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Neural Network Models

*Pioneer Models:
» Cohen-Grossberg (1983)

xi(t) = —ai(xi(t)) ( xi(t)) Zcuf,(xj ) i=1,...,n. (1)
» Hopfield (1984)

xi(t) = —bi(xi(t)) + Zc,-jg(x,(t)), i=1,...,n (2)

where _
a; amplification functions; b; controller functions;
f; activation functions; C = [cjj] conection matrix.
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*Neural Network Models with infinite time-delay:
» Cohen-Grossberg type model (2007)

(1) = () Ba() + s + 3o [ Kal-dals(e + 9)as)
» Interval cellular neural network model (2009)

0
—oo

() = ~bilu(0) + S aifts() + 3 by [ als(e+Ndnts) (@)

» Bidirectional associative memory neural network model (2008)

m

(t) = fa,-(xiu))(b,-(x,-(t)) £ e - m))) Gi=1...n,

Jj=1

yi(t) = —dj(yj(f))(cj(yj(t)) + Z mii /7 kii(—s)gji(xi(t + s))ds) J=1...,m,
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%(t) = *a (X)( ) (bj(xi(2)) + fi(xt)))

x(t)

*General Neural Network Model with infinite time-delay
xi(t) = —ai(xi(t)[bi(xi(t)) + fi(xt)], i=1,....n (6)
where, for t > 0,
xe(s) = x(t +s), for s <0,ie, xe =x__ .-
*Initial Condition

xo=¢, ¢eBC (7)

where BC := {¢ € C((—o0,0];R") : ¢ is bounded}

[0]]oo = sup [¢(s)]
s<0
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%(t) = *a (X)( ) (bj(xi(2)) + fi(xt)))

x(t)

*Phase Space “admissible fading memory space”

UG = {¢ € C((—o0,0;R") : s \qﬁ(s)\ < 00, 9(s) unif. cont.}7

s<0 g(s) g(s)
ol = sup 250 with [x] = 0.5 = max [
where:
(gl) g : (—o0,0] — [1,+00) non-increasing, continuous, g(0) = 1;
(g2) u'fg, g(;(—is-)u) = 1 uniformly on (—o0, 0];

(g3) g(s) — +o0 as s — —cx0.
Example: g(s) = e %, s € (—00,0], with a >0

BCg subspace of bounded continuous functions, BC, equipped
with the norm || - ||.
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xi(t) = —a;(x;(t)) (bi(xi(t)) + fi(xt)))

X(t) = f(t, xt)

» FDE with oo delay in UG,
x(t) = f(t,xt), t>0 (8)

Xt € UC.g7 Xt(S):X(t‘i‘S),SSO
with f = (f1,...,f,) : [0,400) x UCg — R" continuous

J.R. Haddock, W. Hornor, Funkcial Ekvac. 31 (1988) 349-361.

ra and Teresa Faria Global Stability of Neural Network Models



» FDE with oo delay in UG,

x(t) =f(t,xt), t>0 (8)

Xt € UC.g7 Xt(S) = X(t+5),5 S 0

with f = (f1,...,f,) : [0,400) x UCg — R" continuous

» Lemma A [Haddock and Hornor (1988)] If y : R — R" is
such that yp € UGy, y(t) is bounded and uniformly
continuous on [0, +00), and

ly(s)]
g(s)

— 0, as s — —o0,

than the positive orbit {y; : t > 0} is precompact in UG,.

J.R. Haddock, W. Hornor, Funkcial Ekvac. 31 (1988) 349-361.
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» Lemma B
Assume that f transforms closed bounded sets of
(—00,0] x UG, into bounded sets of R”.
If
(H) vt > 0,Vyp € BC,:

Vs € (=00,0), [p(s)] < [#(0)] = #i(0)fi(t, ) <O,

for some i € {1,..., n} such that |¢(s)| = |¢i(0)],

then the solution x(t) = x(t,0,¢), ¢ € BCq, of (8) is defined
and bounded on [0, +00) and

x(t,0,0)| < |¢lloo-
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xi(t) = —a;(x;(t)) (bi(xi(t)) + fi(xt)))

X(t) = f(t, xt)

*Proof of Lemma B (idea)
> x(t) = x(t,0,¢) solution on [—00,a), a > 0, with p € B,
k := sups<q |(s)]-
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*Proof of Lemma B (idea)
> x(t) = x(t,0,¢) solution on [—00,a), a > 0, with p € B,

k := sups<q |¢(s)]-
» Suppose that |x(t1)| > k for some t; > 0 and define

T = min {t € [0,t1] : |x(t)] = max |x(s)|}.

