); A_n = \emptyset$, para n > 2, conclui-se que $(A \triangle B) \in \mathcal{M}$ pelo ponto (iii) da definição de σ -álgebra.

Teorema 3.2. Seja (X, \mathcal{M}) um espaço mensurável.

 $Se(A_n)_{n\in\mathbb{N}}$ é um sucessão em \mathcal{M} , então $\limsup_n A_n$ e $\liminf_n A_n$ são conjuntos mensuráveis.

Demonstração. Seja $(A_n)_{n\in\mathbb{N}}$ uma sucessão em \mathcal{M} . Pelo ponto (iii) da definição de σ -álgebra, para cada $n\in\mathbb{N}$, tem-se que $\left(\bigcup_{k=n}^{\infty}A_k\right)\in\mathcal{M}$. Pelo ponto 2. do Teorema 3.1, conclui-se que

$$\left[\bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} A_k\right)\right] \in \mathcal{M},$$

ou seja $\left(\limsup_{n} A_{n}\right) \in \mathcal{M}$, ver definição (1.1).

De forma análoga se mostra que $\left(\liminf_{n} A_{n}\right) \in \mathcal{M}$.

Com o objectivo de definir subespaço mensurável, apresenta-se o resultado seguinte, cuja prova é deixada como exercício.

Teorema 3.3. Sejam (X, \mathcal{M}) um espaço mensurável e $Y \subseteq X$. Então

$$\mathcal{M}_Y = \{ Y \cap M : M \in \mathcal{M} \} \tag{3.1}$$

 \acute{e} uma σ -álgebra em Y.

Demonstração. Proposta de exercício.

Definição 3.3. Seja (X, \mathcal{M}) um espaço mensurável.

Chama-se <u>subespaço</u> <u>mensurável</u> de (X, \mathcal{M}) a um espaço (Y, \mathcal{M}_Y) em que $Y \in \mathcal{M}$ e \mathcal{M}_Y é a σ -álgebra em Y definida em (3.1).

O lema que se segue permite construir uma σ -álgebra a partir de qualquer subconjunto do conjunto das partes de um dado conjunto.

Lema 3.4. Sejam X um conjunto e $(\mathcal{M}_{\alpha})_{\alpha \in I}$ uma colecção de σ -álgebras em X. Então

$$\bigcap_{\alpha\in I}\mathcal{M}_{\alpha}$$

 \acute{e} uma σ-álgebra em X.

Demonstração. Considere-se $(\mathcal{M}_{\alpha})_{\alpha\in I}$ uma colecção de σ -álgebras num dado conjunto X e defina-se

$$\mathcal{M} = \left(\bigcap_{\alpha \in I} \mathcal{M}_{\alpha}\right).$$

- 1. Para cada $\alpha \in I$, \mathcal{M}_{α} é uma σ -álgebra em X donde $\mathcal{M}_{\alpha} \subseteq \mathcal{P}(X)$. Consequentemente $\mathcal{M} \subseteq \mathcal{P}(X)$.
- 2. Para todo $\alpha \in I$, $X \in \mathcal{M}_{\alpha}$ porque cada \mathcal{M}_{α} é uma σ -álgebra em X. Assim, $X \in (\bigcap_{\alpha \in I} \mathcal{M}_{\alpha})$, ou seja $X \in \mathcal{M}$.
- 3. Seja $A \in \mathcal{M}$. Consequentemente, $A \in \mathcal{M}_{\alpha}$ para todo $\alpha \in I$ e, sendo cada \mathcal{M}_{α} uma σ -álgebra em X, tem-se $(X \setminus A) \in \mathcal{M}_{\alpha}$ para todo $\alpha \in I$, logo

$$(X \setminus A) \in \left(\bigcap_{\alpha \in I} \mathcal{M}_{\alpha}\right) = \mathcal{M}.$$

4. Seja $(A_n)_{n\in\mathbb{N}}$ um sucessão em \mathcal{M} . Consequentemente $A_n\in\mathcal{M}_{\alpha}$ para todo $\alpha\in I$ e todo $n\in\mathbb{N}$. Considere-se $\alpha\in I$ fixado arbitrariamente. Desta

forma tem-se $(A_n)_{n\in\mathbb{N}}$ é uma sucessão em \mathcal{M}_{α} e, sendo \mathcal{M}_{α} uma σ -álgebra em X, tem-se

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \in \mathcal{M}_{\alpha}.$$

Como $\alpha \in I$ foi fixado arbitrariamente, conclui-se que

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \in \left(\bigcap_{\alpha \in I} \mathcal{M}_{\alpha}\right) = \mathcal{M}.$$

Dos pontos anteriores conclui-se que \mathcal{M} é uma σ -álgebra em X.

O Lema 3.4 dá consistência à definição que se segue.

Definição 3.4. Sejam X um conjunto $e \mathcal{F} \subseteq \mathcal{P}(X)$.

Define-se σ -álgebra gerada por \mathcal{F} como sendo a σ -álgebra em X,

$$\mathcal{M}^*(\mathcal{F}) = \bigcap_{\mathcal{M} \in \mathcal{X}} \mathcal{M},$$

onde $\mathcal{X} = \{ \mathcal{M} \ \text{\'e} \ \sigma\text{-\'algebra} \ \text{em} \ X : \mathcal{F} \subseteq \mathcal{M} \}$

Concretizando, dado um conjunto X, a σ -álgebra gerada por um subconjunto das partes de X, $\mathcal{F} \subseteq \mathcal{P}(X)$, é a menor σ -álgebra em X, no sentido da inclusão de conjuntos, que contém \mathcal{F} . A sua existência está garantida pelo Lema 3.4 caso o conjunto \mathcal{X} presente na Definição 3.4 seja não vazio. Claramente \mathcal{X} é não vazio porque a σ -álgebra grosseira em X é um seu elemento independentemente de qual seja o conjunto \mathcal{F} .

Da Definição 3.4, imediatamente se obtêm as seguintes propriedades.

Teorema 3.5. Seja X um conjunto.

- 1. Se $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{P}(X)$, então $\mathcal{M}^*(\mathcal{F}_1) \subset \mathcal{M}^*(\mathcal{F}_2)$;
- 2. Se \mathcal{M} é um σ -álgebra em X, então $\mathcal{M}^*(\mathcal{M}) = \mathcal{M}$:
- 3. Se \mathcal{M} é um σ -álgebra em X e $\mathcal{F} \subseteq \mathcal{M}$, então $\mathcal{M}^*(\mathcal{F}) \subseteq \mathcal{M}$.

Demonstração. Consequência imediata da Definição 3.4.

Um exemplo de uma σ -álgebra gerada importante na teoria de integração é a σ -álgebra de Borel cuja definição se apresenta de seguida.

Definição 3.5. Seja (X, \mathcal{T}) um espaço topológico.

Chama-se σ -álgebra de <u>Borel</u> à σ -álgebra gerada pela topologia \mathcal{T} , ou seja, $\mathcal{M}^*(\mathcal{T})$, denotando-se por

$$\mathcal{B}(\mathcal{T})=\mathcal{M}^*(\mathcal{T}).$$

Os elementos de $\mathcal{B}(\mathcal{T})$ designam-se de <u>conjuntos de Borel</u> e o espaço mensurável $(X, \mathcal{B}(\mathcal{T}))$ diz-se espaço de Borel.

Nota 3.1 Sempre que se considerar \mathbb{R}^k (ou um seu subconjunto X) como um espaço mensurável e nada for dito relativamente à σ -álgebra considerada, assumese que se está a considerar a σ -álgebra de Borel, $\mathcal{B}(\mathcal{E})$, do espaço topológico euclidiano (respectivamente $\mathcal{B}(\{A \cap X : A \in \mathcal{E}\})$).

De igual forma, sempre que se considerar $\overline{\mathbb{R}}$ (ou um seu subconjunto X) como um espaço mensurável e nada for dito relativamente à σ -álgebra considerada, assume-se que se está a considerar a σ -álgebra de Borel, $\mathcal{B}(\mathcal{T}_{\overline{d}})$, do espaço topológico $(\overline{\mathbb{R}}, \mathcal{T}_{\overline{d}})$, onde $\mathcal{T}_{\overline{d}}$ é a topologia induzida pela métrica $d_{\overline{d}}$ definida em (2.4) (respectivamente $\mathcal{B}(\{A \cap X : A \in \mathcal{T}_{\overline{d}}\})$).

Uma observação importante sobre as σ -álgebras de Borel é que estas também contêm todos os conjuntos fechados como seus elementos. De facto, tem-se o seguinte resultado.

Teorema 3.6. Sejam (X, \mathcal{T}) um espaço topológico e $\mathcal{F} = \{F \subseteq X : F \text{ \'e fechado }\}$. $Ent\tilde{ao} \ \mathcal{B}(\mathcal{T}) = \mathcal{M}^*(\mathcal{F})$.

Demonstração. Por definição, tem-se que $\mathcal{B}(\mathcal{T}) = \mathcal{M}^*(\mathcal{T})$.

Se A é um aberto, isto é $A \in \mathcal{T}$, então, por definição, $X \setminus A$ é um conjunto fechado. Logo $(X \setminus A) \in \mathcal{F}$ e, por definição de σ -álgebra gerada, tem-se $(X \setminus A) \in \mathcal{M}^*(\mathcal{F})$ e, sendo uma σ -álgebra, obtém-se que $A = (X \setminus (X \setminus A)) \in \mathcal{M}^*(\mathcal{F})$. Consequentemente $\mathcal{T} \subseteq \mathcal{M}^*(\mathcal{F})$ e pela definição de σ -álgebra gerada conclui-se que $\mathcal{B}(\mathcal{T}) = \mathcal{M}^*(\mathcal{T}) \subseteq \mathcal{M}^*(\mathcal{F})$.

Pelo ponto (ii) da definição de σ -álgebra obtém-se que $\mathcal{F} \subseteq \mathcal{B}(\mathcal{T})$ donde, novamente pela definição de σ -álgebra gerada, se conclui que $\mathcal{M}^*(\mathcal{F}) \subseteq \mathcal{B}(\mathcal{T})$. \square

Considerem-se agora dois conjuntos não vazios, X e Y, e uma função $f: X \to Y$. Se em Y estiver definido um espaço mensurável, (Y, \mathcal{M}_Y) , então é possível "transferir" para X o espaço mensurável presente em Y da seguinte forma.

Teorema 3.7. Sejam X, Y dois conjuntos não vazios, $f: X \to Y$ uma função e (Y, \mathcal{M}_Y) um espaço mensurável. Então

$$\mathcal{M}_X = \{ f^{-1}(B) : B \in \mathcal{M}_Y \} = f^{-1}(\mathcal{M}_Y)$$
 (3.2)

é uma σ -álgebra em X.

Demonstração. A prova faz-se verificando todos os itens da definição de σ -álgebra, Definição 3.1.

Pela definição de imagem recípra de um subconjunto de Y por f, conclui-se que $\mathcal{M}_X \subseteq \mathcal{P}(X)$.

- 1. Tem-se $f^{-1}(Y) = X$, logo $X \in \mathcal{M}_X$;
- 2. Seja $A \in \mathcal{M}_X$. Por definição, existe $B \in \mathcal{M}_Y$ tal que $A = f^{-1}(B)$. Assim,

$$X \setminus A = X \setminus f^{-1}(B) = \{x \in X : x \notin f^{-1}(B)\}$$

$$= \{x \in X : f(x) \notin B\} = \{x \in X : f(x) \in (Y \setminus B)\}$$

$$= f^{-1}(Y \setminus B).$$

Sendo \mathcal{M}_Y uma σ -álgebra em Y, então $(Y \setminus B) \in \mathcal{M}_Y$, logo $f^{-1}(Y \setminus B) \in \mathcal{M}_X$, ou seja $X \setminus A \in \mathcal{M}_X$.

3. Seja $(A_n)_{n\in\mathbb{N}}$ uma sucessão em \mathcal{M}_X . Por definição, existe uma sucessão $(B_n)_{n\in\mathbb{N}}$ em \mathcal{M}_Y tal que

$$A_n = f^{-1}(B_n), \quad \forall n \in \mathbb{N}.$$

Assim,

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} f^{-1}(B_n) = \bigcup_{n=1}^{\infty} \{x \in X : f(x) \in B_n\}$$
$$= \left\{ x \in X : f(x) \in \left(\bigcup_{n=1}^{\infty} B_n\right) \right\}.$$

Sendo \mathcal{M}_Y uma σ -álgebra em Y e $(B_n)_{n\in\mathbb{N}}$ uma sucessão em \mathcal{M}_Y , então $\left(\bigcup_{n=1}^{\infty}B_n\right)\in\mathcal{M}_Y$, donde $\left(\bigcup_{n=1}^{\infty}A_n\right)\in\mathcal{M}_X$.

Pelos pontos 1.,2. e 3. anteriores conclui-se que \mathcal{M}_X é uma σ -álgebra em X. \square

Definição 3.6. Sejam X, Y dois conjuntos não vazios, $f: X \to Y$ uma função $e(Y, \mathcal{M}_Y)$ um espaço mensurável.

Chama-se σ -álgebra imagem recíproca à σ -álgebra em X definida por (3.2) no Teorema 3.7.

Considerem-se novamente dois conjuntos não vazios, X e Y, e uma função $f: X \to Y$, mas agora assumindo que é em X que está definido um espaço mensurável, (X, \mathcal{M}_X) . Nesta situação também é possível "transferir" para Y o espaço mensurável presente em X, mas não através de

$$\mathcal{F} = \{ f(A) : A \in \mathcal{M}_X \}.$$

Facilmente se encontram exemplos de conjuntos X e Y não vazios, $f: X \to Y$ função e \mathcal{M}_X σ -álgebra em X tal que \mathcal{F} não é uma σ -álgebra em Y.

A forma de transferir a σ -álgebra em X para Y está descrita no teorema que se segue.

Teorema 3.8. Sejam X, Y dois conjuntos não vazios, $f: X \to Y$ uma função e (X, \mathcal{M}_X) um espaço mensurável. Então

$$\mathcal{M}_Y = \left\{ B \in \mathcal{P}(Y) : f^{-1}(B) \in \mathcal{M}_X \right\} \tag{3.3}$$

 \acute{e} uma σ-álgebra em Y.

Demonstração. Mais uma vez, a prova faz-se verificando todos os itens da definição de σ -álgebra, Definição 3.1.

Por definição do conjunto \mathcal{M}_Y , (3.3), tem-se $\mathcal{M}_Y \subseteq \mathcal{P}(Y)$.

- 1. Tem-se $f^{-1}(Y) = X$ e $X \in \mathcal{M}_X$, pois \mathcal{M}_X é uma σ -álgebra em X. Assim $Y \in \mathcal{M}_Y$;
- 2. Seja $B \in \mathcal{M}_Y$. Das definições obtém-se

$$\begin{array}{lcl} f^{-1}(Y \setminus B) & = & \{x \in X : f(x) \in (Y \setminus B)\} \\ & = & \{x \in X : f(x) \notin B\} = \{x \in X : x \notin f^{-1}(B)\} \\ & = & X \setminus f^{-1}(B). \end{array}$$

Por (3.3) tem-se $f^{-1}(B) \in \mathcal{M}_X$. Sendo \mathcal{M}_X uma σ -álgebra em X, então $X \setminus f^{-1}(B) \in \mathcal{M}_X$, logo $f^{-1}(Y \setminus B) \in \mathcal{M}_X$, ou seja $Y \setminus B \in \mathcal{M}_Y$.

