Global Stability for Delayed Neural Network Models

Teresa Faria^a and <u>José J. Oliveira</u>^b

September 17, 2008

- ^a Departamento de Matemática, CMAF, Universidade de Lisboa
- ^b Departamento de Matemática, CMAT, Universidade do Minho

1. Boundedness of solutions

$$\dot{y}(t) = f(t, y_t)$$

2. Global stability

$$\dot{y}_i(t) = f_i(y_t), \quad i = 1, \dots, n$$

 $\dot{x}_i(t) = -\rho_i(x_i(t))(b_i(x_i(t)) + f_i(x_t)), \quad i = 1, \dots, n$

3. Exponential stability

$$\dot{x}_i(t) = -\rho_i(x_i(t))(b_i(x_i(t)) + f_i(x_t)), \quad i = 1, ..., n$$

4. Neural Network Models

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

Notation

$$n \in \mathbb{N}, \ x = (x_1, \dots, x_n) \in \mathbb{R}^n,$$

$$|x|_{\infty} = \max_{1 \le i \le n} |x_i|;$$

Notation

$$n \in \mathbb{N}, \ x = (x_1, \dots, x_n) \in \mathbb{R}^n,$$

$$|x|_{\infty} = \max_{1 \le i \le n} |x_i|;$$

$$\tau \in \mathbb{R}^+, \ C_n := C([-\tau, 0]; \mathbb{R}^n)$$
$$\|\varphi\|_{\infty} = \sup_{\theta \in [-\tau, 0]} |\varphi(\theta)|_{\infty};$$

Notation

 \blacktriangleright $n \in \mathbb{N}$, $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$,

$$|x|_{\infty} = \max_{1 \le i \le n} |x_i|;$$

u $\tau \in \mathbb{R}^+$, $C_n := C([-\tau, 0]; \mathbb{R}^n)$

$$\|\varphi\|_{\infty} = \sup_{\theta \in [-\tau, 0]} |\varphi(\theta)|_{\infty};$$

▶ $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ is a **non-singular M-matrix** if $a_{ij} \leq 0$, $i \neq j$ and Re $\sigma(A) > 0$.

1. Boundedness of solutions

ightharpoonup FDE in C_n

$$\dot{y}(t) = f(t, y_t), \quad t \ge t_0, \tag{1}$$

$$t_0 \in \mathbb{R}$$
,
 $f = (f_1, \dots, f_n) : [t_0, +\infty) \times C_n \to \mathbb{R}^n$ continuous,
 $y_t \in C_n$, $y_t(\theta) = y(t + \theta)$, $\theta \in [-\tau, 0]$.

1. Boundedness of solutions

 \triangleright FDE in C_n

$$\dot{y}(t) = f(t, y_t), \quad t \ge t_0, \tag{1}$$

$$t_0 \in \mathbb{R}$$
,
 $f = (f_1, \dots, f_n) : [t_0, +\infty) \times C_n \to \mathbb{R}^n$ continuous,
 $y_t \in C_n$, $y_t(\theta) = y(t + \theta)$, $\theta \in [-\tau, 0]$.

▶ $y(t) = y(t, t_0, \varphi)$ denote the solution of (1) such that $y_{t_0} = \varphi \in C_n$.

▶ Proposition 1

Assume that, $f = (f_1, \ldots, f_n)$ satisfies

(H)
$$\forall t \geq t_0, \forall \varphi \in C_n, \forall i \in \{1, \ldots, n\},$$

$$\|\varphi\|_{\infty} = |\varphi(0)|_{\infty} = |\varphi_i(0)| > 0 \Rightarrow \varphi_i(0)f_i(t,\varphi) < 0;$$

Then, the solution $y(t) = y(t, t_0, \varphi)$ of (1) is defined and bounded on $[t_0, +\infty)$, and

$$|y(t)|_{\infty} \le ||\varphi||_{\infty}$$
, for $t \ge t_0$.

▶ Proof [1].

 T. Faria, J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks, J. Differential Equations 244 (2008) 1049-1079.

2. Global stability

▶ FDE in C_n

$$\dot{y}_i(t) = f_i(y_t), \quad t \geq 0, \ i = 1, \dots, n,$$
 (2)

 $f_i: C_n \to \mathbb{R}$ are continuous, for $i \in \{1, \dots, n\}$ **Hypotheses:**

2. Global stability

▶ FDE in C_n

$$\dot{y}_i(t) = f_i(y_t), \quad t \ge 0, \ i = 1, \dots, n,$$
 (2)

 $f_i: C_n \to \mathbb{R}$ are continuous, for $i \in \{1, \dots, n\}$ **Hypotheses:**

▶ **(H1)** $\forall \varphi \in C_n, \forall i \in \{1, ..., n\},$

$$\|\varphi\|_{\infty} = |\varphi(0)|_{\infty} = |\varphi_i(0)| > 0 \Rightarrow \varphi_i(0)f_i(\varphi) < 0;$$

(H2) f_i are bounded on bounded sets of C_n .

