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1. Boundedness of solutions
y(t) = f(t, )

2. Global stability
vi(t) = filye), i
xi(t) = —pi(xi(t))(

3. Exponential stability
Xi(t) = —pi(xi())(bi(xi(t)) + fi(x)), i=1,....n

4. Neural Network Models

|

]‘7
,'(X,'(t)) + f,'(Xt)), | = ].7 oy n

n

%i(£) = =piCa(0)) | bi(xi(0)) + D fi(x.e) | i =1,...,n

Jj=1
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Notation

» neN, x=(xg,...,x,) € R",

[X[oo = max [x;l;
1<i<n
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Notation

» neN, x=(xg,...,x,) € R",

[X[oo = max [x;l;
1<i<n

» 7 e RY, C,:= C([-7,0];R")

l¢lloo = sup [@(0)]co:
0e[—7,0]
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Notation

» neN, x=(xg,...,x,) € R",

[X[oo = max [x;l;
1<i<n

» 7 e RY, C,:= C([-7,0];R")

l¢lloo = sup [@(0)]co:
0e[—7,0]

> A= [aj] € R"™" is a non-singular M-matrix if a; <0, i # j
and Re o(A) > 0.
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1. Boundedness of solutions

y(t) = £(t, %)

1. Boundedness of solutions

» FDE in G,

y(t) = f(t,ye), t=to, (1)

to € R,
f=(h,...,f): [to,+00) x C, — R" continuous,
vt € Gy, yt(e) = .y(t+ 9), NS [*Ta 0]
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1. Boundedness of solutions
y(t) = (¢, yt)

1. Boundedness of solutions

» FDE in G,
y(t) = f(tayt)a t 2 to, (1)

to € R,
f=(h,...,f): [to,+00) x C, — R" continuous,

vt € o, ye(0) = y(t +60), 0 € [-7,0].
> y(t) = y(t, to, ¢) denote the solution of (1) such that
Vi, = ¢ € Cp.
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1. Boundedness of solutions

» Proposition 1
Assume that, f = (fi, ..., f,) satisfies
(H) Vt > to,Vp € C,,Vie {1,...,n},

[@lloe = [#(0)co = [i(0)] > 0 = @i(0)fi(t, ) < O;

Then, the solution y(t) = y(t, to, p) of (1) is defined and
bounded on [tp, +00), and

b/(t)|oo < H‘PHOOv for t>t.

» Proof [1].

[1] T. Faria, J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and

instantaneous negative feedbacks, J. Differential Equations 244 (2008) 1049-1079.
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2. Global stability yi(t) = filye), f=1
i(t pi(xi(t))(bj(xi(t))

2. Global stability

> FDE in G,
vi(t)=fi(ye), t>0,i=1,...,n, (2)

fi - C, — R are continuous, for i € {1,...,n}
Hypotheses:
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2. Global stability Yi(t) = fi(yt),
Xi(t) = —pi(x;(t))(b;(xi(t))

2. Global stability

> FDE in G,
vi(t)=fi(ye), t>0,i=1,...,n, (2)

fi - C, — R are continuous, for i € {1,...,n}
Hypotheses:

» (H1) Vo € C,,Vie {1,...,n},

lelloo = l(0)loo = Ii(0)[ > 0 = ©;(0)fi() < O;

(H2) f; are bounded on bounded sets of C,,.
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2. Global stability Yi(t) = fi(yt),
Xi(t) = —pi(x;(t))(b;(xi(t))

2. Global stability

> FDE in G,
vi(t)=fi(ye), t>0,i=1,...,n, (2)

fi - C, — R are continuous, for i € {1,...,n}
Hypotheses:

» (H1) Vo € C,,Vie {1,...,n},

lelloo = l(0)loo = Ii(0)[ > 0 = ©;(0)fi() < O;

(H2) f; are bounded on bounded sets of C,,.
» (H1)= y = 0 is the unique equilibrium of (2).
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2. Global stability

» Theorem 1
Assume (H1) and (H2)
Then y = 0 is globally asymptotically stable.
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2. Global stability

» Theorem 1
Assume (H1) and (H2)
Then y = 0 is globally asymptotically stable.
» Proof (idea)
Let y(t) = (ya(t),...,yn(t)) be a solution of (2).
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2. Global stability Vi § 5 f=iho00q n
xi(t 2

pi(xi(t))(bi(xi(t))

» Theorem 1
Assume (H1) and (H2)
Then y = 0 is globally asymptotically stable.