3. Seja $(B_n)_{n\in\mathbb{N}}$ uma sucessão em \mathcal{M}_Y . Das definições facilmente se verifica que

$$f^{-1}\left(\bigcup_{n=1}^{\infty} B_n\right) = \left\{x \in X : f(x) \in \left(\bigcup_{n=1}^{\infty} B_n\right)\right\}$$
$$= \bigcup_{\substack{n=1\\ \infty}} \{x \in X : f(x) \in B_n\}$$
$$= \bigcup_{n=1}^{\infty} f^{-1}(B_n).$$

Sendo $(B_n)_{n\in\mathbb{N}}$ uma sucessão em \mathcal{M}_Y , por (3.3), tem-se que $\left(f^{-1}(B_n)\right)_{n\in\mathbb{N}}$ é uma sucessão em \mathcal{M}_X . Como \mathcal{M}_X uma σ -álgebra em X, obtém-se $\left(\bigcup_{n=1}^{\infty} f^{-1}(B_n)\right) \in \mathcal{M}_X$, ou seja $f^{-1}\left(\bigcup_{n=1}^{\infty} B_n\right) \in \mathcal{M}_X$, donde se conclui que $\left(\bigcup_{n=1}^{\infty} B_n\right) \in \mathcal{M}_Y$.

Pelos pontos 1.,2. e 3. anteriores conclui-se que \mathcal{M}_Y é uma σ -álgebra em Y. \square

Definição 3.7. Sejam X, Y dois conjuntos não vazios, $f: X \to Y$ uma função $e(X, \mathcal{M}_X)$ um espaço mensurável. Chama-se $\underline{\sigma}$ -álgebra imagem à σ -álgebra em Y definida por (3.3) no Teorema 3.8.

Teorema 3.9. Sejam X, Y dois conjuntos não vazios, $f: X \to Y$ uma função e $\mathcal{F} \subseteq \mathcal{P}(Y)$. Então

$$f^{-1}\left(\mathcal{M}^*(\mathcal{F})\right) = \mathcal{M}^*\left(f^{-1}(\mathcal{F})\right).$$

Demonstração. A demonstração é feita por dúpla inclusão, ou seja, num primeiro momento demosntra-se que $\mathcal{M}^*\left(f^{-1}(\mathcal{F})\right)\subseteq f^{-1}\left(\mathcal{M}^*(\mathcal{F})\right)$, e num segundo momento que $f^{-1}\left(\mathcal{M}^*(\mathcal{F})\right)\subseteq \mathcal{M}^*\left(f^{-1}(\mathcal{F})\right)$.

- 1. Pela Definição 3.4 tem-se $\mathcal{F} \subseteq \mathcal{M}^*(\mathcal{F})$ e desta forma obtém-se $f^{-1}(\mathcal{F}) \subseteq f^{-1}(\mathcal{M}^*(\mathcal{F}))$. Como $f^{-1}(\mathcal{M}^*(\mathcal{F}))$ é um σ -álgebra em X, Teorema 3.7, pela definição de σ -álgebra gerada, obtém-se $\mathcal{M}^*(f^{-1}(\mathcal{F})) \subseteq f^{-1}(\mathcal{M}^*(\mathcal{F}))$.
- 2. Considere-se o conjunto

$$\mathcal{M}_Y = \{ B \in \mathcal{P}(Y) : f^{-1}(B) \in \mathcal{M}^*(f^{-1}(\mathcal{F})) \}.$$

Por um lado, o Teorema 3.8 garante que \mathcal{M}_Y é uma σ -álgebra em Y.

Por outro, $\mathcal{F} \subseteq \mathcal{M}_Y$. Efectivamente dado $B \in \mathcal{F}$ tem-se, pela Definição 3.4, que $f^{-1}(B) \in f^{-1}(\mathcal{F}) \subseteq \mathcal{M}^*(f^{-1}(\mathcal{F}))$ donde se conclui que $B \in \mathcal{M}_Y$.

Pelo ponto 3 do Teorema 3.5, tem-se

$$\mathcal{M}^*(\mathcal{F}) \subseteq \mathcal{M}_Y$$

donde

$$f^{-1}\left(\mathcal{M}^*(\mathcal{F})\right) \subseteq f^{-1}\left(\mathcal{M}_Y\right) \subseteq \mathcal{M}^*\left(f^{-1}(\mathcal{F})\right)$$

provando o resultado. De reparar que a segunda inclusão é de fácil verificação uma vez que $A \in f^{-1}(\mathcal{M}_Y)$ implica que existe $B \in \mathcal{M}_Y$ tal que $A = f^{-1}(B)$, e como $B \in \mathcal{M}_Y$, então $A = f^{-1}(B) \in \mathcal{M}^* (f^{-1}(\mathcal{F}))$.

3.2 Funções mensuráveis

Nesta secção introduz-se a noção de função mensurável a demonstram-se as suas propriedades base. Especial atenção será dada às funções reais, ou mais geralmente, às funções com imagens em $\overline{\mathbb{R}}$.

Abusando do parelelismo, pode-se dizer que as funções mensuráveis estão para os espaços mensuráveis, assim como as funções contínuas estão para os espaços topológicos.

O estudo inicia-se com a introdução da definição.

Definição 3.8. Sejam (X, \mathcal{M}_X) e (Y, \mathcal{M}_Y) dois espaços mensuráveis e $f: X \to Y$ uma função.

A função f diz-se mensurável se

$$\forall B \in \mathcal{M}_Y, \ f^{-1}(B) \in \mathcal{M}_X.$$

Nota 3.2 De notar que, independentemente de qual seja a σ -álgebra definida em Y, se em X estiver definida a σ -álgebra grosseira, então qualquer função $f:X\to Y$ é mensurável, ao passo que se em X estiver definida a σ -álgebra trivial então só as funções $f:X\to Y$ constantes é que são mensuráveis. Efectivamente, toda a função constante definida entre espaços mensuráveis é uma função mensurável (verifique).

O resultado que se segue garante que a composta de funções mensuráveis é sempre uma função mensurável.

Teorema 3.10. Sejam (X, \mathcal{M}_X) , (Y, \mathcal{M}_Y) e (Z, \mathcal{M}_Z) espaços mensuráveis e $f: X \to Y$, $g: Y \to Z$ funções mensuráveis.

Então $g \circ f : X \to Z$ é mensurável.

Demonstração. Seja $B \in \mathcal{M}_Z$. Sendo g uma função mensurável, então $g^{-1}(B) \in \mathcal{M}_Y$ e, uma vez que f é também uma função mensurável, obtém-se que $f^{-1}(g^{-1}(B)) \in \mathcal{M}_X$. Como $f^{-1}(g^{-1}(B)) = (g \circ f)^{-1}(B)$, a prova está concluida. \square

O teorema seguinte apresenta uma caracterização das funções mensuráveis que, no conjunto de chegada, está definido uma σ -álgebra gerada.

Teorema 3.11. Sejam (X, \mathcal{M}_X) um espaço mensurável, $f: X \to Y$ uma função e $\mathcal{F} \subseteq \mathcal{P}(Y)$. Considerando o espaço mensurável $(Y, \mathcal{M}^*(\mathcal{F}))$, tem-se

$$(f \text{ mensurável }) \Leftrightarrow (\forall A \in \mathcal{F}, f^{-1}(A) \in \mathcal{M}_X).$$

Demonstração. Assumindo que f é um função mensurável e sabendo que $\mathcal{F} \subseteq \mathcal{M}^*(\mathcal{F})$, da Definição 3.8 imediatamente se conclui que $f^{-1}(A) \in \mathcal{M}_X$ para qualquer $A \in \mathcal{F}$.

Na implicação contrária, a hipótese pode ser traduzida por

$$f^{-1}(\mathcal{F}) \subseteq \mathcal{M}_X$$
.

Consequentemente, do ponto 3. do Teorema 3.5, obtém-se

$$\mathcal{M}^*(f^{-1}(\mathcal{F})) \subseteq \mathcal{M}_X$$

e pelo Teorema 3.9 conclui-se que

$$f^{-1}(\mathcal{M}^*(\mathcal{F})) = \mathcal{M}^*(f^{-1}(\mathcal{F})) \subseteq \mathcal{M}_X.$$

Mas a inclusão anterior diz que para qualquer $V \in \mathcal{M}^*(\mathcal{F})$ tem-se $f^{-1}(V) \in \mathcal{M}_X$, ou seja, f é uma função mensurável.

O Teorema anterior permite simplificar a prova de que uma determinada função, f, é mensurável, nos casos em que no conjunto de chegada está definido um espaço mensurável com uma σ -álgebra gerada. Efectivamente, este teorema afirma que é suficiente apenas testar a mensurabilidade da imagem recíproca dos conjuntos que geram a σ -álgebra em lugar de testar a mensurabilidade da imagem recíproca de todos os conjuntos da σ -álgebra gerada.

O resultado que se segue ilustra bem esta situação pois, para obter a mensurabilidade da função, testa-se apenas a mensurabilidade da imagem recíproca dos abertos.

Teorema 3.12. Sejam (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) espaços topológicos e $f: X \to Y$ uma função. Considerem-se no domínio de f um espaço mensurável (X, \mathcal{M}_X) tal que $\mathcal{B}(\mathcal{T}_X) \subseteq \mathcal{M}_X$, e no conjunto de chegada de f o correspondente espaço de Borel $(Y, \mathcal{B}(\mathcal{T}_Y))$.

Se f é uma função contínua, então f é uma função mensurável.

Demonstração. Suponha-se que f é contínua. A σ -álgebra em Y é $\mathcal{B}(\mathcal{T}_Y)$, isto é a σ -álgebra gerada pelos conjuntos abertos em Y. Pelo Teorema 3.11, para provar que f é mensurável, é suficiente mostrar que

$$f^{-1}(A) \in \mathcal{M}_X, \quad \forall A \in \mathcal{T}_Y.$$

Seja $A \in \mathcal{T}_Y$. Sendo f contínua, Definição 2.5, tem-se que $f^{-1}(A) \in \mathcal{T}_X$, pela definição de σ -álgebra de Borel, tem-se $\mathcal{T}_X \subseteq \mathcal{B}(\mathcal{T}_X)$ e por hipótese $\mathcal{B}(\mathcal{T}_X) \subseteq \mathcal{M}_X$. Consequentemente $f^{-1}(A) \in \mathcal{M}_X$ o que conclui a prova.

O implicação recíproca do Teorema 3.12 é falsa. Por exemplo, considerando o espaço topológico euclidiano $(\mathbb{R}, \mathcal{E})$ e a função

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} 1, & x \ge 0 \\ -1, & x < 0 \end{cases}$$

em que no domínio se considera a σ -álgebra grosseira e no conjunto de chegada a σ -álgebra de Borel, $\mathcal{B}(\mathcal{E})$, tem-se que f é mensurável mas não é contínua.

Teorema 3.13. Sejam (X, \mathcal{M}) um espaço mensurável, $(\overline{\mathbb{R}}, \mathcal{B}(\mathcal{T}_{\overline{d}}))$ o espaço de Borel em que $\mathcal{T}_{\overline{d}}$ é a topologia em $\overline{\mathbb{R}}$ induzida pela métrica \overline{d} definida por (2.4), e $f: X \to \overline{\mathbb{R}}$ uma função.

Se $f^{-1}([\alpha,\infty]) \in \mathcal{M}$ para qualquer $\alpha \in \mathbb{R}$, então f é mensurável.

Demonstração. Uma vez que no conjunto de chegada se considera a σ -álgebra de Borel, então, pelo Teorema 3.11, é suficiente verificar que

$$f^{-1}(V) \in \mathcal{M}, \forall V \in \mathcal{T}_{\overline{d}}$$

para concluir que f é mensurável.

Seja $V \in \mathcal{T}_{\overline{d}}$. Pelo Teorema 2.7, existe $(A_n)_{n \in \mathbb{N}}$ sucessão em \mathcal{A} , definida em (2.5), tal que

$$V = \bigcup_{n=1}^{\infty} A_n.$$

Consequentemente

$$f^{-1}(V) = \bigcup_{n=1}^{\infty} f^{-1}(A_n),$$

pelo que é suficiente provar que

$$f^{-1}(A) \in \mathcal{M}, \forall A \in \mathcal{A},$$

onde $\mathcal{A} = \{]a, b[, [-\infty, a[,]a, \infty], \overline{\mathbb{R}} : a, b \in \overline{\mathbb{R}} \text{ com } a < b \}.$ Considerando $a, b \in \overline{\mathbb{R}}, \text{ com } a \leq b, \text{ tem-se:}$

- 1. $f^{-1}(\overline{\mathbb{R}}) = X \in \mathcal{M}$, pois \mathcal{M} é uma σ -álgebra;
- 2. Se $a \in \mathbb{R}$, então $f^{-1}(]a, \infty]) \in \mathcal{M}$, por hipótese.

Se
$$a = -\infty$$
, então $f^{-1}(]-\infty,\infty]) = \bigcup_{n=1}^{\infty} f^{-1}(]-n,\infty]) \in \mathcal{M}$, pela hipótese e pelo facto de \mathcal{M} ser uma σ -álgebra;

3. Considere-se $(a_n)_{n\in\mathbb{N}}$ uma sucessão crescente tal que $\lim_n a_n = a$ em $\overline{\mathbb{R}}$. Tem-se,

$$f^{-1}([-\infty, a[) = X \setminus f^{-1}([a, \infty]) = X \setminus f^{-1}\left(\bigcap_{n=1}^{\infty} [a_n, \infty]\right)$$
$$= X \setminus \left(\bigcap_{n=1}^{\infty} f^{-1}([a_n, \infty])\right) \in \mathcal{M},$$

pelo ponto anterior, pelo Teorema 3.1 e porque \mathcal{M} é uma σ -álgebra;

4. Tem-se $f^{-1}(]a,b[) = f^{-1}([-\infty,b[) \cap f^{-1}(]a,\infty]) \in \mathcal{M}$, pelo dois pontos anteriores, pelo Teorema 3.1 e porque \mathcal{M} é uma σ -álgebra.

Em seguida apresenta-se um resultado que permitirá concluir que a soma, o produto e o quociente de funções reais mensuráveis é uma função mensurável.

Teorema 3.14. Sejam (X, \mathcal{M}) um espaço mensurável e $f_1, f_2 : X \to \mathbb{R}$ duas funções mensuráveis, considerando em \mathbb{R} a σ -álgebra de Borel.

Se $H: \mathbb{R}^2 \to \mathbb{R}$ é uma função contínua, então a função $h: X \to \mathbb{R}$, definida por $h(x) = H(f_1(x), f_2(x))$, é uma função mensurável.

Demonstração. Observando que $h=H\circ f$, com $f:X\to\mathbb{R}^2$ definida por $f(x)=(f_1(x),f_2(x))$, e que a H é mensurável, porque é contínua (Teorema 3.12), pelo Teorema 3.10 conclui-se que é suficiente demonstrar que f é uma função mensurável.

Pelo Teorema 3.11, é suficiente demonstrar que, para qualquer conjunto aberto $V \in \mathbb{R}^2$ se tem

$$f^{-1}(V) \in \mathcal{M}$$
.

