Ordinary Differential Equations (ODE's) PDMA - 2021/2022

Exercises / Problems nº1

- 1. Identify the domain and solve the following differential equations:
 - (a) $x'(t) = \sin t + \frac{x(t)}{t}$; (b) $x'(t) = 3x(t) + t^2$; (c) $x'(t) = -\frac{2tx(t)}{t^2 + 2x(t)}$; (d) $x'(t) = x(t)^2$; (e) x'(t) = F(x(t)), where $F(x) = \begin{cases} \sqrt{x}, & x \ge 0\\ 0, & x < 0 \end{cases}$.
- 2. Consider the logistic equation

$$x'(t) = ax(t)\left(1 - \frac{x(t)}{k}\right), \quad t \in \mathbb{R},$$

where $a, k \in]0, +\infty[$.

- (a) Identify its domain;
- (b) Solve the differential equation;
- (c) Identify its equilibrium points;
- (d) For each $x_0 \in \left\{ \frac{1}{2}, 1, 2 \right\}$, solve the IVP

$$\begin{cases} x'(t) = x(t) (1 - x(t)) \\ x(1) = x_0 \end{cases}$$

Note that in this case, we have the logistic equation with a = k = 1;

- (e) Identify its phase space;
- (f) Draw the graphic of the equilibrium points and some solutions of the logistic equation;
- (g) Draw the phase curves of the logistic equation.

3. Consider the following equation

$$x'(t) = F(x(t)), \tag{1}$$

where $F:\mathbb{R}\to\mathbb{R}$ is defined by $F(x)=\left\{ \begin{array}{ll} 1, & x\geq 0\\ -1, & x<0 \end{array} \right.$.

- (a) Why is equation (1) not an ODE;
- (b) Justify why, for each $\delta > 0$, there is no function in $C^1(]2 \delta, 2 + \delta[;\mathbb{R})$, $x :]2 \delta, 2 + \delta[\to \mathbb{R}]$, such that x is a solution of (1) and x(2) = 0;
- (c) Find a function $x : [-1,1] \to \mathbb{R}$ in $C^1([-1,1];\mathbb{R})$ which is a solution of (1) and x(0) = 2.
- 4. Consider $U \subseteq \mathbb{R} \times \mathbb{R}^n$ an open set, $f : U \subseteq \mathbb{R}^{1+n} \to \mathbb{R}^n$ a continuous function, and $(t_0, x_0) \in U$.

Prove that x(t) is a solution of the IVP

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$$

if and only if

$$x(t) = x_0 + \int_{t_0}^t F(s, x(s)) ds, \quad \forall t \in I_{t_0},$$

where I_{t_0} is an open interval such that $t_0 \in I_{t_0}$.

5. Show that, if

$$F: \mathbb{R}^{1+d} \to \mathbb{R}^d$$
$$(t,x) \mapsto F(t,x)$$

is a C^1 map, then F is locally lipschitz map on second variable.

6. Using the iterative process given by contraction principle map, find the solution of

$$\begin{cases} x'(t) = 2tx(t) \\ x(0) = 1 \end{cases}, t \in \mathbb{R}$$

- 7. Consider the ODE $x'(t) = x(t)^2$.
 - (a) Justify that the ODE has the solution uniqueness property.
 - (b) For each $(t_0, x_0) \in \mathbb{R}^2$, find $x(\cdot, t_0, x_0)$.

8. Consider the ODE

$$\begin{cases} x_1'(t) = x_2(t) \\ & , \quad t \in \mathbb{R} \\ x_2'(t) = 4x_1(t) \end{cases}$$

- (a) Solve the ODE;
- (b) Identify its phase space;
- (c) Draw the phase curves of the ODE.

Ordinary Differential Equations (ODE's) PDMA - 2020/2021

Exercises / Problems nº2

1. Prove that: If

$$\begin{array}{rcccc} f: & \mathbb{R}^{1+n} & \to & \mathbb{R}^n \\ & (t,x) & \mapsto & f(t,x) \end{array}$$

is a C^1 class function, than f is locally Lipschitz in x.

2. Prove that the PVI

$$\begin{cases} x'(t) = \sqrt[3]{x(t)^2} \\ x(3) = 0 \end{cases}$$

has several maximal defined on \mathbb{R} .

- 3. Let $f : \mathbb{R} \to \mathbb{R}$ a $C^1(\mathbb{R})$ function and $x : I \to \mathbb{R}$ a bounded maximal solution of x'(t) = f(x(t)).
 - (a) Prove that $I = \mathbb{R}$;
 - (b) Prove that x is a strictly monotone function;
 - (c) Prove that the image of x is an open interval]a, b];
 - (d) Prove that $a, b \in \mathbb{R}$ in (c) are fixed points of x'(t) = f(x(t)).
- 4. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ a continuous function such that $x \cdot f(x) \ge 0$ for all $x \in \mathbb{R}$. Prove that all the maximal solutions of the differential equation x'(t) = f(x(t)) are defined on \mathbb{R} .
- 5. Consider the differential equation

$$x'(t) = \operatorname{sen}(x(t)), \quad \forall t \in \mathbb{R}.$$
 (1)

Without solving the differential equation:

- (a) Obtain all equilibrium points of (1);
- (b) Prove that all maximal solutions of (1) are defined on \mathbb{R} ;
- (c) Prove that all solutions of (1) are bounded and monotone;
- (d) Draw e graph of some solutions of (1);
- (e) Draw the phase curves of (1).