» Proof (idea)
Let y(t) = (ya(t),...,yn(t)) be a solution of (2).
» Proposition 1 = y(t) defined and bounded on [—7, +00)

—v; = liminfy;(t), u; = limsup y;(t)
t—+o00 t—4-o00

v=max{vi}, u=max{u},
1 1

u,veR, —v<u.

» We have to show max(u,v) = 0.
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2. Global stability

» We suppose |v| < u. (Ju| < v is similar)
Let i € {1,...,n} such that u; = u.
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2. Global stability

» We suppose |v| < u. (Ju| < v is similar)
Let i € {1,...,n} such that u; = u.
» We have

Ve>0,3T >0: ||yt <u+e t>T

Teresa Faria and José J. Oliveira Global stability for delayed NNM’s



2. Global stability

» We suppose |v| < u. (Ju| < v is similar)
Let i € {1,...,n} such that u; = u.
» We have

Ve>0,3T >0: ||yt <u+e t>T
» We can show that exists (tx)ken such that

te / +oo, yi(tx) = u, and fi(yy) — 0.
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2. Global stability Vi § 5 f=iho00q n
xi(t

pi(xi(t))(bj(xi(t)) + fi(xt)),

» We suppose |v| < u. (Ju| < v is similar)
Let i € {1,...,n} such that u; = u.
» We have

Ve>0,3T >0: ||yt <u+e t>T
» We can show that exists (tx)ken such that
tk / +OO, yi(tk) — u, and f;(ytk) — 0.

» (H1)+(H2) = y(t) is bounded = {yt,} is bounded and
equicontinuous = dp € C,

vy, — @ on Cp,

with [|¢]lee < 4, ¢i(0) = u and fi(¢) = 0.
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2. Global stability Vi § 5 f=iho00q n
xi(t

pi(xi(t))(bj(xi(t)) + fi(xt)),

v

We suppose |v| < u. (Ju| < v is similar)
Let i € {1,...,n} such that u; = u.
» We have

Ve>0,3T >0: ||yt <u+e t>T

v

We can show that exists (tx)ken such that

te / +oo, yi(tx) = u, and fi(yy) — 0.

v

(H1)+(H2) = y(t) is bounded = {yt,} is bounded and
equicontinuous = dp € C,

vy, — @ on Cp,

(H1) = uv=0. 0O

with [|¢]lee < 4, ¢i(0) = u and fi(¢) = 0.

v

Teresa Faria and José J. Oliveira Global stability for delayed NNM’s



2. Global stability

» Applications to general neural network models
xi(t) = —pi(a(t))[bi(xi(t)) + filx)], =0, i=1,...,n, (3)

where p; : R — (0,400), bj : R — R and
f=(f,...,f): C, — R" are continuous.

Hypotheses:
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2. Global stability yi(t) = filye),

%i(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)),

» Applications to general neural network models
xi(t) = —pi(a(t))[bi(xi(t)) + filx)], =0, i=1,...,n, (3)

where p; : R — (0,400), bj : R — R and
f=(f,...,f): C, — R" are continuous.

Hypotheses:
» (A1) 38; > 0,Vu,v € R,u # v:

(bi(u) — Bi(v))/(u —v) >

[In particular, for bj(u) = Siu.]

» (A2) f; : C, — R are Lipschitz functions with Lipschitz
constants /;.
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2. Global stability

» Theorem 2
Assume (A1) and (A2).
If B; > I;,Vi, then (3) has an equilibrium point x* € R",
which is globally asymptotically stable.
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2. Global stability

» Theorem 2
Assume (A1) and (A2).
If B; > I;,Vi, then (3) has an equilibrium point x* € R",
which is globally asymptotically stable.
» Proof (idea)
Existence of equilibrium point

H: R" —- R”
X = (bl(Xl)+fl(X)a"')bn(Xn)—i_fn(X))
is a homeomorphism.

Then there exists x* € R", H(x*) =0, i.e. x* is an
equilibrium.
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2. Global stability yi(t) = filye),

%i(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)), i=1,

» Theorem 2
Assume (A1) and (A2).
If B; > I;,Vi, then (3) has an equilibrium point x* € R",
which is globally asymptotically stable.
» Proof (idea)
Existence of equilibrium point

H: R" — R”
x = (bi(x) + fA(x),. .., bo(xn) + fa(x))

is a homeomorphism.
Then there exists x* € R", H(x*) =0, i.e. x* is an
equilibrium.

