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José J. Oliveiraa

April 8, 2019
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Neural Network Models

*Pioneer Models:
I Cohen-Grossberg (1983)

x ′i (t) = −di (xi (t))

(
bi (xi (t))−

n∑
j=1

aijhj(xj(t))

)
, i = 1, . . . , n. (1)

I Hopfield (1984)

x ′i (t) = −bi (xi (t)) +
n∑

j=1

aijhj(xj(t)), i = 1, . . . , n. (2)

where, n ∈ N is the number of neurons;
di amplification functions; bi controller functions;
hj activation functions; A = [aij ] connection matrix.
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*Some Hopfield neural network models in the literature:

I Xiao & Zhang (2007) and Yuan et al.(2008 and 2009)

x ′i (t) = −βi (t)xi (t) +
n∑

j=1

aij1(t)hj(xj(t)) +
n∑

j=1

aij2(t)hj(xj(t − τij(t))) + Ii (t), (3)

I Zhou et al. (2008)

x ′i (t) = −βi (t)gi (xi (t)) +
n∑

j=1

aij1(t)hj(xj(t)) +
n∑

j=1

aij2(t)hj(xj(t − τij(t))) + Ii (t), (4)

In both cases: t ≥ 0 and i = 1, . . . , n, with n ∈ N.
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I Zhao (2004)

x ′i (t) = −βi (t)xi (t) +
n∑

j=1

aij(t)hj(xj(t))

+
n∑

j=1

cij(t)fj

(
σj

∫ 0

−∞
Gij(−s)xj(t + s)ds

)
+ Ii (t), (5)

I Zhu & Feng (2014)

x ′i (t) = −bi (xi (t)) +
n∑

j=1

aij1(t)hj1(xj(t)) +
n∑

j=1

aij2(t)hj2(xj(t − τij(t)))

+
n∑

j=1

cij(t)

∫ 0

−∞
Gij(−s)gj(xj(t + s))ds + Ii (t), (6)

where Gij : [0,∞)→ [0,∞) are piecewise continuous and
integrable such that∫ ∞

0

Gij(u)du = 1 and

∫ ∞
0

uGij(u)du < +∞
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*Generalized Hopfield neural network model

x ′i (t) = −bi (t, xi (t)) +
n∑

j=1

P∑
p=1

(
aijp(t)hijp(xj(t − τijp(t)))

+cijp(t)fijp

(∫ 0

−∞
gijp(xj(t + s))dηijp(s)

))
+ Ii (t), t ≥ 0, (7)

where n,P ∈ N and, for i , j = 1, . . . , n, p = 1, . . . ,P,
bi : [0,∞)× R→ R, aijp, cijp, Ii : [0,∞)→ R,
hijp, fijp, gijp : R→ R, and τijp : [0,∞)→ [0,∞) are continuous,
ηijp : (−∞, 0]→ R are non-decreasing bounded and normalized

ηijp(0)− ηijp(−∞) = 1.

*Initial Condition

xt0 = ϕ, t0 ≥ 0, ϕ ∈ BC (8)

where
BC := {ϕ ∈ C ((−∞, 0];Rn) : ϕ is bounded}, ‖ϕ‖ = sup

s≤0
|ϕ(s)|.
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I Consider a FDE with unbounded delay

x ′(t) = f (t, xt), t ≥ 0

where xt : (−∞, 0]→ Rn is defined by xt(s) = x(t + s) for
s ≤ 0.

I The admissible phase space [ Hale and Kato (1978)]

UCg =

{
φ ∈ C ((−∞, 0];Rn) : sup

s≤0

|φ(s)|
g(s)

<∞, φ(s)

g(s)
unif. cont.

