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1. Boundedness of solutions
y(t) = f(t, »r)

2. Exponential stability

Xi(t) = —pi(xi(2))(bi(xi(t)) + fi(xt)), =1

]

3. Neural Network Models

%i(t) = —pi(xi(t)) | bilxi(0) + D fi(xie) | i =1,

j=1

..,n
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Notation

»neN, x,y eR" d=(d,...,dy) >0, ie di >0,

n n 1/2
<X,y >a= Y dixiyi, [Xloa = | Y dix? ;
i—1 i1

1X|oo,d = fgia;n di|x;|;
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Notation

»neN, x,y eR" d=(d,...,dy) >0, ie di >0,

n n 1/2
<X,y >a= Y dixiyi, [X|o.a = (Z diX,-z) ;
i—1 i1
|X[o0,d = max di|xil;
» 7 eRY, C,:= C([-7,0];R")

lellzag = sup |@(0)l2,d; [l@llocda = sup [@(0)[oc,a;
0e[—7,0] o€[—7,0]
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Notation

»neN, x,y eR" d=(d,...,dy) >0, ie di >0,

n n 1/2
<X,y >a= Y dixiyi, [X|o.a = (Z diX,-z) ;
i—1 i1
|X[o0,d = max di|xil;
» 7 eRY, C,:= C([-7,0];R")

lellzag = sup |@(0)l2,d; [l@llocda = sup [@(0)[oc,a;
0e[—7,0] o€[—7,0]

» A= [a;] € R"™" is a non-singular M-matrix if a; <0, i #j
and Re o(A) > 0.
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1. Boundedness of solutions
y(t) = f(t, yt)

1. Boundedness of solutions

» FDE in G,

y(t) =f(t,y),  t=to, (1)

to € R,
f=(f,...,f): [to,+0o0) x C; — R" continuous,
ye € Co, ye(0) = y(t +6), 6 € [-7,0].
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1. Boundedness of solutions
y(t) = f(t, yt)

1. Boundedness of solutions

» FDE in G,
y(t): f(tvyt)v t> to, (1)

to € R,
f=(f,...,f): [to,+0o0) x C; — R" continuous,

ye € Co, ye(0) = y(t +6), 0 € [-1,0].
> y(t) = y(t, to, p) denote the solution of (1) such that
Vi, = ¢ € Cp.
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1. Boundedness of solutions
y(t) = £(t, %)

» Proposition 1
Assume that, for some d = (d1,...,d,) >0, f =(f,..., 1)
satisfies
(H)oo Vt > to,Vp € Cp,Vi € {1,...,n},

¢lloo,d = 1€(0)|oo,a = dil@i(0)] > 0 = ©;(0)fi(t, ) <O;

Then, the solution y(t) = y(t, to, p) of (1) is defined and
bounded on [ty, +0), and

y()loo,d < ll@lloc,d,  for t>to.
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1. Boundedness of solutions
y(t) = £(t, %)

Proof (idea)
> y(t) solution on [tg — 7, a), a > to, and ||y, |lcc,d < K;
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1. Boundedness of solutions
y(t) = £(t, %)

Proof (idea)
> y(t) solution on [tg — 7, a), a > to, and ||y, |lcc,d < K;
> Suppose that |y(t1)|c0,d > K > 0 for some t; > to;
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1. Boundedness of solutions
y(t) = £(t, %)

Proof (idea)
> y(t) solution on [tg — 7, a), a > to, and ||y, |lcc,d < K;
> Suppose that |y(t1)|c0,d > K > 0 for some t; > to;
» Define

T = min {t € [to, t1] : [y(t)|ood = max Iy(S)!oo,d} :

SE[to,tl]
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1. Boundedness of solutions
y(t) = £(t, %)

Proof (idea)
> y(t) solution on [tg — 7, a), a > to, and ||y, |lcc,d < K;
> Suppose that |y(t1)|c0,d > K > 0 for some t; > to;

» Define
T = min {t € [to, t1] : [y(t)|oo,d = max |y(s)]oo’d} .
SE[to,tl]
» We have

