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Notation

e nclN e R"

oo = max {|z;| 1i € {1,...,n}};

e TcRT, C,:=C([-7,0];R")

lell= sup  |@(0)|co;
0c[—7,0]

z(t) = f(t, x¢)
x:(0) = x(t+60), 0 € [—1,0]

e N(1,n) :={1,...,n};

o A = [a;;] € R*™™ is a non-singular M-
matrix if a;; <0, i 7 j and Re o(A) > 0.



Neural Network Models

Hopfield with delays

() = —biwi() + Y eifi(@; () + Y ayfi(@;t =) + 4, (1)

Jj=1 Jj=1

i€ N(1,n)
Cohen-Grossberg with delays

n P
2i(t) = —ki(2:(D) i) = Y Y al fi(a; ¢ = PN +Ti| ()
=1 p=1

i€ N(1,n)
Bidirectional associative memory with delays

( n
zi(t) = —x;i(t) + ciigi(zi(t — di)) + Z aij fi(y;(t —155)) + I
j=1

< (3)

vi(t) = —yi(t) + Lifi(yi(t — my)) + Z bijgi(xi(t —oij)) + J;

=1

\

1€ N(1,n).
Static model with S-type distributed delays

n 0
z;(t) = —bixi(t) + fi (Z wij/ x;i(t + 0)dni;(0) + Ji) (4)
7=1 -

1€ N(1,n) ) )
General situation

ri(t) = —ki(zi(t)) [bi(x:(t)) + fi(z)], i=1,...,n



z;(t) = —k;i(x;(t)) [b;(z;(t)) + fi(zs)], (5)

k; - R — (0,4o00) continuous,

(A1) 33; > 0,Vu,v € R,u # v:
(bi(u) — b;(v))/(u—v) > G;;
[In particular, for b;(u) = G;u.]

(A2) f,: Cn — R are Lipschitz functions with
Lipschitz constants [;.

zi(t) = —ki(zi(1)) {bi(ivz‘(t)) +> fij(mj,t)l (6)

J=1

z;(t) = —ki(zi(t))

n 0
bi(xi(t)) + fi (sz‘j/ wi(t—l-@)d??ij(@))] (7)

Jj=1

Main Objective

To obtain sufficient conditions for the exis-
tence and global asymptotic stability of the
equilibrium point of neural network models
written in the form (5).



1. Main Result

We consider the functional differential sys-
tem in general form

z;(t) = fi(xy), t >0, (8)

i€ N(1,n) ={1,...,n},
Cpn ;= C([—7,0]; R"™), x:(0) = z(t + 0)
f; - Cn — R are continuous.

Hypotheses:
(H1) f; bounded on bounded sets of Cfy;
(H2) Vo € Cp,Vi e N(1,n),

el = 19(0) | = |;(0)| > 0 = ¢;(0) fi(v) < O.
(H2)= x = 0 is the unique equilibrium
Theorem 1

Assume (H1) and (H2)
Then x = 0 is globally asymptotically stable.



Proof (idea)
Let z(t) be a solution of (8)

e(H1)+(H2) = x(t) defined and bounded on
[_7-7 _I_OO)

—v; = liminfxz;(t), wu; = limsupx;(t)
t—-+o0 t——+o0

v = max{v;}, uw = max{u;},
1 1

u,v € R, —v <.

We have to show max(u,v) = 0.

We suppose |v| <wu (Ju| <wv is similar).
Let i € N(1,n) such that u; = u.

e>0,IT >0 ||lz¢|| <u+e€ t>T
e\We can show that exists (t;)ren Such that

ty / +oo, x;(ty) — u, and fi(xy) — 0

o(H1)+(H2) = z(t) is bounded = {x¢ } is
bounded and equicontinuous = dyp € C)y,

xy, — ¢ on Cp
with ||l < u, ;(0) =u and f;(p) =0

(H2) =« = 0.0



2. General Neural Network

zi(t) = —ki(z;i(t)) [bi(z;(2)) + fi(ze)],  (9)

Theorem 2

Assume (A1), (A2), and k; : R — (0,400)
continuous.

If 3, > 1;,Vi, then (9) has an equilibrium point
z* € R™, which is globally asymptotically sta-
ble.

Proof (idea)
eEXistence of equilibrium point
H: R* — R"
r = (bl(fvl) + fl(a:), ceey bn(wn) + fn(w))
IS @ homeomorphism.

Then there exists z* e R", H(x*) =0, i.e. z*
IS an equilibrium.

eBYy translation, we may suppose z* = O,
b;(0) + f;(0) = 0, Vi.

o 3, >1;,Vi=(H1) and (H2)

From Theorem 1, we have the result.[]
.