}
,

‖φ‖g = sup
s≤0

|φ(s)|
g(s)

with |x | = |(x1, . . . , xn)| = max
1≤i≤n

|xi |

where:
(g1) g : (−∞, 0]→ [1,∞) non-increasing, continuous,

g(0) = 1;

(g2) lim
u→0−

g(s + u)

g(s)
= 1 uniformly on (−∞, 0];

(g3) g(s)→∞ as s → −∞.
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I From T.Faria & J.J.Oliveira (2011), we have the following:
Lemma: If, for some α > 0,∫ 0

−∞
dηijp(s) < α, ∀i , j , p,

then there is a sequence 0 < rm ↗∞ such that the function
g : (−∞, 0]→ [1,∞) defined by

(i) g(s) = 1 on [−r1, 0];
(ii) g(−rm) = m, m ∈ N;
(iii) g is continuous and piecewise linear (linear on intervals

[−rm+1,−rm]),

satisfies (g1), (g2), (g3), and∫ 0

−∞
g(s)dηijp(s) < α.

I We consider IVP (7)-(8) in the phase space UCg .
Note that BC ⊆ UCg .
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For (7) we assume the following hypotheses:
For each i , j = 1, . . . , n, p = 1, . . . ,P

I (A1) ∃ βi : [0,∞)→ (0,∞), ∀u, v ∈ R u 6= v :

(bi (t, u)− bi (t, v))/(u − v) ≥ βi (t), ∀t ≥ 0;

[In particular, for bi (t, u) = βi (t)u.]

I (A2) hijp, fijp, gijp : R→ R are Lipschitz functions with
Lipschitz constants γijp, µijp, and σijp, respectively;

I (A3) lim
t→∞

(
t − τijp(t)

)
=∞;

I (A4) There is (d1, . . . , dn) > 0 such that

lim sup
t→+∞

−βi (t) +
n∑

j=1

P∑
p=1

dj
di

(γijp|aijp(t)|+ µijpσijp|cijp(t)|)

 < 0.
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I The scalar ODE’s

x ′(t) = −x(t) +
2 + t

(t + 1)2
x2(t), t ≥ 0, (9)

and

x ′(t) = −x(t)+0x2(t), t ≥ 0. (10)

I We say that the equation (10) is an asymptotic equation of
(9) because

lim
t→∞

((−1)− (−1)) = 0 and lim
t→∞

(
2 + t

(t + 1)2
−0

)
= 0.

I Note: The dynamic behavior of systems (9), (10) are totally
different because:

I ODE (9) has an unbounded solution, x(t) = t + 1;
I the zero solution of (10) is globally exponentially stable.
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The system

x ′i (t) = −b̂i (t, xi (t)) +
n∑

j=1

P∑
p=1

(
âijp(t)hijp(xj(t − τ̂ijp(t)))+

+ĉijp(t)fijp

(∫ 0

−∞
gijp(xj(t + s))dηijp(s)

))
+ Îi (t), (11)

is an asymptotic system of (7) if

b̂i (t, u), âijp(t), ĉijp(t), τ̂ijp(t), and Îi (t) are continuous such that

b̂i satisfies (A1) for some non-negative function β̂i and

lim
t→∞

(βi (t)− β̂i (t)) = lim
t→∞

(bi (t, u(t))− b̂i (t, u(t))) = lim
t→∞

(aijp(t)− âijp(t))

= lim
t→∞

(cijp(t)− ĉijp(t)) = lim
t→∞

(τijp(t)− τ̂ijp(t))
= lim

t→∞
(Ii (t)− Îi (t)) = 0,

for every bounded continuous function u : R→ R.
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I Idea:

To understand the behavior of the Hopfield neural model (7)
by studying one of its asymptotic systems (11).
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I Lemma: Assume (A1) and (A2).
Then, each solution x(t) = x(t, t0, ϕ) of (7) is defined on R.
(where t0 ≥ 0 and ϕ ∈ BC )

Proof: (omitted)
I Generalized Gronwall’s inequality
I Continuation Theorem (Hale & Kate 1978)

I The solutions of (11) with bounded initial conditions are also
defined on R.