2. Global stability

▶ FDE in C_n

$$\dot{y}_i(t) = f_i(y_t), \quad t \ge 0, \ i = 1, \dots, n,$$
 (2)

 $f_i: C_n \to \mathbb{R}$ are continuous, for $i \in \{1, \dots, n\}$ **Hypotheses:**

▶ **(H1)** $\forall \varphi \in C_n, \forall i \in \{1, \ldots, n\},$

$$\|\varphi\|_{\infty} = |\varphi(0)|_{\infty} = |\varphi_i(0)| > 0 \Rightarrow \varphi_i(0)f_i(\varphi) < 0;$$

- **(H2)** f_i are bounded on bounded sets of C_n .
- ▶ **(H1)** \Rightarrow $y \equiv 0$ is the unique equilibrium of (2).

▶ Theorem 1

Assume (H1) and (H2)

Then $y \equiv 0$ is globally asymptotically stable.

▶ Theorem 1

Assume (H1) and (H2)

Then $y \equiv 0$ is globally asymptotically stable.

Proof (idea)

Let $y(t) = (y_1(t), \dots, y_n(t))$ be a solution of (2).

▶ Theorem 1

Assume (H1) and (H2)

Then $y \equiv 0$ is globally asymptotically stable.

Proof (idea)

Let
$$y(t) = (y_1(t), \dots, y_n(t))$$
 be a solution of (2).

▶ **Proposition 1** \Rightarrow y(t) defined and bounded on $[-\tau, +\infty)$

$$-v_i = \liminf_{t \to +\infty} y_i(t), \quad u_i = \limsup_{t \to +\infty} y_i(t)$$
 $v = \max_i \{v_i\}, \quad u = \max_i \{u_i\},$

$$u, v \in \mathbb{R}, -v \leq u$$
.

▶ We have to show max(u, v) = 0.

▶ We suppose $|v| \le u$. ($|u| \le v$ is similar) Let $i \in \{1, ..., n\}$ such that $u_i = u$.

- ▶ We suppose $|v| \le u$. ($|u| \le v$ is similar) Let $i \in \{1, ..., n\}$ such that $u_i = u$.
- We have

$$\forall \epsilon > 0, \exists T > 0 : ||y_t||_{\infty} < u + \epsilon, \quad t \ge T$$

- ▶ We suppose $|v| \le u$. ($|u| \le v$ is similar) Let $i \in \{1, ..., n\}$ such that $u_i = u$.
- We have

$$\forall \epsilon > 0, \exists T > 0 : ||y_t||_{\infty} < u + \epsilon, \quad t \geq T$$

▶ We can show that exists $(t_k)_{k \in \mathbb{N}}$ such that

$$t_k \nearrow +\infty$$
, $y_i(t_k) \to u$, and $f_i(y_{t_k}) \to 0$.

- ▶ We suppose $|v| \le u$. ($|u| \le v$ is similar) Let $i \in \{1, ..., n\}$ such that $u_i = u$.
- ▶ We have

$$\forall \epsilon > 0, \exists T > 0 : ||y_t||_{\infty} < u + \epsilon, \quad t \geq T$$

▶ We can show that exists $(t_k)_{k \in \mathbb{N}}$ such that

$$t_k \nearrow +\infty$$
, $y_i(t_k) \to u$, and $f_i(y_{t_k}) \to 0$.

▶ **(H1)**+**(H2)** \Rightarrow $\dot{y}(t)$ is bounded \Rightarrow { y_{t_k} } is bounded and equicontinuous $\Rightarrow \exists \varphi \in C_n$

$$y_{t_k} \to \varphi \text{ on } C_n$$

with $\|\varphi\|_{\infty} \leq u$, $\varphi_i(0) = u$ and $f_i(\varphi) = 0$.

- ▶ We suppose $|v| \le u$. ($|u| \le v$ is similar) Let $i \in \{1, ..., n\}$ such that $u_i = u$.
- We have

$$\forall \epsilon > 0, \exists T > 0 : ||y_t||_{\infty} < u + \epsilon, \quad t \geq T$$

▶ We can show that exists $(t_k)_{k \in \mathbb{N}}$ such that

$$t_k \nearrow +\infty$$
, $y_i(t_k) \to u$, and $f_i(y_{t_k}) \to 0$.

