Global Asymptotic Stability for Systems of Delayed Differential Equations with Applications to Neural Networks

José J. Oliveira Universidade do Minho (CMAT)

Some important references

- T. Faria, Asymptotic stability for delayed logistic type equations, *Math. Comput. Modelling*, **43** (2006), 433-445
- [2] T. Faria, José J. Oliveira, Local and global stability for *n*-species Lotka-Volterra systems with distributed delays, pre-print
- [3] Y. Chen, Global asymptotic stability of delayed Cohen-Grossberg neural networks, *IEEE Trans. Circuits Syst.* vol.53, no.2, (2006), 351-357
- [4] M. Wang, L. Wang, Global asymptotic robust stability of static neural network models with S-type distributed delays, *Math. Comput. Modelling*, 44 (2006), 218-222
- [5] L. Wang, X. Zou, Stability and bifurcation of bidirectional associative memory neural networks with delayed self-feedback, *International Journal* of Bifurcation and Chaos, vol.15, no.7, (2005), 2145-2159

Notation

•
$$n \in \mathbb{N}$$
, $x \in \mathbb{R}^n$, $|x|_{\infty} = \max\left\{|x_i| : i \in \{1, \dots, n\}\right\};$

•
$$\tau \in \mathbb{R}^+$$
, $C_n := C([-\tau, 0]; \mathbb{R}^n)$
 $\|\varphi\| = \sup_{\theta \in [-\tau, 0]} |\varphi(\theta)|_{\infty};$

• FDE in
$$C_n$$

$$\dot{x}(t) = f(t, x_t)$$

 $x_t(\theta) = x(t + \theta), \ \theta \in [-\tau, 0]$

•
$$N(1,n) := \{1, \ldots, n\};$$

• $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ is a **non-singular Mmatrix** if $a_{ij} \leq 0$, $i \neq j$ and Re $\sigma(A) > 0$.

Neural Network Models

Hopfield with delays

$$\dot{x}_i(t) = -b_i x_i(t) + \sum_{j=1}^n c_{ij} f_j(x_j(t)) + \sum_{j=1}^n a_{ij} f_j(x_j(t-\tau_{ij})) + J_i, \quad (1)$$

 $i \in N(1, n)$ Cohen-Grossberg with delays

$$\dot{x}_i(t) = -k_i(x_i(t)) \left[b_i(x_i(t)) - \sum_{j=1}^n \sum_{p=1}^P a_{ij}^{(p)} f_j(x_j(t - \tau_{ij}^{(p)})) + J_i \right], \quad (2)$$

 $i \in N(1,n)$ Bidirectional associative memory with delays

$$\dot{x}_{i}(t) = -x_{i}(t) + c_{ii}g_{i}(x_{i}(t - d_{ii})) + \sum_{j=1}^{n} a_{ij}f_{j}(y_{j}(t - \tau_{ij})) + I_{i}$$

$$\dot{y}_{i}(t) = -y_{i}(t) + l_{ii}f_{i}(y_{i}(t - m_{ii})) + \sum_{j=1}^{n} b_{ij}g_{j}(x_{j}(t - \sigma_{ij})) + J_{i}$$
(3)

j=1

 $i \in N(1, n)$. Static model with S-type distributed delays

$$\dot{x}_i(t) = -b_i x_i(t) + f_i \left(\sum_{j=1}^n \omega_{ij} \int_{-\tau}^0 x_j(t+\theta) d\eta_{ij}(\theta) + J_i \right)$$
(4)

 $i \in N(1, n)$ General situation

$$\dot{x}_i(t) = -k_i(x_i(t)) [b_i(x_i(t)) + f_i(x_t)], \quad i = 1, ..., n$$

$$\dot{x}_i(t) = -k_i(x_i(t)) \left[b_i(x_i(t)) + f_i(x_t) \right], \quad (5)$$

 $k_i:\mathbb{R}
ightarrow(0,+\infty)$ continuous,

(A1)
$$\exists \beta_i > 0, \forall u, v \in \mathbb{R}, u \neq v$$
:
 $(b_i(u) - b_i(v))/(u - v) \ge \beta_i$;
[In particular for $h(u) = \beta_i$...]