José J. Oliveira Asymptotic Stability of Hopfield Neural Network Models



Neural network models
Model

Global convergence of asymptotic systems

Model
Phase space
Hypotheses
Asymptotic system

I Lemma: Assume (A1) and (A2).
Then, each solution x(t) = x(t, t0, ϕ) of (7) is defined on R.
(where t0 ≥ 0 and ϕ ∈ BC )

Proof: (omitted)
I Generalized Gronwall’s inequality
I Continuation Theorem (Hale & Kate 1978)

I The solutions of (11) with bounded initial conditions are also
defined on R.
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I Bounded coefficient functions
(important to do applications, today)

I Unbounded coefficient functions
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Global convergence of asymptotic Hopfield systems

I Remark: Hypothesis set (A1)-(A4) does not imply the
boundedness of solutions of (7).

I Example: The model

x ′(t) = −tx(t) + t

4 + 2 sin t
sin x(t − 1) +

t

2 + sin t
+ t2 +

t

2
+ 1

has an unbounded solution x(t) = t + 1 and the hypotheses
(A1)-(A4) hold.

I We note that the coefficient functions are unbounded.
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I (B) The coefficient functions bi (·, 0), aijp, cijp, Ii : [0,∞)→ R
are bounded.

I Theorem: Assume (A1), (A2), (A4), and (B).
Then all solutions of (7) with initial bounded condition are
bounded.

I Proof(idea): By (B), there is M > 0 such that

M ≥ |bi (t, 0)|+ |Ii (t)|+
n∑

j=1

P∑
p=1

(
|aijp(t)| |hijp(0)|+ |cijp(t)| |fijp(gijp(0))|

)
.

I By contradiction, assume that
x(t, t0, ϕ) = x(t) = (x1(t), . . . , xn(t)) is unbounded and
define z(t) = (d−11 |x1(t)|, . . . , d−1n |xn(t)|).

I Thus, for some i , there is a positive sequence (tk)k∈N such
that some tk ↗∞, 0 < zi (tk)↗∞,

zi (tk) = ‖ztk‖ ≥ ‖zt‖, and z ′i (tk) ≥ 0, ∀k ∈ N, ∀t ≤ tk .
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José J. Oliveira Asymptotic Stability of Hopfield Neural Network Models



Neural network models
Model

Global convergence of asymptotic systems

Bounded coefficient functions
Examples
Unbounded coefficient functions

I (B) The coefficient functions bi (·, 0), aijp, cijp, Ii : [0,∞)→ R
are bounded.

I Theorem: Assume (A1), (A2), (A4), and (B).
Then all solutions of (7) with initial bounded condition are
bounded.

I Proof(idea): By (B), there is M > 0 such that

M ≥ |bi (t, 0)|+ |Ii (t)|+
n∑

j=1

P∑
p=1

(
|aijp(t)| |hijp(0)|+ |cijp(t)| |fijp(gijp(0))|

)
.

I By contradiction, assume that
x(t, t0, ϕ) = x(t) = (x1(t), . . . , xn(t)) is unbounded and
define z(t) = (d−11 |x1(t)|, . . . , d−1n |xn(t)|).

I Thus, for some i , there is a positive sequence (tk)k∈N such
that some tk ↗∞, 0 < zi (tk)↗∞,

zi (tk) = ‖ztk‖ ≥ ‖zt‖, and z ′i (tk) ≥ 0, ∀k ∈ N, ∀t ≤ tk .
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For each k ∈ N, we have

z ′i (tk) = sign(xi (tk))d
−1
i x ′i (tk)

= −d−1
i sign(xi (tk))

(
bi (tk , xi (tk))− bi (tk , 0)

)

+sign(xi (tk))d
−1
i

(
−bi (tk , 0) + Ii (tk)

)

+sign(xi (tk))d
−1
i

n∑
j=1

P∑
p=1

[
aijp(tk)