Y7(0)|oo,d = [Y(T + 0)|oo,d < [y(T)loo,d, —7 < 0 <0.
Choosing i € {1,...,n} such that ||y7|lec,d = dilyi(T)|,

(H), = yi(T)fi(T,yT) <O0.
If yi(T) > 0 (analogous if y;(T) < 0), then y;(T) < 0.
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1. Boundedness of solutions
y(t) = £(t, %)

Proof (idea)
> y(t) solution on [tg — 7, a), a > to, and ||y, |lcc,d < K;
> Suppose that |y(t1)|c0,d > K > 0 for some t; > to;

» Define
T = min {t € [to, t1] : [y(t)|oo,d = max |y(s)]oo’d} .
SE[to,tl]
» We have

Y7(0)|oo,d = [Y(T + 0)|oo,d < [y(T)loo,d, —7 < 0 <0.
Choosing i € {1,...,n} such that ||y7|lec,d = dilyi(T)|,

(H),, = vi(M)fi(T,yT) <O.
If yi(T) > 0 (analogous if y;(T) < 0), then y;(T) < 0.
> diyi(t) < |y(t)lo,d < |[Y(T)loo,d = diyi(T), t € [to—7,T),

= y;(T) > 0.
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1. Boundedness of solutions
y(t) = £(t, %)

Proof (idea)
> y(t) solution on [tg — 7, a), a > to, and ||y, |lcc,d < K;
> Suppose that |y(t1)|c0,d > K > 0 for some t; > to;

» Define
T = min {t € [to, t1] : [y(t)|oo,d = max |y(s)]oo’d} .
SE[to,tl]
» We have

Y7(0)|oo,d = [Y(T + 0)|oo,d < [y(T)loo,d, —7 < 0 <0.
Choosing i € {1,...,n} such that ||y7|lec,d = dilyi(T)|,

(H), = yi(T)fi(T,yT) <O0.
If yi(T) > 0 (analogous if y;(T) < 0), then y;(T) < 0.
> diyi(t) < [y(t)]oo,d < [Y(T)loo,d = diyi(T), t € [to—7,T),
= y;(T) > 0.
> |.y(t7 t07s0)|<>0,d S H()OHOO,Ch Vt Z tO-

Teresa Faria and José J. Oliveira Boundedness and Global Exponential Stability for DDE’s



1. Boundedness of solutions
y(t) = £(t, %)

» Proposition 2
Assume that, for some d = (dy,...,d,) > 0, f satisfies
(H)2 Vt > to, Vo € G,

[ell2,a = [0(0)]2,d > 0 =< ¢(0), f(t, ) >4< 0.

Then, the solution y(t) = y(t, to, @) of y(t) = f(t,y:) is
defined and bounded on [tp, +0), and

ly (1)

2.d <|l¢llag, for t>to.
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1. Boundedness of solutions
y(t) = £(t, %)

» Proposition 2
Assume that, for some d = (dy,...,d,) > 0, f satisfies
(H)2 Vt > to, Vo € G,

[ell2,a = [0(0)]2,d > 0 =< ¢(0), f(t, ) >4< 0.

Then, the solution y(t) = y(t, to, @) of y(t) = f(t,y:) is
defined and bounded on [tp, +0), and

2d, for t>t.

2.4 < |l

ly (1)

» Proof: Similar to the proof of Proposition 1.
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)),

2. Exponential stability

» In applications,
).(I'(t) = —p,'(X,'(t))[b,'(X,'(t)) + fi(Xt)]7 t>0,i=1,...,n, (2)

where p; : R — (0,400), bj : R — R and
f=(f,...,f):[0,4+00) x C, — R" are continuous.

Hypothesis:
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)),

2. Exponential stability

» In applications,
).(I'(t) = —p,'(X,'(t))[b,'(X,'(t)) + fi(Xt)]7 t>0,i=1,...,n, (2)

where p; : R — (0,400), bj : R — R and
f=(f,...,f):[0,4+00) x C, — R" are continuous.

Hypothesis:
» (A1) 35, > 0,Vu,v e R,u # v:

(bi(u) = bi(v))/(u = v) = Gi.