» By translation, we may suppose x* = 0, b;(0) + ;(0) = 0, Vi.
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2. Global stability yi(t) = filye),

%i(t) = —pi(xi(t))(bi(xi(t)) + fi(xt)), i=1,

» Theorem 2
Assume (A1) and (A2).
If B; > I;,Vi, then (3) has an equilibrium point x* € R",
which is globally asymptotically stable.
» Proof (idea)
Existence of equilibrium point

H: R" — R”
x = (bi(x) + fA(x),. .., bo(xn) + fa(x))

is a homeomorphism.
Then there exists x* € R", H(x*) =0, i.e. x* is an
equilibrium.
» By translation, we may suppose x* = 0, b;(0) + ;(0) = 0, Vi.
> G; > 1;,Vi :>(H1) and (H2)
From Theorem 1, we have the result.t]
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3. Exponential stabiity X1 = —pi(O)BlG(O) +f(x), i=1,....n

3. Exponential stability

» Consider again the FDE,

i(t) = —pia () [bi(xi () +i(x)], ¢>0, i=1,....n(3)
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3. Exponential stability %i(t) = —pi(xi(t))(bi(x;(t)) + fi(xt)),

3. Exponential stability

» Consider again the FDE,
xi(t) = —pi(xi(E)[bi(xi(t)+fi(x)], t>0,i=1,...,n(3)

» Definition
An equilibrium x* € R of (3) is said to be globally
exponentially stable if there are ¢, M > 0 such that

Ix(t,0,0) — x*|oo < Me || — x*[|oo, t>0, p€ C,.
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xi(t) = —pi(xi(£))(bi(xi(£)) + fi(xt)),

3. Exponential stability

Exponential stability

» Consider again the FDE,
xi(t) = —pi(xi(E)[bi(xi(t)+fi(x)], t>0,i=1,...,n(3)

» Definition
An equilibrium x* € R of (3) is said to be globally
exponentially stable if there are ¢, M > 0 such that

Ix(t,0,0) — x*|oo < Me || — x*[|oo, t>0, p€ C,.

» Theorem 3
Suppose that 0 < r < p;i(x), Vx € R, i=1,...,n
and assume (A1) and (A2) with 5; > ;, i=1,...,n.
Then there is a unique equilibrium x* of (3) which is globally
exponentially stable.
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xi(8) = —pilxi(£))(bj(xi(2)) + fi(xt)), i=1,...,n

3. Exponential stability

» Proof (idea)
Assume x* = 0 the equilibrium point and
consider x(t) = x(t,0,¢) a solution of (3).
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xi(t) = —pi(xi(£))(bi(xi(£)) + fi(xt)),

3. Exponential stability

» Proof (idea)
Assume x* = 0 the equilibrium point and
consider x(t) = x(t,0,¢) a solution of (3).
» The change of variables

z(t) = e*'x(t),
for € > 0 small enough, transform (3) into
z(t) = g(t, z), (4)
g =(g1,-..,8n) with

gf(tv ()0) -
e0i(0) — pi(t, e = (H)p)est [bi(e 1 i(0)) + fi(t, e ()]
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xi(t) = —pi(xi(£))(bi(xi(£)) + fi(xt)),

3. Exponential stability

» Proof (idea)
Assume x* = 0 the equilibrium point and
consider x(t) = x(t,0,¢) a solution of (3).
» The change of variables

z(t) = e*'x(t),
for € > 0 small enough, transform (3) into
z(t) = g(t, z), (4)
g =(g1,-..,8n) with

gf(tv ()0) -
epi(0) — pi(t, e )p)et [bi(e='i(0)) + fi(t, e ()]
> (A1)+(A2)=(H)
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xi(t) = —pi(xi(£))(bi(xi(£)) + fi(xt)),

3. Exponential stability

» Proof (idea)
Assume x* = 0 the equilibrium point and
consider x(t) = x(t,0,¢) a solution of (3).
» The change of variables

z(t) = e*'x(t),
for € > 0 small enough, transform (3) into
z(t) = g(t, z), (4)
g =(g1,-..,8n) with

gf(tv ()0) -
e0i(0) — pi(t, e = (H)p)est [bi(e 1 i(0)) + fi(t, e ()]