(
hijp(xj(tk − τijp(tk)))−hijp(0)

)

+cijp(tk)

(
fijp

(∫ 0

−∞
gijp(xj(tk + s))dηijp(s)

)
−fijp(gijp(0))

)]

+sign(xi (tk))d
−1
i

n∑
j=1

P∑
p=1

(
aijp(tk)hijp(0) + cijp(tk)fijp(gijp(0))

)
.
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I From (A1) and (A2) we obtain

z ′i (tk) ≤ −βi (tk)zi (tk) +
n∑

j=1

P∑
p=1

dj
di

(
|aijp(tk)|γijpzj(tk − τijp(tk))

+|cijp(tk)|µijpσijp‖zj,tk ‖
)
+ d−1

i M

≤ −βi (tk)zi (tk) +
n∑

j=1

P∑
p=1

dj
di

(
|aijp(tk)|γijp + |cijp(tk)|µijpσijp

)
‖ztk ‖+ d−1

i M

≤

(
−βi (tk) +

n∑
j=1

P∑
p=1

dj
di

(
|aijp(tk)|γijp + |cijp(tk)|µijpσijp

))
‖ztk ‖+ d−1

i M

I Thus, from (A4) we have, for some l < 0,

z ′i (tk) ≤ lzi (tk) + d−1
i M → −∞, as k →∞,

which is a contradiction.
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I Theorem 1: Assume (A1)-(A4) and (B). Then

lim
t→∞

|xi (t)− x̂i (t)| = 0, ∀i = 1, . . . , n,

for all x(t) = (x1(t), . . . , xn(t)) solutions of (7) and
x̂(t) = (x̂1(t), . . . , x̂n(t)) solution of (11).

I Proof(idea):
I Let x(t) and x̂(t) solutions of (7) and (11) respectively, with

bounded initial conditions. Define

y(t) = (d−11 |x1(t)− x̂1(t)|, . . . , d−1n |xn(t)− x̂n(t)|).

I The function y(t) is bounded and define ȳ := sup
t∈R
|y(t)|,

ui := lim sup
t→∞

yi (t), ∀i , and u := max
i
{ui} ∈ [0,∞)

I It remains to be proven that u = 0.
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I Let i ∈ {1, . . . , n} be such that ui = u.

I Then, there is a positive sequence tk ↗∞ such that

yi (tk)→ u, and y ′i (tk)→ 0, as k →∞. (12)

I For the sake of contradiction, assume that u > 0.

I Fix 0 < δ < u and let T = T (δ) > 0 such that
|y(t)| < uδ := u + δ for t ≥ T and∫ −T

−∞
dηijp(s) <

δ

ȳ
, ∀j , p.

I As t − τijp(t)→∞, τijp(t)− τ̂ijp(t)→ 0 as t →∞, and
yi (tk)→ u as k →∞,
then there is k0 ∈ N such that, for all k ≥ k0,

tk − τ̂ijp(tk) > T , tk > 2T , and yi (tk) > u−δ := u − δ.
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For k > k0, from the hypotheses (A1) and (A2) we have

y ′i (tk) = sign(xi (tk)− x̂i (tk))d
−1
i (x ′i (tk)− x̂ ′i (tk)) = · · ·

≤ −β̂i (tk)yi (tk) +
n∑

j=1

P∑
p=1

dj
di

[
|âijp(tk)|γijpyj(tk − τ̂ijp(tk))

+|ĉijp(tk)|µijpσijp

∫ 0

−∞
yj(tk + s)dηijp(s)

]
+ εi (tk),

where

εi (t) := d−1
i |bi (t, xi (t))− b̂i (t, xi (t))|

+
n∑

j=1

P∑
p=1

d−1
i

[
|aijp(t)− âijp(t)| |hijp(xj(t − τijp(t)))|+

+|âijp(t)|γijp|xj(t − τijp(t))− xj(t − τ̂ijp(t))|+

+|cijp(t)− ĉijp(t)|
∣∣∣∣fijp (∫ 0

−∞
gijp(xj(t + s))dηijp(s)

)∣∣∣∣ ]+ d−1
i |Ii (t)− Îi (t)|.