[In particular, for bj(u) = [iu.]
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)),

» Definition
An equilibrium x* € R of (2) is said to be globally
exponentially stable if there are ¢, M > 0 such that

y(£,0,0) = x*| < Me™*lo —x*[l,  t20, o€ G,
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)), i=1,...,n

» Definition
An equilibrium x* € R of (2) is said to be globally
exponentially stable if there are ¢, M > 0 such that

y(£,0,0) = x*| < Me™*lo —x*[l,  t20, o€ G,

» Theorem 1
Suppose that 0 < r < p;i(x), Vx € R, i=1,...,n
and assume (A1) and
(A2)o 3d = (dy,. ... dy) > 0,Yp,4 € Cp:

fi(@) = fi(¥)] < lille — ¥lloc,a,

with G6; > d;l;, i=1,...,n.
Then there is a unique equilibrium x* of (2) which is globally
exponentially stable.
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)),

Proof (idea)

» Existence of equilibrium
Consider

H: R" — R”
x = (bi(xa) + A(x), ..., ba(xn) + fa(x))
H is injective and |H(x)|oo,d — +00 as |X|oo,d — +00

implying that H is a homeomorfism [1], then there exists
x* € R", H(x*) =0, i.e. x*is an equilibrium of (2).

[1] M. Forti and A. Tesi, New conditions for global stability of neural networks with applications to linear and

quadratic programming problems, IEEE Trans. Circuits Syst. | 42 (1995) 354-366.
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)), i=1,...,n

Proof (idea)
» Existence of equilibrium
Consider
H: R" — R"
x = (bi(x1) + A(x), ..., ba(xn) + fa(x))

H is injective and |H(x)|s0,d — +00 as |X|oo,d — 400
implying that H is a homeomorfism [1], then there exists
x* € R", H(x*) =0, i.e. x*is an equilibrium of (2).

» By translation we may suppose x* = 0, b;(0) + f;(¢,0) = 0.

[1] M. Forti and A. Tesi, New conditions for global stability of neural networks with applications to linear and

quadratic programming problems, IEEE Trans. Circuits Syst. | 42 (1995) 354-366.
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)), f=1go00yM

» Exponential stability
Consider x(t) = x(t,0, ¢) a solution of (2).
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)),

» Exponential stability
Consider x(t) = x(t,0, ¢) a solution of (2).
» The change of variables

z(t) = e*'x(t),
for € > 0 small enough, transform (2) into
z(t) = g(t, z:), (3)
g = (81,---,8n) with

gi(tv 90) =
epi(0) — pi(t, e =) p)est [bi(e =t pi(0)) + fi(t, e (7))
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)),

» Exponential stability
Consider x(t) = x(t,0, ¢) a solution of (2).
» The change of variables

z(t) = e*'x(t),
for € > 0 small enough, transform (2) into
z(t) = g(t, z:), (3)
g = (81,---,8n) with

gi(tv 90) =
epi(0) — pi(t, e =) p)est [bi(e =t pi(0)) + fi(t, e (7))

> (A1)+(A2)0c=(H)wo
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)),

» Exponential stability
Consider x(t) = x(t,0, ¢) a solution of (2).
» The change of variables

z(t) = e*'x(t),
for € > 0 small enough, transform (2) into
z(t) = g(t, z:), (3)
g = (81,---,8n) with

gi(tv 90) =
epi(0) — pi(t, e =) p)est [bi(e =t pi(0)) + fi(t, e (7))

> (A1)+(A2)cc=(H)oo
» From Proposition 1 |z(t)|s0,d < ||20]/c0,q, t > 0, and

X (1,0, )0, = 7 2(t,0, €7 0) 0. < e [|#llo0,a
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)), i=1,...,n

» Theorem 2
Suppose that 0 < r < pi(x) < R, Vx€R,i=1,...,n
and assume (A1) and
(A2); 3d = (d1,...,dn) > 0,Yp, 9 € Cp:

[f () = F(D)|2,0 < o = Pll2,a,
with 8; > I\/R/r, i=1,...,n.

Then there a unique equilibrium x* of (2) which is globally
exponentially stable.
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)), i=1,...,n

» Theorem 2
Suppose that 0 < r < pi(x) < R, Vx€R,i=1,...,n
and assume (A1) and
(A2); 3d = (d1,...,dn) > 0,Yp, 9 € Cp:

[f () = F(D)|2,0 < o = Pll2,a,
with 8; > I\/R/r, i=1,...,n.