▶ **(H1)**+**(H2)** \Rightarrow $\dot{y}(t)$ is bounded \Rightarrow { y_{t_k} } is bounded and equicontinuous $\Rightarrow \exists \varphi \in C_n$

$$y_{t_k} \to \varphi \text{ on } C_n$$

with $\|\varphi\|_{\infty} \leq u$, $\varphi_i(0) = u$ and $f_i(\varphi) = 0$.

▶ **(H1)** \Rightarrow u = 0. \Box

Applications to general neural network models

$$\dot{x}_i(t) = -\rho_i(x_i(t))[b_i(x_i(t)) + f_i(x_t)], \quad t \ge 0, \ i = 1, \dots, n, \ (3)$$

where $\rho_i : \mathbb{R} \to (0, +\infty)$, $b_i : \mathbb{R} \to \mathbb{R}$ and $f = (f_1, \dots, f_n) : C_n \to \mathbb{R}^n$ are continuous.

Hypotheses:

Applications to general neural network models

$$\dot{x}_i(t) = -\rho_i(x_i(t))[b_i(x_i(t)) + f_i(x_t)], \quad t \ge 0, \ i = 1, \dots, n, \ (3)$$

where $\rho_i : \mathbb{R} \to (0, +\infty)$, $b_i : \mathbb{R} \to \mathbb{R}$ and $f = (f_1, \dots, f_n) : C_n \to \mathbb{R}^n$ are continuous.

Hypotheses:

▶ (A1) $\exists \beta_i > 0, \forall u, v \in \mathbb{R}, u \neq v$:

$$(b_i(u)-b_i(v))/(u-v) \geq \beta_i;$$

[In particular, for $b_i(u) = \beta_i u$.]

▶ **(A2)** $f_i: C_n \to \mathbb{R}$ are Lipschitz functions with Lipschitz constants I_i .

Assume (A1) and (A2).

If $\beta_i > l_i, \forall i$, then (3) has an equilibrium point $x^* \in \mathbb{R}^n$, which is globally asymptotically stable.

Assume (A1) and (A2).

If $\beta_i > l_i, \forall i$, then (3) has an equilibrium point $x^* \in \mathbb{R}^n$, which is globally asymptotically stable.

► Proof (idea)

Existence of equilibrium point

$$H: \mathbb{R}^n \to \mathbb{R}^n$$

$$x \mapsto (b_1(x_1) + f_1(x), \dots, b_n(x_n) + f_n(x))$$

is a homeomorphism.

Then there exists $x^* \in \mathbb{R}^n$, $H(x^*) = 0$, i.e. x^* is an equilibrium.

Assume (A1) and (A2).

If $\beta_i > l_i, \forall i$, then (3) has an equilibrium point $x^* \in \mathbb{R}^n$, which is globally asymptotically stable.

▶ Proof (idea)

Existence of equilibrium point

$$H: \mathbb{R}^n \to \mathbb{R}^n$$

$$x \mapsto (b_1(x_1) + f_1(x), \dots, b_n(x_n) + f_n(x))$$

is a homeomorphism.

Then there exists $x^* \in \mathbb{R}^n$, $H(x^*) = 0$, i.e. x^* is an equilibrium.

▶ By translation, we may suppose $x^* = 0$, $b_i(0) + f_i(0) = 0$, $\forall i$.

Assume (A1) and (A2).

If $\beta_i > l_i, \forall i$, then (3) has an equilibrium point $x^* \in \mathbb{R}^n$, which is globally asymptotically stable.

Proof (idea)

Existence of equilibrium point

$$H: \mathbb{R}^n \to \mathbb{R}^n$$

 $x \mapsto (b_1(x_1) + f_1(x), \dots, b_n(x_n) + f_n(x))$

is a homeomorphism.

Then there exists $x^* \in \mathbb{R}^n$, $H(x^*) = 0$, i.e. x^* is an equilibrium.

- ▶ By translation, we may suppose $x^* = 0$, $b_i(0) + f_i(0) = 0$, $\forall i$.
- ▶ $\beta_i > l_i, \forall i \Rightarrow$ (H1) and (H2) From Theorem 1, we have the result.

