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Boundedness of solutions
ẋ(t) = f (t, xt)

Global stability

ẋi (t) = −ki (xi (t))

bi (xi (t)) +
n∑

j=1

P∑
p=1

h
(p)
ij (xj(t − τ

(p)
ij (t))


Application

Cohen-Grossberg neural network model with unbounded delays
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In

José J. Oliveira, Math. Comp. Model. 50(2009), 81-91

the case of neural networks with bounded distributed delays was
treated, as well bounded discrete time-varying delays.
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Notation

I n ∈ N, x = (x1, . . . , xn) ∈ Rn,

|x | = max
1≤i≤n

|xi |;

I We consider the space of bounded and continuous functions
ϕ : (−∞, 0]→ Rn

BC = BC ((−∞, 0]; Rn),

with the norm ‖ϕ‖ = sup
s≤0
|ϕ(s)|;

I A = [aij ] ∈ Rn×n is a non-singular M-matrix if aij ≤ 0, i 6= j
and Re σ(A) > 0.
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ẋ(t) = f (t, xt )

Boundedness of solutions

I FDE in BC

ẋ(t) = f (t, xt), t ≥ 0, (1)

f = (f1, . . . , fn) : [0,+∞)× BC → Rn continuous,
xt(s) = x(t + s), s ∈ (−∞, 0],

I Proposition 1
Assume that, f = (f1, . . . , fn) satisfies
(H) ∀t ≥ 0, ∀ϕ ∈ BC :

∀s ∈ (−∞, 0), |ϕ(s)| < |ϕ(0)| ⇒ ϕi (0)fi (t, ϕ) < 0,

for some i ∈ {1, . . . , n} such that |ϕ(s)| = |ϕi (0)|.
Then all solution of (1) with initial condition on BC is defined
and bounded on [0,+∞).

|x(t, 0, ϕ)| ≤ ‖ϕ‖
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Proof of Proposition 1 (idea)
I x(t) = x(t, 0, ϕ) solution on [−∞, a), a > 0, with ϕ ∈ BC

k := sups≤0 |ϕ(s)|.

I Suppose that |x(t1)| > k for some t1 > 0 and define

T = min

{
t ∈ [0, t1] : |x(t)| = max

s∈[0,t1]
|x(s)|

}
.

I We have |xT (s)| = |x(T + s)| < |x(T )|, for s < 0.
By (H) we conclude that,

xi (T )fi (T , xT ) < 0,

for some i ∈ {1, . . . , n} such that |xi (T )| = |x(T )|. If
xi (T ) > 0 (analogous if xi (T ) < 0), then ẋi (T ) < 0.

I xi (t) ≤ |x(t)| < |x(T )| = xi (T ), t ∈ [0,T ),

⇒ ẋi (T ) ≥ 0.

I Contradition. Thus x(t) is defined and bounded on [0,+∞).
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ẋ(t) = f (t, xt )

Proof of Proposition 1 (idea)
I x(t) = x(t, 0, ϕ) solution on [−∞, a), a > 0, with ϕ ∈ BC

k := sups≤0 |ϕ(s)|.
I Suppose that |x(t1)| > k for some t1 > 0 and define

T = min

{
t ∈ [0, t1] : |x(t)| = max

s∈[0,t1]
|x(s)|

}
.

I We have |xT (s)| = |x(T + s)| < |x(T )|, for s < 0.
By (H) we conclude that,

xi (T )fi (T , xT ) < 0,

for some i ∈ {1, . . . , n} such that |xi (T )| = |x(T )|. If
xi (T ) > 0 (analogous if xi (T ) < 0), then ẋi (T ) < 0.
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Teresa Faria and José J. Oliveira Global Stability of Neural Network Models



Boundedness of solutions
Global stability

Application
ẋi (t) = −ki (xi (t))

bi (xi (t)) +
n∑

j=1

P∑
p=1

h
(p)
ij (xj (t − τ

(p)
ij (t))



Global stability

I Consider the generalized Cohen-Grossberg neural network
model with unbounded time-varying delays,

ẋi (t) = −ki (xi (t))

bi (xi (t)) +
n∑

j=1

P∑
p=1

h
(p)
ij (xj(t − τ

(p)
ij (t))

 (2)

where ki , : R→ (0,+∞), bi , h
(p)
ij : R→ R and

τ
(p)
ij : [0,+∞)→ [0,+∞) are continuous functions such that

I (A1) ∃βi > 0,∀u, v ∈ R, u 6= v :

(bi (u)− bi (v))/(u − v) ≥ βi ;

[In particular, for bi (u) = βiu.]