Primeiro, assuma-se que V é um rectângulo aberto em \mathbb{R}^2 , denotando R = V. Assim sendo, $R = I_1 \times I_2$, com I_1 e I_2 intervalos abertos e limitados em \mathbb{R} , e

$$f^{-1}(R) = \{x \in X : f(x) \in R\} = \{x \in X : (f_1(x), f_2(x)) \in I_1 \times I_2\}$$
$$= f_1^{-1}(I_1) \cap f_2^{-1}(I_2) \in \mathcal{M}$$

porque as funções f_1 e f_2 são mensuráveis e \mathcal{M} é uma σ -álgebra. Finalmente, considerando V um qualquer aberto em \mathbb{R}^2 , pelo Teorema 2.5 existe $(R_n)_{n\in\mathbb{N}}$ uma sucessão de rectângulos abertos em \mathbb{R}^2 tal que

$$V = \bigcup_{n=1}^{\infty} R_n.$$

Consequentemente,

$$f^{-1}(V) = f^{-1}\left(\bigcup_{n=1}^{\infty} R_n\right) = \bigcup_{n=1}^{\infty} f^{-1}(R_n) \in \mathcal{M},$$

por definição de σ -álgebra.

Nota 3.3 O Teorema 3.14 continua válido se em lugar do espaço topológico $(\mathbb{R}, \mathcal{E})$ e o correspondente espaço mensurável $(\mathbb{R}, \mathcal{B}(\mathcal{E}))$, foram colocados o espaço topológico $(\overline{\mathbb{R}}, \mathcal{T}_{\overline{d}})$ e o correspondente espaço mensurável $(\mathbb{R}, \mathcal{B}(\mathcal{T}_{\overline{d}}))$, respectivamente.

Como consequência do Teorema 3.14 e da Nota anterior, obtém-se o corolário que se segue, cuja prova é deixada como exercício ao leitor.

Corolário 3.15. Seja (X, \mathcal{M}) um espaço mensurável.

- 1. Se $f,g \in F(X,\mathbb{R})$ (ou pertencentes a $F(X,\overline{\mathbb{R}})$) são funções mensuráveis, então cada uma das funções da Definição 1.5 é uma função mensurável;
- 2. Se $(f_n)_{n\in\mathbb{N}}$ é uma sucessão de funções mensuráveis em $F(X,\mathbb{R})$ (ou em $F(X,\overline{\mathbb{R}})$), então cada uma das funções da Definição 1.6 são funções mensuráveis;
- 3. Se $(f_n)_{n\in\mathbb{N}}$ é uma sucessão de funções mensuráveis em $F(X,\mathbb{R})$ (ou em $F(X,\overline{\mathbb{R}})$) pontualmente convergente para $f\in F(X,\mathbb{R})$ (ou $f\in F(X,\overline{\mathbb{R}})$), então a função f é mensurável.

Demonstração. A maior parte da prova deste corolário é deixada como exercício ao leitor. No entanto, a título de exemplo, é aqui apresentada a prova de que as funções máximo, sup, inf, lim sup e lim inf são mensuráveis. Para a prova do ponto 3. observe que esta é uma consequência imediata do ponto 2., da Nota 1.1 e do Teorema 1.4.

Prove-se então que a função máximo é mensurável.

Sejam $f, g: X \to \overline{\mathbb{R}}$ duas funções mensuráveis.

Definindo a função $H: \overline{\mathbb{R}}^2 \to \overline{\mathbb{R}}$ por $H(a,b) = \max\{a,b\}$, tem-se que H é contínua. Pelo Teorema 3.14 e pela Nota 3.3, conclui-se que a função máximo $\max\{f,g\}: X \longrightarrow \overline{\mathbb{R}}$

$$\max\{f,g\}: X \longrightarrow \mathbb{R}$$
 $x \mapsto \max\{f(x),g(x)\}$ é mensurável.

Prove-se agora que as funções supremo e ínfimo de um conjunto de funções mensuráveis são mensuráveis. A prova de que a função supremo é mensurável faz-se pela aplicação do Teorema 3.13.

Seja $(f_n)_{n\in\mathbb{N}}$ uma sucessão de funções mensuráveis em $F(X,\overline{\mathbb{R}})$. Considere-se a função $g=\sup f_n$, isto é

$$g = \sup_{n} f_n : X \longrightarrow \overline{\mathbb{R}}$$

 $x \mapsto \sup\{f_n(x) : n \in \mathbb{N}\}$.

Seja $\alpha \in \mathbb{R}$. Tem-se

$$g^{-1}(]\alpha,\infty]) = \{x \in X : g(x) > \alpha\} = \{x \in X : \left(\sup_{n} f_{n}\right)(x) > \alpha\}$$

$$= \{x \in X : \sup\{f_{n}(x) : n \in \mathbb{N}\} > \alpha\}$$

$$= \{x \in X | \exists n \in \mathbb{N} : f_{n}(x) > \alpha\}$$

$$= \bigcup_{n=1}^{\infty} \{x \in X : f_{n}(x) > \alpha\}$$

$$= \bigcup_{n=1}^{\infty} f_{n}^{-1}(]\alpha,\infty]),$$

donde se conclui que $g^{-1}(]\alpha, \infty]) \in \mathcal{M}$ porque \mathcal{M} é uma σ -álgebra e $f_n^{-1}(]\alpha, \infty] \in \mathcal{M}$, para todo $n \in \mathbb{N}$, pois f_n são mensuráveis.

Observando que $\inf_n f_n = -\sup_n (-f_n)$, imediatamente se conclui que a função ínfimo de um conjunto de funções mensuráveis é mensurável tendo em consideração que: o supremo é uma função mensurável; as funções constantes são mensuráveis (Nota 3.2); e o produto de funções mensuráveis é mensurável (proposta de exercício no ponto 1.).

Finalmente, observando a Nota 1.1, conclui-se que

$$\limsup_{n} f_n = \inf_{n \ge 1} \left(\sup_{k \ge n} f_k \right) \quad \text{e} \quad \liminf_{n} f_n = \sup_{n \ge 1} \left(\inf_{k \ge n} f_k \right),$$

donde se conclui que as funções $\limsup_n f_n$ e $\liminf_n f_n$ são mensuráveis porque as funções supremo e ínfimo de um conjunto de funções mensuráveis são mensuráveis.

As funções simples desempenham um papel fundamental na teoria de integração. Em (1.4) observou-se que qualquer função simples, s, assume a forma $s = \sum_{i=1}^n \alpha_i \chi_{A_i}$, com $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ e $A_i = s^{-1}(\{\alpha_i\})$. O resultado que se segue garante que, num espaço mensurável, s é mensurável se e só se cada A_i é um conjunto mensurável.

Teorema 3.16. Seja (X, \mathcal{M}) um espaço mensurável.

Uma função simples $s:X\to\mathbb{R}$ é mensurável se e só se a imagem recíproca de cada uma das suas imagens for um conjunto mensurável em X.

Demonstração. Sejam (X, \mathcal{M}) um espaço mensurável e $s: X \to \mathbb{R}$ uma função simples. Por (1.4), a função s pode ser escrita na forma

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i},$$

com
$$s(X) = \{\alpha_1, \dots, \alpha_n\}$$
 e $A_i = s^{-1}(\{\alpha_i\})$.

Assuma-se que s é uma função mensurável. Para cada $i \in \{1, \ldots, n\}$, tem-se que o conjunto singular $\{\alpha_i\}$ é fechado e, pelo Teorema 3.6, obtém-se que $\{\alpha_i\}$ é um conjunto mensurável. Sendo s uma função mensurável, por definição, concluise que $A_i = s^{-1}(\{\alpha_i\})$ é um conjunto mensurável para todo $i \in \{1, \ldots, n\}$.

Assume-se agora que $A_i \in \mathcal{M}$ para todo $i \in \{1, ..., n\}$. Para demonstrar que s é uma função mensurável, usa-se o Teorema 3.13. Fixando $\alpha \in \mathbb{R}$ arbitrariamente e definindo $I_{\alpha} = \{i \in \{1, ..., n\} : \alpha_i > \alpha\}$ tem-se

$$s^{-1}(]\alpha, \infty[) = \{\alpha_i : \alpha_i > \alpha\} = \bigcup_{i \in I_\alpha} A_i,$$

que é uma união finita de conjuntos mensuráveis. Consequentemente, por definição de σ -álgebra, obtém-se $s^{-1}(]\alpha, \infty[) \in \mathcal{M}$ e assim s é mensurável.

Segue-se um teorema essencial na teoria de integração, pois este permite concluir que as funções reais mensuráveis são limite pontual de sucessão de funções simples mensuráveis.

Teorema 3.17. Sejam (X, \mathcal{M}) um espaço mensurável e $f: X \to [0, \infty]$ uma função mensurável.

Então existe $(s_n)_{n\in\mathbb{N}}$ sucessão de funções simples mensuráveis, $s_n:X\to [0,\infty[$, tais que

- (a) $0 \le s_1 \le s_2 \le s_3 \le \cdots \le f$;
- (b) $\lim_{n} s_n(x) = f(x), \forall x \in X \text{ (convergencia pontual)}.$

Demonstração. Seja $n \in \mathbb{N}$. Dado $t \in [0, \infty[$, existe um único número interio não negativo, $k_n(t) \in \mathbb{N}_0$, tal que

$$\frac{k_n(t)}{2^n} \le t < \frac{k_n(t) + 1}{2^n}. (3.4)$$

Defina-se a função

$$\varphi_n: [0,\infty] \longrightarrow [0,\infty[$$

$$t \mapsto \begin{cases} \frac{k_n(t)}{2^n}, & 0 \le t < n \\ n, & n \le t \le \infty \end{cases}.$$

Desta forma tem-se uma sucessão de funções $(\varphi_n)_{n\in\mathbb{N}}$ com as seguintes propriedades:

1. Para qualquer $n \in \mathbb{N}$, a função φ_n é simples e mensurável. Verifique que, para cada $n \in \mathbb{N}$, tem-se

$$\varphi_n([0,\infty]) = \left\{ \frac{k}{2^n} : k = 0, 1, 2, \dots, 2^n n \right\},\,$$

logo a função φ_n é simples, e

$$\varphi_n^{-1}\left(\left\{\frac{k}{2^n}\right\}\right) = \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right], \ \forall k = 0, 1, 2, \dots, 2^n n - 1, \ e \ \varphi_n^{-1}(\{n\}) = [n, \infty],$$

que são conjuntos de Borel em $[0, \infty]$, logo a função φ_n é mensurável;

2. Tem-se $0 \le \varphi_1(t) \le \varphi_2(t) \le \cdots \le t$, $\forall t \in [0, \infty]$. De facto, dados $t \in [0, \infty]$ e $n \in \mathbb{N}$, três casos podem ocorrer: t < n, $n \le t < n + 1$ ou $n + 1 \le t$. Caso t < n, por (3.4), obtém-se

$$t \in \left[\frac{k_n(t)}{2^n}, \frac{k_n(t)+1}{2^n}\right] = \left[\frac{2k_n(t)}{2^{n+1}}, \frac{2k_n(t)+1}{2^{n+1}}\right] \cup \left[\frac{2k_n(t)+1}{2^{n+1}}, \frac{2k_n(t)+2}{2^{n+1}}\right]$$

logo

$$\varphi_n(t) = \frac{k_n(t)}{2^n} \le \varphi_{n+1}(t) = \frac{k_{n+1}(t)}{2^{n+1}} = \begin{cases} \frac{2k_n(t)}{2^{n+1}}, & t \in \left[\frac{2k_n(t)}{2^{n+1}}, \frac{2k_n(t)+1}{2^{n+1}}\right[\\ \frac{2k_n(t)+1}{2^{n+1}}, & t \in \left[\frac{2k_n(t)+1}{2^{n+1}}, \frac{2k_n(t)+2}{2^{n+1}}\right[\end{cases}.$$

Caso
$$n \le t < n+1$$
, então $\varphi_n(t) = n \le \frac{k_n(t)}{2^n} = \frac{2k_n(t)}{2^{n+1}} \le \varphi_{n+1}(t)$;
Caso $n+1 \le t$, então $\varphi_n(t) = n < n+1 = \varphi_{n+1}(t)$.

Consequentemente $\varphi_n \leq \varphi_{n+1}, \ \forall n \in \mathbb{N}$. Trivialmente se verifica que $\varphi_n(t) \leq t$ para quaisquer $t \in [0, \infty]$ e $n \in \mathbb{N}$;

3. Tem-se $\varphi_n \xrightarrow{p} id_{[0,\infty]}$. Dado $t \in [0,\infty[$, por definição de $k_n(t)$, facilmente se conclui que $\lim_n \varphi_n(t) = \lim_n \frac{k_n(t)}{2^n} = t$. Para $t = \infty$ tem-se $\lim_n \varphi_n(\infty) = \lim_n n = \infty$.

Finalmente, considere-se a sucessão de funções, $(s_n)_{n\in\mathbb{N}}$, definida por $s_n = \varphi_n \circ f$ para cada $n \in \mathbb{N}$. Pelo Teorema 3.10, cada s_n é uma função mensurável e, uma vez que φ_n são funções simples, então cada s_n é também uma função simples.

Para $x \in X$, pelo ponto 2. acima tem-se

$$s_n(x) = \varphi_n(f(x)) < \varphi_{n+1}(f(x)) < f(x), \quad \forall n \in \mathbb{N},$$

o que prova o item (a) do Teorema.

Finalmente, do ponto 3. acima conclui-se que, para cada $x \in X$,

$$\lim_{n} s_n(x) = \lim_{n} \varphi_n(f(x)) = id_{[0,\infty]}(f(x)) = f(x),$$

o que prova o item (b) do Teorema.

Corolário 3.18. Sejam (X, \mathcal{M}) um espaço mensurável e $f: X \to \overline{\mathbb{R}}$ uma função mensurável.

Então existe $(s_n)_{n\in\mathbb{N}}$ sucessão de funções simples mensuráveis, $s_n:X\to\mathbb{R}$, tal que $s_n\xrightarrow{p} f$.

Demonstração. Seja $f: X \to \overline{\mathbb{R}}$ uma função mensurável. Tem-se $f = f^+ - f^-$, em que $f^+: X \to [0, \infty]$ é a função parte positiva de f e $f^-: X \to [0, \infty]$ é a função parte negativa de f. Pelo Corolário 3.15, conclui-se que quer f^+ , quer f^- são funções mensuráveis.

Como consequência do Teorema 3.17, existem $(s_n^+)_{n\in\mathbb{N}}$ e $(s_n^-)_{n\in\mathbb{N}}$ sucessões de funções, de X em $[0,\infty]$, simples mensuráveis e não negativas tais que $s_n^+ \xrightarrow{p} f^+$ e $s_n^- \xrightarrow{p} f^-$.

Defina-se, para cada $n \in \mathbb{N}$, a função $s_n = s_n^+ - s_n^-$ (verifique que a soma da função s_n^+ com $-s_n^-$ está bem definida). Consequentemente $(s_n)_{n \in \mathbb{N}}$ é uma sucessão de funções simples, mensuráveis e, dado $x \in X$, tem-se

$$\lim_{n} s_n(x) = \lim_{n} (s_n^+(x) - s_n^-(x)) = f^+(x) - f^-(x) = f(x).$$

No último resultado deste capítulo, constroem-se conjuntos mensuráveis a partir de funções mensuráveis.

Teorema 3.19. Sejam (X, \mathcal{M}) um espaço mensurável, $f, g: X \to \overline{\mathbb{R}}$ funções mensuráveis e $\alpha \in \mathbb{R}$.

Então são mensuráveis os seguintes conjuntos:

1.
$$\{x \in X : f(x) = g(x) + \alpha\};$$
 4. $\{x \in X : f(x) \le g(x) + \alpha\};$

2.
$$\{x \in X : f(x) \neq g(x) + \alpha\};$$
 5. $\{x \in X : f(x) > g(x) + \alpha\};$

3.
$$\{x \in X : f(x) < g(x) + \alpha\};$$
 6. $\{x \in X : f(x) \ge g(x) + \alpha\}.$

Demonstração. A prova está apenas feita para os pontos 1. e 2.. Os restantes pontos são deixados como exercícios.

