Boundedness and Global Exponential Stability for Delayed Differential Equations with Applications

Teresa Faria^a and José J. Oliveira^b

August 21, 2009

- ^a Departamento de Matemática, CMAF, Universidade de Lisboa
- ^b Departamento de Matemática, CMAT, Universidade do Minho

1. Boundedness of solutions

$$\dot{y}(t) = f(t, y_t)$$

2. Exponential stability

$$\dot{x}_i(t) = -\rho_i(x_i(t))(b_i(x_i(t)) + f_i(x_t)), \quad i = 1, ..., n$$

3. Neural Network Models

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

Notation

▶ $n \in \mathbb{N}$, $x, y \in \mathbb{R}^n$, $d = (d_1, ..., d_n) > 0$, i.e. $d_i > 0$,

$$< x, y>_{d} = \sum_{i=1}^{n} d_{i}x_{i}y_{i}, |x|_{2,d} = \left(\sum_{i=1}^{n} d_{i}x_{i}^{2}\right)^{1/2},$$

 $|x|_{\infty,d} = \max_{1 \le i \le n} d_{i}|x_{i}|;$

Notation

▶ $n \in \mathbb{N}$, $x, y \in \mathbb{R}^n$, $d = (d_1, ..., d_n) > 0$, i.e. $d_i > 0$,

$$< x, y>_{d} = \sum_{i=1}^{n} d_{i}x_{i}y_{i}, |x|_{2,d} = \left(\sum_{i=1}^{n} d_{i}x_{i}^{2}\right)^{1/2},$$

 $|x|_{\infty,d} = \max_{1 \le i \le n} d_{i}|x_{i}|;$

u $\tau \in \mathbb{R}^+$, $C_n := C([-\tau, 0]; \mathbb{R}^n)$

$$\|\varphi\|_{2,d} = \sup_{\theta \in [-\tau,0]} |\varphi(\theta)|_{2,d}, \quad \|\varphi\|_{\infty,d} = \sup_{\theta \in [-\tau,0]} |\varphi(\theta)|_{\infty,d};$$

Notation

▶ $n \in \mathbb{N}$, $x, y \in \mathbb{R}^n$, $d = (d_1, ..., d_n) > 0$, i.e. $d_i > 0$,

$$< x, y>_{d} = \sum_{i=1}^{n} d_{i}x_{i}y_{i}, |x|_{2,d} = \left(\sum_{i=1}^{n} d_{i}x_{i}^{2}\right)^{1/2},$$

 $|x|_{\infty,d} = \max_{1 \le i \le n} d_{i}|x_{i}|;$

u $au \in \mathbb{R}^+$, $C_n := C([-\tau, 0]; \mathbb{R}^n)$

$$\|\varphi\|_{2,d} = \sup_{\theta \in [-\tau,0]} |\varphi(\theta)|_{2,d}, \quad \|\varphi\|_{\infty,d} = \sup_{\theta \in [-\tau,0]} |\varphi(\theta)|_{\infty,d};$$

▶ $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ is a **non-singular M-matrix** if $a_{ij} \leq 0$, $i \neq j$ and Re $\sigma(A) > 0$.

1. Boundedness of solutions

ightharpoonup FDE in C_n

$$\dot{y}(t) = f(t, y_t), \quad t \ge t_0, \tag{1}$$

$$t_0 \in \mathbb{R}$$
,
 $f = (f_1, \dots, f_n) : [t_0, +\infty) \times C_n \to \mathbb{R}^n$ continuous,
 $y_t \in C_n$, $y_t(\theta) = y(t + \theta)$, $\theta \in [-\tau, 0]$.

1. Boundedness of solutions

ightharpoonup FDE in C_n

$$\dot{y}(t) = f(t, y_t), \quad t \ge t_0, \tag{1}$$

$$t_0 \in \mathbb{R}$$
,
 $f = (f_1, \dots, f_n) : [t_0, +\infty) \times C_n \to \mathbb{R}^n$ continuous,
 $y_t \in C_n$, $y_t(\theta) = y(t + \theta)$, $\theta \in [-\tau, 0]$.

▶ $y(t) = y(t, t_0, \varphi)$ denote the solution of (1) such that $y_{t_0} = \varphi \in C_n$.

▶ Proposition 1

Assume that, for some $d=(d_1,\ldots,d_n)>0$, $f=(f_1,\ldots,f_n)$ satisfies

$$(\mathbf{H})_{\infty} \ \forall t \geq t_0, \forall \varphi \in C_n, \forall i \in \{1, \ldots, n\},\$$

$$\|\varphi\|_{\infty,d} = |\varphi(0)|_{\infty,d} = d_i|\varphi_i(0)| > 0 \Rightarrow \varphi_i(0)f_i(t,\varphi) < 0;$$

Then, the solution $y(t) = y(t, t_0, \varphi)$ of (1) is defined and bounded on $[t_0, +\infty)$, and

$$|y(t)|_{\infty,d} \le ||\varphi||_{\infty,d}$$
, for $t \ge t_0$.