3. Exponential stability

Consider again the FDE,

$$\dot{x}_i(t) = -\rho_i(x_i(t))[b_i(x_i(t))+f_i(x_t)], \quad t \geq 0, \ i = 1, \ldots, n$$
 (3)

3. Exponential stability

Consider again the FDE,

$$\dot{x}_i(t) = -\rho_i(x_i(t))[b_i(x_i(t)) + f_i(x_t)], \quad t \ge 0, \ i = 1, \dots, n \ (3)$$

Definition

An equilibrium $x^* \in \mathbb{R}$ of (3) is said to be *globally* exponentially stable if there are ε , M > 0 such that

$$|x(t,0,\varphi)-x^*|_{\infty} \leq Me^{-\varepsilon t} \|\varphi-x^*\|_{\infty}, \quad t\geq 0, \ \varphi\in C_n.$$

3. Exponential stability

Consider again the FDE,

$$\dot{x}_i(t) = -\rho_i(x_i(t))[b_i(x_i(t)) + f_i(x_t)], \quad t \geq 0, \ i = 1, \ldots, n \ (3)$$

Definition

An equilibrium $x^* \in \mathbb{R}$ of (3) is said to be *globally* exponentially stable if there are $\varepsilon, M > 0$ such that

$$|x(t,0,\varphi)-x^*|_{\infty} \leq Me^{-\varepsilon t} \|\varphi-x^*\|_{\infty}, \quad t\geq 0, \ \varphi\in C_n.$$

► Theorem 3

Suppose that $0 < r \le \rho_i(x)$, $\forall x \in \mathbb{R}$, i = 1, ..., n and assume **(A1)** and **(A2)** with $\beta_i > l_i$, i = 1, ..., n. Then there is a unique equilibrium x^* of (3) which is globally exponentially stable.

► Proof (idea)

Assume $x^* = 0$ the equilibrium point and consider $x(t) = x(t, 0, \varphi)$ a solution of (3).

- Proof (idea)
 Assume $x^* = 0$ the equilibrium point and consider $x(t) = x(t, 0, \varphi)$ a solution of (3).
- ► The change of variables

$$z(t)=e^{\varepsilon t}x(t),$$

for $\varepsilon > 0$ small enough, transform (3) into

$$\dot{z}(t) = g(t, z_t), \tag{4}$$

$$g = (g_1, \ldots, g_n)$$
 with

$$g_i(t,\varphi) =$$

$$\varepsilon\varphi_i(0) - \rho_i(t, e^{-\varepsilon(t+\cdot)}\varphi)e^{\varepsilon t} \left[b_i(e^{-\varepsilon t}\varphi_i(0)) + f_i(t, e^{-\varepsilon(t+\cdot)}\varphi)\right]$$

- Proof (idea)
 Assume $x^* = 0$ the equilibrium point and consider $x(t) = x(t, 0, \varphi)$ a solution of (3).
- ► The change of variables

$$z(t)=e^{\varepsilon t}x(t),$$

for $\varepsilon > 0$ small enough, transform (3) into

$$\dot{z}(t) = g(t, z_t), \tag{4}$$

$$g = (g_1, \ldots, g_n)$$
 with

$$g_i(t,\varphi) =$$

$$\varepsilon\varphi_i(0) - \rho_i(t, e^{-\varepsilon(t+\cdot)}\varphi)e^{\varepsilon t} \left[b_i(e^{-\varepsilon t}\varphi_i(0)) + f_i(t, e^{-\varepsilon(t+\cdot)}\varphi) \right]$$

- Proof (idea)
 Assume $x^* = 0$ the equilibrium point and consider $x(t) = x(t, 0, \varphi)$ a solution of (3).
- ► The change of variables

$$z(t)=e^{\varepsilon t}x(t),$$

for $\varepsilon > 0$ small enough, transform (3) into

$$\dot{z}(t) = g(t, z_t), \tag{4}$$

$$g=(g_1,\ldots,g_n)$$
 with

$$g_i(t,\varphi) =$$

$$\varepsilon\varphi_i(0) - \rho_i(t, e^{-\varepsilon(t+\cdot)}\varphi)e^{\varepsilon t} \left[b_i(e^{-\varepsilon t}\varphi_i(0)) + f_i(t, e^{-\varepsilon(t+\cdot)}\varphi)\right]$$

- ► (A1)+(A2)⇒(H)
- From Proposition $1 |z(t)|_{\infty} \leq ||z_0||_{\infty}$, $t \geq 0$, and

$$|x(t,0,\varphi)|_{\infty} = |e^{-\varepsilon t}z(t,0,e^{\varepsilon \cdot}\varphi)|_{\infty} \le e^{-\varepsilon t}||\varphi||_{\infty}.\square$$

Cohen-Grossberg neural network with distributed delays

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} f_{ij}(x_{j,t}) \right], \tag{5}$$

 $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous;

Cohen-Grossberg neural network with distributed delays

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} f_{ij}(x_{j,t}) \right],$$
 (5)

- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous;
- ▶ $f_{ij}: C_1 \to \mathbb{R}$ are Lipschitzian with

$$|f_{ij}(\varphi)-f_{ij}(\psi)|\leq I_{ij}\|\varphi-\psi\|, \quad \varphi,\psi\in C_1=C([-\tau,0];\mathbb{R});$$

Cohen-Grossberg neural network with distributed delays

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} f_{ij}(x_{j,t}) \right], \tag{5}$$

- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous;
- ▶ $f_{ij}: C_1 \to \mathbb{R}$ are Lipschitzian with

$$|f_{ij}(\varphi)-f_{ij}(\psi)| \leq I_{ij}||\varphi-\psi||, \quad \varphi,\psi \in C_1 = C([-\tau,0];\mathbb{R});$$

▶ $b_i : \mathbb{R} \to \mathbb{R}$ are continuous satisfying **(A1)**;

Cohen-Grossberg neural network with distributed delays

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} f_{ij}(x_{j,t}) \right],$$
 (5)

- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous;
- ▶ $f_{ij}: C_1 \to \mathbb{R}$ are Lipschitzian with

$$|f_{ij}(\varphi)-f_{ij}(\psi)| \leq |I_{ij}||\varphi-\psi||, \quad \varphi,\psi \in C_1 = C([-\tau,0];\mathbb{R});$$

- ▶ $b_i : \mathbb{R} \to \mathbb{R}$ are continuous satisfying **(A1)**;
- $N := diag(\beta_1, \ldots, \beta_n) [I_{ij}].$

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})
ight), i = 1,\ldots,n$$

► Theorem 4

If N is a non-singular M-matrix, then there is a unique equilibrium of (5), which is globally asymptotically stable. If in addition $0 < r \le \rho_i(x)$, $\forall x \in \mathbb{R}$, $i = 1, \ldots, n$, then the equilibrium of (5) is globally exponentially stable.

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

► Theorem 4

If N is a non-singular M-matrix, then there is a unique equilibrium of (5), which is globally asymptotically stable. If in addition $0 < r \le \rho_i(x)$, $\forall x \in \mathbb{R}$, $i = 1, \ldots, n$, then the equilibrium of (5) is globally exponentially stable.

Proof (idea)

N non-singular M-matrix \Rightarrow Exists $d = (d_1, \dots, d_n) > 0$ such that Nd > 0, i.e.

$$\beta_i > d_i^{-1} \sum_{j=1}^n I_{ij} d_j, \quad i = 1, \dots, n;$$
 (6)

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

► Theorem 4

If N is a non-singular M-matrix, then there is a unique equilibrium of (5), which is globally asymptotically stable. If in addition $0 < r \le \rho_i(x)$, $\forall x \in \mathbb{R}$, $i = 1, \ldots, n$, then the equilibrium of (5) is globally exponentially stable.

Proof (idea)

N non-singular M-matrix \Rightarrow Exists $d = (d_1, \dots, d_n) > 0$ such that Nd > 0, i.e.

$$\beta_i > d_i^{-1} \sum_{j=1}^n l_{ij} d_j, \quad i = 1, \dots, n;$$
 (6)

▶ The change of variables

$$y_i(t) = d_i^{-1} x_i(t)$$

▶ transform (5) into

$$\begin{split} \dot{y}_i(t) &= -\bar{\rho}_i(y_i(t))[\bar{b}_i(y_i(t)) + \bar{f}_i(y_t)], \quad i = 1, \dots, n, \\ \bar{f}_i(\varphi) &= d_i^{-1} \sum_{j=1}^n f_{ij}(d_j\varphi_j), \quad \varphi \in C_n \\ \bar{b}_i(u) &= d_i^{-1} b_i(d_iu), \quad \bar{\rho}_i = \rho_i(d_iu), \quad u \in \mathbb{R} \end{split}$$

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

transform (5) into

$$\dot{y}_i(t) = -ar{
ho}_i(y_i(t))[ar{b}_i(y_i(t)) + ar{f}_i(y_t)], \quad i = 1, \dots, n,$$
 $ar{f}_i(\varphi) = d_i^{-1} \sum_{j=1}^n f_{ij}(d_j \varphi_j), \quad \varphi \in C_n$

$$\bar{b}_i(u) = d_i^{-1}b_i(d_iu), \quad \bar{\rho}_i = \rho_i(d_iu), \quad u \in \mathbb{R}$$