» (Al1)+(A2)=-(H)
» From Proposition 1 |z(t)|o < [|20/co, t >0, and

|X(t707§0)’00 = |e_5tz(taoaea.(p)|00 S e_gtH(pHOO'D
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4. Neural Network Models

4. Neural Network Models

» pi: R — (0,+00) are continuous;
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%i(t) = —pi(xi(t) (bi(xi(f)) + > fi(xi,e)

j=1

4. Neural Network Models

4. Neural Network Models

pi : R — (0,400) are continuous;

» f;j : C; — R are Lipschitzian with

i (0) = (D) < lille =, .9 € G = C([=7, 0 R);
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%i(t) = —pi(xi(t) (bi(xi(f)) + > fi(xi,e)

j=1

4. Neural Network Models

4. Neural Network Models

pi : R — (0,400) are continuous;

» f;j : C; — R are Lipschitzian with

i (0) = (D) < lille =, .9 € G = C([=7, 0 R);

» b;: R — R are continuous satisfying (Al);
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n
xi(t) = —pi(xi(t)) (bi(xi(f)) + > fi(xi,e)
=i
4. Neural Network Models

Neural Network Models

pi : R — (0,400) are continuous;

» f;j : C; — R are Lipschitzian with

i (0) = (D) < lille =, .9 € G = C([=7, 0 R);

» b;: R — R are continuous satisfying (Al);
> N :=diag(f1,...,0n) — [lj]-
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4. Neural Network Models

» Theorem 4
If N is a non-singular M-matrix, then there is a unique
equilibrium of (5), which is globally asymptotically stable.
If in addition 0 < r < p;i(x), Vx € R, i =1,...,n, then the
equilibrium of (5) is globally exponentially stable.

Teresa Faria and José J. Oliveira Global stability for delayed NNM’s



xi(t) = —pi(xi(t)) (bi(xi(t)

4. Neural Network Models

» Theorem 4
If N is a non-singular M-matrix, then there is a unique
equilibrium of (5), which is globally asymptotically stable.
If in addition 0 < r < p;i(x), Vx € R, i =1,...,n, then the
equilibrium of (5) is globally exponentially stable.

» Proof (idea)
N non-singular M-matrix =
Exists d = (di,...,d,) > 0 such that Nd > 0, i.e.

Bi>di My lydi,  i=1,....n; (6)

j=1
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4. Neural Network Models

» Theorem 4
If N is a non-singular M-matrix, then there is a unique
equilibrium of (5), which is globally asymptotically stable.
If in addition 0 < r < p;i(x), Vx € R, i =1,...,n, then the
equilibrium of (5) is globally exponentially stable.

» Proof (idea)
N non-singular M-matrix =
Exists d = (di,...,d,) > 0 such that Nd > 0, i.e.

Bi>di My lydi,  i=1,....n; (6)

j=1

» The change of variables

yi(t) = di xi(t)
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4. Neural Network Models

» transform (5) into
vi(t) = =pi(yi(O)[bi(yi(t)) + filye)]l, i=1,...,n,

fil) =d 'Y fildiw), ¢eG
j=1

bi(u) = d; 'bi(diu),  pi = pi(diu), ueR
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4. Neural Network Models

» transform (5) into
vi(t) = =pi(yi(O)[bi(yi(t)) + filye)]l, i=1,...,n,

fil) =d 'Y fildiw), ¢eG
j=1

bi(u) = d; 'bi(diu),  pi = pi(diu), ueR
> f, satisfies (A2), i € {1,...,n}:

fi(e) = f@) < (7 Yty | e = vl
j=1
and b; satisfies (A1) with, by (6),
Bi =6 >Tp=dt Y lyd,
j=1

and the result follows from Theorems 2 and 3.
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4. Neural Network Models

The Cohen-Grossberg model with time-varing delays

xi(t) = —pi(xi(t)) | bi(xi(t)) + Z Z hijp(xi(t — Tijp(t))) (7)

Jj=1p=1
has an equilibrium globally asymptotically (exponentially) stable if
> Tijp : [0, +00) — [0, +00) are continuous with 7jj,(t) < 7;
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4. Neural Network Models