▶ y(t) solution on $[t_0 - \tau, a)$, $a > t_0$, and $||y_{t_0}||_{\infty,d} \le K$;

- ▶ y(t) solution on $[t_0 \tau, a)$, $a > t_0$, and $||y_{t_0}||_{\infty,d} \le K$;
- ▶ Suppose that $|y(t_1)|_{\infty,d} > K > 0$ for some $t_1 > t_0$;

- ▶ y(t) solution on $[t_0 \tau, a)$, $a > t_0$, and $||y_{t_0}||_{\infty,d} \le K$;
- ▶ Suppose that $|y(t_1)|_{\infty,d} > K > 0$ for some $t_1 > t_0$;
- Define

$$\mathcal{T} = \min \left\{ t \in [t_0, t_1] : |y(t)|_{\infty,d} = \max_{s \in [t_0, t_1]} |y(s)|_{\infty,d}
ight\}.$$

- ▶ y(t) solution on $[t_0 \tau, a)$, $a > t_0$, and $||y_{t_0}||_{\infty,d} \le K$;
- ▶ Suppose that $|y(t_1)|_{\infty,d} > K > 0$ for some $t_1 > t_0$;
- Define

$$\mathcal{T} = \min \left\{ t \in [t_0,t_1] : |y(t)|_{\infty,d} = \max_{s \in [t_0,t_1]} |y(s)|_{\infty,d}
ight\}.$$

We have

$$|y_T(\theta)|_{\infty,d} = |y(T+\theta)|_{\infty,d} \le |y(T)|_{\infty,d}, -\tau \le \theta \le 0.$$

Choosing $i \in \{1,\ldots,n\}$ such that $||y_T||_{\infty,d} = d_i|y_i(T)|$,

$$(\mathbf{H})_{\infty} \Rightarrow y_i(T)f_i(T,y_T) < 0.$$

If $y_i(T) > 0$ (analogous if $y_i(T) < 0$), then $\dot{y}_i(T) < 0$.

- ▶ y(t) solution on $[t_0 \tau, a)$, $a > t_0$, and $||y_{t_0}||_{\infty,d} \le K$;
- ▶ Suppose that $|y(t_1)|_{\infty,d} > K > 0$ for some $t_1 > t_0$;
- Define

$$\mathcal{T} = \min \left\{ t \in [t_0,t_1] : |y(t)|_{\infty,d} = \max_{s \in [t_0,t_1]} |y(s)|_{\infty,d}
ight\}.$$

We have

$$|y_T(\theta)|_{\infty,d} = |y(T+\theta)|_{\infty,d} \le |y(T)|_{\infty,d}, -\tau \le \theta \le 0.$$

Choosing $i \in \{1,\ldots,n\}$ such that $||y_T||_{\infty,d} = d_i|y_i(T)|$,

$$(\mathbf{H})_{\infty} \Rightarrow y_i(T)f_i(T,y_T) < 0.$$

If $y_i(T) > 0$ (analogous if $y_i(T) < 0$), then $\dot{y}_i(T) < 0$.

$$d_i y_i(t) \leq |y(t)|_{\infty,d} < |y(T)|_{\infty,d} = d_i y_i(T), \ t \in [t_0 - \tau, T),$$

$$\Rightarrow \dot{y}_i(T) \geq 0.$$

- ▶ y(t) solution on $[t_0 \tau, a)$, $a > t_0$, and $||y_{t_0}||_{\infty,d} \le K$;
- ▶ Suppose that $|y(t_1)|_{\infty,d} > K > 0$ for some $t_1 > t_0$;
- Define

$$\mathcal{T} = \min \left\{ t \in [t_0,t_1] : |y(t)|_{\infty,d} = \max_{s \in [t_0,t_1]} |y(s)|_{\infty,d}
ight\}.$$

We have

$$|y_T(\theta)|_{\infty,d} = |y(T+\theta)|_{\infty,d} \le |y(T)|_{\infty,d}, -\tau \le \theta \le 0.$$

Choosing $i \in \{1,\ldots,n\}$ such that $||y_T||_{\infty,d} = d_i|y_i(T)|$,

$$(\mathbf{H})_{\infty} \Rightarrow y_i(T)f_i(T,y_T) < 0.$$

If $y_i(T) > 0$ (analogous if $y_i(T) < 0$), then $\dot{y}_i(T) < 0$.

▶
$$d_i y_i(t) \le |y(t)|_{\infty,d} < |y(T)|_{\infty,d} = d_i y_i(T), t \in [t_0 - \tau, T),$$

$$\Rightarrow \dot{y}_i(T) \geq 0.$$

$$|y(t,t_0,\varphi)|_{\infty,d} \leq ||\varphi||_{\infty,d}, \quad \forall t \geq t_0.$$

▶ Proposition 2

Assume that, for some $d=(d_1,\ldots,d_n)>0$, f satisfies $(\mathbf{H})_2 \ \forall t\geq t_0, \forall \varphi\in C_n$,

$$\|\varphi\|_{2,d} = |\varphi(0)|_{2,d} > 0 \Rightarrow <\varphi(0), f(t,\varphi)>_d < 0.$$

Then, the solution $y(t) = y(t, t_0, \varphi)$ of $\dot{y}(t) = f(t, y_t)$ is defined and bounded on $[t_0, +\infty)$, and

$$|y(t)|_{2,d} \le ||\varphi||_{2,d}$$
, for $t \ge t_0$.