SE[O,t]_]
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*Proof of Lemma B (idea)
> x(t) = x(t,0,¢) solution on [—00,a), a > 0, with p € B,

k := sups<q |¢(s)]-
» Suppose that |x(t1)| > k for some t; > 0 and define

T = min {t € [0,t1] : |x(t)] = max |x(s)|}.

SE[O,t]_]

» We have |[x7(s)| = [x(T +s)| < |x(T)]|, for s <O0.
By (H) we conclude that,

X,'(T)f;'(T,XT) < O,

for some i € {1,...,n} such that |x;(T)| = |x(T)|. If
xi(T) > 0 (analogous if x;(T) < 0), then x;(T) < 0.
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*Proof of Lemma B (idea)
> x(t) = x(t,0,¢) solution on [—00,a), a > 0, with p € B,

k := sups<q |¢(s)]-
» Suppose that |x(t1)| > k for some t; > 0 and define

T = min {t € [0,t1] : |x(t)] = max |x(s)|}.

SE[O,t]_]
» We have |[x7(s)| = [x(T +s)| < |x(T)]|, for s <O0.
By (H) we conclude that,
X,'(T)f;'(T,XT) <0,
for some i € {1,...,n} such that |x;(T)| = |x(T)|. If
xi(T) > 0 (analogous if x;(T) < 0), then x;(T) < 0.
> x;(t) < |x(t)] < |x(T)|=x(T), t [0, T),

= x(T) > 0.

José J. Oliveira and Teresa Faria Global Stability of Neural Network Models



*Proof of Lemma B (idea)
> x(t) = x(t,0,¢) solution on [—00,a), a > 0, with p € B,

k := sups<q |¢(s)]-
» Suppose that |x(t1)| > k for some t; > 0 and define

T = min {t € [0,t1] : |x(t)] = max |x(s)|}.

SE[O,t]_]
» We have |[x7(s)| = [x(T +s)| < |x(T)]|, for s <O0.
By (H) we conclude that,
X,'(T)f;'(T,XT) <0,
for some i € {1,...,n} such that |x;(T)| = |x(T)|. If
xi(T) > 0 (analogous if x;(T) < 0), then x;(T) < 0.
> x;(t) < |x(t)] < |x(T)|=x(T), t [0, T),

= %(T) > 0.
» Contradition. Thus x(t) is defined and bounded on [0, +00).
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Lemma B’

Assume that f transforms closed bounded sets (—o0, 0] x UCg
into bounded sets of R".

If

(H’) Vt > 0,Vp € UCy:

vs € (~0,0) 20 < [6(0) = (O}t ) <O,

for some i € {1,..., n} such that |¢(s)| = |¢i(0)],

then the solution x(t) = x(t,0,¢), ¢ € UC,, of (8) is defined
and bounded on [0, +00) and

x(t,0,9)| < ll¢ellg-
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Lemma B’

Assume that f transforms closed bounded sets (—o0, 0] x UCg
into bounded sets of R".

If

(H’) Vt > 0,Vp € UCy:

lp(s)]
g(s)

for some i € {1,..., n} such that |¢(s)| = |¢i(0)],

Vs € (—0,0),

< [p(0)] = wi(0)fi(t,¢) <O,

then the solution x(t) = x(t,0,¢), ¢ € UC,, of (8) is defined
and bounded on [0, +00) and

x(t,0,9)| < ll¢ellg-

» Remark: (H’)=(H), and ||¢||g < [|¢|]so-
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Global asymptotic stability —ai(xi(8)) (bi (xi(£)) + Fi(x)))

Global asymptotic stability

» Consider in UCg,

xi(t) = —ai(xi(t))[bi(xi(t)) + fi(xe)] (6)
where a; : R — (0, +00), bj : R — R and f; : UCy; — R are
continuous functions such that
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Global asymptotic stability

xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

Global asymptotic stability

» Consider in UCg,

xi(t) = —ai(xi(t))[bi(xi(t)) + fi(xt)] (6)
where a; : R — (0, +00), bj : R — R and f; : UCy; — R are
continuous functions such that

» (A1) 35, > 0,Vu,v e R,u # v:

(bi(u) = bi(v))/(u—v) = Bi;
[In particular, for b;(u) = [iu.]
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Global asymptotic stability

xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

Global asymptotic stability

» Consider in UCg,

xi(t) = —ai(xi(t))[bi(xi(t)) + fi(xt)] (6)
where a; : R — (0, +00), bj : R — R and f; : UCy; — R are
continuous functions such that