3. Cohen Grossberg Model

zi(t) = —ki(xi(t)) {bi(ac,-(t)) + Z fij(afj,t)l (10)

j=1

e k; : R — (0,400) continuous

e Assume (A1)

° fij . ("1 — R Lipchitz with Lipchitz constant
B = dia’g(ﬁla T 7677/)7 A= [ZZ]]a N=B-A

Theorem 3

If N is a non-singular M-matrix, then there
is an equilibrium of (10), which is globally
asymptotically stable.

Proof (idea)
e N non-singular M-matrix =
Exists d = (d1,...,dn) > 0 such that Nd > 0,

n
B;d; — Z lijdj >0, Vie N(1,n). (11)

1=1
e T he change of variables

yi(t) = d; txi(t)



transform (10) into

Ui(t) = —ki(y; () [0;(w: (1)) + fily)],
file) =d; 1 > fii(dje;), ¢ € Chn
=1

bi(u) = d; 'b;(dw), k; = ki(dju), u€R

o f; satisfies (A2), i € N(1,n):

fi(e) — fi(¥)] < (dil > lz’jdj> | — ||

j=1
and b; satisfies (A1) with, by (11),

n
Bi=pi>1=d; 'y lijdy,
j=1

and the result follows from Theorem 2.1



Example 1.

n P
2:() = —ki(2i(®)) (b)) = > > aP fi(a;(t = 7)) + J; | (12)

j=1 p=1

oJial, T €R, 0< 7P <7, 4i,5€N(1,n), pe N(1,P)
ok, : R — (0,40c0) continuous

e Assume (A1)

ofi . R — R Lipschitz with Lipschitz constant [;

P
N = d’ia,g(ﬁl, ce ,Bn) — [lij], with lij = Z |a§§?)|lj
p=1

Corollary

If N is a non-singular M-matrix, then there is
an equilibrium point of (12) which is globally
asymptotically stable.

Remark
In [Y. Chen, 2005], the same result was proved
with the additional hypotheses:

(i) 3ki k; > 01k < ki(u) < ki, Vu,Vi;

(ii) N := BK — [l;;]K non-singular M-matrix,

(ii) = N non-singular M-matrix



4. Neural network model with time-varing
delay

n P
(1) = —ki(zi () |bi(zi()) + Y > b (z;(t — P (£))) [(13)
j=1p=1
. TZ-(JP) - [0, +00) — [0, +00) bounded and
continuous;
e k; : R — (0,40c0) continuous;
e Assume (A1)
e K ;R — R Lipschitz with Lipschitz con-
stant lfj

P
N =B — [ljj], with l;; = 3 1P
p=1
Theorem 4
If N is a non-singular M-matrix, then there
is an equilibrium of (13) which is globally
asymptotically stable.

10



Example 2.

Bidirectional associative memory neural net-

WOrk

/ m

zi(t) = —xi(t) + gi(x:i(t — di(t))) + Z fij Qyi (t — 135(2)))
j=1

\ (14)
U5 () = =y + £t =m0 + Y gialai(t — 05:())

\ =1

i€ N(1,n),j € N(1,m)

Tij, 0ji - [0, +00) — [0, +00) continuous

gi, [, fii»g5: - R — R Lipschitz with Lipschit constant
Gi, F;, F;; and G,;, respectively

I, — Gy —F

-G Im — Fq (n4+m)x(n+m)

GdZdiag(Gl,...,G’n), Fd:diag(Fl,...,Fm),
G = [Gji]mxn7 F = [Fij]nxm
Corollary

If N is a non-singular M-matrix, then there is an equi-
librium of (14) which is globally asymptotically stable.

Remark
The model (3), studied in [L.Wang and X.Zou, 2005],
is a subclass of (14).

11



5. Static neural network model with S-
type distributed delays

n 0
bl(acz(t)) + fi (Z Wij / :Uj(t + Q)dmj(e) + Ji)
j=1 -

o7 > 0, J;,wij € R

zi(t) = —ki(xi(t)) (15)

ok, : R — (0,40c0) continuous
eAssume (Al)
of, : R — R Lipschitz with Lipschitz constant [;

eni; : [—7,0] — R are normalized bounded variation

functions

M = diag(B1, ..., 0n) — [li|wi;]]

Theorem 5

If M is a non-singular M-matrix, then there is
an equilibrium point of (15) which is globally
asymptotically stable.
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Example 3.

n 0
z;i(t) = —bizi(t) + fi (Z wz’j/ x;(t + 0)dn;;(0) + Jz’) (16)
=1 7T

e b, >0, Ji,w@-j cR
e n;; : [-7,0] — R are normalized bounded variation
functions

e f; . R — R Lipschitz with Lipschitz constant [;

N = B — [l;|wi;|]

B = diag(by,...,bn)

Corollary

If N is a non-singular M-matrix, then there is
an equilibrium point of (16) which is globally
asymptotically stable.

Remark

In [M. Wang and L. Wang, 2006], the same
result was proved with n;; nondecreasing
bounded variation functions on [—7,0].
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