The Cohen-Grossberg model with time-varing delays

n P
xi() = —pi(a(t) | ilxi()) + DY hip((t = ()| (7)
j=1p=1
has an equilibrium globally asymptotically (exponentially) stable if
> Tijp : [0, +00) — [0, +00) are continuous with 7jj,(t) < 7;
» p;i: R — (0,+00) are continuous (with p;(x) > r > 0);
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4. Neural Network Models

The Cohen-Grossberg model with time-varing delays

xi(t) = —pi(xi(t)) | bi(xi(t)) + Zzhup x(t = Tiip(t))) | (7)
Jj=1p=1
has an equilibrium globally asymptotically (exponentially) stable if
> Tijp : [0, +00) — [0, +00) are continuous with 7jj,(t) < 7;
> pi R — (0,+00) are continuous (with p;(x) > r > 0);
» b; : R — R are continuous satisfying (A1), i.e.,
38; > 0,Yu,v € R, u # v:

(bi(u) = bi(v))/(u = v) = Bi;
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4. Neural Network Models

The Cohen-Grossberg model with time-varing delays

n P
%i(t) = —pi(xi(1)) | bi(xi(£)) + D D higp((t = () | (7)
j=1p=1
has an equilibrium globally asymptotically (exponentially) stable if
> Tijp : [0, +00) — [0, +00) are continuous with 7jj,(t) < 7;
> pi R — (0,+00) are continuous (with p;(x) > r > 0);
» b; : R — R are continuous satisfying (A1), i.e.,
38; > 0,Yu,v € R, u # v:

(bi(u) = bi(v))/(u = v) = Bi;

> hjj, are Lipschitz functions with constant /;p;
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4. Neural Network Models

The Cohen-Grossberg model with time-varing delays

n P
%i(t) = —pi(xi(1)) | bi(xi(£)) + D D higp((t = () | (7)
j=1p=1
has an equilibrium globally asymptotically (exponentially) stable if
> Tijp : [0, +00) — [0, +00) are continuous with 7jj,(t) < 7;
> pi R — (0,+00) are continuous (with p;(x) > r > 0);
» b; : R — R are continuous satisfying (A1), i.e.,
38; > 0,Yu,v € R, u # v:

(bi(u) = bi(v))/(u—v) = Bi;
> hjj, are Lipschitz functions with constant /;p;
» N is a non-singular M-matrix, where
P
N = diag(B1,....Bn) = U], with  fj ="l
p=1
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) (b(x, )+Z

4. Neural Network Models

In H. Jiang et al.[2], proved the exponential stability assuming:
Tijp © [0, +00) — [0, +00) are continuous with 7j,(t) < 7;
pi(x) are locally Lipschitzian and 0 < r < pi(x)< R < o0;
bi € CL(R,R) with bi(x) > 3; > 0;

hijp(x) = cijp8ijp(X), with ¢jp, € R and

gijp Lipschitz functions with constant juip;

Jdajjp, vip € R,w; > 0,r > 1,0 > 0 such that, Vi

vVvyyvyy

v

’up

' UP
rwikifBi — (r —1) ZZka,uUp cipl ™
j=1p=1
_ZZwJ IMUUP‘Cup‘UP > 0. (8)
Jj=1 p=1

Instead of (8), we only assume N non-singular M-matrix.
[2] H. Jiang, J. Cao and Z. Teng, Dynamics of Cohen-Grossberg neural networks with time-varing delays, Phys.

Lett. A 354 (2006) 414-422.
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4. Neural Network Models

» Example:

x1(t) = —(8 + 2sin x1( )N[7x1(t) — tanh xq(t) — 2 tanh xx(t)
—tanh(x;(t — sint — 1)) — tanh(xe(t — Je~ " — 1)) + 2]

xo(t) = —(5 + 2 cos x2(t))[10x2(t) — 2tanh x1(t) — tanh xa(t)
—tanh(xy(t — 2e=si"t — 1)) — 2tanh(xy(t — §sint — 1)) + 3]
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4. Neural Network Models

» Example:

x1(t) = (8+2$inx1( )N[7x1(t) — tanh xq(t) — 2 tanh xx(t)
—tanh(x;(t — sint — 1)) — tanh(xe(t — Je~ " — 1)) + 2]

xo(t) = —(5 + 2 cos x2(t))[10x2(t) — 2tanh x1(t) — tanh xa(t)
—tanh(xy(t — 2e=si"t — 1)) — 2tanh(xy(t — §sint — 1)) + 3]

