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Impulsive ordinary differential equations

I IVP of impulsive ordinary differential equations:
x ′(t) = f (t, x(t)), 0 ≤ t 6= tk
∆x(tk) = Ik(x(tk)), k = 1, 2, · · · ,
x(0) = x0 ∈ Rn,

(1)

where
I ∆x(tk) := x(t+

k )− x(t−k );
I f : [0,+∞)× Rn → Rn and Ik : Rn → Rn are cont. functions;
I (tk)k∈N ↗ +∞ as k → +∞.

I A function x : [0, d ]→ Rn is a solution of (1) if
I it is continuous on [0, d ] \ {tk : k ∈ N},
I x(t−k ) and x(t+

k ) exist with x(t−k ) = x(tk)
I satisfies (1).
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Impulsive delay differential equations

I Impulsive functional differential equations:{
x ′(t) = f (t, xt), 0 ≤ t 6= tk
∆x(tk) = Ik(xtk ), k = 1, 2, · · · (2)

where
I xt(s) = x(t + s), for s ∈ (−∞, 0];
I f : [0,+∞)× PS → Rn and Ik : PS → Rn are continuous.

With PS a convenient Phase Space of functions
φ : (−∞, 0]→ Rn.

I We consider Bounded Initial Conditions:

x0 = φ ∈ BPS, (bounded functions on PS). (3)
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*Phase Space

I [γ, β] compact interval of R, PC ([γ, β]; Rn) space of functions
φ : [γ, β]→ Rn continuous except for a finite points s,
φ(s−), φ(s+) exist, and φ(s−) = φ(s);

I R([γ, β]; Rn) = PC ([γ, β]; Rn) on the space of bounded
functions with sup norm;

I PC := PC ((−∞, β]; Rn) ={
φ : (−∞, 0]→ Rn|φ|[γ,β]

∈ R([γ, β]; Rn),∀[γ, β] ⊆ (−∞, 0]
}

;

I For α > 0,

PCα :=

{
φ ∈ PC : sup

s≤0
|φ(s)|eαs <∞

}
‖φ‖α = sup

s≤0
|φ(s)|eαs , with |x | = |(x1, . . . , xn)| = max

1≤i≤n
|xi |

I PS = PCα
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BPCα = {φ ∈ PCα : φ bounded } .

*Theorem (Existence of solutions)
If

I t → f (t, xt) measurable on (0,+∞], for x : R→ Rn bounded;

I ∃p, q : [0,+∞)→ [0,∞) continuous with q non-decreasing,
q(u)u > 0, and

∫∞ 1
q =∞ such that

|f (t, ψ)| ≤ p(t)q(‖ψ‖), t ≥ 0, ψ ∈ BPCα;

I Ik(X ) is bounded for all X ⊆ BPCα bounded.

then, the PVI (2)-(3) has a solution x(t) defined on [0,+∞).

José J. Oliveira Exponential Stability of impulsive differential equations



Impulsive delay differential equation
Global asymptotic stability

Phase Space
Impulsive neural network model with infinite delays

*Impulsive general neural network model
x ′i (t) = −ai (xi (t))[bi (xi (t)) + f (t, xt)], 0 ≤ t 6= tk ,

∆(xi (tk)) = Iik(xi (t
−
k )), i = 1, · · · , n, k = 1, 2, · · ·

(4)

(A1) ai : R→ (0,+∞), continuous and ai (u) ≥ ai > 0, ∀u;

(A2) bi : R→ R continuous such that

bi (u)− bi (v)

u − v
≥ βi > 0, ∀u 6= v ;

(A3) |fi (t, ϕ)− fi (t, φ)| ≤ li‖ϕ− φ‖α, ∀t ≥ 0, ∀ϕ, φ ∈ PCα;

(A4) βi > li , ∀i ;
(A5) |̂Iik(u)− Îik(v)| ≤ γ̂ik |u − v | with Îik(u) = u + Iik(u).
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* Proposition: Assume (A2), (A3), and (A4).
Then (4) with initial bounded condition

x0 = φ ∈ BPCα (5)

has a solution x(t) defined on [0,+∞).

* Proposition: Assume (A2), (A3), and (A4).
If t → fi (t, x) are constant, for each x ∈ Rn, then
∃1x∗ = (x∗1 , . . . , x

∗
n ) ∈ Rn equilibrium point of non-impulsive

model (4).
* Assumption: We assume that

Iik(x∗i ) = 0, i = 1, . . . , n, ∀k .
and x∗ is called the equilibrium point of (4).

* Definition: The equilibrium point x∗ ∈ Rn is said global
exponential stable if exists M, ε > 0:

|x(t, 0, φ)− x∗| ≤ Me−εt‖φ− x∗‖α, ∀t ≥ 0, φ ∈ BPCα.
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Main result
Application

I Lemma:
Assume (A2), (A3), and x∗ = (0, . . . , 0) equilibrium of (4).
Let x : (−∞, b]→ Rn, b > a, a solution of non-impulsive
equation of (4) on [a, b], with xa ∈ PCα.
If exists c > 0 and ε ∈ (0, α], with ε < min

i
{ai (βi − li )}, such

that
|x(t)| ≤ ce−ε(t−a), for t ≤ a,

than

|x(t)| ≤ ce−ε(t−a), for t ≤ b. (6)
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I Proof (idea)
By contradition, assume that (6) does not hold.
Then there are δ > 0, m ∈ {1, . . . , n}, t∗ ∈ (a, b]:

|xm(t∗)| = (c + δ)e−ε(t
∗−a) and |xi (t)| < (c + δ)e−ε(t−a),

for all t < t∗ and i = 1, . . . , n.