 $ightharpoonup \bar{f}_i$ satisfies **(A2)**, $i \in \{1, \ldots, n\}$:

$$|ar{f}_i(arphi) - ar{f}_i(\psi)| \leq \left(d_i^{-1} \sum_{j=1}^n I_{ij} d_j\right) \|arphi - \psi\|_{\infty}$$

and \bar{b}_i satisfies **(A1)** with, by (6),

$$\bar{\beta}_i = \beta_i > \bar{l}_i := d_i^{-1} \sum_{i=1}^n l_{ij} d_j,$$

$$\dot{x}_i(t) = -\rho_i(x_i(t)) \left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t}) \right), i = 1, \ldots, n$$

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} \sum_{p=1}^{P} h_{ijp}(x_{j}(t - \tau_{ijp}(t))) \right]$$
(7)

$$ightharpoonup au_{ijp}: [0,+\infty) o [0,+\infty)$$
 are continuous with $au_{ijp}(t) \le au$;

$$\dot{x}_i(t) = -\rho_i(x_i(t)) \left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t}) \right), i = 1, \ldots, n$$

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} \sum_{p=1}^{P} h_{ijp}(x_{j}(t - \tau_{ijp}(t))) \right]$$
(7)

- ▶ τ_{ijp} : $[0, +\infty) \rightarrow [0, +\infty)$ are continuous with $\tau_{ijp}(t) \leq \tau$;
- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous (with $\rho_i(x) \ge r > 0$);

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} \sum_{p=1}^{P} h_{ijp}(x_{j}(t - \tau_{ijp}(t))) \right]$$
(7)

- $ightharpoonup au_{ijp}: [0,+\infty) o [0,+\infty)$ are continuous with $au_{ijp}(t) \le au$;
- ▶ ρ_i : $\mathbb{R} \to (0, +\infty)$ are continuous (with $\rho_i(x) \ge r > 0$);
- ▶ $b_i : \mathbb{R} \to \mathbb{R}$ are continuous satisfying **(A1)**, i.e., $\exists \beta_i > 0, \forall u, v \in \mathbb{R}, u \neq v$:

$$(b_i(u)-b_i(v))/(u-v) \geq \beta_i;$$

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} \sum_{p=1}^{P} h_{ijp}(x_{j}(t - \tau_{ijp}(t))) \right]$$
(7)

has an equilibrium globally asymptotically (exponentially) stable if

- ▶ $\tau_{ijp}: [0, +\infty) \rightarrow [0, +\infty)$ are continuous with $\tau_{ijp}(t) \leq \tau$;
- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous (with $\rho_i(x) \ge r > 0$);
- ▶ $b_i : \mathbb{R} \to \mathbb{R}$ are continuous satisfying **(A1)**, i.e., $\exists \beta_i > 0, \forall u, v \in \mathbb{R}, u \neq v$:

$$(b_i(u)-b_i(v))/(u-v) \geq \beta_i;$$

h_{ijp} are Lipschitz functions with constant l_{ijp};

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left(b_{i}(x_{i}(t)) + \sum_{j=1}^{n} f_{ij}(x_{j,t})\right), i = 1, \ldots, n$$

$$\dot{x}_{i}(t) = -\rho_{i}(x_{i}(t)) \left[b_{i}(x_{i}(t)) + \sum_{j=1}^{n} \sum_{p=1}^{P} h_{ijp}(x_{j}(t - \tau_{ijp}(t))) \right]$$
(7)

- ▶ $\tau_{ijp}: [0, +\infty) \rightarrow [0, +\infty)$ are continuous with $\tau_{ijp}(t) \leq \tau$;
- $ho_i: \mathbb{R} \to (0, +\infty)$ are continuous (with $\rho_i(x) \geq r > 0$);
- ▶ $b_i : \mathbb{R} \to \mathbb{R}$ are continuous satisfying **(A1)**, i.e., $\exists \beta_i > 0, \forall u, v \in \mathbb{R}, u \neq v$:

$$(b_i(u)-b_i(v))/(u-v) \geq \beta_i;$$

- ► *h*_{ijp} are Lipschitz functions with constant *l*_{ijp};
- ▶ N is a non-singular M-matrix, where

$$N = diag(\beta_1, \dots, \beta_n) - [I_{ij}], \quad \text{with} \quad I_{ij} := \sum_{p=1}^P I_{ijp}.$$

$$\dot{x}_i(t) = -
ho_i(x_i(t)) \left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t}) \right), i = 1, \ldots, n$$

In H. Jiang et al.[2], proved the exponential stability assuming:

- ▶ τ_{ijp} : $[0,+\infty) \to [0,+\infty)$ are continuous with $\tau_{ijp}(t) \le \tau$;
- ▶ $\rho_i(x)$ are locally Lipschitzian and $0 < r \le \rho_i(x) \le R < \infty$;
- ▶ $b_i \in C^1(\mathbb{R}, \mathbb{R})$ with $b_i'(x) \geq \beta_i > 0$;
- ▶ $h_{ijp}(x) = c_{ijp}g_{ijp}(x)$, with $c_{ijp} \in \mathbb{R}$ and g_{ijp} Lipschitz functions with constant μ_{ijp} ;
- ▶ $\exists \alpha_{ijp}, \gamma_{ijp} \in \mathbb{R}, \omega_i > 0, r > 1, \sigma > 0$ such that, $\forall i$

$$r\omega_{i}\underline{k_{i}}\beta_{i} - (r-1)\sum_{j=1}^{n}\sum_{p=1}^{P}\omega_{j}\overline{k_{i}}\mu_{ijp}^{\frac{r-\gamma_{ijp}}{r-1}}|c_{ijp}|^{\frac{r-\alpha_{ijp}}{r-1}}$$
$$-\sum_{i=1}^{n}\sum_{p=1}^{P}\omega_{j}\overline{k_{i}}\mu_{ijp}^{\gamma_{ijp}}|c_{ijp}|_{ijp}^{\alpha} > \sigma.$$
(8)

Instead of (8), we only assume N non-singular M-matrix.

 $\hbox{\cite{1.5ex} $[2]$ H. Jiang, J. Cao and Z. Teng, Dynamics of Cohen-Grossberg neural networks with time-varing delays, $Phys.$}$

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

$$\begin{split} \dot{x}_1(t) &= -(8+2\sin x_1(t))[7x_1(t) - \tanh x_1(t) - 2\tanh x_2(t) \\ &- \tanh(x_1(t-\frac{1}{3}\sin t - 1)) - \tanh(x_2(t-\frac{1}{4}e^{-\sin t} - 1)) + 2] \end{split}$$

$$\begin{split} \dot{x}_2(t) &= -(5+2\cos x_2(t))[10x_2(t)-2\tanh x_1(t)-\tanh x_2(t)\\ &-\tanh(x_1(t-\frac{1}{4}e^{-\sin t}-1))-2\tanh(x_2(t-\frac{1}{3}\sin t-1))+3] \end{split}$$

$$\begin{split} \dot{x}_1(t) &= -(8+2\sin x_1(t))[7x_1(t) - \tanh x_1(t) - 2\tanh x_2(t) \\ &- \tanh(x_1(t-\frac{1}{3}\sin t - 1)) - \tanh(x_2(t-\frac{1}{4}e^{-\sin t} - 1)) + 2] \end{split}$$

$$\begin{aligned} \dot{x}_2(t) &= -(5+2\cos x_2(t))[10x_2(t)-2\tanh x_1(t)-\tanh x_2(t)\\ &-\tanh(x_1(t-\frac{1}{4}e^{-\sin t}-1))-2\tanh(x_2(t-\frac{1}{3}\sin t-1))+3] \end{aligned}$$

▶
$$N = diag(7, 10) - \begin{pmatrix} 2 & 3 \\ 3 & 3 \end{pmatrix}$$
 is a non-singular M-matrix.

$$\dot{x}_i(t) = -
ho_i(x_i(t))\left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t})\right), i = 1,\ldots,n$$

$$\begin{split} \dot{x}_1(t) &= -(8+2\sin x_1(t))[7x_1(t) - \tanh x_1(t) - 2\tanh x_2(t) \\ &- \tanh(x_1(t-\frac{1}{3}\sin t - 1)) - \tanh(x_2(t-\frac{1}{4}e^{-\sin t} - 1)) + 2] \end{split}$$

$$\dot{x}_2(t) = -(5+2\cos x_2(t))[10x_2(t)-2\tanh x_1(t)-\tanh x_2(t) - \tanh(x_1(t-\frac{1}{4}e^{-\sin t}-1))-2\tanh(x_2(t-\frac{1}{3}\sin t-1))+3]$$

- ▶ $N = diag(7, 10) \begin{pmatrix} 2 & 3 \\ 3 & 3 \end{pmatrix}$ is a <u>non-singular M-matrix</u>.
- ▶ If (8) holds, then there are $\omega_1, \omega_2 > 0$ such that

$$\begin{cases} 22\omega_1 - 30\omega_2 > 0 \\ -21\omega_1 + 9\omega_2 > 0 \end{cases},$$

which is impossible.