As (11) is an asymptotic system of (7), then

lim
t→∞

εi (t) = 0.
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Now, we have

y ′i (tk) ≤ −β̂i (tk)yi (tk) +
n∑

j=1

P∑
p=1

dj
di

[
|âijp(tk)|γijpyj(tk − τ̂ijp(tk))

+|ĉijp(tk)|µijpσijp

∫ 0

−∞
yj(tk + s)dηijp(s)

]
+ εi (tk)

≤ εi (tk)− β̂i (tk)u−δ +
n∑

j=1

P∑
p=1

dj
di

[
|âijp(tk)|γijpuδ

+|ĉijp(tk)|µijpσijp

(∫ −T

−∞
yj(tk + s)dηijp(s) +

∫ 0

−T

yj(tk + s)dηijp(s)

)]

≤
n∑

j=1

P∑
p=1

dj
di

[
|âijp(tk)|γijpuδ + |ĉijp(tk)|µijpσijp

(
δ + uδ

∫ 0

−T

dηijp(s)

)]
−β̂i (tk)u−δ + εi (tk)

≤ −β̂i (tk)u−δ +
n∑

j=1

P∑
p=1

dj
di

(
|âijp(tk)|γijp + |ĉijp(tk)|µijpσijp

)
u2δ + εi (tk).
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For k > k0, we have

y ′i (tk) ≤ −β̂i (tk)u−δ +
n∑

j=1

P∑
p=1

dj
di

(
|âijp(tk)|γijp + |ĉijp(tk)|µijpσijp

)
u2δ + εi (tk)

Letting k →∞ and δ → 0, we have y ′i (tk)→ 0, thus (A4) implies

0 ≤

(
lim sup
k→+∞

[
− β̂i (tk) +

n∑
j=1

P∑
p=1

dj
di

(
|âijp(tk)|γijp + |ĉijp(tk)|µijpσijp

)])
u < 0,

which is a contradiction.
Consequently u = 0 and the proof is concluded.
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I Example 1:
Xiao & Zhang (2007), Zhou et al.(2008), Yuan et al.(2009)

x ′i (t) = −βi (t)xi (t) +
n∑

j=1

aij1(t)hj(xj(t)) +
n∑

j=1

aij2(t)hj(xj(t − τij(t))) + Ii (t) (3)

x ′i (t) = −β̂i (t)xi (t) +
n∑

j=1

âij1(t)hj(xj(t)) +
n∑

j=1

âij2(t)hj(xj(t − τij(t))) + Îi (t) (13)

with lim
t→∞

(βi (t)− β̂i (t)) = lim
t→∞

(aijp(t)− âijp(t)) = lim
t→∞

(Ii (t)− Îi (t)) = 0.

I Corollary 1: Assume (A2), (A3), (B), and
d = (d1, . . . , dn) > 0 such that

lim sup
t→+∞

(
−βi (t) +

n∑
j=1

dj
di
γj(|aij1(t)|+ aij2(t)|)

)
< 0 ∀i = 1, . . . , n. (14)

Then

lim
t→∞

|xi (t)− x̂i (t)| = 0, ∀i = 1, . . . , n.
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To obtain the global convergence of the models:

I In Xiao & Zhang (2007) assume that (3) has a periodic
asymptotic system, i.e. model (13) is periodic, and for some
η > 0,

−βi (t) +
n∑

j=1

dj
di
γj(|aij1(t)|+ |aij2(t)|) < −η, ∀i = 1, . . . , n;

I In Zhou et al.(2008) assume the same hypotheses as in Xiao
& Zhang (2007), but with bi (t, x) = βi (t)gi (x), where gi
satisfies (A1), instead of bi (t, x) = βi (t)x ;

I In Yuan et al.(2009), instead of (14), assume

lim sup
t→∞

(
n∑

j=1

djγi (|aji1(t)|+ aji2(t)|)
diβj(t)

)
< 0 ∀i = 1, . . . , n (15)

with lim inf
t→∞

βi (t) > 0.