Ponto~1. Sejam $\alpha\in\mathbb{R}$ e $f,g:X\to\overline{\mathbb{R}}$ funções mensuráveis. Como qualquer função constante é mensurável, ver Nota 3.2, pelo Corolário 3.15 conclui-se que a função

$$F: X \longrightarrow \overline{\mathbb{R}}$$

$$x \mapsto f(x) - g(x) - \alpha$$

é mensurável. Consequentemente $F^{-1}(\{0\}) \in \mathcal{M}$ porque $\{0\}$ é um conjunto fechado, logo pertencente à σ -álgebra de Borel em $\overline{\mathbb{R}}$, (ver Teorema 3.6). Mas

$$\{x \in X : f(x) = g(x) + \alpha\} = \{x \in X : f(x) - g(x) - \alpha = 0\} = F^{-1}(\{0\}),$$

ou seja, $\{x \in X : f(x) = g(x) + \alpha\}$ é um conjunto mensurável.

Ponto 2. Uma vez que

$$\{x \in X : f(x) \neq g(x) + \alpha\} = X \setminus \{x \in X : f(x) \neq g(x) + \alpha\},\$$

pelo ponto 1. e pela definição de σ -álgebra conclui-se que o conjunto

$$\{x \in X : f(x) \neq g(x) + \alpha\}$$

é mensurável. □

3.3 Exercícios

1. Seja (X, \mathcal{M}) um espaço mensurável.

Dados $A, B \in \mathcal{M}$, mostre que

- (a) $(A \setminus B) \in \mathcal{M}$;
- (b) $(A \triangle B) \in \mathcal{M}$.
- 2. Sejam (X, \mathcal{M}) um espaço mensurável, $Y \subseteq X$ e $\mathcal{M}' = \{Y \cap A : A \in \mathcal{M}\}$. Mostre que (Y, \mathcal{M}') é um espaço mensurável.
- 3. Seja (X, τ) um espaço topológico e $\mathcal{F} = \{F \subseteq X : F \text{ \'e fechado}\}.$ Mostre que $\mathcal{M}^*(\mathcal{F}) = \mathcal{B}(\tau)$, onde $\mathcal{B}(\tau)$ \'e a σ -álgebra de borel.
- 4. Sejam $\{A_n : n \in \mathbb{N}\}$ uma partição de um conjunto X e

$$\mathcal{M} = \left\{ \bigcup_{i \in I} A_i : I \subseteq \mathbb{N} \right\}.$$

Mostre que \mathcal{M} é uma σ -álgebra em X.

5. Sejam (X, \mathcal{M}_X) um espaço mensurável, Y um conjunto não vazio e $f: X \to Y$ uma função.

Mostre que

$$\mathcal{F} = \{ f(A) : A \in \mathcal{M}_X \}$$

não é uma σ -álgebra em Y.

- 6. Sejam $X \neq \emptyset$ e $\mathcal{F} = \{\{x\} : x \in X\}$
 - (a) Mostre que

$$\mathcal{M}^*(\mathcal{F}) = \{ A \in \mathcal{P}(X) : A \text{ \'e numer\'avel ou } X \setminus A \text{ \'e numer\'avel} \}$$

(b) Considere, em cada uma das funções que se segue, o espaço de Borel $(\mathbb{R}, \mathcal{B})$ no conjunto de chegada e o espaço $(\mathbb{R}, \mathcal{M})$, com \mathcal{M} a σ -álgebra da alínea anterior, no domínio.

Mostre que:

3.3 Exercícios 37

i. são mensuráveis as funções

ii. não são mensuráveis as funções

$$id: \mathbb{R} \longrightarrow \mathbb{R} \\ x \mapsto x; \qquad h: \mathbb{R} \longrightarrow \mathbb{R} \\ x \mapsto x$$

- 7. Mostre que são mensuráveis todas as funções em escada, isto é, $f \in \mathcal{I}([a,b];\mathbb{R})$, com a < b números reais e os espaços de Borel em [a,b] e em \mathbb{R} .
- 8. Sejam (X, \mathcal{M}_X) , (Y, \mathcal{M}_Y) dois espaços mensuráveis e $f: X \to Y$ uma função constante.

Mostre que f é uma função mensurável.

- 9. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função monótona. Mostre que f é mensurável.
- 10. Seja (X, \mathcal{M}) um espaço mensurável.

Mostre que uma função simples

$$s: X \longrightarrow \mathbb{R}$$

$$x \mapsto \sum_{i=1}^{n} \alpha_i \chi_{A_i}(x) ,$$

com $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ e $A_i = s^{-1}(\{\alpha_i\})$ para $i = 1, \ldots, n$, é mensurável se e só se $A_i \in \mathcal{M}$ para todo $i = 1, \ldots, n$.

11. Mostre que são mensuráveis cada uma das seguintes funções:

(a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto \int_0^x t^2 dt ;$$
(b)
$$g: [0, +\infty] \longrightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} \sin x & x \in \mathbb{R} \\ 2 & x = +\infty \end{cases} ;$$

12. Em [8], Walter Rudin define função mensurável da seguinte forma:

Dados (X, \mathcal{M}) espaço mensurável, (Y, \mathcal{T}) espaço topológico e $f: X \to Y$ uma função, diz-se que f é mensurável caso

$$f^{-1}(V) \in \mathcal{M}, \quad \forall V \in \mathcal{T}.$$

Mostre que esta definição é equivalente à apresentada na Definição 3.8, quando em Y se considera a σ -álgebra de Borel.

13. Sejam (X, \mathcal{M}) um espaço mensurável e $f, g: X \to \overline{\mathbb{R}}$ duas funções mensuráveis. Justifique que cada uma das seguintes funções é mensurável, caso esteja bem definida.

- (a) f + g; (c) fg;

- (b) $|f|^p$, com $p \in \mathbb{R}$; (d) f^+ ;

14. Considere o seguinte subconjunto do conjunto das parte de \mathbb{R}

$$\mathcal{M} = \left\{ X \in \mathcal{P}(\mathbb{R}) : X = (\mathbb{R} \setminus A) \cup B, \text{ com } A \in (\mathcal{P}(\mathbb{N}) \cup \{\mathbb{R}\}) \text{ e } B \in \mathcal{P}(\mathbb{N}) \right\}.$$

- (a) Mostre que $\mathcal{M} \neq \mathcal{P}(\mathbb{R})$ e que $\mathcal{P}(\mathbb{N}) \subseteq \mathcal{M}$;
- (b) Mostre que \mathcal{M} é uma σ -álgebra em \mathbb{R} ;

3.3 Exercícios

39

(c) Consider as funções $f, g : \mathbb{R} \to \mathbb{R}$, definidas respectivamente por

$$f(x) = \begin{cases} 1, & x = 2 \\ 0, & x \neq 2 \end{cases}$$
 e $g(x) = \frac{1}{2}x$,

com (\mathbb{R},\mathcal{B}) o espaço de Borel no conjunto de chegada e (\mathbb{R},\mathcal{M}) no domínio.

Mostre que f é uma função mensurável e que g não é uma função mensurável.

- 15. Sejam (X, \mathcal{M}) um espaço mensurável e $(f_n)_{n\in\mathbb{N}}$ uma sucessão funções mensuráveis de X em $\overline{\mathbb{R}}$.
 - (a) Mostre que cada uma das seguintes funções é mensurável:

i.
$$\left(\sup_{n} f_{n}\right);$$
 iii. $\left(\limsup_{n} f_{n}\right);$ iv. $\left(\liminf_{n} f_{n}\right);$

- (b) Justifique que o limite de $(f_n)_{n\in\mathbb{N}}$, se existir, é uma função mensurável.
- 16. Tome em atenção o enunciado do Teorema 3.19.
 - (a) Demonstre os pontos 3., 4., 5. e 6. do Teorema 3.19.
 - (b) Mostre que os pontos 1. e 2. do Teorema 3.19 não são necessariamente verdade quando no conjunto de chegada está definido um espaço mensurável geral. Concretamente, apresente exemplos de espaços mensuráveis (X, \mathcal{M}_X) e (Y, \mathcal{M}_Y) e funções mensuráveis $f, g: X \to Y$ tais que

$$\{x \in X : f(x) = g(x)\}\$$

não é um conjunto mensurável.

Capítulo 4

Espaços de Medida

Neste capítulo procede-se à introdução de uma medida num espaço mensurável. Uma medida é uma função que, verificando os axiomas de medida, permite medir os conjuntos mensuráveis que compõem a σ -álgebra do espaço mensurável.

4.1 Medida

A ideia que norteia a definição de medida é a de que a medida do todo corresponde à soma da medida das partes. Esta ideia encontra-se formalizada na definição de medida que aqui se apresenta.

Definição 4.1. Seja (X, \mathcal{M}) um espaço mensurável.

Designa-se por \underline{medida} em (X, \mathcal{M}) , uma função

$$\mu: \mathcal{M} \longrightarrow [0,\infty]$$
 $A \mapsto \mu(A)$

que verifica os sequintes axiomas:

- (a) $\mu(\emptyset) = 0$;
- (b) Para qualquer sucessão $(A_n)_{n\in\mathbb{N}}$ em \mathcal{M} , com $A_n \cap A_m = \emptyset$ para $n \neq m$, tem-se

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) \quad (\sigma\text{-aditividade}). \tag{4.1}$$

Alguma notação usual na teoria da medida é apresentada abaixo.

• Uma medida μ , num espaço mensurável (X, \mathcal{M}) , diz-se finita se $\mu(X) < \infty$.

• Uma medida μ , num espaço mensurável (X, \mathcal{M}) , diz-se $\underline{\sigma}$ -finita se existe uma sucessão $(A_n)_{n\in\mathbb{N}}$ em \mathcal{M} tal que

$$X = \bigcup_{n=1}^{\infty} A_n \quad \text{e} \quad \mu(A_n) < \infty, \, \forall n \in \mathbb{N}.$$
 (4.2)

- Sendo (X, \mathcal{M}) um espaço mensurável e μ uma medida nele definida, designase por espaço de medida o terno (X, \mathcal{M}, μ) .
- Dado (X, \mathcal{M}, μ) um espaço de medida e $A \in \mathcal{M}$, designa-se por <u>medida de A</u> a imagem de A por μ , isto é $\mu(A)$.
- Um espaço de medida (X, \mathcal{M}, μ) designa-se por espaço de probabilidade caso $\mu(X) = 1$.

Alguns exemplos de medida, cuja verificação dos axiomas (a) e (b) da Definição 4.1 são deixadas ao leitor, são apresentados de seguida.

Num qualquer espaço mensurável (X, \mathcal{M}) , é sempre possível definir:

1. a medida nula

$$\begin{array}{ccc} \mu: & \mathcal{M} & \longrightarrow & [0, \infty] \\ & A & \mapsto & \mu(A) = 0 \end{array};$$

2. a medida grosseira

$$\begin{array}{ccc} \mu: & \mathcal{M} & \longrightarrow & [0, \infty] \\ & A & \mapsto & \mu(A) = \infty \end{array};$$

3. a medida δ -Dirac

$$\delta_a: \mathcal{M} \longrightarrow [0,\infty]
A \mapsto \begin{cases}
0, & a \notin A \\
1, & a \in A
\end{cases} ,$$
(4.3)

em que $a \in X$;

4. a medida de contagem

$$\mu: \mathcal{M} \longrightarrow [0, \infty]$$

$$A \mapsto \begin{cases} \#A, & A \neq \text{ finito} \\ \infty, & A \neq \text{ infinito} \end{cases}$$

$$(4.4)$$

4.1 Medida 43

A medida de Lesbesgue, m, que permite medir subconjuntos de \mathbb{R}^k de uma forma tal, que os rectângulos abertos, $R \subseteq \mathbb{R}^k$ da Definição 2.11, são medidos da forma esperada, $m(R) = \prod_{i=1}^k (b_i - a_i) = (b_1 - a_1) \times \cdots \times (b_k - a_k)$, será apresentada posteriormente.

No próximo resultado descrevem-se importantes propriedades verificadas pelas medidas, cuja prova surge de forma natural dos axiomas de medida.

Teorema 4.1. Seja $(X\mathcal{M}, \mu)$ um espaço de medida.

Então

1. Se $m \in \mathbb{N}$ e $(A_n)_{n \in \{1,...,m\}}$ uma colecção em \mathcal{M} tal que $A_i \cap A_j = \emptyset$ para $i \neq j$, então

$$\mu(A_1 \cup \cdots \cup A_m) = \mu(A_1) + \cdots + \mu(A_m);$$

- 2. Se $A, B \in \mathcal{M}$ tais que $A \subseteq B$, então $\mu(A) \leq \mu(B)$;
- 3. Se $A, B \in \mathcal{M}$ tais que $A \subseteq B$ e $\mu(A) < \infty$, então $\mu(B \setminus A) = \mu(B) \mu(A)$;
- 4. Se $(A_n)_{n\in\mathbb{N}}$ é uma sucessão em \mathcal{M} tal que $A_1\subseteq A_2\subseteq\cdots\subseteq A_n\subseteq\cdots$ e $A=\bigcup_{n=1}^{\infty}A_n,\ então$

$$\lim_{n} \mu(A_n) = \mu(A);$$

5. Se $(A_n)_{n\in\mathbb{N}}$ é uma sucessão em \mathcal{M} tal que $\cdots \subseteq A_n \subseteq \cdots \subseteq A_2 \subseteq A_1$, $\mu(A_1) < \infty$ e $A = \bigcap_{n=1}^{\infty} A_n$, então

$$\lim_{n} \mu(A_n) = \mu(A);$$

6. Se $(A_n)_{n\in\mathbb{N}}$ é uma sucessão em \mathcal{M} , então

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mu(A_n),$$
 (subaditividade da medida).

Demonstração. A prova de cada ponto do teorema é apresentada abaixo:

1. O primeiro ponto é trivial, uma vez que basta considerar no axioma da σ -aditividade de Definição 4.1

$$A_{m+1} = A_{m+2} = A_{m+3} = \dots = \emptyset;$$

2. Uma vez que $B=A\cup (B\setminus A)$ e $A\cap (B\setminus A)=\emptyset$, pelo ponto 1. e por μ ser medida, tem-se

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A);$$

3. Desenvolvendo o mesmo raciocínio do ponto 2., obtém-se

$$\mu(B) = \mu(A) + \mu(B \setminus A).$$

Uma vez que $\mu(A) < \infty$ (necessário devido à aritmética definida em $\overline{\mathbb{R}}$), então

$$\mu(B) = \mu(A) + \mu(B \setminus A) \Leftrightarrow \mu(B) - \mu(A) = \mu(A) - \mu(A) + \mu(B \setminus A),$$

donde se obtém

$$\mu(B) - \mu(A) = \mu(B \setminus A).$$

4. Considere-se a sucessão $(B_n)_{n\in\mathbb{N}}$ em \mathcal{M} definida por

$$B_n = \begin{cases} A_1, & n = 1 \\ A_n \setminus A_{n-1}, & n > 1 \end{cases}.$$

Como por hipótese se tem $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq \cdots$, então $B_j \cap B_i = \emptyset$, para $j \neq i$, $A_n = B_1 \cup \cdots \cup B_n$, para todo $n \in \mathbb{N}$, e $A = \bigcup_{n=1}^{\infty} B_n$. Efectivamente:

(a) Assumindo j > i, das propriedades da teoria de conjuntos, tem-se

$$B_j \cap B_i = (A_j \setminus A_{j-1}) \cap (A_i \setminus A_{i-1}) = (A_j \cap A_i) \setminus (A_{j-1} \cup A_{i-1})$$

e da hipótese $(j > i \Rightarrow j - 1 \ge i)$ vem

$$B_j \cap B_i = (A_j \cap A_i) \setminus (A_{j-1} \cup A_{i-1}) = A_i \setminus A_{j-1} = \emptyset;$$

(b) Como $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq \cdots$, então, para $n \in \mathbb{N}$,

(c) Tem-se
$$A = \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} (B_n \cup \cdots \cup B_1) = \bigcup_{n=1}^{\infty} B_n$$
.