Then there a unique equilibrium x* of (2) which is globally
exponentially stable.

» Proof: Similar to the proof of Theorem 1.
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2. Exponential stability Xi(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)), i=1,...,n

» Theorem 2
Suppose that 0 < r < pi(x) < R, Vx€R,i=1,...,n
and assume (A1) and
(A2); 3d = (d1,...,dn) > 0,Yp, 9 € Cp:

[f () = F(D)|2,0 < o = Pll2,a,
with 8; > I\/R/r, i=1,...,n.

Then there a unique equilibrium x* of (2) which is globally
exponentially stable.

» Proof: Similar to the proof of Theorem 1.

» Remark
Assuming the existence of an equilibrium point, similar results
can be obtained for the non-autonomous case

xi(t) = —pi(t, xe)[bi(xi(t)) + fi(t, xt)], t>0,i=1,...,n
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3. Neural Network Models

3. Neural Network Models

Cohen-Grossberg neural network with distributed delays

xi(t) = —pi(xi(t)) | bi(xi(t)) + Z fi(xe) | (4)
=1

» pi: R — (0,+00) are continuous and p;(x) > r > 0;
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%i(t) = —pi(xi(t) (bi(xi(f)) + > fi(xi,e)

3. Neural Network Models j=1

3. Neural Network Models

Cohen-Grossberg neural network with distributed delays

xi(t) = —pi(xi(t)) | bi(xi(t)) + Z fi(xe) | (4)
=1

» pi: R — (0,+00) are continuous and p;(x) > r > 0;
» f;j : C; — R are Lipschitzian with

\fi(0) — ()| < lijlle — Y|, @ 0 € G = C([—T,0];R);
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%i(t) = —pi(xi(t) (bi(xi(f)) + > fi(xi,e)

3. Neural Network Models j=1

3. Neural Network Models

Cohen-Grossberg neural network with distributed delays

xi(t) = —pi(xi(t)) | bi(xi(t)) + Z fi(xe) | (4)
=1

» pi: R — (0,+00) are continuous and p;(x) > r > 0;
» f;j : C; — R are Lipschitzian with

\fi(0) — ()| < lijlle — Y|, @ 0 € G = C([—T,0];R);

» b : R — R are continuous satisfying (A1);
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%i(t) = —pi(xi(t) (bi(xi(f)) + > fi(xi,e)

3. Neural Network Models j=1

3. Neural Network Models

Cohen-Grossberg neural network with distributed delays

xi(t) = —pi(xi(t)) | bi(xi(t)) + Z fi(xe) | (4)
=1

» pi: R — (0,+00) are continuous and p;(x) > r > 0;
» f;j : C; — R are Lipschitzian with

\fi(0) — ()| < lijlle — Y|, @ 0 € G = C([—T,0];R);

» b : R — R are continuous satisfying (A1);
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%i(t) = —pi(xi(t) (bi(xi(f)) + > fi(xi,e)

3. Neural Network Models j=1

Neural Network Models

Cohen-Grossberg neural network with distributed delays

xi(t) = —pi(xi(t)) | bi(xi(t)) + Z fi(xe) | (4)
=1

» pi: R — (0,+00) are continuous and p;(x) > r > 0;
» f;j : C; — R are Lipschitzian with

\fi(0) — ()| < lijlle — Y|, @ 0 € G = C([—T,0];R);

» b : R — R are continuous satisfying (A1);
> N = diag(ﬁla cee 7/8n) - [IU]
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%i(t) = —pi(xi(t) (bi(xi(t)) +> fij(xj,t)) yi=1
=

3. Neural Network Models

» Proposition 3
If N is a non-singular M-matrix, then there is a unique
equilibrium of (4), which is globally exponentially stable.

Teresa Faria and José J. Oliveira Boundedness and Global Exponential Stability for DDE’s



3. Neural Network Models

xi(t) = —pi(xi(t)) (b (i(8) + Z

» Proposition 3
If N is a non-singular M-matrix, then there is a unique

equilibrium of (4), which is globally exponentially stable.

