Convergence of asymptotic systems of non-autonomous Hopfield neural network models with infinite distributed delays

José J. Oliveira^a

April 8, 2019

^aDepartamento de Matemática e Aplicações, CMAT, Universidade do Minho

伺下 イヨト イヨト

Neural Network Models

*Pioneer Models:

Cohen-Grossberg (1983)

$$x'_{i}(t) = -d_{i}(x_{i}(t))\left(b_{i}(x_{i}(t)) - \sum_{j=1}^{n} a_{ij}h_{j}(x_{j}(t))\right), \ i = 1, \dots, n.$$
(1)

Hopfield (1984)

$$x'_i(t) = -b_i(x_i(t)) + \sum_{j=1}^n a_{ij}h_j(x_j(t)), \quad i = 1, ..., n.$$
 (2)

where, $n \in \mathbb{N}$ is the number of neurons; d_i amplification functions; b_i controller functions; h_j activation functions; $A = [a_{ij}]$ connection matrix. *Some Hopfield neural network models in the literature:

Xiao & Zhang (2007) and Yuan et al.(2008 and 2009)

$$x_{i}'(t) = -\beta_{i}(t)x_{i}(t) + \sum_{j=1}^{n} a_{ij1}(t)h_{j}(x_{j}(t)) + \sum_{j=1}^{n} a_{ij2}(t)h_{j}(x_{j}(t-\tau_{ij}(t))) + I_{i}(t), \quad (3)$$

Zhou et al. (2008)

$$x_i'(t) = -eta_i(t)g_i(x_i(t)) + \sum_{j=1}^n a_{ij1}(t)h_j(x_j(t)) + \sum_{j=1}^n a_{ij2}(t)h_j(x_j(t- au_{ij}(t))) + I_i(t),$$
 (4)

In both cases: $t \ge 0$ and i = 1, ..., n, with $n \in \mathbb{N}$.

(ロ) (同) (E) (E) (E)

Hopfield neural network models

Zhao (2004)

$$\begin{aligned} x_{i}'(t) &= -\beta_{i}(t)x_{i}(t) + \sum_{j=1}^{n} a_{ij}(t)h_{j}(x_{j}(t)) \\ &+ \sum_{j=1}^{n} c_{ij}(t)f_{j}\left(\sigma_{j}\int_{-\infty}^{0} G_{ij}(-s)x_{j}(t+s)ds\right) + l_{i}(t), \end{aligned}$$
(5)

► Zhu & Feng (2014)

$$x'_{i}(t) = -b_{i}(x_{i}(t)) + \sum_{j=1}^{n} a_{ij1}(t)h_{j1}(x_{j}(t)) + \sum_{j=1}^{n} a_{ij2}(t)h_{j2}(x_{j}(t - \tau_{ij}(t))) + \sum_{j=1}^{n} c_{ij}(t) \int_{-\infty}^{0} G_{ij}(-s)g_{j}(x_{j}(t + s))ds + I_{i}(t), \quad (6)$$

where ${\cal G}_{ij}:[0,\infty)\to [0,\infty)$ are piecewise continuous and integrable such that

$$\int_0^\infty G_{ij}(u) du = 1 \text{ and } \int_0^\infty u G_{ij}(u) du < +\infty$$

José J. Oliveira Asymptotic Stability of Hopfield Neural Network Models

< ≣⇒

Model Phase space Hypotheses Asymptotic system

*Generalized Hopfield neural network model

$$\begin{aligned} x_{i}'(t) &= -b_{i}(t, x_{i}(t)) + \sum_{j=1}^{n} \sum_{\rho=1}^{P} \left(a_{ij\rho}(t) h_{ij\rho}(x_{j}(t - \tau_{ij\rho}(t))) \right. \\ &+ c_{ij\rho}(t) f_{ij\rho}\left(\int_{-\infty}^{0} g_{ij\rho}(x_{j}(t + s)) d\eta_{ij\rho}(s) \right) \right) + I_{i}(t), \ t \ge 0, \quad (7) \end{aligned}$$

where $n, P \in \mathbb{N}$ and, for i, j = 1, ..., n, p = 1, ..., P, $b_i : [0, \infty) \times \mathbb{R} \to \mathbb{R}, a_{ijp}, c_{ijp}, l_i : [0, \infty) \to \mathbb{R},$ $h_{ijp}, f_{ijp}, g_{ijp} : \mathbb{R} \to \mathbb{R}, \text{ and } \tau_{ijp} : [0, \infty) \to [0, \infty) \text{ are continuous,}$ $\eta_{ijp} : (-\infty, 0] \to \mathbb{R}$ are non-decreasing bounded and normalized

$$\eta_{ijp}(0) - \eta_{ijp}(-\infty) = 1.$$

*Initial Condition

$$x_{t_0} = \varphi, \quad t_0 \ge 0, \ \varphi \in BC$$
 (8)

where

 $BC := \{\varphi \in C((-\infty, 0]; \mathbb{R}^n) : \varphi \text{ is bounded}\}, \, \|\varphi\| = \sup_{\varphi \in \mathcal{Q}} |\varphi(\underline{s})|.$

José J. Oliveira

Asymptotic Stability of Hopfield Neural Network Models

Model Phase space Hypotheses Asymptotic system

Consider a FDE with unbounded delay

$$x'(t) = f(t, x_t), \ t \ge 0$$

where $x_t : (-\infty, 0] \to \mathbb{R}^n$ is defined by $x_t(s) = x(t+s)$ for $s \le 0$.

Model Phase space Hypotheses Asymptotic system

Consider a FDE with unbounded delay

$$x'(t)=f(t,x_t),\ t\geq 0$$

where $x_t: (-\infty, 0] \to \mathbb{R}^n$ is defined by $x_t(s) = x(t+s)$ for $s \le 0$.