[In particular, for $b_i(u) = \beta_i u$.]

(A2) $f_i : C_n \to \mathbb{R}$ are Lipschitz functions with Lipschitz constants l_i .

$$\dot{x}_i(t) = -k_i(x_i(t)) \left[b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t}) \right]$$
(6)

$$\dot{x}_i(t) = -k_i(x_i(t)) \left[b_i(x_i(t)) + f_i\left(\sum_{j=1}^n \omega_{ij} \int_{-\tau}^0 x_i(t+\theta) d\eta_{ij}(\theta)\right) \right]$$
(7)

Main Objective

To obtain sufficient conditions for the existence and global asymptotic stability of the equilibrium point of neural network models written in the form (5).

1. Main Result

We consider the functional differential system in general form

$$\dot{x}_i(t) = f_i(x_t), \ t \ge 0,$$
 (8)

 $i \in N(1, n) = \{1, \dots, n\},\ C_n := C([-\tau, 0]; \mathbb{R}^n), \ x_t(\theta) = x(t + \theta)$ $f_i : C_n \to \mathbb{R}$ are continuous.

Hypotheses:

(H1) f_i bounded on bounded sets of C_n ; (H2) $\forall \varphi \in C_n, \forall i \in N(1, n)$,

 $\|\varphi\| = |\varphi(0)|_{\infty} = |\varphi_i(0)| > 0 \Rightarrow \varphi_i(0)f_i(\varphi) < 0.$

(H2) $\Rightarrow x \equiv 0$ is the unique equilibrium

Theorem 1

Assume (H1) and (H2)

Then $x \equiv 0$ is globally asymptotically stable.

Proof (idea) Let x(t) be a solution of (8)

•(H1)+(H2) $\Rightarrow x(t)$ defined and bounded on $[-\tau, +\infty)$ $-v_i = \liminf_{t \to +\infty} x_i(t), \quad u_i = \limsup_{t \to +\infty} x_i(t)$ $v = \max_i \{v_i\}, \quad u = \max_i \{u_i\},$ $u, v \in \mathbb{R}, -v \le u.$ We have to show $\max(u, v) = 0.$ We suppose $|v| \le u \ (|u| \le v \text{ is similar}).$ Let $i \in N(1, n)$ such that $u_i = u.$ $\epsilon > 0, \exists T > 0 : ||x_t|| < u + \epsilon, t \ge T$ •We can show that exists $(t_k)_{k \in \mathbb{N}}$ such that $t_k \nearrow +\infty, \quad x_i(t_k) \to u, \text{ and } f_i(x_{t_k}) \to 0$

•(H1)+(H2) $\Rightarrow \dot{x}(t)$ is bounded $\Rightarrow \{x_{t_k}\}$ is bounded and equicontinuous $\Rightarrow \exists \varphi \in C_n$

$$x_{t_k} \rightarrow \varphi \text{ on } C_n$$

with $\|\varphi\| \le u$, $\varphi_i(0) = u$ and $f_i(\varphi) = 0$
(H2) $\Rightarrow u = 0.\square$

6

2. General Neural Network

$$\dot{x}_i(t) = -k_i(x_i(t)) \left[b_i(x_i(t)) + f_i(x_t) \right],$$
 (9)

Theorem 2

Assume (A1), (A2), and $k_i : \mathbb{R} \to (0, +\infty)$ continuous.

If $\beta_i > l_i, \forall i$, then (9) has an equilibrium point $x^* \in \mathbb{R}^n$, which is globally asymptotically stable.

Proof (idea)

•Existence of equilibrium point

 $H: \mathbb{R}^n \to \mathbb{R}^n$ $x \mapsto (b_1(x_1) + f_1(x), \dots, b_n(x_n) + f_n(x))$

is a homeomorphism.

Then there exists $x^* \in \mathbb{R}^n$, $H(x^*) = 0$, i.e. x^* is an equilibrium.

•By translation, we may suppose $x^* = 0$, $b_i(0) + f_i(0) = 0, \forall i$.