» Proof (idea)
For () = S0y (7). # = (1, 0n) € Co, (4) has the
form of (2).
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xi(t) = —pi(xi(t)) (b (i(8) + Z

3. Neural Network Models

» Proposition 3
If N is a non-singular M-matrix, then there is a unique
equilibrium of (4), which is globally exponentially stable.

» Proof (idea)
For fi(p) := 311 fij(¢j), ¢ = (¢1,- -+, pn) € Cp, (4) has the
form of (2).

» N non-singular M-matrix =
Exists ¢ = (c1,...,¢n) > 0 such that Nc > 0,

n
Bi>c ™ty lig, i=1,....n (5)
j=1
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%i(t) = —pi(xi(t) (b(X, )+Z ) i=1,...,n

3. Neural Network Models

» Proposition 3
If N is a non-singular M-matrix, then there is a unique
equilibrium of (4), which is globally exponentially stable.

» Proof (idea)
For fi(p) := 311 fij(¢j), ¢ = (¢1,- -+, pn) € Cp, (4) has the
form of (2).

» N non-singular M-matrix =
Exists ¢ = (c1,...,¢n) > 0 such that Nc > 0,

n
Bi>c ™ty lig, i=1,....n (5)
j=1

> (@)= f()] < Y (o) =)l < | Dl | lo—tlloca
j=1

j=1
and f; satisfies (A2)o with d = (¢; %, ..., c;b);
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%i(t) = —pi(xi(t) (b(X, )+Z ) i=1,...,n

3. Neural Network Models

» Proposition 3
If N is a non-singular M-matrix, then there is a unique
equilibrium of (4), which is globally exponentially stable.
» Proof (idea)

For fi(¢) := ZJ Lfi(ei) o = (¢1,- ., ¢n) € Gy, (4) has the
form of (2).

» N non-singular M-matrix =
Exists ¢ = (c1,...,¢n) > 0 such that Nc > 0,

n
Bi>c ™ty lig, i=1,....n (5)
j=1

> (@)= f()] < Y (o) =)l < | Dl | lo—tlloca
j=1

j=1
and f; satisfies (A2)o with d = (¢; %, ..., c;b);
» The result follows from Theorem 1.
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%i(t) = —pi(xi(t) (bi(xi(t)) +> fij(xj,t)) yi=1
=

3. Neural Network Models

» Denote f = (f,...,f,): G, — R”

n

file)=> filey), ©=(p1..-.,¢n) € Ca.
i1
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» Denote f = (f,...,f,): G, — R”

n

file)=> filey), ©=(p1..-.,¢n) € Ca.
i1

» Proposition 4
Assume (A1) and suppose

O0<r<pi(x) <R V¥xeR,i=1,...,n,

(@) = F(¥)]2.a < o — ¥
with 8; > I\/R]/r, Vi.

Then there is an equilibrium of (4), which is globally
exponentially stable.

2,0’ VSD)TZ) € Cm
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» Denote f = (f,...,f,): G, — R”

n

file)=> filey), ©=(p1..-.,¢n) € Ca.
i1

» Proposition 4
Assume (A1) and suppose

O0<r<pi(x) <R V¥xeR,i=1,...,n,

(@) = F(¥)]2.a < o — ¥
with 8; > I\/R]/r, Vi.

Then there is an equilibrium of (4), which is globally
exponentially stable.

2,0’ VSD)TZ) € Cm

» Proof: Similar to the proof of Proposition 3.
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3. Neural Network Models

» Example 1: Consider the 2-neuron network

x1(t) = —bixi(t) + annh(xi(t — 7)) + aroho(xe(t — 7))
(6)
xo(t) = —boxo(t) + a1 fi(xi(t — 7)) + axoho(xa2(t — 7))

where, for i = 1,2, T, b,‘ >0, ajj e R, aji 7& 0, and
fi : R — R such that |fi(u) — fi(v)| < |u—v|, u,v € R.
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3. Neural Network Models