» (A1) 35, > 0,Vu,v e R,u # v:
(bi(u) = bi(v))/(u—v) = Bj;
[In particular, for bj(u) = Siu.]
» (A2) f; is a Lipshitz function with Lipshitz constant /;.
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Global asymptotic stability

xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

Global asymptotic stability

» Consider in UCg,

xi(t) = —ai(xi(t))[bi(xi(t)) + fi(xt)] (6)
where a; : R — (0, +00), bj : R — R and f; : UCy; — R are
continuous functions such that

» (A1) 35, > 0,Vu,v e R,u # v:

(bi(u) = bi(v))/(u = v) = Bi;
[In particular, for bj(u) = Siu.]
» (A2) f; is a Lipshitz function with Lipshitz constant /;.
» Definition
A equilibrium x* € R" is said global asymptotic stable if it is
stable and

x(t,0,¢) = x* as t — o0, for all ¢ € BG,.
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Global asymptotic stability 3 —ai(xi(8)) (bi (xi(£)) + Fi(x)))

Theorem 1 (GAS)
Assume (A1) and (A2). If

Gi> 1, Vie{l,... n},

then there is a unique equilibrium point of (6), which is
globally asymptotically stable.
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Global asymptotic stability

—aj(xi(t)) (bj(xi(2)) + fi(xt)))

» Theorem 1 (GAS)
Assume (A1) and (A2). If

Gi> 1, Vie{l,... n},

then there is a unique equilibrium point of (6), which is
globally asymptotically stable.

» Proof (idea)
Existence and uniqueness of equilibrium point

H: R" — R”"
x = (bilx) + fi(x)iy
is homeomorphism.

Then there exists x* € R", H(x*) =0, i.e. x* is the
equilibrium.
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Global asymptotic stability

—aj(xi(t)) (bj(xi(2)) + fi(xt)))

» By translation, we may assume that x* =0, i.e.,

bi(0)+ £(0)=0, ¥i=1,....n

ira and Teresa Faria Global Stability of Neural Network Models



Global asymptotic stability

xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

» By translation, we may assume that x* =0, i.e.,
bi(0)+ f;(0) =0, Vi=1,...,n

» For ¢ € UG, such that ||¢||g = [¢(0)] = ¢i(0) >0
(analogous if ;(0) < 0),

bi(#i(0)) + file) = [bi(#i(0)) — bi(0)] + [fi(p) — fi(0)]
= (B = W)llellg > 0.

(H’) holds and from Lemma B’ we conclude

» x = 0 is uniform stable
» all solutions are defined and bounded on [0, +00)
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Global asymptotic stability

xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

» By translation, we may assume that x* =0, i.e.,
bi(0)+ f;(0) =0, Vi=1,...,n

» For ¢ € UG, such that ||¢||g = [¢(0)] = ¢i(0) >0
(analogous if ;(0) < 0),

bi(#i(0)) + file) = [bi(#i(0)) — bi(0)] + [fi(p) — fi(0)]
= (B = W)llellg > 0.

(H’) holds and from Lemma B’ we conclude

» x = 0 is uniform stable
» all solutions are defined and bounded on [0, +00)

» It remains to prove that x = 0 is global attractive.
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Global asymptotic stability

—aj(xi(t)) (bj(xi(2)) + fi(xt)))

> Let x(t) = x(t,0,¢) a solution of (6), with ¢ € BC,, and
define

—v; = liminf x;(t),  u; = limsup x;(t)
t—+o00 t—4-o00

v=max{vi}, u=max{u},
1 1

u,v € R, —v < u. We have to show that max(u, v) = 0.
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Global asymptotic stability

—aj(xi(t)) (bj(xi(2)) + fi(xt)))

> Let x(t) = x(t,0,¢) a solution of (6), with ¢ € BC,, and
define

—v; = liminf x;(t),  u; = limsup x;(t)
t—+o00 t—4-o00

v=max{vi}, u=max{u},
1 1

u,v € R, —v < u. We have to show that max(u, v) = 0.
» Suppose |v| < u. (Ju| < v is similar)
Let i € {1,...,n} such that u; = u.
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Global asymptotic stability

xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

> Let x(t) = x(t,0,¢) a solution of (6), with ¢ € BC,, and
define

—v; = liminf x;(t),  u; = limsup x;(t)
t—+o00 t—4-o00

v=max{vi},  u=max{ul},
1 1
u,v € R, —v < u. We have to show that max(u, v) = 0.
» Suppose |v| < u. (Ju| < v is similar)
Let i € {1,...,n} such that u; = u.
» By computations, we can show that exists (tx)ken such that