Ordinary Differential Equations (ODE's) PDMA - 2021/2022

Exercises / Problems 3

1. Consider the following three conservative systems:

$$\mathsf{A} \left\{ \begin{array}{l} x'(t) = 1 - 2x(t)y(t) \\ y'(t) = y(t)^2 + 2x(t) \end{array} ; \mathsf{B} \left\{ \begin{array}{l} x'(t) = -4y(t) \\ y'(t) = 2x(t) - 2 \end{array} ; \mathsf{C} \left\{ \begin{array}{l} x'(t) = x(t)^2 - 2x(t) \\ y'(t) = 2y(t) - 2x(t)y(t) \end{array} \right. \right. \right\}$$

- (a) For each conservative system, find its integral;
- (b) For systems B and C, draw the phase curves;
- (c) For systems B and C, identify the stability of each equilibrium point.
- 2. Consider the ordinary differential equation

$$x''(t) = -3x(t)^2 + 4x(t) + 1$$
(1)

- (a) Write the ODE (1) as a first order differential equation
- (b) Justify that (1) is a conservative equation and find an integral;
- (c) Draw the phase curves of (1);
- (d) Identify the stability of each equilibrium point.
- 3. Consider the family of ordinary differential equations

$$x''(t) = -3x(t)^2 + 4x(t) + \lambda,$$
(2)

where $\lambda \in \mathbb{R}$. Study the phase curves of ODE (2) for different values of λ .

4. Consider the ODE that describes the oscillating pendulum

$$\theta''(t) = -\frac{g}{l}\sin(\theta(t)),\tag{3}$$

where g is the gravity, and $\theta(t)$ is the angle, at time t, that an oscillating pendulum of length l makes with the vertical direction.

- (a) Find the integral of (3);
- (b) Draw the phase curves;
- (c) Identify, if they exist, periodic orbits; homoclinic orbits, and heteroclinic orbits.
- 5. Identify, if they exist, periodic orbits; homoclinic orbits, and heteroclinic orbits of each ODE:

(a)
$$x''(t) = x(t)^3 - x(t);$$
 (b) $x''(t) = 4x(t)^3 - 4x(t)^2 - 8x(t)$

Ordinary Differential Equations (ODE's) PDMA - 2021/2022

Exercises / Problems 4

1. Find a fundamental matrix solution for the linear ordinary differential equation

$$x'(t) = Ax(t),$$

where

(a) $A = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}$;	(g) $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$;
(b) $A = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}$;	(h) $A = \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$;
(c) $A = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix}$;	(i) $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$;
(d) $A = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$;	(j) $A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix};$
(e) $A = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}$;	
(f) $A = \begin{bmatrix} 3 & 4 \\ 0 & -2 \end{bmatrix}$;	(k) $A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$;

- 2. For each system in exercise 1, find the stable, unstable and the centre subspaces, E^s , E^u , and E^c .
- 3. For each system in exercise 1, draw its phase curve.
- 4. Let x'(t) = Ax(t) a linear differential equation such that $dimE^s \neq 0$, $dimE^u \neq 1$, and $dimE^c = 0$. Show that, if $x_0 \notin (E^s \cup E^u)$, then the solution $x(t) = x(t, x_0)$ satisfies

$$\lim_{t \to \pm \infty} \|x(t)\| = +\infty.$$

5. Classify the equilibrium points, as sinks, sources, or saddles, of each nonlinear ODE's:

(a)
$$\begin{cases} x'(t) = -x(t)^2 - y(t)^2 - 1 \\ y'(t) = 2y(t) \end{cases}$$
; (c)
$$\begin{cases} x'(t) = -2x(t) - 2x(t)y(t) \\ y'(t) = 2y(t) - x(t) + y(t)^2 \end{cases}$$
;
(b)
$$\begin{cases} x'(t) = -2x(t) - x(t)y(t) \\ y'(t) = y(t) + x(t)^3 \end{cases}$$
; (d)
$$\begin{cases} x'(t) = -x(t) \\ y'(t) = -y(t) + x(t)^2 \\ z'(t) = z(t) + x(t)^2 \end{cases}$$
;

 $\ensuremath{\mathsf{6.}}$ Study the stability of the equilibrium points of the ODE

$$\begin{cases} x'(t) = y(t) \\ y'(t) = x(t) + \alpha y(t) - x(t)^2 \end{cases},$$

where $\alpha \in \mathbb{R}$.