» Example 1: Consider the 2-neuron network

x1(t) = —bixi(t) + annh(xa(t — 7)) + anzfa(xa(t — 7))
(6)
x(t) = —baxa(t) + anfi(xa(t — 7)) + axnf2(xa(t — 7))
where, for i = 1,2, 7,b; > 0, a;j € R, a;; # 0, and
fi : R — R such that |fi(u) — fi(v)| < |u—v|, u,v € R.
> If N = diag(b1, b2) — [|ajj|] is a non-singular M-matrix, i.e

b1 > ai1 and (bl — 311)(b2 - 322) > |312321|7 (7)

then, from Proposition 3, (6) has an equilibrium x*, which is
globally exponentially stable.
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3. Neural Network Models

» For the situation ajpar; < 0, define

flp)=A ( gggg:g; > , for A= [a;], ¢ = (p1,92) € G
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xi(t) = —pi(xi(t)) (b(X, )+Z

3. Neural Network Models

» For the situation ajpar; < 0, define

flp)=A ( 2&:3; ) , for A= [a;], ¢ = (p1,92) € G

» Choosing d = (d1, d2) > 0 such that diaiiai2 + deaziazs =0,

322

1/2
F(9) = F(0)]ag < <max{ L2 g tA) o = llag
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3. Neural Network Models

» For the situation ajpar; < 0, define

flp)=A ( 2&:3; ) , for A= [a;], ¢ = (p1,92) € G

» Choosing d = (d1, d2) > 0 such that diaiiai2 + deaziazs =0,

= =
az2 4ail

1/2
F(9) = F(0)]ag < <max{ a”}detA) o = llag

» From Proposition 4, if

a2 411

1/2
(max{all,an}detA> < min{by, ba} (8)

then (6) has an equilibrium, x*, globally exponentially stable.
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3. Neural Network Models

» For the situation ajpar; < 0, define

flp)=A ( 2&:3; ) , for A= [a;], ¢ = (p1,92) € G

» Choosing d = (d1, d2) > 0 such that diaiiai2 + deaziazs =0,
ai1 a2 1/2
22)deth) o~ vl
22 411

a

rﬂw—fwmds<mw{

» From Proposition 4, if
dil a2 1/2
(max{, }detA) < min{by, ba} (8)
a2 411

then (6) has an equilibrium, x*, globally exponentially stable.
» (7) = (8) and (8) = (7)
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3. Neural Network Models

Example 2: The Cohen-Grossberg model with time-varing delays

n P
%i(t) = —pi(xi(1)) | bilxi(0)) + Y > (e = mipp(t))) | (9)

j=1 p=1
has an equilibrium point globally exponentially stable if
> Tijp : [0, +00) — [0, +00) are continuous with 7j,(t) < 7;
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3. Neural Network Models

Example 2: The Cohen-Grossberg model with time-varing delays

n P
%i(t) = —pi(xi(t) [ bi(xi(0)) + YD hip(i(t = () | (9)
j:l p:l
has an equilibrium point globally exponentially stable if
> Tjjp 1 [0, +00) — [0,400) are continuous with 7j,(t) < 7;
» pi: R — (0,+00) are continuous with pj(x) > r > 0;
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3. Neural Network Models

Example 2: The Cohen-Grossberg model with time-varing delays

Xi(t) = —pi(xi(t)) | bi(xi(t)) + ZZ higp (X (t = 7iip(£))) | (9)
j=1 p=1
has an equilibrium point globally exponentially stable if
> Tjjp 1 [0, +00) — [0,400) are continuous with 7j,(t) < 7;
» pi: R — (0,+00) are continuous with pj(x) > r > 0;
» bj : R — R are continuous satisfying (Al), i.e.,
368; > 0,Vu,v € R, u # v:

(bi(u) = bi(v))/(u = v) = fi;
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3. Neural Network Models

Example 2: The Cohen-Grossberg model with time-varing delays

n P

%i(t) = —pi(xi(t) [ bi(xi(0)) + YD hip(i(t = () | (9)
j=1 p=1

has an equilibrium point globally exponentially stable if

> Tjjp 1 [0, +00) — [0,400) are continuous with 7j,(t) < 7;

» pi: R — (0,+00) are continuous with pj(x) > r > 0;