• $\beta_i > l_i, \forall i \Rightarrow$ (H1) and (H2)

From Theorem 1, we have the result. \Box

3. Cohen Grossberg Model

$$\dot{x}_i(t) = -k_i(x_i(t)) \left[b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t}) \right]$$
(10)

- $k_i : \mathbb{R} \to (0, +\infty)$ continuous
- Assume (A1)

• $f_{ij}: C_1 \to \mathbb{R}$ Lipchitz with Lipchitz constant l_{ij}

$$B = diag(\beta_1, \dots, \beta_n), \quad A = [l_{ij}], \quad N = B - A$$

Theorem 3

If N is a non-singular M-matrix, then there is an equilibrium of (10), which is globally asymptotically stable.

Proof (idea)

• N non-singular M-matrix \Rightarrow Exists $d = (d_1, \dots, d_n) > 0$ such that Nd > 0,

$$\beta_i d_i - \sum_{j=1}^n l_{ij} d_j > 0, \quad \forall i \in N(1, n).$$
 (11)

• The change of variables

$$y_i(t) = d_i^{-1} x_i(t)$$

transform (10) into

$$\dot{y}_i(t) = -\bar{k}_i(y_i(t))[\bar{b}_i(y_i(t)) + \bar{f}_i(y_t)],$$
$$\bar{f}_i(\varphi) = d_i^{-1} \sum_{j=1}^n f_{ij}(d_j\varphi_j), \quad \varphi \in C_n$$

 $\overline{b}_i(u) = d_i^{-1} b_i(d_i u), \quad \overline{k}_i = k_i(d_i u), \quad u \in \mathbb{R}$

• \bar{f}_i satisfies (A2), $i \in N(1,n)$:

$$|\bar{f}_i(\varphi) - \bar{f}_i(\psi)| \le \left(d_i^{-1} \sum_{j=1}^n l_{ij} d_j\right) \|\varphi - \psi\|$$

and \bar{b}_i satisfies **(A1)** with, by (11),

$$\bar{\beta}_i = \beta_i > l_i := d_i^{-1} \sum_{j=1}^n l_{ij} d_j,$$

and the result follows from Theorem 2. \square

Example 1.

$$\dot{x}_i(t) = -k_i(x_i(t)) \left[b_i(x_i(t)) - \sum_{j=1}^n \sum_{p=1}^P a_{ij}^{(p)} f_j(x_j(t - \tau_{ij}^{(p)})) + J_i \right] (12)$$

• $J_i, a_{ij}^{(p)}, \tau \in \mathbb{R}, \ 0 \le \tau_{ij}^{(p)} \le \tau, \ i, j \in N(1, n), \ p \in N(1, P)$ • $k_i : \mathbb{R} \to (0, +\infty)$ continuous • Assume (A1)

• $f_i : \mathbb{R} \to \mathbb{R}$ Lipschitz with Lipschitz constant l_i

$$N := diag(\beta_1, ..., \beta_n) - [l_{ij}], \text{ with } l_{ij} = \sum_{p=1}^{P} |a_{ij}^{(p)}| l_j$$

Corollary

If N is a non-singular M-matrix, then there is an equilibrium point of (12) which is globally asymptotically stable.

Remark

In [Y. Chen, 2005], the same result was proved with the additional hypotheses:

(i)
$$\exists \underline{k}_i, \overline{k}_i > 0 : \underline{k}_i \leq k_i(u) \leq \overline{k}_i, \quad \forall u, \forall i;$$

(ii) $\underline{N} := B\underline{K} - [l_{ij}]\overline{K}$ non-singular M-matrix, for $\underline{K} = diag(\underline{k}_1, \dots, \underline{k}_n)$, $\overline{K} = diag(\overline{k}_1, \dots, \overline{k}_n)$.

