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Notation

• n ∈ N, x ∈ Rn,

|x|∞ = max {|xi| : i ∈ {1, . . . , n}} ;

• τ ∈ R+, Cn := C([−τ,0];Rn)

‖ϕ‖= sup
θ∈[−τ,0]

|ϕ(θ)|∞;

• FDE in Cn

ẋ(t) = f(t, xt)

xt(θ) = x(t + θ), θ ∈ [−τ,0]

• N(1, n) := {1, . . . , n};

• A = [aij] ∈ Rn×n is a non-singular M-

matrix if aij ≤ 0, i 6= j and Re σ(A) > 0.
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Neural Network Models

Hopfield with delays

ẋi(t) = −bixi(t) +

n∑
j=1

cijfj(xj(t)) +

n∑
j=1

aijfj(xj(t− τij)) + Ji, (1)

i ∈ N(1, n)

Cohen-Grossberg with delays

ẋi(t) = −ki(xi(t))

[
bi(xi(t))−

n∑
j=1

P∑
p=1

a(p)
ij fj(xj(t− τ (p)

ij )) + Ji

]
, (2)

i ∈ N(1, n)

Bidirectional associative memory with delays




ẋi(t) = −xi(t) + ciigi(xi(t− dii)) +

n∑
j=1

aijfj(yj(t− τij)) + Ii

ẏi(t) = −yi(t) + liifi(yi(t−mii)) +

n∑
j=1

bijgj(xj(t− σij)) + Ji

(3)

i ∈ N(1, n).

Static model with S-type distributed delays

ẋi(t) = −bixi(t) + fi

(
n∑

j=1

ωij

∫ 0

−τ

xj(t + θ)dηij(θ) + Ji

)
(4)

i ∈ N(1, n)

General situation

ẋi(t) = −ki(xi(t)) [bi(xi(t)) + fi(xt)] , i = 1, . . . , n
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ẋi(t) = −ki(xi(t)) [bi(xi(t)) + fi(xt)] , (5)

ki : R→ (0,+∞) continuous,

(A1) ∃βi > 0, ∀u, v ∈ R, u 6= v:

(bi(u)− bi(v))/(u− v) ≥ βi;

[In particular, for bi(u) = βiu.]

(A2) fi : Cn → R are Lipschitz functions with
Lipschitz constants li.

ẋi(t) = −ki(xi(t))


bi(xi(t)) +

n∑

j=1

fij(xj,t)


 (6)

ẋi(t) = −ki(xi(t))

[
bi(xi(t)) + fi

(
n∑

j=1

ωij

∫ 0

−τ

xi(t + θ)dηij(θ)

)]
(7)

Main Objective

To obtain sufficient conditions for the exis-
tence and global asymptotic stability of the
equilibrium point of neural network models
written in the form (5).
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1. Main Result

We consider the functional differential sys-

tem in general form

ẋi(t) = fi(xt), t ≥ 0, (8)

i ∈ N(1, n) = {1, . . . , n},
Cn := C([−τ,0];Rn), xt(θ) = x(t + θ)

fi : Cn → R are continuous.

Hypotheses:

(H1) fi bounded on bounded sets of Cn;

(H2) ∀ϕ ∈ Cn, ∀i ∈ N(1, n),

‖ϕ‖ = |ϕ(0)|∞ = |ϕi(0)| > 0 ⇒ ϕi(0)fi(ϕ) < 0.

(H2)⇒ x ≡ 0 is the unique equilibrium

Theorem 1

Assume (H1) and (H2)

Then x ≡ 0 is globally asymptotically stable.
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Proof (idea)
Let x(t) be a solution of (8)

•(H1)+(H2)⇒ x(t) defined and bounded on
[−τ,+∞)

−vi = lim inf
t→+∞

xi(t), ui = limsup
t→+∞

xi(t)

v = max
i
{vi}, u = max

i
{ui},

u, v ∈ R, −v ≤ u.
We have to show max(u, v) = 0.
We suppose |v| ≤ u (|u| ≤ v is similar).
Let i ∈ N(1, n) such that ui = u.

ε > 0,∃T > 0 : ‖xt‖ < u + ε, t ≥ T

•We can show that exists (tk)k∈N such that

tk ↗ +∞, xi(tk) → u, and fi(xtk) → 0

•(H1)+(H2) ⇒ ẋ(t) is bounded ⇒ {xtk} is
bounded and equicontinuous ⇒ ∃ϕ ∈ Cn

xtk → ϕ on Cn

with ‖ϕ‖ ≤ u, ϕi(0) = u and fi(ϕ) = 0

(H2) ⇒ u = 0.¤
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2. General Neural Network

ẋi(t) = −ki(xi(t)) [bi(xi(t)) + fi(xt)] , (9)

Theorem 2
Assume (A1), (A2), and ki : R → (0,+∞)
continuous.
If βi > li,∀i, then (9) has an equilibrium point
x∗ ∈ Rn, which is globally asymptotically sta-
ble.

Proof (idea)
•Existence of equilibrium point

H : Rn → Rn

x 7→ (b1(x1) + f1(x), . . . , bn(xn) + fn(x))

is a homeomorphism.
Then there exists x∗ ∈ Rn, H(x∗) = 0, i.e. x∗
is an equilibrium.

•By translation, we may suppose x∗ = 0,
bi(0) + fi(0) = 0, ∀i.