Static NNM with S-type distributed delays

$$\dot{x}_i(t) = -\rho_i(x_i(t)) \left[b_i(x_i(t)) + f_i \left(\sum_{j=1}^n \omega_{ij} \int_{-\tau}^0 x_j(t+\theta) d\eta_{ij}(\theta) + J_i \right) \right]$$
(9)

- $\qquad \tau > 0, J_i, \omega_{ij} \in \mathbb{R};$
- $ho_i: \mathbb{R} \to (0, +\infty)$ continuous (with $\rho_i(x) \ge r > 0$);
- ▶ $b_i : \mathbb{R} \to \mathbb{R}$ continuous satisfying **(A1)**;
- ▶ $f_i : \mathbb{R} \to \mathbb{R}$ Lipschitz with Lipschitz constant I_i ;
- ▶ $\eta_{ij}: [-\tau, 0] \to \mathbb{R}$ are normalized bounded variation functions;

$$N := diag(\beta_1, \ldots, \beta_n) - [I_i | \omega_{ij} |]$$

Static NNM with S-type distributed delays

$$\dot{x}_i(t) = -\rho_i(x_i(t)) \left[b_i(x_i(t)) + f_i \left(\sum_{j=1}^n \omega_{ij} \int_{-\tau}^0 x_j(t+\theta) d\eta_{ij}(\theta) + J_i \right) \right]$$
(9)

- $ightharpoonup au > 0, J_i, \omega_{ij} \in \mathbb{R};$
- $ho_i: \mathbb{R} \to (0, +\infty)$ continuous (with $\rho_i(x) \geq r > 0$);
- ▶ $b_i : \mathbb{R} \to \mathbb{R}$ continuous satisfying **(A1)**;
- ▶ $f_i : \mathbb{R} \to \mathbb{R}$ Lipschitz with Lipschitz constant I_i ;
- ▶ $\eta_{ij}: [-\tau, 0] \to \mathbb{R}$ are normalized bounded variation functions;

$$N := diag(\beta_1, \ldots, \beta_n) - [I_i | \omega_{ij} |]$$

► Theorem 5

If N is a non-singular M-matrix, then there is an equilibrium point of (9) which is globally asymptotically (exponentially) stable.

$$\dot{x}_i(t) = -b_i x_i(t) + f_i \left(\sum_{j=1}^n \omega_{ij} \int_{-\tau}^0 x_j(t+\theta) d\eta_{ij}(\theta) + J_i \right)$$
(10)

- ▶ $b_i > 0$, $J_i, \omega_{ij} \in \mathbb{R}$;
- ▶ $\eta_{ij}: [-\tau, 0] \to \mathbb{R}$ are normalized bounded variation functions;
- ▶ $f_i : \mathbb{R} \to \mathbb{R}$ Lipschitz with Lipschitz constant I_i ;

$$N = diag(b_1, \ldots, b_n) - [I_i | \omega_{ij} |].$$

$$\dot{x}_i(t) = -b_i x_i(t) + f_i \left(\sum_{j=1}^n \omega_{ij} \int_{-\tau}^0 x_j(t+\theta) d\eta_{ij}(\theta) + J_i \right)$$
(10)

- ▶ $b_i > 0$, $J_i, \omega_{ij} \in \mathbb{R}$;
- ▶ $\eta_{ij}: [-\tau, 0] \to \mathbb{R}$ are normalized bounded variation functions;
- ▶ $f_i : \mathbb{R} \to \mathbb{R}$ Lipschitz with Lipschitz constant I_i ;

$$N = diag(b_1, \ldots, b_n) - [I_i | \omega_{ij} |].$$

Corollary

If N is a non-singular M-matrix, then there is an equilibrium point of (10) which is globally exponentially stable.

$$\dot{x}_i(t) = -b_i x_i(t) + f_i \left(\sum_{j=1}^n \omega_{ij} \int_{-\tau}^0 x_j(t+\theta) d\eta_{ij}(\theta) + J_i \right)$$
 (10)

- ▶ $b_i > 0$, $J_i, \omega_{ij} \in \mathbb{R}$;
- ▶ η_{ij} : $[-\tau, 0] \to \mathbb{R}$ are normalized bounded variation functions;
- ▶ $f_i : \mathbb{R} \to \mathbb{R}$ Lipschitz with Lipschitz constant I_i ;

$$N = diag(b_1, \ldots, b_n) - [I_i | \omega_{ij} |].$$

- Corollary
 - If N is a non-singular M-matrix, then there is an equilibrium point of (10) which is globally exponentially stable.
- ▶ Remark In 2006, M. Wang and L. Wang proved the global asymptotic stability with η_{ij} normalizing and nondecreasing bounded variation functions on $[-\tau, 0]$.

$$\dot{x}_i(t) = -\rho_i(x_i(t)) \left(b_i(x_i(t)) + \sum_{j=1}^n f_{ij}(x_{j,t}) \right), i = 1, \ldots, n$$

Thanks you

Obrigado