The admissible phase space [Hale and Kato (1978)]

$$UC_g = \left\{ \phi \in C((-\infty, 0]; \mathbb{R}^n) : \sup_{s \le 0} \frac{|\phi(s)|}{g(s)} < \infty, \frac{\phi(s)}{g(s)} \text{ unif. cont.} \right\},$$
$$\|\phi\|_g = \sup_{s \le 0} \frac{|\phi(s)|}{g(s)} \text{ with } |x| = |(x_1, \dots, x_n)| = \max_{1 \le i \le n} |x_i|$$

where:

(g1)
$$g: (-\infty, 0] \rightarrow [1, \infty)$$
 non-increasing, continuous,
 $g(0) = 1;$
(g2) $\lim_{u \rightarrow 0^{-}} \frac{g(s+u)}{g(s)} = 1$ uniformly on $(-\infty, 0];$
(g3) $g(s) \rightarrow \infty$ as $s \rightarrow -\infty.$

Model Phase space Hypotheses Asymptotic system

 From T.Faria & J.J.Oliveira (2011), we have the following: Lemma: If, for some α > 0,

$$\int_{-\infty}^{0} d\eta_{ijp}(s) < \alpha, \quad \forall i, j, p,$$

then there is a sequence $0 < r_m \nearrow \infty$ such that the function $g: (-\infty, 0] \rightarrow [1, \infty)$ defined by (i) g(s) = 1 on $[-r_1, 0]$; (ii) $g(-r_m) = m, m \in \mathbb{N}$; (iii) g is continuous and piecewise linear (linear on intervals $[-r_{m+1}, -r_m]$), satisfies **(g1)**, **(g2)**, **(g3)**, and $\int_{-\infty}^{0} g(s) d\eta_{ijp}(s) < \alpha$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Model Phase space Hypotheses Asymptotic system

 From T.Faria & J.J.Oliveira (2011), we have the following: Lemma: If, for some α > 0,

$$\int_{-\infty}^{0} d\eta_{ijp}(s) < \alpha, \quad \forall i, j, p,$$

then there is a sequence $0 < r_m \nearrow \infty$ such that the function $g: (-\infty, 0] \rightarrow [1, \infty)$ defined by (i) g(s) = 1 on $[-r_1, 0]$; (ii) $g(-r_m) = m, m \in \mathbb{N}$; (iii) g is continuous and piecewise linear (linear on intervals $[-r_{m+1}, -r_m]$), satisfies **(g1)**, **(g2)**, **(g3)**, and $\int_{-\infty}^{0} g(s) d\eta_{ijp}(s) < \alpha$. We consider IVP (7)-(8) in the phase space //C

▶ We consider IVP (7)-(8) in the phase space UC_g . Note that $BC \subseteq UC_g$.

Model Phase space Hypotheses Asymptotic system

For (7) we assume the following hypotheses: For each i, j = 1, ..., n, p = 1, ..., P

Model Phase space Hypotheses Asymptotic system

For (7) we assume the following hypotheses: For each i, j = 1, ..., n, p = 1, ..., P(A1) $\exists \beta_i : [0, \infty) \rightarrow (0, \infty), \forall u, v \in \mathbb{R} \ u \neq v:$ $(b_i(t, u) - b_i(t, v))/(u - v) \ge \beta_i(t), \quad \forall t \ge 0;$

[In particular, for $b_i(t, u) = \beta_i(t)u$.]

Model Phase space Hypotheses Asymptotic system

For (7) we assume the following hypotheses: For each i, j = 1, ..., n, p = 1, ..., P(A1) $\exists \beta_i : [0, \infty) \rightarrow (0, \infty), \forall u, v \in \mathbb{R} \ u \neq v$: $(b_i(t, u) - b_i(t, v))/(u - v) \ge \beta_i(t), \quad \forall t \ge 0;$

[In particular, for $b_i(t, u) = \beta_i(t)u$.]

▶ (A2) $h_{ijp}, f_{ijp}, g_{ijp} : \mathbb{R} \to \mathbb{R}$ are Lipschitz functions with Lipschitz constants γ_{ijp}, μ_{ijp} , and σ_{ijp} , respectively;

Model Phase space Hypotheses Asymptotic system

For (7) we assume the following hypotheses: For each i, j = 1, ..., n, p = 1, ..., P(A1) $\exists \beta_i : [0, \infty) \rightarrow (0, \infty), \forall u, v \in \mathbb{R} \ u \neq v:$ $(b_i(t, u) - b_i(t, v))/(u - v) \ge \beta_i(t), \quad \forall t \ge 0;$

[In particular, for $b_i(t, u) = \beta_i(t)u$.]

► (A2) $h_{ijp}, f_{ijp}, g_{ijp} : \mathbb{R} \to \mathbb{R}$ are Lipschitz functions with Lipschitz constants γ_{ijp}, μ_{ijp} , and σ_{ijp} , respectively;

• (A3)
$$\lim_{t\to\infty} (t - \tau_{ijp}(t)) = \infty;$$

Model Phase space Hypotheses Asymptotic system

For (7) we assume the following hypotheses: For each i, j = 1, ..., n, p = 1, ..., P(A1) $\exists \beta_i : [0, \infty) \rightarrow (0, \infty), \forall u, v \in \mathbb{R} \ u \neq v:$ $(b_i(t, u) - b_i(t, v))/(u - v) \ge \beta_i(t), \quad \forall t \ge 0;$

[In particular, for $b_i(t, u) = \beta_i(t)u$.]

► (A2) $h_{ijp}, f_{ijp}, g_{ijp} : \mathbb{R} \to \mathbb{R}$ are Lipschitz functions with Lipschitz constants γ_{ijp}, μ_{ijp} , and σ_{ijp} , respectively;

• (A3)
$$\lim_{t\to\infty} (t - \tau_{ijp}(t)) = \infty;$$

• (A4) There is $(d_1, \ldots, d_n) > 0$ such that

$$\limsup_{t\to+\infty}\left(-\beta_i(t)+\sum_{j=1}^n\sum_{p=1}^P\frac{d_j}{d_i}(\gamma_{ijp}|a_{ijp}(t)|+\mu_{ijp}\sigma_{ijp}|c_{ijp}(t)|)\right)<0.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Model Phase space Hypotheses Asymptotic system

The scalar ODE's

$$x'(t) = -x(t) + rac{2+t}{(t+1)^2} x^2(t), \quad t \ge 0,$$
 (9)

and

$$x'(t) = -x(t) + 0x^{2}(t), \quad t \ge 0.$$
 (10)

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Model Phase space Hypotheses Asymptotic system

$$x'(t) = -x(t) + rac{2+t}{(t+1)^2} x^2(t), \quad t \ge 0,$$
 (9)

and

$$x'(t) = -x(t) + 0x^{2}(t), \quad t \ge 0.$$
 (10)

We say that the equation (10) is an *asymptotic equation* of (9) because

$$\lim_{t \to \infty} ((-1) - (-1)) = 0 \text{ and } \lim_{t \to \infty} \left(\frac{2+t}{(t+1)^2} - 0 \right) = 0.$$

・ロト ・回ト ・ヨト ・ヨト

Model Phase space Hypotheses Asymptotic system

$$x'(t) = -x(t) + \frac{2+t}{(t+1)^2} x^2(t), \quad t \ge 0,$$
 (9)

and

$$x'(t) = -x(t) + 0x^{2}(t), \quad t \ge 0.$$
 (10)

We say that the equation (10) is an *asymptotic equation* of (9) because

$$\lim_{t\to\infty}((-1)-(-1))=0 \text{ and } \lim_{t\to\infty}\left(\frac{2+t}{(t+1)^2}-0\right)=0.$$

- Note: The dynamic behavior of systems (9), (10) are totally different because:
 - ODE (9) has an unbounded solution, x(t) = t + 1;
 - ▶ the zero solution of (10) is globally exponentially stable.