▶ Proposition 2

Assume that, for some $d=(d_1,\ldots,d_n)>0$, f satisfies $(\mathbf{H})_2 \ \forall t\geq t_0, \forall \varphi\in C_n$,

$$\|\varphi\|_{2,d} = |\varphi(0)|_{2,d} > 0 \Rightarrow <\varphi(0), f(t,\varphi)>_d < 0.$$

Then, the solution $y(t) = y(t, t_0, \varphi)$ of $\dot{y}(t) = f(t, y_t)$ is defined and bounded on $[t_0, +\infty)$, and

$$|y(t)|_{2,d} \leq ||\varphi||_{2,d}$$
, for $t \geq t_0$.

▶ Proof: Similar to the proof of Proposition 1.

2. Exponential stability

▶ In applications,

$$\dot{x}_i(t) = -\rho_i(x_i(t))[b_i(x_i(t)) + f_i(x_t)], \quad t \geq 0, \ i = 1, \ldots, n, \ (2)$$

where
$$\rho_i : \mathbb{R} \to (0, +\infty)$$
, $b_i : \mathbb{R} \to \mathbb{R}$ and $f = (f_1, \dots, f_n) : [0, +\infty) \times C_n \to \mathbb{R}^n$ are continuous.

Hypothesis:

2. Exponential stability

▶ In applications,

$$\dot{x}_i(t) = -\rho_i(x_i(t))[b_i(x_i(t)) + f_i(x_t)], \quad t \geq 0, \ i = 1, \ldots, n, \ (2)$$

where
$$\rho_i : \mathbb{R} \to (0, +\infty)$$
, $b_i : \mathbb{R} \to \mathbb{R}$ and $f = (f_1, \dots, f_n) : [0, +\infty) \times C_n \to \mathbb{R}^n$ are continuous.

Hypothesis:

▶ (A1) $\exists \beta_i > 0, \forall u, v \in \mathbb{R}, u \neq v$:

$$(b_i(u)-b_i(v))/(u-v) \geq \beta_i$$
.

[In particular, for $b_i(u) = \beta_i u$.]

Definition

An equilibrium $x^* \in \mathbb{R}$ of (2) is said to be *globally* exponentially stable if there are ε , M > 0 such that

$$|y(t,0,\varphi)-x^*| \leq Me^{-\varepsilon t} \|\varphi-x^*\|, \quad t \geq 0, \ \varphi \in C_n.$$

Definition

An equilibrium $x^* \in \mathbb{R}$ of (2) is said to be *globally* exponentially stable if there are $\varepsilon, M > 0$ such that

$$|y(t,0,\varphi)-x^*| \leq Me^{-\varepsilon t} \|\varphi-x^*\|, \quad t \geq 0, \ \varphi \in C_n.$$

Theorem 1

Suppose that $0 < r \le \rho_i(x)$, $\forall x \in \mathbb{R}$, i = 1, ..., n and assume **(A1)** and

$$(\mathbf{A2})_{\infty} \ \exists d = (d_1, \ldots, d_n) > 0, \forall \varphi, \psi \in C_n:$$

$$|f_i(\varphi)-f_i(\psi)|\leq |I_i||\varphi-\psi||_{\infty,d},$$

with $\beta_i > d_i I_i$, $i = 1, \ldots, n$.

Then there is a unique equilibrium x^* of (2) which is globally exponentially stable.

Existence of equilibrium Consider

$$H: \mathbb{R}^n \to \mathbb{R}^n$$

 $x \mapsto (b_1(x_1) + f_1(x), \dots, b_n(x_n) + f_n(x))$

H is injective and $|H(x)|_{\infty,d} \to +\infty$ as $|x|_{\infty,d} \to +\infty$ implying that H is a homeomorfism [1], then there exists $x^* \in \mathbb{R}^n$, $H(x^*) = 0$, i.e. x^* is an equilibrium of (2).

[1] M. Forti and A. Tesi, New conditions for global stability of neural networks with applications to linear and quadratic programming problems, IEEE Trans. Circuits Syst. I 42 (1995) 354-366.

Existence of equilibrium Consider

$$H: \mathbb{R}^n \to \mathbb{R}^n$$

 $x \mapsto (b_1(x_1) + f_1(x), \dots, b_n(x_n) + f_n(x))$

H is injective and $|H(x)|_{\infty,d} \to +\infty$ as $|x|_{\infty,d} \to +\infty$ implying that H is a homeomorfism [1], then there exists $x^* \in \mathbb{R}^n$, $H(x^*) = 0$, i.e. x^* is an equilibrium of (2).

▶ By translation we may suppose $x^* = 0$, $b_i(0) + f_i(t,0) = 0$.

[1] M. Forti and A. Tesi, New conditions for global stability of neural networks with applications to linear and quadratic programming problems, IEEE Trans. Circuits Syst. I 42 (1995) 354-366.

Exponential stability Consider $x(t) = x(t, 0, \varphi)$ a solution of (2).