Pelas propriedades da sucessão $(B_n)_{n\in\mathbb{N}}$ em \mathcal{M} , pela σ -aditividade da medida e pelo ponto 1., obtém-se

$$\mu(A) = \sum_{i=1}^{\infty} \mu(B_i) = \lim_{n} \sum_{i=1}^{n} \mu(B_i) = \lim_{n} \mu(B_1 \cup \dots \cup B_n) = \lim_{n} \mu(A_n).$$

4.1 Medida 45

5. Considere-se a sucessão $(C_n)_{n\in\mathbb{N}}$ em \mathcal{M} definida por

$$C_n = A_1 \setminus A_n$$
.

Como por hipótese se tem $\cdots \subseteq A_n \subseteq \cdots \subseteq A_2 \subseteq A_1$, tem-se

$$C_1 \subseteq C_2 \subseteq \dots \subseteq C_n \subseteq \dots$$
 (4.5)

e

$$\bigcup_{n=1}^{\infty} C_n = \bigcup_{n=1}^{\infty} (A_1 \setminus A_n) = A_1 \setminus \left(\bigcap_{n=1}^{\infty} A_n\right) = A_1 \setminus A. \tag{4.6}$$

Por outro lado, por (4.5), (4.6) e pelo ponto 4. acima tem-se

$$\lim_{n} \mu(C_n) = \mu\left(\bigcup_{n=1}^{\infty} C_n\right) = \mu(A_1 \setminus A). \tag{4.7}$$

Por um lado, como $\mu(A_1) < \infty$, o ponto 3. acima garante que, para todo $n \in \mathbb{N}$, $\mu(C_n) = \mu(A_1) - \mu(A_n)$, donde

$$\lim_{n} \mu(C_n) = \lim_{n} (\mu(A_1) - \mu(A_n)) = \mu(A_1) - \lim_{n} \mu(A_n)$$
 (4.8)

Finalmente, por (4.7) e por (4.8), conclui-se que

$$\mu(A_1 \setminus A) = \mu(A_1) - \lim_{n} \mu(A_n)$$

e mais uma vez pelo ponto 3. acima, tem-se

$$\mu(A_1) - \mu(A) = \mu(A_1) - \lim_{n} \mu(A_n),$$

donde $(\mu(A_1) < \infty)$,

$$\lim_{n} \mu(A_n) = \mu(A).$$

6. Seja $(A_n)_{n\in\mathbb{N}}$ sucessão em \mathcal{M} . Definindo a sucessão em \mathcal{M} , $(B_m)_{m\in\mathbb{N}}$, por

$$B_m = \bigcup_{n=1}^m A_n,$$

facilmente se verifica que $B_1 \subseteq B_2 \subseteq \cdots \subseteq B_m \subseteq \cdots$ e

$$B = \bigcup_{m=1}^{\infty} B_m = \bigcup_{n=1}^{\infty} A_n.$$

Por indução sobre m, mostra-se que $\mu(B_m) \leq \sum_{n=1}^m \mu(A_n)$ para todo $m \in \mathbb{N}$. Efectivamente:

- $\mu(B_1) = \mu(A_1);$
- Assumindo que $\mu(B_{m-1}) \leq \sum_{n=1}^{m-1} \mu(A_n)$, pelos pontos 1. e 2. acima, tem-se

$$\mu(B_m) = \mu(B_{m-1} \cup A_m) = \mu(B_{m-1} \cup (A_m \setminus B_{m-1}))$$

$$= \mu(B_{m-1}) + \mu(A_m \setminus B_{m-1}) \le \mu(B_{m-1}) + \mu(A_m)$$

$$\le \left(\sum_{n=1}^{m-1} \mu(A_n)\right) + \mu(A_m) = \sum_{n=1}^{m} \mu(A_n).$$

Pelo ponto 4. acima obtém-se

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{m=1}^{\infty} B_m\right) = \lim_{m} \mu(B_m) \le \lim_{m} \left(\sum_{n=1}^{m} \mu(A_n)\right)$$
$$= \sum_{n=1}^{\infty} \mu(A_n).$$

Nota 4.1 Efectivamente, a condição $\mu(A_1) < \infty$ que é imposta no ponto 5. do Teorema 4.1 não pode ser retirada. Atenda ao exemplo seguinte.

Exemplo 4.1 Considere-se o espaço de medida de contagem $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ ou seja, a medida μ está definida em (4.4) com $\mathcal{M} = \mathcal{P}(\mathbb{N})$.

Considerando a sucessão $(A_n)_{n\in\mathbb{N}}$ definida por $A_n=\mathbb{N}\setminus\{1,\ldots,n\}$, para cada $n\in\mathbb{N}$, tem-se

$$\cdots \subseteq A_n \subseteq \cdots \subseteq A_2 \subseteq A_1$$

e

$$\mu(A_n) = \mu(\mathbb{N} \setminus \{1, \dots, n\}) = \infty, \quad \forall n \in \mathbb{N},$$

donde

$$\lim_{n} (A_n) = \infty \neq 0 = \mu(\emptyset) = \mu\left(\bigcap_{n \in \mathbb{N}}^{\infty} (\mathbb{N} \setminus \{1, \dots, n\})\right) = \mu\left(\bigcap_{n \in \mathbb{N}}^{\infty} A_n\right).$$

4.2 Conjuntos de medida nula

Esta pequena secção está reservada para apresentar algumas noções envolvendo conjuntos de medida nula. Parece um paradoxo, mas a importância dos conjuntos de medida nula reside na insignificância da sua medida, zero.

Definição 4.2. Seja (X, \mathcal{M}, μ) um espaço de medida.

Um conjunto $A \in \mathcal{M}$ diz-se que <u>tem medida nula</u> se $\mu(A) = 0$.

O primeiro resultado sobre conjuntos de medida nula estabelece que a união numerável de conjuntos de medida nula tem medida nula.

Teorema 4.2. Sejam (X, \mathcal{M}, μ) um espaço de medida e $(A_n)_{n \in \mathbb{N}}$ uma sucessão em \mathcal{M} .

Se $\mu(A_n) = 0$ para todo $n \in \mathbb{N}$, então

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=0.$$

Demonstração. Consequência imediata do ponto 6. do Teorema 4.1.

Os conjuntos de medida nula, desempenham um papel importante na teoria de integração pois, como se verá, estes permitem alterar o domínio de integração de uma função mensurável sem modificar o valor do seu integral de Lebesgue. Contudo é relevante notar que, num espaço de medida, nem todo o subconjunto de um conjunto de medida nula é mensurável e como tal não pode ser medido. O simples exemplo seguinte ilustra a situação descrita:

Exemplo 4.2 Considere-se o espaço de medida $(X, \mathcal{M}, \delta_4)$ onde $X = \{1, 2, 3, 4\}$, $\mathcal{M} = \{X, \{1, 2\}, \{3, 4\}, \emptyset\}$ e δ_4 a medida de Dirac

$$\delta_4: \mathcal{M} \longrightarrow [0, \infty]
A \mapsto \begin{cases}
0, & 4 \notin A \\
1, & 4 \in A
\end{cases}$$

Observe-se que $\{1,2\}$ é um conjunto de medida nula, pois $\delta_4(\{1,2\}) = 0$, $\{1\} \subseteq \{1,2\}$, mas o conjunto $\{1\}$ não é mensurável pois $\{1\} \notin \mathcal{M}$.

Os espaços de medidas em que todos os subconjuntos da medida nula são conjuntos mensuráveis dizem-se completos. Esta noção formaliza-se da forma que se segue.

Definição 4.3. Um espaço de medida (X, \mathcal{M}, μ) diz-se <u>espaço de medida completo</u> se

$$\forall E \in \mathcal{M}, \forall A \in \mathcal{P}(X) : (A \subseteq E \ e \ \mu(E) = 0) \Rightarrow A \in \mathcal{M}.$$

Num espaço de medida (X, \mathcal{M}, μ) podem existir proposições, P(x), verdadeiras para todo $x \in X$. No entanto, pode também existir alguma proprosição, Q(x), que, não sendo verdadeira para todo o $x \in X$, pode ser verdadeira para

todo o $x \in X \setminus N$, em que $N \in \mathcal{M}$ é um conjunto de nula, ou seja, Q(x) é falsa apenas para um conjunto de elementos com medida nula. Neste caso é usual afirmar que Q(x) é válida em quase toda a parte do espaço X.

Definição 4.4. Sejam (X, \mathcal{M}, μ) um espaço de medida e $E \in \mathcal{M}$.

Uma proposição P(x) sobre todos os elementos $x \in X$ diz-se <u>válida quase por</u> toda a parte de E (q.t.p.) se existe $N \in \mathcal{M}$ tal que $N \subseteq E$, $\mu(N) = 0$ e

$$P(x)$$
 é verdadeira, $\forall x \in E \setminus N$.

Exemplo 4.3 Sejam (X, \mathcal{M}_X, μ) um espaço de medida e $f, g: X \to \overline{\mathbb{R}}$ duas funções mensuráveis.

As funções f e g são iguais q.t.p. em X se o conjunto dos objectos cujas imagens por f e por g são diferentes tem medida nula, ou seja

$$\mu(\lbrace x \in X : f(x) \neq g(x) \rbrace) = 0.$$

Note que, pelo Teorema 3.19, tem-se $\{x \in X : f(x) \neq g(x)\} \in \mathcal{M}_X$ porque $f \in g$ são funções mensuráveis.

A relação "f=g q.t.p. em X", denotada por $f\sim g$, é uma relação de equilavência no conjunto das funções mensuráveis de X em Y.

Teorema 4.3. Seja Sejam (X, \mathcal{M}, μ) um espaço de medida completo, $f: X \to \mathbb{R}$ (ou $f: X \to \overline{\mathbb{R}}$) uma função mensurável e $g: X \to \mathbb{R}$ (ou $g: X \to \overline{\mathbb{R}}$) uma função.

Se f = g q.t.p. em X, então g é uma função mensurável.

Demonstração. Pelo Teorema 3.13, é suficiente mostrar que $g^{-1}(]\alpha,\infty]) \in \mathcal{M}$ para todo $\alpha \in \mathbb{R}$.

Por hipótese f = g q.t.p. em X, logo existe $N \in \mathcal{M}$ tal que $\mu(N) = 0$ e f(x) = g(x) para todo $x \in X \setminus N$.

Seja $\alpha \in \mathbb{R}$. Tem-se

$$g^{-1}(]\alpha,\infty]) = (g^{-1}(]\alpha,\infty]) \setminus N) \cup (g^{-1}(]\alpha,\infty]) \cap N)$$
$$= (f^{-1}(]\alpha,\infty]) \setminus N) \cup (g^{-1}(]\alpha,\infty]) \cap N)$$

Por um lado, sendo f mensurável, então $f^{-1}(]\alpha,\infty]) \in \mathcal{M}$ e, sendo \mathcal{M} uma σ -álgebra, tem-se $(f^{-1}(]\alpha,\infty]) \setminus N) \in \mathcal{M}$. Por outro lado, sendo (X,\mathcal{M},μ) um espaço de medida completo e $N \in \mathcal{M}$ tal que $\mu(N) = 0$, então $(g^{-1}(]\alpha,\infty]) \cap N) \in \mathcal{M}$ porque $(g^{-1}(]\alpha,\infty]) \cap N) \subseteq N$.

Finalmente, sendo M uma σ -álgebra, conclui-se que $g^{-1}(]\alpha,\infty]) \in \mathcal{M}.$

No ponto 3. do Corolário 3.15, verificou-se que o limite pontual de uma sucessão de funções mensuráveis é uma função mensurável. No entanto, se a

convergência pontual de uma sucessão de funções mensuráveis for q.t.p., então não há a garantia que a função limite seja mensurável. Ou seja, se (X, \mathcal{M}, μ) é um espaço de medida, $(f_n)_{n\in\mathbb{N}}$ uma sucessão em $F(X,\mathbb{R})$ e $f\in F(X,\mathbb{R})$ tais que $f_n \stackrel{\mathrm{P}}{\longrightarrow} f$ q.t.p. em X, então f pode não ser mensurável. Formalmente, $f_n \stackrel{\mathrm{P}}{\longrightarrow} f$ q.t.p. em X significa que existe $N \in \mathcal{M}$ tal que $\mu(N) = 0$ e

$$\lim_{n} f_n(x) = f(x), \quad \forall x \in X \setminus N.$$

Exemplo 4.4 Considere o espaço de medida $(X, \mathcal{M}, \delta_4)$ apresentado no Exemplo 4.2, a sucessão de funções $(f_n)_{n\in\mathbb{N}}$ definida por

$$f_n: X \longrightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} 1, & x \in \{3, 4\} \\ (-1)^n, & x \in \{1, 2\} \end{cases}$$

e a função $f:X\to\mathbb{R}$ definida por

$$f(x) = \begin{cases} 1, & x \in \{2, 3, 4\} \\ -1, & x = 1 \end{cases}$$

Facilmente se verifica, usando o Teorema 3.13, que f não é mensurável e f_n é mensurável para todo $n \in \mathbb{N}$. Mais, considerando $N = \{1,2\} \in \mathcal{M}$ tem-se $\delta_4(N) = 0$ e

$$\lim_{x \to \infty} f_n(x) = 1 = f(x), \quad \forall x \in \{3, 4\} = X \setminus N.$$

Ou seja, $f_n \xrightarrow{p} f$ q.t.p. em X, com f_n todas mensuráveis, mas f não é mensurável.

O limite pontual q.t.p. de uma sucessão de funções mensuráveis é uma função mensurável sempre que no domínio das funções se considera um espaço de medida completo.

Teorema 4.4. Sejam (X, \mathcal{M}, μ) um espaço de medida completo, $(f_n)_{n \in \mathbb{N}}$ uma sucessão de funções de X em \mathbb{R} (ou em $\overline{\mathbb{R}}$) e f uma função de X em \mathbb{R} (ou em $\overline{\mathbb{R}}$).

$$Se f_n \xrightarrow{p} f q.t.p. \ em \ X, \ então \ f \ \'e \ mensur\'avel.$$

Demonstração. Sejam $(f_n)_{n\in\mathbb{N}}$ uma sucessão de funções de X em $\overline{\mathbb{R}}$ e f uma função de X em $\overline{\mathbb{R}}$ tais que

$$f_n \stackrel{\mathrm{p}}{\longrightarrow} f$$
 q.t.p. em X .

Por definição, existe $N \in \mathcal{M}$ tal que $\mu(N) = 0$ e

$$\lim_{n} f_n(x) = f(x), \quad \forall x \in X \setminus N.$$

Por um lado, considerando a função $g:X\to\overline{\mathbb{R}}$ definida por

$$g(x) = \left(\limsup_{n} f_n\right)(x),$$

e uma vez que as funções f_n são mensuráveis, o ponto 2. do Corolário 3.15 garante que g é mensurável. Por outro lado, o Teorema 1.4 garante que

$$f(x) = \left(\limsup_{n} f_n\right)(x), \quad \forall x \in X \setminus N.$$

Como $\mu(N)=0$, obtém-se que f=g q.t.p. em X e, sendo (X,\mathcal{M},μ) um espaço de medida completo, pelo Teorema 4.3 conclui-se que f é uma função mensurável.