» bj : R — R are continuous satisfying (Al), i.e.,

368; > 0,Vu,v € R, u # v:

(bi(u) = bi(v))/(u = v) = fi;

> hjj, are Lipschitz functions with constant /;p;
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%i(t) = —pi(xi(t) (b,-(x,-(t)) + Z fij(xj,t)) ,i=1,...,n
=

3. Neural Network Models

Example 2: The Cohen-Grossberg model with time-varing delays

n P

%i(t) = —pi(xi(t) [ bi(xi(0)) + YD hip(i(t = () | (9)

j=1 p=1
has an equilibrium point globally exponentially stable if

> Tjjp 1 [0, +00) — [0,400) are continuous with 7j,(t) < 7;

» pi: R — (0,+00) are continuous with pj(x) > r > 0;

» bj : R — R are continuous satisfying (Al), i.e.,

368; > 0,Vu,v € R, u # v:

(bi(u) = bi(v))/(u—v) = B;;
> hjj, are Lipschitz functions with constant /;p;
» N is a non-singular M-matrix, where

N = diag(f1,...,58n) — [lj], with ;= Z lijp-
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3. Neural Network Models

xi(t) = —pi(xi(t)) (b(X, )+Z ) =

In H. Jiang et al.[2], the same result was proved assuming:

Tijp © [0, +00) — [0, +00) are continuous with 7jj,(t) < 7;
pi(x) are locally Lipschitzian and 0 < r < p;(x)< R < oo;
bi € CY{R,R) with bi(x) > 3; > 0;

h,'jp(X) = Cijpgijp(x)y with Cijp € R and

gijp Lipschitz functions with constant pjjp;

daip, vijp € R,w; > 0,r > 1,0 > 0 such that, Vi

vvyyVvVyy

v

i - up
rwikifi — (r—1) ZZkauup |Cijp|
Jj=1p=1
_ZZMJJ ’MU ‘C’JP‘UP >o.  (10)
Jj=1p=1

[2] H. Jiang, J. Cao and Z. Teng, Dynamics of Cohen-Grossberg neural networks with time-varing delays, Phys.

Lett. A 354 (2006) 414-422.
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3. Neural Network Models

» Example 3:
x1(t) = —(8 + 2sin x1(t))[7x1(t) — tanh x1(t) — 2 tanh x»(t)
—tanh(xy(t — 3sint — 1)) — tanh(xo(t — 25"t — 1)) + 2]

xo(t) = —(5 + 2 cos xp(t))[10x2(t) — 2 tanh xq(t) — tanh xo(t)
—tanh(x;(t — Je " — 1)) — 2tanh(xz(t — 3 sint — 1)) + 3]
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3. Neural Network Models

» Example 3:

x1(t) = —(8 + 2sin x1(t))[7x1(t) — tanh x1(t) — 2 tanh x»(t)
—tanh(xy(t — 3sint — 1)) — tanh(xo(t — 25"t — 1)) + 2]

xo(t) = —(5 + 2 cos xp(t))[10x2(t) — 2 tanh xq(t) — tanh xo(t)
—tanh(x;(t — Je " — 1)) — 2tanh(xz(t — 3 sint — 1)) + 3]

2

» N = diag(7,10) — ( 3 3

> is a non-singular M-matrix.
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3. Neural Network Models

» Example 3:

x1(t) = —(8 + 2sin x1(t))[7x1(t) — tanh x1(t) — 2 tanh x»(t)
—tanh(xy(t — 3sint — 1)) — tanh(xo(t — 25"t — 1)) + 2]

x2(t) = —(5 + 2 cos x2(t))[10x2(t) — 2tanh x1(t) — tanh xa(t)
—tanh(x;(t — Je " — 1)) — 2tanh(xz(t — 3 sint — 1)) + 3]

2
33

» If (10) holds, then there are wi,wy > 0 such that

» N = diag(7,10) — ( > is a non-singular M-matrix.

22w1 — 30wo > 0
—21wy +9ws >0’

which is impossible.
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%i(t) = —pi(xi(t) (b,‘(x,-(t)) + Z f,'j(Xj,t)) ,i=1,...,n
=

3. Neural Network Models

Thanks you

Obrigado
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