Model Phase space Hypotheses Asymptotic system

The system

$$egin{aligned} & x_i'(t) = - \hat{b}_i(t, x_i(t)) + \sum_{j=1}^n \sum_{p=1}^P \left(\hat{a}_{ijp}(t) h_{ijp}(x_j(t - \hat{ au}_{ijp}(t))) + \ & + \hat{c}_{ijp}(t) f_{ijp}\left(\int_{-\infty}^0 g_{ijp}(x_j(t + s)) d\eta_{ijp}(s)
ight)
ight) + \hat{l}_i(t), \end{aligned}$$

is an asymptotic system of (7) if $\hat{b}_i(t, u)$, $\hat{a}_{ijp}(t)$, $\hat{c}_{ijp}(t)$, $\hat{\tau}_{ijp}(t)$, and $\hat{l}_i(t)$ are continuous such that \hat{b}_i satisfies (A1) for some non-negative function $\hat{\beta}_i$ and

$$\begin{split} \lim_{t \to \infty} (\beta_i(t) - \hat{\beta}_i(t)) &= \lim_{t \to \infty} (b_i(t, u(t)) - \hat{b}_i(t, u(t))) = \lim_{t \to \infty} (a_{ijp}(t) - \hat{a}_{ijp}(t)) \\ &= \lim_{t \to \infty} (c_{ijp}(t) - \hat{c}_{ijp}(t)) = \lim_{t \to \infty} (\tau_{ijp}(t) - \hat{\tau}_{ijp}(t)) \\ &= \lim_{t \to \infty} (l_i(t) - \hat{l}_i(t)) = 0, \end{split}$$

for every bounded continuous function $u : \mathbb{R} \to \mathbb{R}$.

イロト イポト イヨト イヨト

 Neural network models
 Model

 Model
 Phase space

 Hypotheses
 Asymptotic systems

Idea:

To understand the behavior of the Hopfield neural model (7) by studying one of its asymptotic systems (11).

・ロト ・回ト ・ヨト ・ヨト

Model Phase space Hypotheses Asymptotic system

▶ Lemma: Assume (A1) and (A2). Then, each solution $x(t) = x(t, t_0, \varphi)$ of (7) is defined on \mathbb{R} . (where $t_0 \ge 0$ and $\varphi \in BC$)

Proof: (omitted)

- Generalized Gronwall's inequality
- Continuation Theorem (Hale & Kate 1978)

<ロ> (日) (日) (日) (日) (日)

▶ Lemma: Assume (A1) and (A2). Then, each solution $x(t) = x(t, t_0, \varphi)$ of (7) is defined on \mathbb{R} . (where $t_0 \ge 0$ and $\varphi \in BC$)

Proof: (omitted)

- Generalized Gronwall's inequality
- Continuation Theorem (Hale & Kate 1978)

► The solutions of (11) with bounded initial conditions are also defined on R.

イロト イヨト イヨト イヨト

Bounded coefficient functions Examples Unbounded coefficient functions

Global convergence of asymptotic Hopfield systems

 Bounded coefficient functions (important to do applications, today)

Unbounded coefficient functions

・ 同 ト ・ ヨ ト ・ ヨ ト

Bounded coefficient functions Examples Unbounded coefficient functions

Global convergence of asymptotic Hopfield systems

 Remark: Hypothesis set (A1)-(A4) does not imply the boundedness of solutions of (7).

・ロン ・回と ・ヨン・

Bounded coefficient functions Examples Unbounded coefficient functions

Global convergence of asymptotic Hopfield systems

 Remark: Hypothesis set (A1)-(A4) does not imply the boundedness of solutions of (7).

Example: The model

$$x'(t) = -tx(t) + \frac{t}{4+2\sin t}\sin x(t-1) + \frac{t}{2+\sin t} + t^2 + \frac{t}{2} + 1$$

has an unbounded solution x(t) = t + 1 and the hypotheses (A1)-(A4) hold.

Bounded coefficient functions Examples Unbounded coefficient functions

Global convergence of asymptotic Hopfield systems

- Remark: Hypothesis set (A1)-(A4) does not imply the boundedness of solutions of (7).
- Example: The model

$$x'(t) = -tx(t) + rac{t}{4+2\sin t}\sin x(t-1) + rac{t}{2+\sin t} + t^2 + rac{t}{2} + 1$$

has an unbounded solution x(t) = t + 1 and the hypotheses (A1)-(A4) hold.

• We note that the coefficient functions are unbounded.

(ロ) (同) (E) (E) (E)

(B) The coefficient functions b_i(·, 0), a_{ijp}, c_{ijp}, l_i : [0,∞) → ℝ are bounded.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

► (B) The coefficient functions b_i(·, 0), a_{ijp}, c_{ijp}, I_i : [0, ∞) → ℝ are bounded.

Theorem: Assume (A1), (A2), (A4), and (B).
 Then all solutions of (7) with initial bounded condition are bounded.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

► (B) The coefficient functions b_i(·, 0), a_{ijp}, c_{ijp}, I_i : [0, ∞) → ℝ are bounded.

Theorem: Assume (A1), (A2), (A4), and (B).
 Then all solutions of (7) with initial bounded condition are bounded.

Proof(idea): By (B), there is M > 0 such that

$$M \geq |b_i(t,0)| + |I_i(t)| + \sum_{j=1}^n \sum_{
ho = 1}^P igg(|a_{ij
ho}(t)| \, |h_{ij
ho}(0)| + |c_{ij
ho}(t)| \, |f_{ij
ho}(g_{ij
ho}(0))| igg).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

► (B) The coefficient functions b_i(·, 0), a_{ijp}, c_{ijp}, I_i : [0, ∞) → ℝ are bounded.