- Exponential stability Consider $x(t) = x(t, 0, \varphi)$ a solution of (2).
- The change of variables

$$z(t)=e^{\varepsilon t}x(t),$$

for $\varepsilon > 0$ small enough, transform (2) into

$$\dot{z}(t) = g(t, z_t), \tag{3}$$

$$g = (g_1, \ldots, g_n)$$
 with

$$g_i(t,\varphi) =$$

$$\varepsilon\varphi_i(0) - \rho_i(t, e^{-\varepsilon(t+\cdot)}\varphi)e^{\varepsilon t} \left[b_i(e^{-\varepsilon t}\varphi_i(0)) + f_i(t, e^{-\varepsilon(t+\cdot)}\varphi)\right]$$

The change of variables

$$z(t)=e^{\varepsilon t}x(t),$$

for $\varepsilon > 0$ small enough, transform (2) into

$$\dot{z}(t) = g(t, z_t), \tag{3}$$

$$g = (g_1, \dots, g_n)$$
 with

$$g_i(t,\varphi) =$$

$$\varepsilon \varphi_i(0) - \rho_i(t, e^{-\varepsilon(t+\cdot)}\varphi)e^{\varepsilon t} \left[b_i(e^{-\varepsilon t}\varphi_i(0)) + f_i(t, e^{-\varepsilon(t+\cdot)}\varphi)\right]$$

$$\blacktriangleright$$
 (A1)+(A2) $_{\infty}$ \Rightarrow (H) $_{\infty}$

- Exponential stability Consider $x(t) = x(t, 0, \varphi)$ a solution of (2).
- The change of variables

$$z(t)=e^{\varepsilon t}x(t),$$

for $\varepsilon > 0$ small enough, transform (2) into

$$\dot{z}(t) = g(t, z_t), \tag{3}$$

$$g = (g_1, \ldots, g_n)$$
 with

$$g_i(t,\varphi) = \\ \varepsilon \varphi_i(0) - \rho_i(t, e^{-\varepsilon(t+\cdot)}\varphi)e^{\varepsilon t} \left[b_i(e^{-\varepsilon t}\varphi_i(0)) + f_i(t, e^{-\varepsilon(t+\cdot)}\varphi) \right]$$

- \blacktriangleright (A1)+(A2) $_{\infty}$ \Rightarrow (H) $_{\infty}$
- ▶ From Proposition 1 $|z(t)|_{\infty,d} \le ||z_0||_{\infty,d}$, $t \ge 0$, and

$$|x(t,0,\varphi)|_{\infty,d} = |e^{-\varepsilon t}z(t,0,e^{\varepsilon \cdot \varphi})|_{\infty,d} \le e^{-\varepsilon t} \|\varphi\|_{\infty,d}$$

► Theorem 2

Suppose that $0 < r \le \rho_i(x) \le R$, $\forall x \in \mathbb{R}$, i = 1, ..., n and assume **(A1)** and

(A2)₂
$$\exists d = (d_1, \dots, d_n) > 0, \forall \varphi, \psi \in C_n$$
:

$$|f(\varphi)-f(\psi)|_{2,d}\leq I||\varphi-\psi||_{2,d},$$

with
$$\beta_i > I\sqrt{R/r}$$
, $i = 1, ..., n$.

Then there a unique equilibrium x^* of (2) which is globally exponentially stable.

► Theorem 2

Suppose that $0 < r \le \rho_i(x) \le R$, $\forall x \in \mathbb{R}$, i = 1, ..., n and assume **(A1)** and

(A2)₂
$$\exists d = (d_1, \dots, d_n) > 0, \forall \varphi, \psi \in C_n$$
:

$$|f(\varphi)-f(\psi)|_{2,d}\leq I||\varphi-\psi||_{2,d},$$

with
$$\beta_i > I\sqrt{R/r}$$
, $i = 1, ..., n$.

Then there a unique equilibrium x^* of (2) which is globally exponentially stable.

Proof: Similar to the proof of Theorem 1.

► Theorem 2

Suppose that $0 < r \le \rho_i(x) \le R$, $\forall x \in \mathbb{R}$, i = 1, ..., n and assume **(A1)** and

(A2)₂
$$\exists d = (d_1, \ldots, d_n) > 0, \forall \varphi, \psi \in C_n$$
:

$$|f(\varphi)-f(\psi)|_{2,d}\leq I||\varphi-\psi||_{2,d},$$

with
$$\beta_i > I\sqrt{R/r}$$
, $i = 1, ..., n$.

Then there a unique equilibrium x^* of (2) which is globally exponentially stable.

- ▶ Proof: Similar to the proof of Theorem 1.
- Remark

Assuming the existence of an equilibrium point, similar results can be obtained for the non-autonomous case

$$\dot{x}_i(t) = -\rho_i(t, x_t)[b_i(x_i(t)) + f_i(t, x_t)], \quad t \ge 0, \ i = 1, \dots, n.$$

Cohen-Grossberg neural network with distributed delays

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} f_{ij}(x_{j,t}) \right], \tag{4}$$

 $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous and $\rho_i(x) \geq r > 0$;

Cohen-Grossberg neural network with distributed delays

$$\dot{x}_i(t) = -\rho_i(x_i(t)) \left[b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t}) \right],$$
 (4)

- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous and $\rho_i(x) \ge r > 0$;
- $f_{ij}: C_1 \to \mathbb{R}$ are Lipschitzian with

$$|f_{ij}(\varphi) - f_{ij}(\psi)| \le |I_{ij}| |\varphi - \psi||_{\infty}, \quad \varphi, \psi \in C_1 = C([-\tau, 0]; \mathbb{R});$$