I Consider the function y(t) := (c + δ)e−ε(t−a), t ∈ [a, b].
Assuming xm(t∗) > 0 (analogous if xm(t∗) < 0), we have

x ′m(t∗) ≥ y ′(t∗).

I On the other hand, using hypotheses, we have

x ′m(t∗) = −am(xm(t∗))[bm(xm(t∗)) + fm(t∗, yt∗)]
≤ −am[βmxm(t∗)− lm‖xt∗‖α]

≤ −am[βmy(t∗)− lm sups≤0(c + δ)e−ε(t
∗+s−a)+αs ]

≤ −am(βm − lm)y(t∗) < −εz(t∗) = y ′(t∗)
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Theorem

I Assume hypotheses (A1)-(A5), and
(A6) for some k0 ∈ N and γ̂k := max

i
γ̂ik ,

η := sup
k≥k0

(
log(max{1, γ̂k})

tk − tk−1

)
< α < min

i
{ai (βi − li )}. (7)

If x∗ is the equilibrium point of (4), then it is globally
exponentially stable.

I Notes:
I The situation γ̂k > 1, for large k, is especially relevant.
I It is frequent in the literature:

Iik(u) = −αik(u − x∗i ), with 0 < αik < 2,

which implies

|xi (t
+
k )− x∗i | < |xi (tk)− x∗i |.
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I Proof (idea)
Suppose that x∗ = (0, . . . , 0) and write ηk = max{1, γ̂k}.
Let x(t) solution of (4) defined on R, with x0 ∈ PCα.

I Consequently, we have

|x(t)| ≤ ‖x0‖αe−αt , for t ∈ (−∞, 0],

and, by Lemma, we have

|x(t)| ≤ ‖x0‖αe−αt , for t ∈ (−∞, t1].

I For some i ,

|x(t+
1 )| = |xi (t

+
1 )| = |̂Ii1(xi (t1))| ≤ γ̂i1|xi (t1)| ≤ η1‖x0‖αe−αt1 .

Thus

|x(t)| ≤ η1‖x0‖αe−αt1e−α(t−t1), for t ∈ (−∞, t+
1 ],

and, again by the Lemma,

|x(t)| ≤ η1‖x0‖αe−αt , for t ∈ (−∞, t2].
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José J. Oliveira Exponential Stability of impulsive differential equations



Impulsive delay differential equation
Global asymptotic stability

Preliminary lemma
Main result
Application

I Iterating the process, we have

|x(t)| ≤ η1η2 . . . ηk−1‖x0‖αe−αt , for t ∈ (tk−1, tk ], k = 1, 2, · · · .

From (A6) we have ηk ≤ eη(tk−tk−1), for all k ≥ k0.
Thus, for t ∈ (tk−1, tk ] and k > k0,

|x(t)| ≤ η1η2 . . . ηk0−1‖x0‖αeηtk−1e−αt

≤ η1η2 . . . ηk0−1‖x0‖αe−(α−η)t ,

which implies

|x(t)− x∗| ≤ η1η2 . . . ηk0−1‖x0 − x∗‖αe−(α−η)t , t ≥ 0.
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Impulsive general Cohen-Grossberg neural network

x ′i (t) = −ai (xi (t))

[
bi (xi (t))−

n∑
j=1

P∑
p=1

(
h

(p)
ij (xj(t − τ (p)

ij (t)))

+f
(p)
ij

(∫ 0

−∞
g

(p)
ij (xj(t + s))dη

(p)
ij (s)

))]
, 0 ≥ t 6= tk ,

∆(xi (tk)) = Iik(xi (t
−
k )), i = 1, . . . n, k ∈ N, (8)

I ai : R→ (0,+∞), are continuous satisfying (A1);

I bi : R→ R are continuous satisfying (A2);

I h
(p)
ij , f

(p)
ij , g

(p)
ij : R→ R are Lipschitzian with constant ζ

(p)
ij ,

µ
(p)
ij , σ

(p)
ij ;

I τ
(p)
ij : [0,∞)→ [0,∞) are continuous with τ

(p)
ij (t) ≤ τij ≤ τ .
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I Corollary
Consider (8) under the hypotheses above.

In addiction, consider η
(p)
ij : (−∞, 0]→ R non-decreasing

bounded functions so that

η
(p)
ij (0)− η(p)

ij (−∞) = 1, and

∫ 0

−∞
e−γsdη

(p)
ij <∞,

for some γ > η.
If

M = diag

(
β1 −

η

a1
, . . . , βn −

η

an

)
− [nij ]

is a M-matrix, then there is a unique equilibrium point x∗ of
(8) which is globally exponential stable.

I nij =
P∑

p=1

(
ζ
(p)
ij eητ

(p)
ij + µ

(p)
ij σ

(p)
ij

∫ 0

−∞
e−ηsdη

(p)
ij (s)

)
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Thank you
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