- Theorem: Assume (A1), (A2), (A4), and (B).
 Then all solutions of (7) with initial bounded condition are bounded.
- Proof(idea): By (B), there is M > 0 such that

$$M \geq |b_i(t,0)| + |I_i(t)| + \sum_{j=1}^n \sum_{
ho = 1}^P igg(|a_{ij
ho}(t)| \, |h_{ij
ho}(0)| + |c_{ij
ho}(t)| \, |f_{ij
ho}(g_{ij
ho}(0))| igg).$$

▶ By contradiction, assume that $x(t, t_0, \varphi) = x(t) = (x_1(t), \dots, x_n(t))$ is <u>unbounded</u> and define $z(t) = (d_1^{-1}|x_1(t)|, \dots, d_n^{-1}|x_n(t)|)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

- ► (B) The coefficient functions b_i(·, 0), a_{ijp}, c_{ijp}, I_i : [0, ∞) → ℝ are bounded.
- Theorem: Assume (A1), (A2), (A4), and (B). Then all solutions of (7) with initial bounded condition are bounded.
- Proof(idea): By (B), there is M > 0 such that

$$M \geq |b_i(t,0)| + |l_i(t)| + \sum_{j=1}^n \sum_{
ho=1}^P igg(|a_{ij
ho}(t)| \, |h_{ij
ho}(0)| + |c_{ij
ho}(t)| \, |f_{ij
ho}(g_{ij
ho}(0))| igg).$$

- By contradiction, assume that $x(t, t_0, \varphi) = x(t) = (x_1(t), \dots, x_n(t))$ is <u>unbounded</u> and define $z(t) = (d_1^{-1}|x_1(t)|, \dots, d_n^{-1}|x_n(t)|)$.
- Thus, for some *i*, there is a positive sequence (t_k)_{k∈ℕ} such that some t_k ∧ ∞, 0 < z_i(t_k) ∧ ∞,

 $z_i(t_k) = \|z_{t_k}\| \ge \|z_t\|, \quad \text{and} \quad z_i'(t_k) \ge 0, \quad \forall k \in \mathbb{N}, \ \forall t \le t_k.$

Bounded coefficient functions Examples Unbounded coefficient functions

For each $k \in \mathbb{N}$, we have

$$z_i'(t_k) = \operatorname{sign}(x_i(t_k))d_i^{-1}x_i'(t_k)$$

$$= -d_i^{-1}\operatorname{sign}(x_i(t_k))\left(b_i(t_k,x_i(t_k))-b_i(t_k,0)\right)$$

$$+\operatorname{sign}(x_i(t_k))d_i^{-1}\left(-b_i(t_k,0)+l_i(t_k)\right)$$

$$+ \text{sign}(x_i(t_k)) d_i^{-1} \sum_{j=1}^n \sum_{\rho=1}^P \left[a_{ij\rho}(t_k) (h_{ij\rho}(x_j(t_k - \tau_{ij\rho}(t_k))) - h_{ij\rho}(0)) \right]$$

$$+c_{ijp}(t_k)\left(f_{ijp}\left(\int_{-\infty}^{0}g_{ijp}(x_j(t_k+s))d\eta_{ijp}(s)\right)-f_{ijp}(g_{ijp}(0))\right)\right]$$

$$+ {
m sign}(x_i(t_k)) d_i^{-1} \sum_{j=1}^n \sum_{
ho=1}^P igg(a_{ij
ho}(t_k) h_{ij
ho}(0) + c_{ij
ho}(t_k) f_{ij
ho}(g_{ij
ho}(0)) igg).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bounded coefficient functions Examples Unbounded coefficient functions

From (A1) and (A2) we obtain

$$z_i'(t_k) \quad \leq \quad -eta_i(t_k)z_i(t_k) + \sum_{j=1}^n \sum_{
ho=1}^P rac{d_j}{d_i} igg(|a_{ij
ho}(t_k)|\gamma_{ij
ho}z_j(t_k- au_{ij
ho}(t_k))$$

$$+|c_{ij\rho}(t_k)|\mu_{ij\rho}\sigma_{ij\rho}||z_{j,t_k}||\bigg)+d_i^{-1}M$$

$$\leq -eta_i(t_k) z_i(t_k) + \sum_{j=1}^n \sum_{
ho=1}^P rac{d_j}{d_i} \Big(|a_{ij
ho}(t_k)| \gamma_{ij
ho} + |c_{ij
ho}(t_k)| \mu_{ij
ho} \sigma_{ij
ho} \Big) \|z_{t_k}\| + d_i^{-1} M_i$$

$$\leq \quad \left(-\beta_i(t_k) + \sum_{j=1}^n \sum_{\rho=1}^P \frac{d_j}{d_i} \left(|a_{ij\rho}(t_k)|\gamma_{ij\rho} + |c_{ij\rho}(t_k)|\mu_{ij\rho}\sigma_{ij\rho}\right)\right) \|z_{t_k}\| + d_i^{-1}M$$

イロン イヨン イヨン イヨン

Bounded coefficient functions Examples Unbounded coefficient functions

▶ From (A1) and (A2) we obtain

$$z_i'(t_k) \quad \leq \quad -eta_i(t_k)z_i(t_k) + \sum_{j=1}^n \sum_{
ho=1}^P rac{d_j}{d_i} \Big(|a_{ij
ho}(t_k)|\gamma_{ij
ho}z_j(t_k- au_{ij
ho}(t_k))$$

$$+|c_{ij\rho}(t_k)|\mu_{ij\rho}\sigma_{ij\rho}||z_{j,t_k}||\bigg)+d_i^{-1}M$$

$$\leq -eta_i(t_k) z_i(t_k) + \sum_{j=1}^n \sum_{
ho = 1}^P rac{d_j}{d_i} \Big(|a_{ij
ho}(t_k)| \gamma_{ij
ho} + |c_{ij
ho}(t_k)| \mu_{ij
ho} \sigma_{ij
ho} \Big) \|z_{t_k}\| + d_i^{-1} M_i$$

$$\leq \quad \left(-\beta_i(t_k)+\sum_{j=1}^n\sum_{\rho=1}^P\frac{d_j}{d_i}\bigg(|a_{ij\rho}(t_k)|\gamma_{ij\rho}+|c_{ij\rho}(t_k)|\mu_{ij\rho}\sigma_{ij\rho}\bigg)\bigg)\,\|z_{t_k}\|+d_i^{-1}M$$

• Thus, from (A4) we have, for some l < 0,

$$z_i'(t_k) \leq \mathit{l} z_i(t_k) + \mathit{d}_i^{-1} \mathcal{M}
ightarrow -\infty, ext{ as } k
ightarrow \infty,$$

which is a contradiction.