Cohen-Grossberg neural network with distributed delays

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} f_{ij}(x_{j,t}) \right], \tag{4}$$

- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous and $\rho_i(x) \geq r > 0$;
- $f_{ij}: C_1 \to \mathbb{R}$ are Lipschitzian with

$$|f_{ij}(\varphi)-f_{ij}(\psi)| \leq I_{ij} \|\varphi-\psi\|_{\infty}, \quad \varphi,\psi \in C_1 = C([-\tau,0];\mathbb{R});$$

▶ $b_i : \mathbb{R} \to \mathbb{R}$ are continuous satisfying **(A1)**;

Cohen-Grossberg neural network with distributed delays

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} f_{ij}(x_{j,t}) \right], \tag{4}$$

- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous and $\rho_i(x) \geq r > 0$;
- $f_{ij}: C_1 \to \mathbb{R}$ are Lipschitzian with

$$|f_{ij}(\varphi)-f_{ij}(\psi)| \leq I_{ij} \|\varphi-\psi\|_{\infty}, \quad \varphi,\psi \in C_1 = C([-\tau,0];\mathbb{R});$$

▶ $b_i : \mathbb{R} \to \mathbb{R}$ are continuous satisfying **(A1)**;

Cohen-Grossberg neural network with distributed delays

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} f_{ij}(x_{j,t}) \right], \tag{4}$$

- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous and $\rho_i(x) \ge r > 0$;
- $f_{ij}: C_1 \to \mathbb{R}$ are Lipschitzian with

$$|f_{ij}(\varphi) - f_{ij}(\psi)| \leq I_{ij} \|\varphi - \psi\|_{\infty}, \quad \varphi, \psi \in C_1 = C([-\tau, 0]; \mathbb{R});$$

- ▶ $b_i : \mathbb{R} \to \mathbb{R}$ are continuous satisfying **(A1)**;
- $ightharpoonup N := diag(\beta_1, \ldots, \beta_n) [I_{ij}].$

► Proposition 3

If N is a non-singular M-matrix, then there is a unique equilibrium of (4), which is globally exponentially stable.

$$\dot{x_i}(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})
ight), i=1,\ldots,n$$

Proposition 3

If N is a non-singular M-matrix, then there is a unique equilibrium of (4), which is globally exponentially stable.

▶ Proof (idea) For $f_i(\varphi) := \sum_{j=1}^n f_{ij}(\varphi_j)$, $\varphi = (\varphi_1, \dots, \varphi_n) \in C_n$, (4) has the form of (2).

▶ Proposition 3

If N is a non-singular M-matrix, then there is a unique equilibrium of (4), which is globally exponentially stable.

- ▶ Proof (idea) For $f_i(\varphi) := \sum_{j=1}^n f_{ij}(\varphi_j)$, $\varphi = (\varphi_1, \dots, \varphi_n) \in C_n$, (4) has the form of (2).
- N non-singular M-matrix \Rightarrow Exists $c = (c_1, \dots, c_n) > 0$ such that Nc > 0,

$$\beta_i > c_i^{-1} \sum_{j=1}^n l_{ij} c_j, \quad i = 1, \dots, n;$$
(5)

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

► Proposition 3

If N is a non-singular M-matrix, then there is a unique equilibrium of (4), which is globally exponentially stable.

- ▶ Proof (idea) For $f_i(\varphi) := \sum_{j=1}^n f_{ij}(\varphi_j)$, $\varphi = (\varphi_1, \dots, \varphi_n) \in C_n$, (4) has the form of (2).
- N non-singular M-matrix \Rightarrow Exists $c = (c_1, ..., c_n) > 0$ such that Nc > 0,

$$\beta_i > c_i^{-1} \sum_{j=1}^n l_{ij} c_j, \quad i = 1, \dots, n;$$
 (5)

$$|f_i(\varphi) - f_i(\psi)| \le \sum_{j=1}^n |f_{ij}(\varphi_i) - f_{ij}(\psi_i)| \le \left(\sum_{j=1}^n l_{ij}c_j\right) \|\varphi - \psi\|_{\infty,d}$$
and f_i satisfies $(\mathbf{A2})_{\infty}$ with $d = (c_1^{-1}, \dots, c_n^{-1});$

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

▶ Proposition 3

If N is a non-singular M-matrix, then there is a unique equilibrium of (4), which is globally exponentially stable.

- ▶ Proof (idea) For $f_i(\varphi) := \sum_{j=1}^n f_{ij}(\varphi_j)$, $\varphi = (\varphi_1, \dots, \varphi_n) \in C_n$, (4) has the form of (2).
- N non-singular M-matrix \Rightarrow Exists $c = (c_1, ..., c_n) > 0$ such that Nc > 0,

$$\beta_i > c_i^{-1} \sum_{j=1}^n l_{ij} c_j, \quad i = 1, \dots, n;$$
 (5)

$$|f_i(\varphi) - f_i(\psi)| \le \sum_{j=1}^n |f_{ij}(\varphi_i) - f_{ij}(\psi_i)| \le \left(\sum_{j=1}^n l_{ij}c_j\right) \|\varphi - \psi\|_{\infty,d}$$
and f_i satisfies $(\mathbf{A2})_{\infty}$ with $d = (c_1^{-1}, \dots, c_n^{-1});$

▶ The result follows from Theorem 1.