4.3 Exercícios

1. Seja (X, \mathcal{M}) um espaço mensurável.

Mostre que são medidas:

- (a) a medida δ -Dirac apresentada em (4.3);
- (b) a medida de contagem apresentada em (4.4).

Capítulo 5

Integral de Lebesgue

Este capítulo é dedicado ao estudo do integral de Lebesgue e das sua propriedades mais gerais.

5.1 Integral de Lebesgue

Nesta secção intruduz-se o integral de Lebesgue de funções reais mensuráveis definidas num espaço de medida. Inicialmente define-se integral de uma função simples mensurável, depois o integral de uma função mensurável não negativa e por último de uma qualquer função mensurável com valores em $\overline{\mathbb{R}}$. Relembra-se que a σ -álgebra considerada no conjunto de chegada das funções reais (ou com imagens em $\overline{\mathbb{R}}$) é a σ -álgebra de Borel.

Definição 5.1. Sejam (X, \mathcal{M}, μ) um espaço de medida $es: X \to [0, \infty[$ uma função simples.

Por (1.4) e pelo Teorema 3.16, a função assume a forma

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i},$$

 $com \ \alpha_1, \ldots, \alpha_n \in [0, \infty[$ as imagens de s e $A_1, \ldots, A_n \in \mathcal{M}$, em que $A_i = s^{-1}(\{\alpha_i\})$, para $i = 1, \ldots, n$.

Para cada $E \in \mathcal{M}$, define-se

$$\int_{E} s \, d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E). \tag{5.1}$$

Para cada $E \in \mathcal{M}$ e cada $f: X \to [0, \infty]$ mensurável, define-se

$$\int_{E} f \, d\mu = \sup \left\{ \int_{E} s \, d\mu \, \middle| \, s : X \to [0, \infty[\text{ \'e funç\~ao simples mensur\'avel e } s \le f \right\} (5.2)$$

designando-se por integral de Lebesque de f em E relativo à medida μ .

Observe que, na definição de integral de Lebesgue de uma função simples e mensurável, (5.1), poderá estar presente a operação $0.\infty = 0$ definida em $\overline{\mathbb{R}}$. **Nota 5.1** Qualquer subconjunto não vazio de $\overline{\mathbb{R}}$ possui supremo. Consequentemente, num espaço de medida (X, \mathcal{M}, μ) , o integral de Lebesgue

$$\int_E f \, d\mu$$

existe sempre que $f:X\to [0,\infty]$ é mensurável e $E\subseteq X$ é um conjunto mensurável. Mais,

$$\int_E f \, d\mu \in [0, \infty].$$

Falta definir o integral de Lebesgue para funções reais mensuráveis com algumas das suas imagens negativas.

Definição 5.2. Sejam (X, \mathcal{M}, μ) um espaço de medida $E \in \mathcal{M}$ e $f : X \to \overline{\mathbb{R}}$ uma função mensurável.

Define-se integral de Lebesgue de f em E por

$$\int_{E} f \, d\mu = \int_{E} f^{+} \, d\mu - \int_{E} f^{-} \, d\mu,$$

 $\begin{array}{l} \textit{desde que} \; \min \left\{ \int_E f^+ \, d\mu, \int_E f^- \, d\mu \right\} < \infty, \; \textit{onde} \; f^+ \; e \; f^- \; \textit{s\~{a}o} \; \textit{respectivamente} \; a \\ \textit{parte positiva} \; e \; a \; \textit{parte negativa} \; \textit{da funç\~{a}o} \; f \; \textit{de acordo com a Definiç\~{a}o} \; 1.5. \end{array}$

Diz-se que f é uma função <u>integrável</u> à <u>Lebesgue</u>, ou simplesmente <u>integrável</u>, se

$$\int_X f \, d\mu \in \mathbb{R}.$$

Exemplo 5.1 Considere-se o espaço de medida de contagem $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$. Uma vez que se está perante a σ -álgebra grosseira, qualquer função $a: \mathbb{N} \to \mathbb{R}$ é mensurável. Ou seja, as sucessões reais são funções mensuráveis no espaço de medida aqui considerado. Para qualquer sucessão

$$a: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \mapsto a_n$

tem-se

$$a^{+}: \mathbb{N} \longrightarrow \mathbb{R}$$

$$n \mapsto a_{n}^{+} = \begin{cases} a_{n}, & a_{n} \geq 0 \\ 0, & a_{n} < 0 \end{cases}, \quad a_{n}^{-}: \mathbb{N} \longrightarrow \mathbb{R}$$

$$n \mapsto a_{n}^{-} = \begin{cases} 0, & a_{n} \geq 0 \\ -a_{n}, & a_{n} < 0 \end{cases}$$

e facilmente se obtém

$$\int_{\mathbb{N}} a^+ d\mu = \sup \left\{ \int_{\mathbb{N}} s \, d\mu \, \middle| \, s : \mathbb{N} \to [0, \infty[\text{ \'e funç\~ao simples e } s \le a^+ \right\}$$

$$= \sum_{n=1}^{\infty} a_n^+.$$

de forma análoga se tem $\int_{\mathbb{N}} a^- d\mu = \sum_{n=1}^{\infty} a_n^-$. Consequentemente, o integral de Lebesgue de a está definido se pelo menos uma das séries

$$\sum_{n=1}^{\infty} a_n^+ \quad e \quad \sum_{n=1}^{\infty} a_n^-$$

for convergente, tendo-se

$$\int_{\mathbb{N}} a \, d\mu = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^- = \sum_{n=1}^{\infty} a_n.$$

Finalmente, a função a é integrável à Lebesgue se e só se a série $\sum_{n=1}^{\infty} a_n$ for absolutamente convergente.

Segue-se a prova de algumas propriedades básicas do integral de Lebesgue.

Teorema 5.1. Sejam $(X\mathcal{M},\mu)$ espaço de medida e $f,g:X\to [0,\infty]$ duas funções mensuráveis. Então

1. Se
$$f \leq g$$
, então $\int_{E} f d\mu \leq \int_{E} g d\mu$, $\forall E \in \mathcal{M}$;

2. Se
$$A \subseteq B$$
, com $A, B \in \mathcal{M}$, então $\int_A f d\mu \leq \int_B f d\mu$;

3. Se
$$E \in \mathcal{M}$$
 e $f(x) = 0$, $\forall x \in E$, então $\int_E f d\mu = 0$;

4. Se
$$c \in [0, \infty[$$
, então $\int_E cf d\mu = c \int_E f d\mu$, $\forall E \in \mathcal{M}$;

5. Se
$$E \in \mathcal{M}$$
 tal que $\mu(E) = 0$, então $\int_{E} f d\mu = 0$;

6.
$$\forall E \in \mathcal{M}, \ \int_E f \, d\mu = \int_X \chi_E \cdot f \, d\mu.$$

Demonstração. Sejam $(X\mathcal{M},\mu)$ espaço de medida e $f,g:X\to [0,\infty]$ duas funções mensuráveis.

1. Seja $E \in \mathcal{M}$. Como $f \leq g$, então o conjunto $\left\{ \int_E s \, d\mu : s \text{ \'e simples mensur\'avel e } s \leq f \right\}$ é um subconjunto de $\left\{ \int_E s \, d\mu : s \text{ \'e simples, mensur\'avel e } s \leq g \right\}$, donde

$$\begin{split} \int_E f \, d\mu &= \sup \left\{ \int_E s \, d\mu : \, s \text{ \'e simples mensur\'avel e } s \leq f \right\} \\ &\leq \sup \left\{ \int_E s \, d\mu : \, s \text{ \'e simples mensur\'avel e } s \leq g \right\} \\ &= \int_E g \, d\mu. \end{split}$$

2. Sejam $A, B \in \mathcal{M}$ tais que $A \subseteq B$. Para qualquer função simples e mensurável $s = \sum_{i=1}^n \alpha_i \chi_{A_i}$, com $\alpha_1, \dots, \alpha_n \in [0, \infty[$ e $A_1, \dots, A_n \in \mathcal{M}$, da definição de integral (5.1) e das propriedades das medidas (ponto 2. do Teorema 4.1), conclui-se que

$$\int_A s \, d\mu = \sum_{i=1}^n \alpha_i \mu(A_i \cap A) \le \sum_{i=1}^n \alpha_i \mu(A_i \cap B) = \int_B s \, d\mu.$$

Consequentemente

$$\begin{split} \int_A f \, d\mu &= \sup \left\{ \int_A s \, d\mu : \, s \text{ \'e simples mensur\'avel e } s \leq f \right\} \\ &\leq \sup \left\{ \int_B s \, d\mu : \, s \text{ \'e simples mensur\'avel e } s \leq f \right\} \\ &= \int_B f \, d\mu. \end{split}$$

3. Seja $E \in \mathcal{M}$ tal que f(x) = 0 para todo $x \in E$. Verifique-se primeiro que, para qualquer função simples e mensurável, s, tal que s(x) = 0 para todo $x \in E$, se tem $\int_E s \, d\mu = 0$. Sendo s uma função simples nas condições apresentadas, então s assume a forma $s = \sum_{i=1}^n \alpha_i \chi_{A_i}$, com $\alpha_1, \ldots, \alpha_n \in [0, \infty[$ e $A_1, \ldots, A_n \in \mathcal{M}$ tais que $A_i = s^{-1}(\{\alpha_i\})$, $i = 1, \ldots, n$. Como s(x) = 0 para todo $x \in E$, então

$$E \subseteq s^{-1}(\{0\}) = \begin{cases} A_j, & \exists j \in \{1, \dots, n\} : \alpha_j = 0 \\ \emptyset, & 0 \notin \{1, \dots, n\} \end{cases},$$

donde $E \subseteq A_i$ caso $\alpha_i = 0$, e $E \cap A_i = \emptyset$ caso $\alpha_i \neq 0$. Consequentemente,

$$\int_{E} s \, d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E) = 0.$$

Finalmente, como f(x) = 0 para todo $x \in E$,

$$\begin{split} \int_E f \, d\mu &= \sup \left\{ \int_E s \, d\mu : \, s \text{ \'e simples mensur\'avel e } s \leq f \right\} \\ &= \sup \left\{ \int_E s \, d\mu : \, s \text{ \'e simples mensur\'avel tal que } s \leq f \text{ e } s(x) = 0, \forall x \in E \right\} \\ &= \sup \left\{ 0 \right\} \\ &= 0. \end{split}$$

4. Sejam $E \in \mathcal{M}$ e $c \in [0, \infty[$.

Para qualquer função simples e mensurável $s = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$, com $\alpha_1, \dots, \alpha_n \in [0, \infty[$ e $A_1, \dots, A_n \in \mathcal{M}$, da definição de integral (5.1), conclui-se que

$$c\int_E s \, d\mu = c\sum_{i=1}^n \alpha_i \mu(A_i \cap E) = \sum_{i=1}^n c\alpha_i \mu(A_i \cap E) = \int_E cs \, d\mu.$$

Se c = 0, então a situação é trivial pelo do ponto 3. acima.

Se c>0, então, tendo em conta que o produto de uma constante com uma função simples e mensurável é ainda uma função simples e mensurável, tem-se

$$c\int_{E} f \, d\mu = \sup \left\{ c\int_{E} s \, d\mu : s \text{ \'e simples mensur\'avel e } s \leq f \right\}$$

$$= \sup \left\{ \int_{E} cs \, d\mu : s \text{ \'e simples mensur\'avel e } s \leq f \right\}$$

$$= \sup \left\{ \int_{E} cs \, d\mu : s \text{ \'e simples mensur\'avel e } cs \leq cf \right\}$$

$$= \sup \left\{ \int_{E} q \, d\mu : s \text{ \'e simples mensur\'avel e } q \leq cf \right\}$$

$$= \int_{E} cf \, d\mu.$$

5. Seja $E \in \mathcal{M}$ tal que $\mu(E) = 0$. Verifique-se primeiro que, para qualquer função simples e mensurável, s, se tem $\int_E s \, d\mu = 0$. Seja $s: X \to [0, \infty[$ uma função simples e mensurável. Por um lado, a função s assume a forma $s = \sum_{i=1}^n \alpha_i \chi_{A_i}$, com $\alpha_1, \ldots, \alpha_n \in [0, \infty[$ e $A_1, \ldots, A_n \in \mathcal{M}$, donde

$$\int_{E} s \, d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E) \le \sum_{i=1}^{n} \alpha_{i} \mu(E) = \sum_{i=1}^{n} \alpha_{i} \cdot 0 = 0.$$
 (5.3)

Por outro lado $0 \leq s$ e, pelos pontos 1. e 3. acima, conclui-se que

$$0 = \int_{E} 0 \, d\mu \le \int_{E} s \, d\mu. \tag{5.4}$$

Por (5.3) e por (5.4) obtém-se $\int_E s \, d\mu = 0$.

Consequentemente,

$$\int_E f \, d\mu = \sup \left\{ \int_E s \, d\mu : s \text{ \'e simples mensur\'avel e } s \leq f \right\}$$

$$= \sup \left\{ 0 \right\}$$

$$= 0.$$

6. Seja $E \in \mathcal{M}$. Verifique-se primeiro que, para qualquer função simples e mensurável, s, se tem $\int_E s \, d\mu = \int_X \chi_E . s \, d\mu$. Seja $s: X \to [0, \infty[$ uma função simples e mensurável. A função s assume a forma $s = \sum_{i=1}^n \alpha_i \chi_{A_i}$, com $\alpha_1, \ldots, \alpha_n \in [0, \infty[$ e $A_1, \ldots, A_n \in \mathcal{M}$. Pela aritmética de funções, Definição 1.5, e pelo ponto 4. do Teorema 1.2, obtém-se

$$\chi_{\scriptscriptstyle E}.s = \chi_{\scriptscriptstyle E}.\left(\sum_{i=1}^n \alpha_i \chi_{\scriptscriptstyle A_i}\right) = \sum_{i=1}^n \alpha_i \chi_{\scriptscriptstyle E}.\chi_{\scriptscriptstyle A_i} = \sum_{i=1}^n \alpha_i \chi_{\scriptscriptstyle E\cap A_i},$$

ou seja, $\chi_E.s$ é também uma função simples e mensurável, logo

$$\int_X \chi_E . s \, d\mu = \sum_{i=1}^n \alpha_i \mu(E \cap A_i) = \sum_{i=1}^n \alpha_i \mu(A_i \cap E) = \int_E s \, d\mu.$$

Consequentemente,

$$\begin{split} \int_X \chi_E f \, d\mu &= \sup \left\{ \int_X s \, d\mu : \, s \text{ \'e simples mensur\'avel e } s \leq \chi_E f \right\} \\ &= \sup \left\{ \int_X s \, d\mu : \, s \text{ \'e simples mensur\'avel}, s \leq f, s(x) = 0 \, \forall x \in E \right\} \\ &= \sup \left\{ \int_X \chi_E s \, d\mu : \, s \text{ \'e simples mensur\'avel}, s \leq f \right\} \\ &= \sup \left\{ \int_E s \, d\mu : \, s \text{ \'e simples mensur\'avel e } s \leq f \right\} \\ &= \int_E f \, d\mu. \end{split}$$

Teorema 5.2. Sejam $(X\mathcal{M}, \mu)$ espaço de medida e $f, g: X \to \overline{\mathbb{R}}$ duas funções integráveis. Então

1. Se
$$f \leq g$$
, então $\int_{E} f d\mu \leq \int_{E} g d\mu$, $\forall E \in \mathcal{M}$;

2. Se
$$E \in \mathcal{M}$$
 e $f(x) = 0$, $\forall x \in E$, então $\int_{E} f d\mu = 0$;

3. Se
$$c \in \mathbb{R}$$
, então $\int_{E} cf d\mu = c \int_{E} f d\mu$, $\forall E \in \mathcal{M}$;

4. Se
$$E \in \mathcal{M}$$
 tal que $\mu(E) = 0$, então $\int_{E} f d\mu = 0$;

5.
$$\forall E \in \mathcal{M}, \ \int_E f \, d\mu = \int_X \chi_E \cdot f \, d\mu.$$

Demonstração. Sejam $f, g: X \to \overline{\mathbb{R}}$ funções integráveis.