(ロ) (同) (E) (E) (E)

• Theorem 1: Assume (A1)-(A4) and (B). Then

$$\lim_{t\to\infty}|x_i(t)-\hat{x}_i(t)|=0,\quad\forall i=1,\ldots,n,$$

for all $x(t) = (x_1(t), \dots, x_n(t))$ solutions of (7) and $\hat{x}(t) = (\hat{x}_1(t), \dots, \hat{x}_n(t))$ solution of (11).

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

• Theorem 1: Assume (A1)-(A4) and (B). Then

$$\lim_{t\to\infty}|x_i(t)-\hat{x}_i(t)|=0,\quad\forall i=1,\ldots,n,$$

for all $x(t) = (x_1(t), \dots, x_n(t))$ solutions of (7) and $\hat{x}(t) = (\hat{x}_1(t), \dots, \hat{x}_n(t))$ solution of (11).

- Proof(idea):
 - Let x(t) and x̂(t) solutions of (7) and (11) respectively, with bounded initial conditions. Define

$$y(t) = (d_1^{-1}|x_1(t) - \hat{x}_1(t)|, \dots, d_n^{-1}|x_n(t) - \hat{x}_n(t)|).$$

▶ The function y(t) is bounded and define $\bar{y} := \sup_{t \in \mathbb{R}} |y(t)|$,

$$u_i := \limsup_{t \to \infty} y_i(t), \forall i, \text{ and } u := \max_i \{u_i\} \in [0, \infty)$$

• It remains to be proven that u = 0.

Bounded coefficient functions Examples Unbounded coefficient functions

- Let $i \in \{1, \ldots, n\}$ be such that $u_i = u$.
- Then, there is a positive sequence $t_k \nearrow \infty$ such that

$$y_i(t_k) \to u$$
, and $y_i'(t_k) \to 0$, as $k \to \infty$. (12)

• For the sake of contradiction, assume that u > 0.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Bounded coefficient functions Examples Unbounded coefficient functions

- Let $i \in \{1, \ldots, n\}$ be such that $u_i = u$.
- Then, there is a positive sequence $t_k \nearrow \infty$ such that

$$y_i(t_k) \to u$$
, and $y_i'(t_k) \to 0$, as $k \to \infty$. (12)

- For the sake of contradiction, assume that u > 0.
- Fix $0 < \delta < u$ and let $T = T(\delta) > 0$ such that $|y(t)| < u_{\delta} := u + \delta$ for $t \ge T$ and

$$\int_{-\infty}^{- au} d\eta_{ijp}(s) < rac{\delta}{ar{y}}, \hspace{0.5cm} orall j, p.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Bounded coefficient functions Examples Unbounded coefficient functions

- Let $i \in \{1, \ldots, n\}$ be such that $u_i = u$.
- ▶ Then, there is a positive sequence $t_k
 earrow \infty$ such that

$$y_i(t_k) \rightarrow u$$
, and $y_i'(t_k) \rightarrow 0$, as $k \rightarrow \infty$. (12)

- For the sake of contradiction, assume that u > 0.
- Fix $0 < \delta < u$ and let $T = T(\delta) > 0$ such that $|y(t)| < u_{\delta} := u + \delta$ for $t \ge T$ and

$$\int_{-\infty}^{-T} d\eta_{ijp}(s) < rac{\delta}{ar{y}}, \quad orall j, p.$$

• As $t - \tau_{ijp}(t) \to \infty$, $\tau_{ijp}(t) - \hat{\tau}_{ijp}(t) \to 0$ as $t \to \infty$, and $y_i(t_k) \to u$ as $k \to \infty$, then there is $k_0 \in \mathbb{N}$ such that, for all $k \ge k_0$,

$$t_k - \hat{\tau}_{ijp}(t_k) > T, t_k > 2T, \text{ and } y_i(t_k) > u_{-\delta} := u - \delta.$$

Bounded coefficient functions Examples Unbounded coefficient functions

For
$$k > k_0$$
, from the hypotheses (A1) and (A2) we have
 $y'_i(t_k) = \operatorname{sign}(x_i(t_k) - \hat{x}_i(t_k))d_i^{-1}(x'_i(t_k) - \hat{x}'_i(t_k)) = \cdots$
 $\leq -\hat{\beta}_i(t_k)y_i(t_k) + \sum_{j=1}^n \sum_{p=1}^p \frac{d_j}{d_i} \left[|\hat{a}_{ijp}(t_k)|\gamma_{ijp}y_j(t_k - \hat{\tau}_{ijp}(t_k)) + |\hat{c}_{ijp}(t_k)|\mu_{ijp}\sigma_{ijp} \int_{-\infty}^0 y_j(t_k + s)d\eta_{ijp}(s) \right] + \varepsilon_i(t_k),$

where

$$egin{aligned} arepsilon_i(t) &:= & d_i^{-1} |b_i(t,x_i(t)) - \hat{b}_i(t,x_i(t))| \ &+ \sum_{j=1}^n \sum_{p=1}^P d_i^{-1} \Big[|a_{ijp}(t) - \hat{a}_{ijp}(t)| \, |h_{ijp}(x_j(t- au_{ijp}(t)))| \, + \ &+ |\hat{a}_{ijp}(t)| \gamma_{ijp}|x_j(t- au_{ijp}(t)) - x_j(t-\hat{ au}_{ijp}(t))| \, + \ &+ |c_{ijp}(t) - \hat{c}_{ijp}(t)| \, \Big| f_{ijp} \left(\int_{-\infty}^0 g_{ijp}(x_j(t+ extsf{s})) d\eta_{ijp}(extsf{s})
ight) \Big| \Big] \, + \, d_i^{-1} |I_i(t) - \hat{I}_i(t)| \end{aligned}$$