▶ Denote $f = (f_1, \ldots, f_n) : C_n \to \mathbb{R}^n$

$$f_i(\varphi) = \sum_{j=1}^n f_{ij}(\varphi_j), \quad \varphi = (\varphi_1, \dots, \varphi_n) \in C_n.$$

$$\dot{x}_j(t) = -
ho_i(x_j(t))\left(b_i(x_j(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

ightharpoonup Denote $f=(f_1,\ldots,f_n):C_n\to\mathbb{R}^n$

$$f_i(\varphi) = \sum_{j=1}^n f_{ij}(\varphi_j), \quad \varphi = (\varphi_1, \dots, \varphi_n) \in C_n.$$

Proposition 4 Assume (A1) and suppose

$$0 < r \le \rho_i(x) \le R \quad \forall x \in \mathbb{R}, i = 1, \dots, n,$$

$$|f(\varphi)-f(\psi)|_{2,d} \leq I \|\varphi-\psi\|_{2,d} \quad \forall \varphi, \psi \in C_n,$$

with
$$\beta_i > I\sqrt{R/r}$$
, $\forall i$.

Then there is an equilibrium of (4), which is globally exponentially stable.

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

▶ Denote $f = (f_1, \ldots, f_n) : C_n \to \mathbb{R}^n$

$$f_i(\varphi) = \sum_{j=1}^n f_{ij}(\varphi_j), \quad \varphi = (\varphi_1, \dots, \varphi_n) \in C_n.$$

Proposition 4 Assume (A1) and suppose

$$0 < r \le \rho_i(x) \le R \quad \forall x \in \mathbb{R}, i = 1, \dots, n,$$

$$|f(\varphi)-f(\psi)|_{2,d} \leq I \|\varphi-\psi\|_{2,d} \quad \forall \varphi, \psi \in C_n,$$

with $\beta_i > I\sqrt{R/r}$, $\forall i$.

Then there is an equilibrium of (4), which is globally exponentially stable.

Proof: Similar to the proof of Proposition 3.

▶ Example 1: Consider the 2-neuron network

$$\dot{x}_{1}(t) = -b_{1}x_{1}(t) + a_{11}f_{1}(x_{1}(t-\tau)) + a_{12}f_{2}(x_{2}(t-\tau))$$

$$\dot{x}_{2}(t) = -b_{2}x_{2}(t) + a_{21}f_{1}(x_{1}(t-\tau)) + a_{22}f_{2}(x_{2}(t-\tau))$$
where, for $i = 1, 2, \tau, b_{i} > 0$, $a_{ij} \in \mathbb{R}$, $a_{ii} \neq 0$, and $f_{i} : \mathbb{R} \to \mathbb{R}$ such that $|f_{i}(u) - f_{i}(v)| < |u - v|, u, v \in \mathbb{R}$.

► Example 1: Consider the 2-neuron network

$$\dot{x}_1(t) = -b_1 x_1(t) + a_{11} f_1(x_1(t-\tau)) + a_{12} f_2(x_2(t-\tau))$$

$$\dot{x}_2(t) = -b_2 x_2(t) + a_{21} f_1(x_1(t-\tau)) + a_{22} f_2(x_2(t-\tau))$$
(6)

where, for $i = 1, 2, \tau, b_i > 0$, $a_{ij} \in \mathbb{R}$, $a_{ii} \neq 0$, and $f_i : \mathbb{R} \to \mathbb{R}$ such that $|f_i(u) - f_i(v)| \le |u - v|, u, v \in \mathbb{R}$.

▶ If $N = diag(b_1, b_2) - [|a_{ij}|]$ is a non-singular M-matrix, i.e

$$b_1 > a_{11} \text{ and } (b_1 - a_{11})(b_2 - a_{22}) > |a_{12}a_{21}|,$$
 (7)

then, from Proposition 3, (6) has an equilibrium x^* , which is globally exponentially stable.

$$f(\varphi) = A \begin{pmatrix} f_1(\varphi_1(-\tau)) \\ f_2(\varphi_2(-\tau)) \end{pmatrix}, \text{ for } A = [a_{ij}], \ \varphi = (\varphi_1, \varphi_2) \in C_2.$$

$$f(\varphi) = A \begin{pmatrix} f_1(\varphi_1(-\tau)) \\ f_2(\varphi_2(-\tau)) \end{pmatrix}, \text{ for } A = [a_{ij}], \ \varphi = (\varphi_1, \varphi_2) \in C_2.$$

• Choosing $d = (d_1, d_2) > 0$ such that $d_1 a_{11} a_{12} + d_2 a_{21} a_{22} = 0$,

$$|f(\varphi) - f(\psi)|_{2,d} \le \left(\max\{\frac{a_{11}}{a_{22}}, \frac{a_{22}}{a_{11}}\} \det A\right)^{1/2} \|\varphi - \psi\|_{2,d}$$

$$\dot{x}_i(t) = -
ho_i(x_i(t)) \left(b_i(x_i(t)) + \sum_{i=1}^n f_{ij}(x_{j,t}) \right), i = 1, \ldots, n$$

$$f(\varphi) = A \begin{pmatrix} f_1(\varphi_1(-\tau)) \\ f_2(\varphi_2(-\tau)) \end{pmatrix}, \text{ for } A = [a_{ij}], \ \varphi = (\varphi_1, \varphi_2) \in C_2.$$