• βi > li, ∀i ⇒(H1) and (H2)

From Theorem 1, we have the result.¤
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3. Cohen Grossberg Model

ẋi(t) = −ki(xi(t))


bi(xi(t)) +

n∑

j=1

fij(xj,t)


 (10)

• ki : R→ (0,+∞) continuous

• Assume (A1)

• fij : C1 → R Lipchitz with Lipchitz constant

lij

B = diag(β1, . . . , βn), A = [lij], N = B −A

Theorem 3

If N is a non-singular M-matrix, then there

is an equilibrium of (10), which is globally

asymptotically stable.

Proof (idea)

• N non-singular M-matrix ⇒
Exists d = (d1, . . . , dn) > 0 such that Nd > 0,

βidi −
n∑

j=1

lijdj > 0, ∀i ∈ N(1, n). (11)

• The change of variables

yi(t) = d−1
i xi(t)
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transform (10) into

ẏi(t) = −k̄i(yi(t))[̄bi(yi(t)) + f̄i(yt)],

f̄i(ϕ) = d−1
i

n∑

j=1

fij(djϕj), ϕ ∈ Cn

b̄i(u) = d−1
i bi(diu), k̄i = ki(diu), u ∈ R

• f̄i satisfies (A2), i ∈ N(1, n):

|f̄i(ϕ)− f̄i(ψ)| ≤

d−1

i

n∑

j=1

lijdj


 ‖ϕ− ψ‖

and b̄i satisfies (A1) with, by (11),

β̄i = βi > li := d−1
i

n∑

j=1

lijdj,

and the result follows from Theorem 2.¤



Example 1.

ẋi(t) = −ki(xi(t))

[
bi(xi(t))−

n∑
j=1

P∑
p=1

a(p)
ij fj(xj(t− τ (p)

ij )) + Ji

]
(12)

•Ji, a
(p)
ij , τ ∈ R, 0 ≤ τ (p)

ij ≤ τ , i, j ∈ N(1, n), p ∈ N(1, P )
•ki : R→ (0,+∞) continuous
• Assume (A1)
•fi : R→ R Lipschitz with Lipschitz constant li

N := diag(β1, . . . , βn)− [lij], with lij =
P∑

p=1

|a(p)
ij |lj

Corollary

If N is a non-singular M-matrix, then there is
an equilibrium point of (12) which is globally
asymptotically stable.

Remark

In [Y. Chen, 2005], the same result was proved
with the additional hypotheses:

(i) ∃ki, k̄i > 0 : ki ≤ ki(u) ≤ k̄i, ∀u,∀i;

(ii) N := BK − [lij]K non-singular M-matrix,
for K = diag(k1, . . . , kn), K = diag(k̄1, . . . , k̄n).

(ii)⇒ N non-singular M-matrix
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4. Neural network model with time-varing
delay

ẋi(t) = −ki(xi(t))


bi(xi(t)) +

n∑

j=1

P∑
p=1

h(p)
ij (xj(t− τ (p)

ij (t)))


(13)

• τ
(p)
ij : [0,+∞) → [0,+∞) bounded and

continuous;

• ki : R→ (0,+∞) continuous;

• Assume (A1)

• h
(p)
ij : R → R Lipschitz with Lipschitz con-

stant l
p
ij

N := B − [lij], with lij =
P∑

p=1

l
(p)
ij

Theorem 4

If N is a non-singular M-matrix, then there

is an equilibrium of (13) which is globally

asymptotically stable.
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Example 2.

Bidirectional associative memory neural net-
work




ẋi(t) = −xi(t) + gi(xi(t− di(t))) +

m∑
j=1

fij(yj(t− τij(t)))

ẏj(t) = −yj(t) + fj(yj(t−mj(t))) +

n∑
i=1

gji(xi(t− σji(t)))

(14)

i ∈ N(1, n), j ∈ N(1, m)
τij, σji : [0,+∞) → [0,+∞) continuous
gi, fj, fij, gji : R → R Lipschitz with Lipschit constant
Gi, Fj, Fij and Gij, respectively

N :=




In −Gd −F

−G Im − Fd




(n+m)×(n+m)

Gd = diag(G1, . . . , Gn), Fd = diag(F1, . . . , Fm),

G = [Gji]m×n, F = [Fij]n×m

Corollary

If N is a non-singular M-matrix, then there is an equi-
librium of (14) which is globally asymptotically stable.

Remark
The model (3), studied in [L.Wang and X.Zou, 2005],
is a subclass of (14).
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5. Static neural network model with S-
type distributed delays

ẋi(t) = −ki(xi(t))

[
bi(xi(t)) + fi

(
n∑

j=1

ωij

∫ 0

−τ

xj(t + θ)dηij(θ) + Ji

)]
(15)

•τ > 0, Ji, ωij ∈ R
•ki : R→ (0,+∞) continuous

•Assume (A1)

•fi : R→ R Lipschitz with Lipschitz constant li

•ηij : [−τ,0] → R are normalized bounded variation

functions

M = diag(β1, . . . , βn)− [li|ωij|]

Theorem 5

If M is a non-singular M-matrix, then there is

an equilibrium point of (15) which is globally

asymptotically stable.
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Example 3.

ẋi(t) = −bixi(t) + fi

(
n∑

j=1

ωij

∫ 0

−τ

xj(t + θ)dηij(θ) + Ji

)
(16)

• bi > 0, Ji, ωij ∈ R
• ηij : [−τ,0] → R are normalized bounded variation

functions

• fi : R→ R Lipschitz with Lipschitz constant li

N = B − [li|ωij|]

B = diag(b1, . . . , bn)

Corollary

If N is a non-singular M-matrix, then there is

an equilibrium point of (16) which is globally

asymptotically stable.

Remark

In [M. Wang and L. Wang, 2006], the same

result was proved with ηij nondecreasing

bounded variation functions on [−τ,0].
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