As (11) is an asymptotic system of (7), then

 $\lim_{t\to\infty}\varepsilon_i(t)=0.$

Bounded coefficient functions Examples Unbounded coefficient functions

Now, we have

$$\begin{split} y_i'(t_k) &\leq -\hat{\beta}_i(t_k)y_i(t_k) + \sum_{j=1}^n \sum_{p=1}^P \frac{d_j}{d_i} \bigg[|\hat{a}_{ijp}(t_k)| \gamma_{ijp}y_j(t_k - \hat{\tau}_{ijp}(t_k)) \\ &+ |\hat{c}_{ijp}(t_k)| \mu_{ijp}\sigma_{ijp} \int_{-\infty}^0 y_j(t_k + s) d\eta_{ijp}(s) \bigg] + \varepsilon_i(t_k) \\ &\leq \varepsilon_i(t_k) - \hat{\beta}_i(t_k)u_{-\delta} + \sum_{j=1}^n \sum_{p=1}^P \frac{d_j}{d_i} \bigg[|\hat{a}_{ijp}(t_k)| \gamma_{ijp}u_{\delta} \\ &+ |\hat{c}_{ijp}(t_k)| \mu_{ijp}\sigma_{ijp} \bigg(\int_{-\infty}^{-T} y_j(t_k + s) d\eta_{ijp}(s) + \int_{-T}^0 y_j(t_k + s) d\eta_{ijp}(s) \bigg) \bigg] \\ &\leq \sum_{j=1}^n \sum_{p=1}^P \frac{d_j}{d_i} \bigg[|\hat{a}_{ijp}(t_k)| \gamma_{ijp}u_{\delta} + |\hat{c}_{ijp}(t_k)| \mu_{ijp}\sigma_{ijp} \bigg(\delta + u_{\delta} \int_{-T}^0 d\eta_{ijp}(s) \bigg) \bigg] \\ &- \hat{\beta}_i(t_k)u_{-\delta} + \varepsilon_i(t_k) \\ &\leq -\hat{\beta}_i(t_k)u_{-\delta} + \sum_{j=1}^n \sum_{p=1}^P \frac{d_j}{d_i} \bigg(|\hat{a}_{ijp}(t_k)| \gamma_{ijp} + |\hat{c}_{ijp}(t_k)| \mu_{ijp}\sigma_{ijp} \bigg) u_{2\delta} + \varepsilon_i(t_k). \end{split}$$

For $k > k_0$, we have

$$y_i'(t_k) \leq -\hat{eta}_i(t_k)u_{-\delta} + \sum_{j=1}^n \sum_{
ho=1}^P rac{d_j}{d_i} \Big(|\hat{m{a}}_{ij
ho}(t_k)| \gamma_{ij
ho} + |\hat{m{c}}_{ij
ho}(t_k)| \mu_{ij
ho}\sigma_{ij
ho} \Big) u_{2\delta} + arepsilon_i(t_k)$$

Letting $k \to \infty$ and $\delta \to 0$, we have $y'_i(t_k) \to 0$, thus (A4) implies

$$0 \leq \left(\limsup_{k \to +\infty} \left[-\hat{\beta}_i(t_k) + \sum_{j=1}^n \sum_{\rho=1}^P \frac{d_j}{d_i} \left(|\hat{a}_{ij\rho}(t_k)| \gamma_{ij\rho} + |\hat{c}_{ij\rho}(t_k)| \mu_{ij\rho} \sigma_{ij\rho} \right) \right] \right) u < 0,$$

which is a contradiction. Consequently u = 0 and the proof is concluded.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Bounded coefficient functions Examples Unbounded coefficient functions

Example 1:

Xiao & Zhang (2007), Zhou et al.(2008), Yuan et al.(2009)

$$x'_i(t) = -eta_i(t)x_i(t) + \sum_{j=1}^n a_{ij1}(t)h_j(x_j(t)) + \sum_{j=1}^n a_{ij2}(t)h_j(x_j(t- au_{ij}(t))) + I_i(t)$$
 (3)

$$x_{i}'(t) = -\hat{\beta}_{i}(t)x_{i}(t) + \sum_{j=1}^{n} \hat{a}_{ij1}(t)h_{j}(x_{j}(t)) + \sum_{j=1}^{n} \hat{a}_{ij2}(t)h_{j}(x_{j}(t-\tau_{ij}(t))) + \hat{l}_{i}(t)$$
(13)

with
$$\lim_{t\to\infty}(\beta_i(t)-\hat{\beta}_i(t))=\lim_{t\to\infty}(a_{ijp}(t)-\hat{a}_{ijp}(t))=\lim_{t\to\infty}(I_i(t)-\hat{I}_i(t))=0.$$

・ロン ・回と ・ヨン ・ヨン

æ

Bounded coefficient functions Examples Unbounded coefficient functions

Example 1:

Xiao & Zhang (2007), Zhou et al.(2008), Yuan et al.(2009)

$$x'_{i}(t) = -\beta_{i}(t)x_{i}(t) + \sum_{j=1}^{n} a_{ij1}(t)h_{j}(x_{j}(t)) + \sum_{j=1}^{n} a_{ij2}(t)h_{j}(x_{j}(t-\tau_{ij}(t))) + I_{i}(t) \quad (3)$$

$$x'_i(t) = -\hat{eta}_i(t)x_i(t) + \sum_{j=1}^n \hat{a}_{ij1}(t)h_j(x_j(t)) + \sum_{j=1}^n \hat{a}_{ij2}(t)h_j(x_j(t- au_{ij}(t))) + \hat{l}_i(t)$$
 (13)

with $\lim_{t\to\infty}(\beta_i(t)-\hat{\beta}_i(t))=\lim_{t\to\infty}(a_{ijp}(t)-\hat{a}_{ijp}(t))=\lim_{t\to\infty}(I_i(t)-\hat{I}_i(t))=0.$

► **Corollary 1:** Assume (A2), (A3), (B), and

$$d = (d_1, \ldots, d_n) > 0 \text{ such that}$$

$$\lim_{t \to +\infty} \sup_{i \to +\infty} \left(-\beta_i(t) + \sum_{j=1}^n \frac{d_j}{d_i} \gamma_j(|a_{ij1}(t)| + a_{ij2}(t)|) \right) < 0 \quad \forall i = 1, \ldots, n.$$
(14)

Then

$$\lim_{t \to \infty} |x_i(t) - \hat{x}_i(t)| = 0, \quad \forall i = 1, \dots, n.$$

Bounded coefficient functions Examples Unbounded coefficient functions

To obtain the global convergence of the models:

 In Xiao & Zhang (2007) assume that (3) has a periodic asymptotic system, i.e. model (13) is periodic, and for some η > 0,

$$-eta_i(t)+\sum_{j=1}^nrac{d_j}{d_i}\gamma_j(|a_{ij1}(t)|+|a_{ij2}(t)|)<-\eta, \quad \forall i=1,\ldots,n;$$

・ロト ・回ト ・ヨト ・ヨト

To obtain the global convergence of the models:

 In Xiao & Zhang (2007) assume that (3) has a periodic asymptotic system, i.e. model (13) is periodic, and for some η > 0,

$$-eta_i(t)+\sum_{j=1}^nrac{d_j}{d_i}\gamma_j(|a_{ij1}(t)|+|a_{ij2}(t)|)<-\eta, \quad orall i=1,\ldots,n;$$