1. Se $f \leq g$, então, pelo ponto 1. do Teorema 1.1, tem-se $f^+ \leq g^+$ e $g^- \leq f^-$. Consequentemente pelas propriedades descritas no Teorema 5.1, conclui-se que, para qualquer $E \in \mathcal{M}$,

$$\int_{E} f \, d\mu = \int_{E} f^{+} \, d\mu - \int_{E} f^{-} \, d\mu \le \int_{E} g^{+} \, d\mu - \int_{E} g^{-} \, d\mu = \int_{E} g \, d\mu.$$

2. Dado $E \in \mathcal{M}$ tal que f(x) = 0 para todo $x \in E$, tem-se, pelo ponto 3. do Teorema 5.1,

$$\int_{E} f \, d\mu = \int_{E} f^{+} \, d\mu - \int_{E} f^{-} \, d\mu = 0 - 0 = 0.$$

3. Sejam $E \in \mathcal{M}$ e $c \in \mathbb{R}$.

Se $c \in [0, \infty[$, então, pelo ponto 4. do Teorema 5.1, tem-se

$$c\int_{E} f d\mu = c\left(\int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu\right) = \int_{E} cf^{+} d\mu - \int_{E} cf^{-} d\mu$$
$$= \int_{E} cf d\mu.$$

No caso $c\in]-\infty,0[,$ prova-se primeiro que a função -f é integrável, tendo-se

$$\int_E -f \, d\mu = -\int_E f \, d\mu.$$

Pelo ponto 2. do Teorema 1.1 tem-se $(-f)^+ = f^-$ e $f^+ = (-f)^-$, logo

$$\int_{E} -f \, d\mu = \int_{E} (-f)^{+} \, d\mu - \int_{E} (-f)^{-} \, d\mu = \int_{E} f^{-} \, d\mu - \int_{E} f^{+} \, d\mu$$
$$= -\left(\int_{E} f^{+} \, d\mu - \int_{E} f^{-} \, d\mu\right) = -\int_{E} f \, d\mu,$$

donde -f é integrável.

Finalmente, sendo c < 0, então -c > 0, logo

$$c \int_{E} f \, d\mu = (-c) \left(-\int_{E} f \, d\mu \right) = (-c) \int_{E} -f \, d\mu = \int_{E} (-c)(-f) \, d\mu = \int_{E} cf \, d\mu.$$

4. Seja $E \in \mathcal{M}$ tal que $\mu(E) = 0$. Pelo ponto 5. do Teorema 5.1 tem-se

$$\int_{E} f \, d\mu = \int_{E} f^{+} \, d\mu - \int_{E} f^{-} \, d\mu = 0 - 0 = 0.$$

5. Seja $E \in \mathcal{M}$. Pelo ponto 6. do Teorema 5.1 e pelo ponto 6. do Teorema 1.2, obtém-se

$$\int_{E} f \, d\mu = \int_{E} f^{+} \, d\mu - \int_{E} f^{-} \, d\mu = \int_{X} \chi_{E} \cdot f^{+} \, d\mu - \int_{X} \chi_{E} \cdot f^{-} \, d\mu
= \int_{X} (\chi_{E} \cdot f)^{+} \, d\mu - \int_{X} (\chi_{E} \cdot f)^{-} \, d\mu
= \int_{X} \chi_{E} \cdot f \, d\mu.$$

Teorema 5.3. Seja (X, \mathcal{M}, μ) um espaço de medida e $f: X \to [0, \infty]$ uma função mensurável. Então

$$\left(\int_X f \, d\mu = 0\right) \Leftrightarrow (f = 0 \ q.t.p. \ em \ X).$$

Demonstração. Prove-se primeiro a condição necessária (\Leftarrow).

Assume-se que f=0 q.t.p. em X, ou seja $\mu\big(\{x\in X: f(x)\neq 0\}\big)=0.$ Denote-se

$$N = \{ x \in X : f(x) \neq 0 \}.$$

Seja $s:X\to [0,\infty[$ uma função simples e mensurável tal que $0\leq s\leq f$ e escreva-se s na forma

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i},$$

com $A_i=s^{-1}(\alpha_i),\ i=1,\ldots,n$. Para cada $i\in\{1,\ldots,n\}$ tal que $\alpha_i\neq 0$, a condição $0\leq s\leq f$ implica que $A_i\subseteq N$, donde $\mu(A_i)=0$. Com efeito, se $x\in A_i$, então

$$0 < \alpha_i = s(x) \le f(x),$$

logo $f(x) \neq 0$, donde $x \in N$. Como $\mu(N) = 0$, pelas propriedades das medidas, pnto 2. do Teorema 4.1, obtém-se $0 \leq \mu(A_i) \leq \mu(N) = 0$.

Consequentemente

$$\int_X s \, d\mu = \sum_{i=1}^n \alpha_i \mu(A_i) = 0,$$

logo, por definição de integral, tem-se

$$\int_X f\,d\mu = \sup\left\{\int_X s\,d\mu \middle| s:X\to [0,\infty[\text{ \'e funç\~ao simples mensur\'avel e } s\le f\right\}$$
 = 0.

Prove-se agora a condição suficiente (\Rightarrow) .

Suponha-se que $\int_X f d\mu = 0$. Pelo Teorema 3.17, existe uma sucessão crescente $(s_n)_{n \in \mathbb{N}}$ de funções simples mensuráveis não negativas tal que $s_n \stackrel{\mathrm{p}}{\longrightarrow} f$. Assim $0 \leq s_n \leq f$, para todo $n \in \mathbb{N}$, logo

$$0 \le \int_X s_n \, d\mu \le \int_X f \, d\mu = 0, \quad \forall n \in \mathbb{N},$$

pelo ponto 1. do Teorema 5.2, e consequentemente

$$\int_X s_n \, d\mu = 0 \quad \forall n \in \mathbb{N}.$$

Escrevendo cada uma das funções simples s_n como em (1.4),

$$s_n = \sum_{i=1}^{m_n} \alpha_i^{(n)} \chi_{A_i^{(n)}},$$

da definição de integral de uma função simples e mensurável, tem-se

$$0 = \int_x s_n d\mu = \sum_{i=1}^{m_n} \alpha_i^{(n)} \mu(A_i^{(n)}) \quad \forall n \in \mathbb{N},$$

logo,

$$\mu\left(\bigcup_{i\in I_n} A_i^{(n)}\right) = 0, \quad \forall n \in \mathbb{N},$$

$$(5.5)$$

onde $I_n = \{i \in \{1, \dots, m_n\} : \alpha_i^{(n)} \neq 0\}$, para todo $n \in \mathbb{N}$.

Defina-se

$$\mathcal{U} = \bigcup_{n \in \mathbb{N}} \left(\bigcup_{i \in I_n} A_i^{(n)} \right).$$

Por um lado, por (5.5) e pelo Teorema 4.2 tem-se $\mu(\mathcal{U}) = 0$.

Por outro lado, dado $x_0 \in X$ tal que $f(x_0) \neq 0$, e uma vez que $\lim_n s(x_0) = f(x_0) > 0$, então existe $n_0 \in \mathbb{N}$ tal que $s_{n_0}(x_0) > 0$, donde $x_0 \in A_i^{(n_0)}$, para algum $i \in I_{n_0}$. e consequentemente $x_0 \in \mathcal{U}$.

Assim sendo

$$\{x \in X : f(x) \neq 0\} \subseteq \mathcal{U}$$

e
$$\mu(\mathcal{U}) = 0$$
, ou seja $f = 0$ q.t.p. em X .

À semelhança do que acontece com o integral de Riemann, espera-se também a linearidade do integral de Lebesgue no conjunto das funções integráveis à Lebesgue com domínio num dado espaço mensurável (X, \mathcal{M}) . Tendo em conta o ponto 3 do Teorema 5.2 falta verificar que a soma de funções integrais é integrável tendo-se que o integral da soma é igual à soma dos integrais. Acontece que esta propriedade não é de verificação imediata, pelo que se apresentam alguns resultados prévios, nomeadamente do Teorema da convergência monótona de Lebesgue que é apresentado na secção 5.2. Os restantes resultados desta secção demonstram a propriedade referida para funções simples e mensuráveis não negativas.

Teorema 5.4. Seja (X, \mathcal{M}, μ) um espaço de medida.

Se $s: X \to [0, \infty[$ é uma função simples e mensurável, então

$$\begin{array}{cccc} \varphi: & \mathcal{M} & \longrightarrow & [0,\infty] \\ & E & \mapsto & \int_E s \, d\mu \end{array}$$

 \acute{e} uma medida em (X, \mathcal{M}) .

Demonstração. Sendo $s: X \to [0, \infty[$ uma função simples e mensurável, então, por (1.4) e pelo Teorema 3.16, s assume a forma

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i},$$

com $A_i = s^{-1}(\{\alpha_i\}) \in \mathcal{M}$, para cada $i = 1, \dots, n$.

Por um lado, pelo axioma (a) da definição de medida, Definição 4.1 e por (5.1), tem-se

$$\varphi(\emptyset) = \int_{\emptyset} s \, d\mu = \sum_{i=1}^{n} \alpha_i \mu(\emptyset \cap A_i) = \sum_{i=1}^{n} \mu(\emptyset) = 0,$$

o que demonstra que φ satisfaz o axioma (a) da definição de medida.

Por outro lado, sendo $(E_r)_{r\in\mathbb{N}}$ uma sucessão em \mathcal{M} tal que $E_i\cap E_j=\emptyset$, para $i\neq j$, pelo axioma (b) da definição de medida, Definição 4.1, tem-se

$$\varphi\left(\bigcup_{r=1}^{\infty} E_r\right) = \int_{\bigcup_{r=1}^{\infty} E_r} s \, d\mu = \sum_{i=1}^{n} \alpha_i \mu\left(\left(\bigcup_{r=1}^{\infty} E_r\right) \cap A_i\right)$$

$$= \sum_{i=1}^{n} \alpha_i \mu\left(\bigcup_{r=1}^{\infty} (E_r \cap A_i)\right) = \sum_{i=1}^{n} \alpha_i \left(\sum_{r=1}^{\infty} \mu(E_r \cap A_i)\right)$$

$$= \sum_{r=1}^{\infty} \left(\sum_{i=1}^{n} \alpha_i \mu(E_r \cap A_i)\right) = \sum_{r=1}^{\infty} \int_{E_r} s \, d\mu = \sum_{r=1}^{\infty} \varphi(E_r),$$

e consequentemente φ satisfaz o axioma (b) da definição de medida.

Conclusão, a função φ é uma medida em (X, \mathcal{M}) .

Teorema 5.5. Sejam (X, \mathcal{M}, μ) um espaço de medida e $s, t : X \to [0, \infty[$ duas funções simples mensuráveis.

 $Ent\~ao\ s+t\ \'e\ uma\ funç\~ao\ simples\ mensur\'avel\ e$

$$\int_X (s+t) d\mu = \int_X s d\mu + \int_X t d\mu.$$

Demonstração. Sendo $s, t: X \to [0, \infty[$ duas funções simples e mensuráveis, por (1.4) e pelo Teorema 3.16, s e t assumem a forma

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i} \quad \text{ e } \quad t = \sum_{j=1}^{m} \beta_j \chi_{B_j},$$

com $A_i = s^{-1}(\{\alpha_i\}) \in \mathcal{M}, i = 1, ..., n, e B_j = t^{-1}(\{\beta_j\}) \in \mathcal{M}, j = 1, ..., m.$ Observe que

$$\bigcup_{i=1}^{n} A_{i} = X = \bigcup_{j=1}^{m} B_{j}, \ A_{i} \cap A_{i^{*}} = \emptyset \text{ caso } i \neq i^{*}, \text{ e } B_{j} \cap B_{j^{*}} = \emptyset \text{ caso } j \neq j^{*}. (5.6)$$

A soma de funções mensuráveis é ainda uma função mensurável, Corolário 3.15, logo a função s+t é também uma função mensurável. Mais, s+t é também uma função simples, pois, dado $x \in X$, existem $i \in \{1, ..., n\}$ e $j \in \{1, ..., m\}$ tais que $x \in A_i$ e $x \in B_j$, donde

$$(s+t)(x) = s(x) + t(x) = \alpha_i + \beta_i$$

e consequentemente

$$s + t = \sum_{i=1}^{n} \sum_{j=1}^{m} (\alpha_i + \beta_j) \chi_{A_i \cap B_j}.$$
 (5.7)

Denota-se $I=\{1,\dots,n\},\,J=\{1,\dots,m\}$ e define-se, para cada $(i,j)\in I\times J,$ o conjunto

$$E_{ij} = A_i \cap B_j$$
.

Pelas propriedades dos conjuntos $(A_i)_{i\in I}$ e $(B_j)_{j\in J}$, (5.6), facilmente se verifica que

$$X = \bigcup_{(i,j)\in I\times J} E_{ij}, \quad A_i = \bigcup_{j=1}^m E_{ij}, \,\forall i\in I, \quad B_j = \bigcup_{i=1}^n E_{ij}, \,\forall j\in J$$
 (5.8)

e

$$E_{ij} \cap E_{i^*j^*} = \emptyset, \quad \text{se} \quad (i,j) \neq (i^*,j^*).$$
 (5.9)

Dado $(i^*, j^*) \in I \times J$, por (5.7) e (5.9), tem-se

$$\int_{E_{i^*j^*}} (s+t) d\mu = \sum_{i=1}^n \sum_{j=1}^m (\alpha_i + \beta_j) \mu(E_{ij} \cap E_{i^*j^*}) = (\alpha_{i^*} + \beta_{j^*}) \mu(E_{i^*j^*})$$

$$= \alpha_{i^*} \mu(E_{i^*j^*}) + \beta_{j^*} \mu(E_{i^*j^*}),$$

donde se verifica que

$$\int_{E_{ij}} (s+t) d\mu = \alpha_i \mu(E_{ij}) + \beta_j \mu(E_{ij}), \ \forall (i,j) \in I \times J.$$
 (5.10)

Pelo Teorema 5.4, $\varphi(E) = \int_E (s+t) d\mu$, para cada $E \in \mathcal{M}$, é uma medida em (X, \mathcal{M}) . Pela definição de integral de funções simples mensuráveis, pelos axiomas de medida e por (5.8), (5.9), (5.10), obtém-se

$$\int_{X} (s+t) d\mu = \int_{\bigcup_{(i,j)\in I\times J} E_{ij}} (s+t) d\mu = \sum_{i=1}^{n} \sum_{j=1}^{m} \int_{E_{ij}} (s+t) d\mu
= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \mu(E_{ij}) + \sum_{i=1}^{n} \sum_{j=1}^{m} \beta_{j} \mu(E_{ij})
= \sum_{i=1}^{n} \alpha_{i} \sum_{j=1}^{m} \mu(E_{ij}) + \sum_{j=1}^{m} \beta_{j} \sum_{i=1}^{n} \mu(E_{ij})
= \sum_{i=1}^{n} \alpha_{i} \mu(A_{i}) + \sum_{j=1}^{m} \beta_{j} \mu(B_{j})
= \int_{X} s d\mu + \int_{X} t d\mu.$$

5.2 Teoremas de Convergência

Teorema 5.6. [Teorema da Convergência monótona de Lebesgue]

Sejam (X, \mathcal{M}, μ) um espaço de medida, $(f_n)_{n \in \mathbb{N}}$ uma sucessão de funções mensuráveis de X em $[0, \infty]$ e $f: X \to [0, \infty]$ tais que:

(a)
$$0 \le f_1(x) \le f_2(x) \le \cdots \le \infty, \forall x \in X$$
;

(b)
$$f_n \xrightarrow{p} f$$
.