• Choosing $d = (d_1, d_2) > 0$ such that $d_1 a_{11} a_{12} + d_2 a_{21} a_{22} = 0$,

$$|f(\varphi) - f(\psi)|_{2,d} \le \left(\max\{\frac{a_{11}}{a_{22}}, \frac{a_{22}}{a_{11}}\} \det A\right)^{1/2} \|\varphi - \psi\|_{2,d}$$

► From Proposition 4, if

$$\left(\max\{\frac{a_{11}}{a_{22}}, \frac{a_{22}}{a_{11}}\} \det A\right)^{1/2} < \min\{b_1, b_2\}$$
 (8)

then (6) has an equilibrium, x^* , globally exponentially stable.

$$\dot{x}_i(t) = -
ho_i(x_i(t)) \left(b_i(x_i(t)) + \sum_{i=1}^n f_{ij}(x_{j,t}) \right), i = 1, \ldots, n$$

$$f(\varphi) = A \begin{pmatrix} f_1(\varphi_1(-\tau)) \\ f_2(\varphi_2(-\tau)) \end{pmatrix}, \text{ for } A = [a_{ij}], \ \varphi = (\varphi_1, \varphi_2) \in C_2.$$

• Choosing $d = (d_1, d_2) > 0$ such that $d_1 a_{11} a_{12} + d_2 a_{21} a_{22} = 0$,

$$|f(\varphi) - f(\psi)|_{2,d} \le \left(\max\{\frac{a_{11}}{a_{22}}, \frac{a_{22}}{a_{11}}\} \det A\right)^{1/2} \|\varphi - \psi\|_{2,d}$$

From Proposition 4, if

$$\left(\max\{\frac{a_{11}}{a_{22}}, \frac{a_{22}}{a_{11}}\} \det A\right)^{1/2} < \min\{b_1, b_2\}$$
 (8)

then (6) has an equilibrium, x^* , globally exponentially stable.

▶
$$(7) \Rightarrow (8) \text{ and } (8) \Rightarrow (7)$$

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} \sum_{p=1}^{P} h_{ijp}(x_{j}(t - \tau_{ijp}(t))) \right]$$
(9)

$$ightharpoonup au_{ijp}: [0,+\infty) o [0,+\infty)$$
 are continuous with $au_{ijp}(t) \le au$;

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} \sum_{p=1}^{P} h_{ijp}(x_{j}(t - \tau_{ijp}(t))) \right]$$
(9)

- $ightharpoonup au_{ijp}: [0,+\infty) o [0,+\infty)$ are continuous with $au_{ijp}(t) \le au$;
- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous with $\rho_i(x) \geq r > 0$;

$$\dot{x}_i(t) = -\rho_i(x_i(t)) \left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t}) \right), i = 1, \ldots, n$$

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} \sum_{p=1}^{P} h_{ijp}(x_{j}(t - \tau_{ijp}(t))) \right]$$
(9)

- $ightharpoonup au_{ijp}: [0,+\infty) o [0,+\infty)$ are continuous with $au_{ijp}(t) \le au$;
- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous with $\rho_i(x) \geq r > 0$;
- ▶ $b_i : \mathbb{R} \to \mathbb{R}$ are continuous satisfying **(A1)**, i.e., $\exists \beta_i > 0, \forall u, v \in \mathbb{R}, u \neq v$:

$$(b_i(u)-b_i(v))/(u-v) \geq \beta_i;$$

$$\dot{x}_i(t) = -\rho_i(x_i(t)) \left(b_i(x_i(t)) + \sum_{i=1}^n f_{ij}(x_{j,t}) \right), i = 1, \ldots, n$$

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} \sum_{p=1}^{P} h_{ijp}(x_{j}(t - \tau_{ijp}(t))) \right]$$
(9)

has an equilibrium point globally exponentially stable if

- $ightharpoonup au_{ijp}: [0,+\infty) o [0,+\infty)$ are continuous with $au_{ijp}(t) \le au$;
- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous with $\rho_i(x) \geq r > 0$;
- ▶ $b_i : \mathbb{R} \to \mathbb{R}$ are continuous satisfying **(A1)**, i.e., $\exists \beta_i > 0, \forall u, v \in \mathbb{R}, u \neq v$:

$$(b_i(u)-b_i(v))/(u-v) \geq \beta_i;$$

h_{ijp} are Lipschitz functions with constant l_{ijp};

$$\dot{x}_i(t) = -\rho_i(x_i(t)) \left(b_i(x_i(t)) + \sum_{i=1}^n f_{ij}(x_{j,t}) \right), i = 1, \ldots, n$$

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} \sum_{p=1}^{P} h_{ijp}(x_{j}(t - \tau_{ijp}(t))) \right]$$
(9)