» N = diag(7,10) — ( g g > is a non-singular M-matrix.
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4. Neural Network Models

» Example:

x1(t) = (8+2$inx1( )N[7x1(t) — tanh xq(t) — 2 tanh xx(t)
—tanh(x;(t — sint — 1)) — tanh(xe(t — Je~ " — 1)) + 2]

xo(t) = —(5 + 2 cos x2(t))[10x2(t) — 2tanh x1(t) — tanh xa(t)
—tanh(xy(t — 2e=si"t — 1)) — 2tanh(xy(t — §sint — 1)) + 3]

» N = diag(7,10) — ( g g > is a non-singular M-matrix.

» If (8) holds, then there are wi,wy > 0 such that

22w1 — 30w > 0
—21w; +9ws >0’

which is impossible.
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Static NNM with S-type distributed delays

Xi(t) = —pi(xi(t)) | bi(xi(t)) + f; Zwu/ xj(t +0)dn;(0) + Ji | | (9)

> 7>0,J,w; €R,;

> p;i: R — (0,+00) continuous (with p;(x) > r > 0);
» b; : R — R continuous satisfying (A1);

» f; : R — R Lipschitz with Lipschitz constant /;;

» 71jj : [-7,0] — R are normalized bounded variation functions;

N := diag(f1, - - -, Bn) — [lilwil]
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4. Neural Network Models

Static NNM with S-type distributed delays

Xi(t) = —pi(xi(t)) | bi(xi(t)) + f; Zwu/ xj(t +0)dn;(0) + Ji | | (9)

T>0,J;,wj €R;

pi : R — (0, +00) continuous (with p;(x) > r > 0);
b; : R — R continuous satisfying (A1);

f; : R — R Lipschitz with Lipschitz constant /;;

vV v v Vv Y

nij : [=7,0] — R are normalized bounded variation functions;

N := diag(f1, - - -, Bn) — [lilwil]

» Theorem 5
If N is a non-singular M-matrix, then there is an equilibrium
point of (9) which is globally asymptotically (exponentially)
stable.
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» Example:

xi(t) = —bix;(t) + f; Zwu/ xj(t + 0)dn;(0) + J; (10)
> b; >0, J,-,w,-j eR;
> njj : [-7,0] — R are normalized bounded variation functions;

» f; : R — R Lipschitz with Lipschitz constant /;;

N = diag(by, ..., bn) — [li|wyl]-

Teresa Faria and José J. Oliveira Global stability for delayed NNM’s
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» Example:
xi(t) = —bix;(t) + f; Zwu/ xj(t + 0)dn;(0) + J; (10)
> b; >0, J,-,w,-j eR;
> njj : [-7,0] — R are normalized bounded variation functions;
» f; : R — R Lipschitz with Lipschitz constant /;;
N = diag(bl, ey bn) — [/,\w,JH
» Corollary

If Nis a non-singular M-matrix, then there is an equilibrium
point of (10) which is globally exponentially stable.
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4. Neural Network Models

Example:
xi(t) = —bix;(t) + f; Zwu/ xj(t + 0)dn;(0) + J; (10)

b; > 0, J,-,w,-j eR;
nij - [-7,0] — R are normalized bounded variation functions;
f; : R — R Lipschitz with Lipschitz constant /;;

N = diag(by, ..., bn) — [li|wyl]-

Corollary

If Nis a non-singular M-matrix, then there is an equilibrium
point of (10) which is globally exponentially stable.

Remark

In 2006, M. Wang and L. Wang proved the global asymptotic
stability with n;; normalizing and nondecreasing bounded
variation functions on [—7,0].
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xi(t) = —pi(xi(t))

4. Neural Network Models

Thanks you

Obrigado
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	1. Boundedness of solutions
	(t)=f(t,yt)

	2. Global stability
	i(t)=fi(yt), i=1,…,n
	i(t)=-i(xi(t))(bi(xi(t))+fi(xt)), i=1,…,n

	3. Exponential stability
	i(t)=-i(xi(t))(bi(xi(t))+fi(xt)), i=1,…,n
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	i(t)=-i(xi(t)) (bi(xi(t))+j=1nfij(xj,t)),i=1,…,n
	 