Então f é uma função mensurável e

$$\lim_{n} \int_{X} f_n \, d\mu = \int_{X} f \, d\mu.$$

Demonstração. Sendo f o limite pontual de uma sucessão de funções mensuráveis, o ponto 3. do Corolário 3.15 garante que f é uma função mensurável.

Pela hipótese (a) e pelo ponto 1. do Teorema 5.1, conclui-se que a sucessão em $\overline{\mathbb{R}}$, $(u_n)_{n\in\mathbb{N}}$, definida por

$$u_n = \int_X f_n \, d\mu, \quad \forall n \in \mathbb{N}$$

é crescente e não negativa. Em $\overline{\mathbb{R}}$ toda a sucessão monótona é convergente, logo existe $\alpha \in [0, \infty]$ tal que

$$\lim_{n} \int_{X} f_n \, d\mu = \alpha. \tag{5.11}$$

Mais, como $f_n \leq f$ para todo $n \in \mathbb{N}$, então, novamente pelo ponto 1. do Teorema 5.1, $\int_X f_n d\mu \leq \int_X f d\mu$, para todo $n \in \mathbb{N}$, donde

$$\alpha \le \int_X f \, d\mu. \tag{5.12}$$

Falta demonstrar que $\alpha \geq \int_X f d\mu$.

Sejam $c \in]0,1[$ e $s:X \to [0,\infty[$ uma função simples e mensurável tal que $0 \le s \le f$. Defina-se a sucessão de subconjuntos de X, $(E_n)_{n \in \mathbb{N}}$, por

$$E_n = \{ x \in X : f_n(x) \ge cs(x) \} = (f_n - cs)^{-1}([0, \infty]), \quad \forall n \in \mathbb{N}.$$
 (5.13)

A sucessão $(E_n)_{n\in\mathbb{N}}$ possui as seguintes propriedades:

- 1. $(E_n)_{n\in\mathbb{N}}$ é uma sucessão em \mathcal{M} ;
- 2. $E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$;

$$3. X = \bigcup_{n=1}^{\infty} E_n.$$

O ponto 1. verifica-se porque cada E_n é a imagem recíproca de um conjunto fechado, $[0,\infty]$, por uma função mensurável, $f_n-c.s.$ O ponto 2. verifica-se por a sucessão de funções $(f_n)_{n\in\mathbb{N}}$ é crescente. O ponto 3. verifica-se pelo seguinte: Seja $x\in X$.

Se f(x) = 0, então s(x) = 0, logo $f_1(x) \ge 0 = cs(x)$, donde $x \in E_1$;

Se $f(x) \neq 0$, então f(x) > 0, donde f(x) > cs(x) porque $s \leq f$ e $c \in]0,1[$. Como $(f_n)_{n \in \mathbb{N}}$ é crescente e $f_n \stackrel{\mathrm{P}}{\longrightarrow} f$, logo existe $n \in \mathbb{N}$ tal que $f_n(x) \geq cs(x)$, donde se conclui que $x \in E_n$. Consequentemente $X = \bigcup_{n=1}^{\infty} E_n$.

Dos pontos 1., 2. e 4. do Teorema 5.1 e da definição dos conjuntos E_n , (5.13), obtém-se

$$\int_{X} f_n \, d\mu \ge \int_{E_n} f_n \, d\mu \ge \int_{E_n} c.s \, d\mu = c \int_{E_n} s \, d\mu. \tag{5.14}$$

Pelo Teorema 5.4, a função $\varphi(E) = \int_E s \, d\mu$ definida em \mathcal{M} , é uma medida. Uma vez que a sucessão $(E_n)_{n \in \mathbb{N}}$ verifica os pontos 1. 2. e 3. acima, das propriedades das medidas (ver ponto 4. do Teorema 4.1) tem-se

$$\lim_{n} \int_{E_n} s \, d\mu = \int_X s \, d\mu.$$

Consequentemente, de (5.11) e da desigualdade (5.14) tem-se

$$\alpha = \lim_{n} \int_{X} f \, d\mu \ge \lim_{n} c \int_{E_{n}} s \, d\mu = c \int_{X} s \, d\mu.$$

Como $c \in]0,1[$ é arbitrário, conclui-se que

$$\alpha \ge \int_X s \, d\mu. \tag{5.15}$$

Viu-se assim que, para qualquer $s:X\to [0,\infty[$ função simples e mensurável tal que $0\le s\le f$ se tem (5.15). Pela Definição de integral de Lebesgue, (5.2), conclui-se que

$$\alpha \ge \int_X f \, d\mu \tag{5.16}$$

e o resultado sai por (5.11), (5.12) e por (5.16).

O teorema acabado de apresentar estabelece condições que permitem concluir que o limite comuta com o integral. O teorema que se segue afirma que o sumatório também comuta com o integral.

Teorema 5.7. Sejam (X, \mathcal{M}, μ) um espaço de medida e $(f_n)_{n \in \mathbb{N}}$ uma sucessão de funções mensuráveis de X em $[0, \infty]$.

 $Ent\tilde{a}o$

$$\int_{X} \left(\sum_{n=1}^{\infty} f_n \right) d\mu = \sum_{n=1}^{\infty} \left(\int_{X} f_n d\mu \right).$$

Demonstração. Sendo $(f_n)_{n\in\mathbb{N}}$ uma sucessão de funções não negativas, então está bem definida a função

$$f: X \longrightarrow \overline{\mathbb{R}}$$

$$x \mapsto \sum_{n=1}^{\infty} f_n(x) .$$

Mais, como a funções f_n são mensuráveis, o ponto 3. do Corolário 3.15 permite concluir que f é também uma função mensurável.

Por um lado, considerando a sucessão das somas parciais $(g_m)_{m\in\mathbb{N}}$,

$$g_m = f_1 + f_2 + \dots + f_m, \quad m \in \mathbb{N},$$

tem-se que $(g_m)_{m\in\mathbb{N}}$ é uma sucessão de funções mensuráveis não negativas e crescente tal que $g_m \stackrel{P}{\longrightarrow} f$. Pelo Teorema da convergência monótona de Lebesgue, Teorema 5.6, conclui-se que

$$\lim_{m} \int_{X} g_{m} d\mu = \int_{X} f d\mu = \int_{X} \left(\sum_{n=1}^{\infty} f_{n} \right) d\mu.$$
 (5.17)

Por outro lado, o Teorema 3.17 garante que existem sucessões crescentes de funções simples mensuráveis não negativas, $(s_i^{(1)})_{i\in\mathbb{N}}, (s_i^{(2)})_{i\in\mathbb{N}}, \cdots, (s_i^{(m)})_{i\in\mathbb{N}}, \cdots$, tais que, para todo $m \in \mathbb{N}$, $s_i^{(m)} \xrightarrow{p} f_m$ quando $i \to \infty$. Consequentemente, para qualquer $m \in \mathbb{N}$, tem-se

$$\left(s_i^{(1)} + s_i^{(2)} + \dots + s_i^{(m)}\right) \xrightarrow{p} \left(f_1 + f_2 + \dots + f_m\right) = g_m, \text{ quando } i \to \infty.$$

Desta forma, fixando $m \in \mathbb{N}$, tem-se que a sucessão de funções, $(S_i^{(m)})_{i \in \mathbb{N}}$, definida por

$$S_i^{(m)} = \sum_{i=1}^m s_i^{(j)},$$

é crescente, composta por funões mensuráveis não negativas, e pontualmente convergente para g_m . Mais uma vez o Teorema da convergêncio monótona de Lebesgue, Teorema 5.6, garante que

$$\lim_{i} \int_{X} \left(s_i^{(1)} + s_i^{(2)} + \dots + s_i^{(m)} \right) d\mu = \int_{X} g_m d\mu. \tag{5.18}$$

Mas, pelo Teorema 5.5 e pelo Teorema da Convergência monótona de Lebesgue aplicado a cada uma das sucessões $(s_i^{(1)})_{i\in\mathbb{N}}, \dots, (s_i^{(m)})_{i\in\mathbb{N}}$, tem-se

$$\lim_{i} \int_{X} \left(s_{i}^{(1)} + \dots + s_{i}^{(m)} \right) d\mu = \lim_{i} \left(\int_{X} s_{i}^{(1)} d\mu + \dots + \int_{X} s_{i}^{(m)} d\mu \right)$$

$$= \lim_{i} \int_{X} s_{i}^{(1)} d\mu + \dots + \lim_{i} \int_{X} s_{i}^{(m)} d\mu$$

$$= \int_{X} f_{1} d\mu + \dots + \int_{X} f_{m} d\mu$$

$$= \sum_{n=1}^{m} \int_{X} f_{n} d\mu,$$

ou seja

$$\lim_{i} \int_{X} \left(s_{i}^{(1)} + s_{i}^{(2)} + \dots + s_{i}^{(m)} \right) d\mu = \sum_{n=1}^{m} \int_{X} f_{n} d\mu.$$
 (5.19)

Por (5.18) e por (5.19) tem-se

$$\int_{X} g_{m} d\mu = \sum_{i=n}^{m} \int_{X} f_{n} d\mu, \quad \forall m \in \mathbb{N},$$

donde se conclui que

$$\lim_{m} \int_{X} g_{m} d\mu = \sum_{n=1}^{\infty} \int_{X} f_{n} d\mu.$$
 (5.20)

Finalmente, o resultado é consequência imediata de (5.17) e de (5.20).

Nota 5.2 Como consequência imediata do Teorema 5.7, obtém-se que em qualquer espaço de medida (X, \mathcal{M}, μ) é válida a igualdade

$$\int_{X} (f+g)d\mu = \int_{X} f \, d\mu + \int_{X} g \, d\mu, \tag{5.21}$$

para quaisquer $f,g:X\to [0,\infty]$ funções mensuráveis.

Para funções mensuráveis $f,g:X\to\mathbb{R}$ a igualdade (5.21) não é nesessáriamnete válida. Mesmo para funções simples. Por exemplo, considerando o espaço de medida de contagem $(\mathbb{N},\mathcal{P}(\mathbb{N}),\mu)$, e as funções simples mensuráveis, $s,t:\mathbb{N}\to\mathbb{R}$, definidas respectivamente por s(n)=1 e t(n)=-1, para todo $n\in\mathbb{N}$. Temse $\int_{\mathbb{N}}(s+t)\,d\mu=0.\mu(\mathbb{N})=0.\infty=0$, mas $\int_{\mathbb{N}}s\,d\mu=1.\mu(\mathbb{N})=\infty$ e $\int_{\mathbb{N}}t\,d\mu=-1\mu(\mathbb{N})=-\infty$, donde não está definida a soma dos integrais.

Como consequência da condição (5.21), tem-se o resultado que se segue.

Teorema 5.8. Sejam (X, \mathcal{M}, μ) um espaço de medida e $f: X \to \overline{\mathbb{R}}$ uma função mensurável.

A função f é integrável se e só se a função |f| é integrável.

Demonstração. Suponha-se que f é integrável. Consequentemente $\int_X f^+ d\mu$, $\in [0, \infty[$ e $\int_X f^- d\mu \in [0, \infty[$, donde, por (5.21),

$$\int_X |f| \, d\mu = \int_X (f^+ + f^-) \, d\mu = \int_X f^+ \, d\mu + \int_X f^- \, d\mu \in [0, \infty[,$$

ou seja, |f| é integrável.

Suponha-se que |f| é integrável. Como $f^+ \leq |f|$ e $f^- \leq |f|$, pelo ponto 1. do Teorema 5.1, tem-se

$$0 \le \int_X f^+ d\mu \le \int_X |f| d\mu \in [0, \infty[$$

e

$$0 \le \int_X f^- d\mu \le \int_X |f| d\mu \in [0, \infty[.$$

Consequentemente f é integrável.

A condição (5.21) é válida para funções integráveis f, g com imagens reais.

Teorema 5.9. Seja (X, \mathcal{M}, μ) um espaço de medida.

Se $f,g:X\to\overline{\mathbb{R}}$ são funções integráveis, então f+g é uma função integrável, tendo-se

$$\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu.$$

Demonstração. Sejam $f, g: X \to \overline{\mathbb{R}}$ funçoes integráveis.

Defina-se a função h como sendo a função soma, h=f+g. Pelo Teorema 5.8, cada uma das funções |f| e |g| é integrável e, por (5.21), obtém-se

$$\int_X |h| \, d\mu \leq \int_X (|f| + |g|) \, d\mu \leq \left(\int_X |f| \, d\mu + \int_X |g| \, d\mu \right) \in [0, \infty[,$$

donde se conclui que h é uma função integrável.

Pelo ponto 3. do Teorema 1.1, obtém-se

$$h^+ - h^- = f^+ - f^- + g^+ - g^- \Leftrightarrow h^+ + f^- + g^- = f^+ + g^+ + h^-$$

com $h^+, h^-, f^+, f^-, g^+, g^-: X \to [0, \infty]$. Consequentemente, por (5.21),

$$\int_X h^+ d\mu + \int_X f^- d\mu + \int_X g^- d\mu = \int_X f^+ d\mu + \int_X g^+ d\mu + \int_X h^- d\mu,$$

com cada um dos integrais finito. Desta forma obtém-se

$$\int_X h^+ d\mu - \int_X h^- d\mu = \int_X f^+ d\mu - \int_X f^- d\mu + \int_X g^+ d\mu - \int_X g^- d\mu,$$
isto é
$$\int_X h d\mu = \int_X f d\mu + \int_X g d\mu.$$

O ponto 3. do Teorema 5.2 e o Teorema 5.9 motivam a definição que se segue.

Definição 5.3. Seja (X, \mathcal{M}, μ) um espaço de medida.

Define-se

$$\mathcal{L}^{1}(\mu) = \{ f : X \to \overline{\mathbb{R}} | f \text{ \'e integr\'avel} \}.$$

Teorema 5.10. Seja (X, \mathcal{M}, μ) um espaço de medida. Então o terno $(\mathcal{L}^1(\mu), +, .)$ é um espaço vectorial real.

Demonstração. Proposta de exercício.

Bibliografia

- [1] A.A. Breda & J.N. Costa, Cálculo com funções de várias variáveis, McGraw-Hill 1996.
- [2] D.L. Cohn, $Measure\ Theory,\ 2^{\underline{a}}$ Edição, Bir Khäuser 2013.
- [3] P.J. Fernandez, Medida e Integração, 2ª Edição, Projeto Euclides 2002.
- [4] A.N. Kolmogorov & S.V. Fomin, Introductory Real Analysis, Dover 1975.
- [5] A.N. Kolmogorov & S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover 1999.
- [6] E.L. Lima, Curso de Análise, Vol. 1, Projeto Euclides 1992.
- [7] W. Rudin, *Principles of Mathematical Analysis*, 3^a Edição, McGraw-Hill 1976.
- [8] W. Rudin, Real and Complex Analysis, 3ª Edição, McGraw-Hill 1987.