I (A2) h
(p)
ij are Lipshitz functions with constant l

(p)
ij ;

I (A3) t − τ (p)
ij (t)→ +∞ as t → +∞.
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ẋi (t) = −ki (xi (t))

bi (xi (t)) +
n∑

j=1

P∑
p=1

h
(p)
ij (xj(t − τ

(p)
ij (t))

 (2)

where ki , : R→ (0,+∞), bi , h
(p)
ij : R→ R and

τ
(p)
ij : [0,+∞)→ [0,+∞) are continuous functions such that

I (A1) ∃βi > 0, ∀u, v ∈ R, u 6= v :

(bi (u)− bi (v))/(u − v) ≥ βi ;

[In particular, for bi (u) = βiu.]

I (A2) h
(p)
ij are Lipshitz functions with constant l

(p)
ij ;

I (A3) t − τ (p)
ij (t)→ +∞ as t → +∞.
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I Theorem 1

Assume (A1), (A2), (A3). If the matrix

N := diag(β1, . . . , βn)− [lij ], where lij =
P∑

p=1

l
(p)
ij ,

is a non-singular M-matrix, then there is a unique equilibrium
point of (2), which is globally asymptotically stable.

I Proof (idea)
Existence and uniqueness of equilibrium point

H : Rn → Rn

x 7→

bi (xi ) +
n∑

j=1

P∑
p=1

h
(p)
ij (xj)

n

i=1

is homeomorphism.
Then there exists x∗ ∈ Rn, H(x∗) = 0, i.e. x∗ is the
equilibrium.
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I N non-singular M-matrix ⇒

There is d = (d1, . . . , dn) > 0 such that Nd > 0, i.e.

βi > d−1
i

n∑
j=1

lijdj , i = 1, . . . , n; (3)

I The change of variables

yi (t) = d−1
i xi (t)− x∗i

transforms (2) into

ẏi (t) = −k̄i (yi (t))
[
b̄i (yi (t)) + h̄i (t, yt)

]
, i = 1, . . . , n, (4)

h̄i (t, ϕ) = d−1
i

n∑
j=1

P∑
p=1

h
(p)
ij (dj(ϕj(−τ

(p)
ij (t)) + x∗j )), ϕ ∈ BC

b̄i (u) = d−1
i bi (di (u + x∗i )), k̄i = ki (di (u + x∗i )), u ∈ R

with b̄i (0) + h̄i (t, 0) = 0, ∀t ≥ 0, i = 1, . . . , n.
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I Boundedness of solutions
By (A1) and (A2), we can conclude that

b̄i (ϕi (0)) + h̄i (t, ϕ) ≥

βi − d−1
i

n∑
j=1

lijdj

 sup
s≤0
|ϕ(s)| > 0,

for ϕ ∈ BC such that ϕi (0) = sups≤0 |ϕ(s)| > 0. Hence
f = (f1, . . . , fn) : [0,+∞)× BC → Rn, defined by

fi (t, ϕ) = −k̄i (ϕi (0))
[
b̄i (ϕi (0)) + h̄i (t, ϕ)

]
, i = 1, . . . , n,

satisfies (H) and, from Proposition 1, all solutions of (4) with
initial conditions on BC are defined and bounded on R.
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I Global stability

Let y(t) = (y1(t), . . . , yn(t)) be a solution of (4) with initial
condition on BC .

I Then y(t) is defined and bounded on R.

−vi = lim inf
t→+∞

yi (t), ui = lim sup
t→+∞

yi (t)

v = max
i
{vi}, u = max

i
{ui},

u, v ∈ R, −v ≤ u.
I We have to show max(u, v) = 0.
I We suppose |v | ≤ u. (|u| ≤ v is similar)

Let i ∈ {1, . . . , n} such that ui = u.
I We can show that exists (tk)k∈N such that

tk ↗ +∞, yi (tk)→ u, fi (tk , ytk )→ 0 as t → +∞.
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ẋi (t) = −ki (xi (t))

bi (xi (t)) +
n∑

j=1

P∑
p=1

h
(p)
ij (xj (t − τ

(p)
ij (t))


I Global stability

Let y(t) = (y1(t), . . . , yn(t)) be a solution of (4) with initial
condition on BC .

I Then y(t) is defined and bounded on R.

−vi = lim inf
t→+∞

yi (t), ui = lim sup
t→+∞

yi (t)

v = max
i
{vi}, u = max

i
{ui},

u, v ∈ R, −v ≤ u.