In Zhou et al.(2008) assume the same hypotheses as in Xiao & Zhang (2007), but with b_i(t, x) = β_i(t)g_i(x), where g_i satisfies (A1), instead of b_i(t, x) = β_i(t)x;

イロト イポト イヨト イヨト

To obtain the global convergence of the models:

 In Xiao & Zhang (2007) assume that (3) has a periodic asymptotic system, i.e. model (13) is periodic, and for some η > 0,

$$-eta_i(t)+\sum_{j=1}^nrac{d_j}{d_i}\gamma_j(|a_{ij1}(t)|+|a_{ij2}(t)|)<-\eta, \quad \forall i=1,\ldots,n;$$

In Zhou et al.(2008) assume the same hypotheses as in Xiao & Zhang (2007), but with b_i(t, x) = β_i(t)g_i(x), where g_i satisfies (A1), instead of b_i(t, x) = β_i(t)x;

▶ In Yuan et al.(2009), instead of (14), assume

$$\limsup_{t\to\infty}\left(\sum_{j=1}^{n}\frac{d_j\gamma_i(|a_{ji1}(t)|+a_{ji2}(t)|)}{d_i\beta_j(t)}\right)<0 \quad \forall i=1,\ldots,n$$
(15)

with $\liminf_{t\to\infty} \beta_i(t) > 0$. Conditions (15) and (14) in Corollary 1 are different.

$$\begin{cases} x_1'(t) = -(2 + e^{-t})x_1(t) + (\cos e^t)x_1(t-1) + (\sin e^t)x_2(t-2) + e^{-t} \\ x_2'(t) = -3x_2(t) + (\cos e^t)x_1(t-1) + 2(\sin e^t)x_2(t-2) + e^{-t} \end{cases}$$
(16)

It is straightforward to check that the system

$$\begin{cases} x_1'(t) = -2x_1(t) + (\cos e^t)x_1(t-1) + (\sin e^t)x_2(t-2) \\ x_2'(t) = -3x_2(t) + (\cos e^t)x_1(t-1) + 2(\sin e^t)x_2(t-2) \end{cases}$$
(17)

is an asymptotic system of (16).

- 4 回 2 - 4 回 2 - 4 回 2 - 4

$$\begin{cases} x_1'(t) = -(2 + e^{-t})x_1(t) + (\cos e^t)x_1(t-1) + (\sin e^t)x_2(t-2) + e^{-t} \\ x_2'(t) = -3x_2(t) + (\cos e^t)x_1(t-1) + 2(\sin e^t)x_2(t-2) + e^{-t} \end{cases}$$
(16)

It is straightforward to check that the system

$$\begin{cases} x_1'(t) = -2x_1(t) + (\cos e^t)x_1(t-1) + (\sin e^t)x_2(t-2) \\ x_2'(t) = -3x_2(t) + (\cos e^t)x_1(t-1) + 2(\sin e^t)x_2(t-2) \end{cases}$$
(17)

is an asymptotic system of (16).

• Model (17) has the equilibrium solution $(x_1(t), x_2(t)) \equiv (0, 0)$;

- 4 回 ト - 4 回 ト - 4 回 ト

$$\begin{cases} x_1'(t) = -(2 + e^{-t})x_1(t) + (\cos e^t)x_1(t-1) + (\sin e^t)x_2(t-2) + e^{-t} \\ x_2'(t) = -3x_2(t) + (\cos e^t)x_1(t-1) + 2(\sin e^t)x_2(t-2) + e^{-t} \end{cases}$$
(16)

It is straightforward to check that the system

$$\begin{cases} x_1'(t) = -2x_1(t) + (\cos e^t)x_1(t-1) + (\sin e^t)x_2(t-2) \\ x_2'(t) = -3x_2(t) + (\cos e^t)x_1(t-1) + 2(\sin e^t)x_2(t-2) \end{cases}$$
(17)

is an asymptotic system of (16).

- Model (17) has the equilibrium solution $(x_1(t), x_2(t)) \equiv (0, 0)$;
- From Corollary 1, all solution (x₁(t), x₂(t)) of (16) converge to (0,0) as t → ∞, but (0,0) is not an equilibrium solution of (17);

・日本 ・ モン・ ・ モン

$$\begin{cases} x_1'(t) = -(2 + e^{-t})x_1(t) + (\cos e^t)x_1(t-1) + (\sin e^t)x_2(t-2) + e^{-t} \\ x_2'(t) = -3x_2(t) + (\cos e^t)x_1(t-1) + 2(\sin e^t)x_2(t-2) + e^{-t} \end{cases}$$
(16)

It is straightforward to check that the system

$$\begin{cases} x_1'(t) = -2x_1(t) + (\cos e^t)x_1(t-1) + (\sin e^t)x_2(t-2) \\ x_2'(t) = -3x_2(t) + (\cos e^t)x_1(t-1) + 2(\sin e^t)x_2(t-2) \end{cases}$$
(17)

is an asymptotic system of (16).

- Model (17) has the equilibrium solution $(x_1(t), x_2(t)) \equiv (0, 0)$;
- From Corollary 1, all solution (x₁(t), x₂(t)) of (16) converge to (0,0) as t → ∞, but (0,0) is not an equilibrium solution of (17);
- ▶ Condition (14) holds, but condition (15) does not hold.

Bounded coefficient functions Examples Unbounded coefficient functions

Figure: Solution $(x_1(t), x_2(t))$ of system (16) with initial condition $\varphi(s) = (\sin s, 2), s < 0.$

José J. Oliveira

Asymptotic Stability of Hopfield Neural Network Models

æ

Bounded coefficient functions Examples Unbounded coefficient functions

$$\begin{aligned} x_{i}'(t) &= -\beta_{i}(t)x_{i}(t) + \sum_{j=1}^{n} a_{ij}(t)h_{j}(x_{j}(t)) \\ &+ \sum_{j=1}^{n} c_{ij}(t)f_{j}\left(\sigma_{j}\int_{-\infty}^{0} G_{ij}(-s)x_{j}(t+s)ds\right) + I_{i}(t) \end{aligned}$$
(5)

$$\begin{aligned} x_{i}'(t) &= -\hat{\beta}_{i}(t)x_{i}(t) + \sum_{j=1}^{n} \hat{a}_{ij}(t)h_{j}(x_{j}(t)) \\ &+ \sum_{j=1}^{n} \hat{c}_{ij}(t)f_{j}\left(\sigma_{j}\int_{-\infty}^{0} G_{ij}(-s)x_{j}(t+s)ds\right) + \hat{l}_{i}(t) \end{aligned}$$
(18)

with $\lim_{t\to\infty} (\beta_i(t) - \hat{\beta}_i(t)) = \lim_{t\to\infty} (a_{ij}(t) - \hat{a}_{ij}(t)) = \lim_{t\to\infty} (c_{ij}(t) - \hat{c}_{ij}(t)) = \lim_{t\to\infty} (l_i(t) - \hat{l}_i(t)) = 0.$