Conditions (15) and (14) in Corollary 1 are different.

José J. Oliveira Asymptotic Stability of Hopfield Neural Network Models



Neural network models
Model

Global convergence of asymptotic systems

Bounded coefficient functions
Examples
Unbounded coefficient functions

To obtain the global convergence of the models:

I In Xiao & Zhang (2007) assume that (3) has a periodic
asymptotic system, i.e. model (13) is periodic, and for some
η > 0,

−βi (t) +
n∑

j=1

dj
di
γj(|aij1(t)|+ |aij2(t)|) < −η, ∀i = 1, . . . , n;

I In Zhou et al.(2008) assume the same hypotheses as in Xiao
& Zhang (2007), but with bi (t, x) = βi (t)gi (x), where gi
satisfies (A1), instead of bi (t, x) = βi (t)x ;

I In Yuan et al.(2009), instead of (14), assume

lim sup
t→∞

(
n∑

j=1

djγi (|aji1(t)|+ aji2(t)|)
diβj(t)

)
< 0 ∀i = 1, . . . , n (15)

with lim inf
t→∞

βi (t) > 0.

Conditions (15) and (14) in Corollary 1 are different.
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I Numerical example:
x ′1(t) = −(2 + e−t)x1(t) + (cos et)x1(t − 1) + (sin et)x2(t − 2) + e−t

x ′2(t) = −3x2(t) + (cos et)x1(t − 1) + 2(sin et)x2(t − 2) + e−t
. (16)

It is straightforward to check that the system
x ′1(t) = −2x1(t) + (cos et)x1(t − 1) + (sin et)x2(t − 2)

x ′2(t) = −3x2(t) + (cos et)x1(t − 1) + 2(sin et)x2(t − 2)
(17)

is an asymptotic system of (16).

I Model (17) has the equilibrium solution (x1(t), x2(t)) ≡ (0, 0);

I From Corollary 1, all solution (x1(t), x2(t)) of (16) converge
to (0, 0) as t →∞, but (0, 0) is not an equilibrium solution of
(17);

I Condition (14) holds, but condition (15) does not hold.
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José J. Oliveira Asymptotic Stability of Hopfield Neural Network Models



Neural network models
Model

Global convergence of asymptotic systems

Bounded coefficient functions
Examples
Unbounded coefficient functions

I Numerical example:
x ′1(t) = −(2 + e−t)x1(t) + (cos et)x1(t − 1) + (sin et)x2(t − 2) + e−t

x ′2(t) = −3x2(t) + (cos et)x1(t − 1) + 2(sin et)x2(t − 2) + e−t
. (16)

It is straightforward to check that the system
x ′1(t) = −2x1(t) + (cos et)x1(t − 1) + (sin et)x2(t − 2)

x ′2(t) = −3x2(t) + (cos et)x1(t − 1) + 2(sin et)x2(t − 2)
(17)

is an asymptotic system of (16).