- $ightharpoonup au_{ijp}: [0,+\infty) o [0,+\infty)$ are continuous with $au_{ijp}(t) \le au$;
- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous with $\rho_i(x) \geq r > 0$;
- ▶ $b_i : \mathbb{R} \to \mathbb{R}$ are continuous satisfying **(A1)**, i.e., $\exists \beta_i > 0, \forall u, v \in \mathbb{R}, u \neq v$:

$$(b_i(u)-b_i(v))/(u-v) \geq \beta_i;$$

- ▶ h_{ijp} are Lipschitz functions with constant l_{ijp};
- ▶ *N* is a non-singular M-matrix, where

$$N = diag(\beta_1, \ldots, \beta_n) - [I_{ij}], \quad \text{with} \quad I_{ij} := \sum_{p=1}^P I_{ijp}.$$

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left(b_{i}(x_{i}(t)) + \sum_{j=1}^{n} f_{ij}(x_{j,t})\right), i = 1, \ldots, n$$

In H. Jiang et al.[2], the same result was proved assuming:

- ▶ τ_{ijp} : $[0,+\infty) \to [0,+\infty)$ are continuous with $\tau_{ijp}(t) \le \tau$;
- ▶ $\rho_i(x)$ are locally Lipschitzian and $0 < r \le \rho_i(x) \le R < \infty$;
- ▶ $b_i \in C^1(\mathbb{R}, \mathbb{R})$ with $b_i'(x) \ge \beta_i > 0$;
- ▶ $h_{ijp}(x) = c_{ijp}g_{ijp}(x)$, with $c_{ijp} \in \mathbb{R}$ and g_{ijp} Lipschitz functions with constant μ_{ijp} ;
- ▶ $\exists \alpha_{ijp}, \gamma_{ijp} \in \mathbb{R}, \omega_i > 0, r > 1, \sigma > 0$ such that, $\forall i$

$$r\omega_{i}\underline{k_{i}}\beta_{i} - (r-1)\sum_{j=1}^{n}\sum_{p=1}^{P}\omega_{j}\overline{k_{i}}\mu_{ijp}^{\frac{r-\gamma_{ijp}}{r-1}}|c_{ijp}|^{\frac{r-\alpha_{ijp}}{r-1}}$$
$$-\sum_{i=1}^{n}\sum_{p=1}^{P}\omega_{j}\overline{k_{i}}\mu_{ijp}^{\gamma_{ijp}}|c_{ijp}|_{ijp}^{\alpha} > \sigma.$$
(10)

 $\label{eq:conditional_problem} \begin{tabular}{ll} [2] H. Jiang, J. Cao and Z. Teng, Dynamics of Cohen-Grossberg neural networks with time-varing delays, $Phys.$ \\ \end{tabular}$

Example 3:

$$\begin{split} \dot{x}_1(t) &= -(8+2\sin x_1(t))[7x_1(t) - \tanh x_1(t) - 2\tanh x_2(t) \\ &- \tanh(x_1(t-\frac{1}{3}\sin t - 1)) - \tanh(x_2(t-\frac{1}{4}e^{-\sin t} - 1)) + 2] \end{split}$$

$$\dot{x}_2(t) = -(5 + 2\cos x_2(t))[10x_2(t) - 2\tanh x_1(t) - \tanh x_2(t) - \tanh(x_1(t - \frac{1}{4}e^{-\sin t} - 1)) - 2\tanh(x_2(t - \frac{1}{3}\sin t - 1)) + 3]$$

Example 3:

$$\begin{split} \dot{x}_1(t) &= -(8+2\sin x_1(t))[7x_1(t) - \tanh x_1(t) - 2\tanh x_2(t) \\ &- \tanh(x_1(t-\frac{1}{3}\sin t - 1)) - \tanh(x_2(t-\frac{1}{4}e^{-\sin t} - 1)) + 2] \end{split}$$

$$\dot{x}_2(t) = -(5 + 2\cos x_2(t))[10x_2(t) - 2\tanh x_1(t) - \tanh x_2(t) \\ - \tanh(x_1(t - \frac{1}{4}e^{-\sin t} - 1)) - 2\tanh(x_2(t - \frac{1}{3}\sin t - 1)) + 3]$$

▶ $N = diag(7, 10) - \begin{pmatrix} 2 & 3 \\ 3 & 3 \end{pmatrix}$ is a non-singular M-matrix.

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

Example 3:

$$\begin{split} \dot{x}_1(t) &= -(8+2\sin x_1(t))[7x_1(t) - \tanh x_1(t) - 2\tanh x_2(t) \\ &- \tanh(x_1(t-\frac{1}{3}\sin t - 1)) - \tanh(x_2(t-\frac{1}{4}e^{-\sin t} - 1)) + 2] \end{split}$$

$$\begin{aligned} \dot{x}_2(t) &= -(5 + 2\cos x_2(t))[10x_2(t) - 2\tanh x_1(t) - \tanh x_2(t) \\ &- \tanh(x_1(t - \frac{1}{4}e^{-\sin t} - 1)) - 2\tanh(x_2(t - \frac{1}{3}\sin t - 1)) + 3] \end{aligned}$$

- ► $N = diag(7, 10) \begin{pmatrix} 2 & 3 \\ 3 & 3 \end{pmatrix}$ is a non-singular M-matrix.
- ▶ If (10) holds, then there are $\omega_1, \omega_2 > 0$ such that

$$\left\{ \begin{array}{l} 22\omega_1 - 30\omega_2 > 0 \\ -21\omega_1 + 9\omega_2 > 0 \end{array} \right. ,$$

which is impossible.

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

Thanks you

Obrigado