Т

▶ Theorem [Zhao (2004)] For each i, j = 1, ..., n(i) $\hat{\beta}_i, \hat{a}_{ij}, \hat{c}_{ij}, \hat{l}_i : [0, \infty) \to \mathbb{R}$ are continuous almost periodic and

$$\underline{\hat{\beta}_i} = \inf_{t \ge 0} \hat{\beta}_i(t) > 0;$$

- (ii) h_j, f_j : ℝ → ℝ are Lipschitz functions with Lipschitz constants γ_j and μ_j respectively;
 (iii) G_{ii} : [0, +∞) → [0, +∞) is piecewise continuous and
- (iii) $G_{ij} : [0, +\infty) \rightarrow [0, +\infty)$ is piecewise continuous and integrable with $\int_0^\infty G_{ij}(u) du = 1$. (iv) $\exists d = (d_1, \dots, d_n) > 0$ such that,

$$-\underline{\hat{\beta}_i}d_i + \sum_{j=1}^n d_j \left(\gamma_j \overline{\hat{a}_{ij}} + \mu_j \sigma_j \overline{\hat{c}_{ij}}\right) < 0, \quad \forall i \in \{1, \dots, n\},$$
(19)

where
$$\overline{\hat{a}_{ij}} = \sup_{t \ge 0} |\hat{a}_{ij}(t)|$$
 and $\overline{\hat{c}_{ij}} = \sup_{t \ge 0} |\hat{c}_{ij}(t)|$.
hen the system (18) has an almost periodic solution, $\overline{x}(t)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

With the same hypotheses Zhao(2004) obtained

$$\lim_{t\to\infty}|x_i(t)-\bar{x}_i(t)|=0,\quad\forall i=1,\ldots,n,$$

for all $x(t) = (x_1(t), \dots, x_n(t))$ solutions of (18).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▶ With the same hypotheses Zhao(2004) obtained

$$\lim_{t\to\infty}|x_i(t)-\bar{x}_i(t)|=0,\quad\forall i=1,\ldots,n,$$

for all $x(t) = (x_1(t), \dots, x_n(t))$ solutions of (18).

From **Theorem 1**,

Corollary 2: Assume (i)-(iv), and $\beta_i, a_{ij}, c_{ij}, l_i : [0, +\infty) \to \mathbb{R}$, are continuous functions such that

$$\lim_{t\to\infty} (\beta_i(t) - \hat{\beta}_i(t)) = \lim_{t\to\infty} (a_{ij}(t) - \hat{a}_{ij}(t)) = \lim_{t\to\infty} (c_{ij}(t) - \hat{c}_{ij}(t)) = \lim_{t\to\infty} (I_i(t) - \hat{I}_i(t)) = 0.$$

Then

$$\lim_{t\to\infty}|x_i(t)-\bar{x}_i(t)|=0,\quad\forall i=1,\ldots,n$$

for all $x(t) = (x_1(t), \dots, x_n(t))$ solutions of (5) and $\bar{x}(t)$ the almost periodic solution (18).

• Here, we do not assume (B), but we consider $\tau_{ijp}(t) = \hat{\tau}_{ijp}(t)$.

イロン イボン イヨン イヨン 三日

- Here, we do not assume (B), but we consider $\tau_{ijp}(t) = \hat{\tau}_{ijp}(t)$.
- Theorem: Assume (A1), (A2), and (A4). If (7) has a bounded solution, then all solutions of (7) and (11), with initial bounded conditions, are bounded.

(ロ) (同) (E) (E) (E)

- Here, we do not assume (B), but we consider $\tau_{ijp}(t) = \hat{\tau}_{ijp}(t)$.
- Theorem: Assume (A1), (A2), and (A4).
 If (7) has a bounded solution, then all solutions of (7) and (11), with initial bounded conditions, are bounded.
- Theorem 2: Assume (A1)-(A4). If (7) has a bounded solution, then

$$\lim_{t\to\infty}|x_i(t)-\hat{x}_i(t)|=0,\quad\forall i=1,\ldots,n.$$

for all $x(t) = (x_1(t), \dots, x_n(t))$ and $\hat{x}(t) = (\hat{x}_1(t), \dots, \hat{x}_n(t))$ solutions of systems (7) and (11) respectively, with bounded initial conditions.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

References

- T. Faria and J.J. Oliveira, General criteria for asymptotic and exponential stabilities of neural network models with unbounded delays, Appl. Math. Comput. 217 (2011) 9646-9658.
- J.J Oliveira, Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays, Nonlinear Science 27 (2017) 1463-1486.
- B. Xiao and H. Zhang, Convergence behavior of solutions to delay cellular neural networks with non-periodic coefficients, Electronic Journal of Differential Equations 46 (2007) 1-7.
- Z. Yuan, L. Huang, D. Hu, and B. Liu, Convergence of nonautonomous Cohen-Grossberg-type neural networks with variable delays, IEEE Trans. Neural Networks vol.19 n1 (2008) 140-147.

・ロン ・回 と ・ 回 と ・ 回 と

- Z. Yuan, L. Yuan, L. Huang, and D. Hu, Boundedness and global convergence of non-autonomous neural networks with variable delays, Nonlinear Anal. RWA 10 (2009) 2195-2206.
- H. Zhao, Existence and global attractivity of almost periodic solution for cellular neural network with distributed delays, Appl. Math. Comput. 154 (2004) 683-695.
- J. Zhou, Q. Li, and F. Zhang, Convergence behavior of delayed cellular neural networks without periodic coefficients, Applied Mathematics Letters 21 (2008) 1012-1017.
- H. Zhu and C. Feng, Existence and global uniform asymptotic stability of pseudo almost periodic solutions for Cohen-Grossberg neural networks with discrete and distributed delays, Mathematical Problems in Engineering (2014) ID968404, 10 pages.

(ロ) (同) (E) (E) (E)

Bounded coefficient functions Examples Unbounded coefficient functions

Thank you

◆□→ ◆□→ ◆注→ ◆注→ □注□