I We have to show max(u, v) = 0.
I We suppose |v | ≤ u. (|u| ≤ v is similar)

Let i ∈ {1, . . . , n} such that ui = u.
I We can show that exists (tk)k∈N such that

tk ↗ +∞, yi (tk)→ u, fi (tk , ytk )→ 0 as t → +∞.
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ẋi (t) = −ki (xi (t))

bi (xi (t)) +
n∑

j=1

P∑
p=1

h
(p)
ij (xj (t − τ

(p)
ij (t))


I Global stability

Let y(t) = (y1(t), . . . , yn(t)) be a solution of (4) with initial
condition on BC .

I Then y(t) is defined and bounded on R.

−vi = lim inf
t→+∞

yi (t), ui = lim sup
t→+∞

yi (t)

v = max
i
{vi}, u = max

i
{ui},

u, v ∈ R, −v ≤ u.
I We have to show max(u, v) = 0.
I We suppose |v | ≤ u. (|u| ≤ v is similar)

Let i ∈ {1, . . . , n} such that ui = u.

I We can show that exists (tk)k∈N such that

tk ↗ +∞, yi (tk)→ u, fi (tk , ytk )→ 0 as t → +∞.
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I As t − τ (p)
ij (t)→ +∞, we have

∀ε > 0, ∃k0 ∈ N : k ≥ k0 ⇒ |y(tk)|, |y(tk−τ
(p)
ij (tk))| < uε := u+ε

I From (A1) and (A2), we can obtain, for k ≥ k0,

b̄i (yi (tk)) + h̄i (tk , ytk )

≥ βiyi (tk)− d−1
i

n∑
j=1

lijdj sup
k≥k0,∀i ,j ,p

|yj(tk − τ
(p)
ij (tk))|

≥ βiyi (tk)− d−1
i

n∑
j=1

lijdjuε.

I Letting k → +∞ and ε→ 0, we get

βiyi (tk)− d−1
i

n∑
j=1

lijdjuε →

βi − d−1
i

n∑
j=1

lijdj

 u > 0.
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bi (xi (t)) +
n∑

j=1

P∑
p=1

h
(p)
ij (xj (t − τ

(p)
ij (t))



I As yi (t) is bounded and k̄i is continuous and positive,

∃K > 0, ∀t ≥ 0 : k̄i (yi (t)) > K .

Thus

fi (tk , ytk ) = −k̄i (yi (tk))
[
b̄i (yi (tk)) + h̄i (tk , ytk )

]
9 0 as k → +∞

which is a contradiction.
Consequently u = 0, hence v = 0.
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Cohen-Grossberg Model

Cohen-Grossberg neural network with unbounded discrete delays

ẋi (t) = −ki (xi (t))

bi (xi (t))−
n∑

j=1

cijgj(xj(t))−
n∑

j=1

dij fj(xj(t − τij(t)))

 (5)

I Set of admissible initial conditions BC

I ki : R→ (0,+∞), τij : [0,+∞)→ [0,+∞) are continuous
and t − τij(t)→ +∞;

I gj , fj : BC → R are Lipschitzian with constant Gj and Fj

respectively;

I bi : R→ R are continuous satisfying (A2);

I N := diag(β1, . . . , βn)− [lij ], where lij = |cij |Gj + |dij |Fj .

Teresa Faria and José J. Oliveira Global Stability of Neural Network Models



Boundedness of solutions
Global stability

Application
Cohen-Grossberg neural network model with unbounded delays

Cohen-Grossberg Model

Cohen-Grossberg neural network with unbounded discrete delays
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I Corollary
If N is a non-singular M-matrix, then there is a unique
equilibrium point of (5), which is globally asymptotically
stable.

I Proof
System (5) has the form (2) if

P = 2, h
(1)
ij (u) = −cijgj(u) and h

(2)
ij (u) = −dij fj(u), u ∈ R;

τ
(1)
ij (t) = 0, τ

(2)
ij (t) = τij(t), t ≥ 0, i , j = 1, . . . , n.

I h
(1)
ij , h

(2)
ij are Lipschitz functions with Lipschitz constant

l
(1)
ij = |cij |Gj , l

(2)
ij = |dij |Fj respectively.

The result follows from Theorem 1.
I In [1] the global stability was proved with additional

conditions:
bi differentiable and 0 < k i ≤ ki (u) ≤ k i , u ∈ R.

[1] T. Huang, A. Chan, Y. Huang, J. Cao, Stability of Cohen-Grossberg neural networks with time-varying delays,

Neural Networks, 20 (2007) 868-873.
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