(ii) $\Rightarrow N$ non-singular M-matrix

4. Neural network model with time-varing delay

$$\dot{x}_i(t) = -k_i(x_i(t)) \left[b_i(x_i(t)) + \sum_{j=1}^n \sum_{p=1}^P h_{ij}^{(p)}(x_j(t - \tau_{ij}^{(p)}(t))) \right] (13)$$

• $au_{ij}^{(p)}$: $[0, +\infty) \to [0, +\infty)$ bounded and continuous;

- $k_i: \mathbb{R} \to (0, +\infty)$ continuous;
- Assume (A1)
- $h_{ij}^{(p)} : \mathbb{R} \to \mathbb{R}$ Lipschitz with Lipschitz constant l_{ij}^p

$$N := B - [l_{ij}], \text{ with } l_{ij} = \sum_{p=1}^{P} l_{ij}^{(p)}$$

Theorem 4

If N is a non-singular M-matrix, then there is an equilibrium of (13) which is globally asymptotically stable.

Example 2.

Bidirectional associative memory neural network

$$\begin{cases} \dot{x}_{i}(t) = -x_{i}(t) + g_{i}(x_{i}(t - d_{i}(t))) + \sum_{j=1}^{m} f_{ij}(y_{j}(t - \tau_{ij}(t))) \\ \dot{y}_{j}(t) = -y_{j}(t) + f_{j}(y_{j}(t - m_{j}(t))) + \sum_{i=1}^{n} g_{ji}(x_{i}(t - \sigma_{ji}(t))) \end{cases}$$
(14)

 $i \in N(1,n), j \in N(1,m)$ $au_{ij}, \sigma_{ji} : [0, +\infty) \rightarrow [0, +\infty)$ continuous $g_i, f_j, f_{ij}, g_{ji} : \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz with Lipschit constant G_i, F_j, F_{ij} and G_{ij} , respectively

$$N := \begin{bmatrix} I_n - G_d & -F \\ -G & I_m - F_d \end{bmatrix}_{(n+m) \times (n+m)}$$
$$G_d = diag(G_1, \dots, G_n), \quad F_d = diag(F_1, \dots, F_m),$$
$$G = [G_{ji}]_{m \times n}, \quad F = [F_{ij}]_{n \times m}$$

Corollary

If N is a non-singular M-matrix, then there is an equilibrium of (14) which is globally asymptotically stable.

Remark

The model (3), studied in [L.Wang and X.Zou, 2005], is a subclass of (14).

5. Static neural network model with Stype distributed delays

$$\dot{x}_{i}(t) = -k_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + f_{i} \left(\sum_{j=1}^{n} \omega_{ij} \int_{-\tau}^{0} x_{j}(t+\theta) d\eta_{ij}(\theta) + J_{i} \right) \right] (15)$$

- $\bullet \tau > 0, J_i, \omega_{ij} \in \mathbb{R}$
- • $k_i: \mathbb{R} \to (0, +\infty)$ continuous
- •Assume (A1)
- $ullet f_i:\mathbb{R} o\mathbb{R}$ Lipschitz with Lipschitz constant l_i

 $\bullet \eta_{ij}$: $[-\tau, 0] \to \mathbb{R}$ are normalized bounded variation functions

$$M = diag(\beta_1, \ldots, \beta_n) - [l_i |\omega_{ij}|]$$

Theorem 5

If M is a non-singular M-matrix, then there is an equilibrium point of (15) which is globally asymptotically stable.

Example 3.

$$\dot{x}_{i}(t) = -b_{i}x_{i}(t) + f_{i}\left(\sum_{j=1}^{n}\omega_{ij}\int_{-\tau}^{0}x_{j}(t+\theta)d\eta_{ij}(\theta) + J_{i}\right)$$
(16)

- $b_i > 0$, $J_i, \omega_{ij} \in \mathbb{R}$
- η_{ij} : $[-\tau, 0] \rightarrow \mathbb{R}$ are normalized bounded variation functions
- $f_i: \mathbb{R} \to \mathbb{R}$ Lipschitz with Lipschitz constant l_i

$$N = B - [l_i |\omega_{ij}|]$$
$$B = diag(b_1, \dots, b_n)$$

Corollary

If N is a non-singular M-matrix, then there is an equilibrium point of (16) which is globally asymptotically stable.

Remark

In [M. Wang and L. Wang, 2006], the same result was proved with η_{ij} nondecreasing bounded variation functions on $[-\tau, 0]$.