I Model (17) has the equilibrium solution (x1(t), x2(t)) ≡ (0, 0);

I From Corollary 1, all solution (x1(t), x2(t)) of (16) converge
to (0, 0) as t →∞, but (0, 0) is not an equilibrium solution of
(17);

I Condition (14) holds, but condition (15) does not hold.
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Figure: Solution (x1(t), x2(t)) of system (16) with initial condition
ϕ(s) = (sin s, 2), s ≤ 0.
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I Example 2: Zhao (2004)

x ′i (t) = −βi (t)xi (t) +
n∑

j=1

aij(t)hj(xj(t))

+
n∑

j=1

cij(t)fj

(
σj

∫ 0

−∞
Gij(−s)xj(t + s)ds

)
+ Ii (t) (5)

x ′i (t) = −β̂i (t)xi (t) +
n∑

j=1

âij(t)hj(xj(t))

+
n∑

j=1

ĉij(t)fj

(
σj

∫ 0

−∞
Gij(−s)xj(t + s)ds

)
+ Îi (t) (18)

with lim
t→∞

(βi (t)− β̂i (t)) = lim
t→∞

(aij(t)− âij(t)) = lim
t→∞

(cij(t)− ĉij(t)) =

lim
t→∞

(Ii (t)− Îi (t)) = 0.
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I Theorem [Zhao (2004)] For each i , j = 1, . . . , n

(i) β̂i , âij , ĉij , Îi : [0,∞)→ R are continuous almost periodic and

β̂i = inf
t≥0

β̂i (t) > 0;

(ii) hj , fj : R→ R are Lipschitz functions with Lipschitz constants
γj and µj respectively;

(iii) Gij : [0,+∞)→ [0,+∞) is piecewise continuous and
integrable with

∫∞
0

Gij(u)du = 1.
(iv) ∃ d = (d1, . . . , dn) > 0 such that,

− β̂idi +
n∑

j=1

dj
(
γj âij + µjσj ĉij

)
< 0, ∀i ∈ {1, . . . , n}, (19)

where âij = sup
t≥0
|âij(t)| and ĉij = sup

t≥0
|ĉij(t)|.

Then the system (18) has an almost periodic solution, x̄(t).
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I With the same hypotheses Zhao(2004) obtained

lim
t→∞

|xi (t)− x̄i (t)| = 0, ∀i = 1, . . . , n,

for all x(t) = (x1(t), . . . , xn(t)) solutions of (18).

I From Theorem 1,
Corollary 2: Assume (i)-(iv), and βi , aij , cij , Ii : [0,+∞)→ R,
are continuous functions such that
lim
t→∞

(βi (t)− β̂i (t)) = lim
t→∞

(aij(t)− âij(t)) = lim
t→∞

(cij(t)− ĉij(t)) =

lim
t→∞

(Ii (t)− Îi (t)) = 0.

Then
lim
t→∞

|xi (t)− x̄i (t)| = 0, ∀i = 1, . . . , n

for all x(t) = (x1(t), . . . , xn(t)) solutions of (5) and x̄(t) the
almost periodic solution (18).

José J. Oliveira Asymptotic Stability of Hopfield Neural Network Models



Neural network models
Model

Global convergence of asymptotic systems

Bounded coefficient functions
Examples
Unbounded coefficient functions

I With the same hypotheses Zhao(2004) obtained

lim
t→∞

|xi (t)− x̄i (t)| = 0, ∀i = 1, . . . , n,

for all x(t) = (x1(t), . . . , xn(t)) solutions of (18).

I From Theorem 1,
Corollary 2: Assume (i)-(iv), and βi , aij , cij , Ii : [0,+∞)→ R,
are continuous functions such that
lim
t→∞

(βi (t)− β̂i (t)) = lim
t→∞
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I Here, we do not assume (B), but we consider τijp(t) = τ̂ijp(t).

I Theorem: Assume (A1), (A2), and (A4).
If (7) has a bounded solution, then all solutions of (7) and
(11), with initial bounded conditions, are bounded.

I Theorem 2: Assume (A1)-(A4).
If (7) has a bounded solution, then

lim
t→∞

|xi (t)− x̂i (t)| = 0, ∀i = 1, . . . , n.

for all x(t) = (x1(t), . . . , xn(t)) and x̂(t) = (x̂1(t), . . . , x̂n(t))
solutions of systems (7) and (11) respectively, with bounded
initial conditions.
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Thank you
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