te /400, xi(tx) —u, and  bi(x;(tk)) + fi(x,) — 0.
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Global asymptotic stability

xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

> Let x(t) = x(t,0,¢) a solution of (6), with ¢ € BC,, and
define

—v; = liminf x;(t),  u; = limsup x;(t)
t—+o00 t—4-o00

v=max{vi}, u=max{u},
1 1
u,v € R, —v < u. We have to show that max(u, v) = 0.
» Suppose |v| < u. (Ju| < v is similar)
Let i € {1,...,n} such that u; = u.
» By computations, we can show that exists (tx)ken such that
te /' +oo,  xi(te) —u, and  bi(xi(t)) + fi(xy,) — 0.
» As x(t) is bounded, x(t) is also bounded, from Lemma A
{x¢ : t > 0} is precompact in UCg. Then
dpec UCy: Xy — ¢ on UG,

with [|¢]lg = ¢i(0) = u and bi(¢:(0)) + fi(¢) = 0.
Then u=0. O
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—aj(xi(t)) (bj(xi(2)) + fi(xt)))

Global exponential stability

Global exponential stability

» Consider in UCg, with g(s) = e~** for some o > 0,

Xi(t) = —ai(xi())[bi(xi(t)) + fi(xt)] (6)

Assume:
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—aj(xi(t)) (bj(xi(2)) + fi(xt)))

Global exponential stability

Global exponential stability

» Consider in UCg, with g(s) = e~** for some o > 0,

xi(t) = —ai(xi(t))[bi(xi(t)) + fi(xe)] (6)
Assume:
» (A0) a:=inf{a;(y):yeR,1<i<n}>0;
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xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

Global exponential stability

Global exponential stability

» Consider in UCg, with g(s) = e~** for some o > 0,

xi(t) = —aj(xi(t))[bi(xi(t)) + fi(xt)] (6)
Assume:
» (A0) a:=inf{ai(y):y e R,1<i<n}>0;
» (A1) 36, > 0,Vu,v e R,u # v:

(bi(u) = bi(v))/(u = v) = Bi;
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xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

Global exponential stability

Global exponential stability

» Consider in UCg, with g(s) = e~** for some o > 0,

xi(t) = —aj(xi(t))[bi(xi(t)) + fi(xt)] (6)
Assume:
» (A0) a:=inf{ai(y):y e R,1<i<n}>0;
» (A1) 36, > 0,Vu,v e R,u # v:
(bi(u) = bi(v))/(u—v) = B;;

» (A2) f; is a Lipshitz function with Lipshitz constant /;.
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xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

Global exponential stability

Global exponential stability

» Consider in UCg, with g(s) = e~** for some o > 0,

Xi(t) = —ai(xi())[bi(xi(t)) + fi(xt)] (6)
Assume:
» (A0) a:=inf{ai(y):y e R,1<i<n}>0;
» (A1) 36, > 0,Vu,v e R,u # v:
(bi(u) = bi(v))/(u = v) = Bi;
» (A2) f; is a Lipshitz function with Lipshitz constant /;.
» Definition

A equilibrium x* € R" is said global exponential stable if there
are ¢, M > 0 such that

1x(t,0,p) — x*| < Me™%||¢ — x*||oo, forall t >0,p € BC,.
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—aj(xi(t)) (bj(xi(2)) + fi(xt)))

Global exponential stability

» Theorem 2 (GES)
Assume (A0), (A1), and (A2). If

Bi > I, ViG{l,...,n},

then there is a unique equilibrium point of (6), which is
globally exponentially stable.
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Global exponential stability %i(t) = —ai(xi(1)) (bi(xi (1)) + fi(xt)))

» Theorem 2 (GES)
Assume (A0), (A1), and (A2). If

Bi > I, ViG{l,...,n},

then there is a unique equilibrium point of (6), which is
globally exponentially stable.
» Proof (idea)
We may assume x* =0, i.e. b;(0) + £;(0) = 0.
Bi >l =e¢—a(fi — ;) <0 for some ¢ € (0, @)
Let x(t, 0, ¢) be a solution of (6) with ¢ € BG,.
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Global exponential stability %i(t) = —ai(xi(1)) (bi(xi (1)) + fi(xt)))

Theorem 2 (GES)
Assume (A0), (A1), and (A2). If

Bi > I, ViG{l,...,n},

then there is a unique equilibrium point of (6), which is
globally exponentially stable.

Proof (idea)

We may assume x* =0, i.e. b;(0) + £;(0) = 0.

Bi >l =e¢—a(fi — ;) <0 for some ¢ € (0, @)

Let x(t, 0, ¢) be a solution of (6) with ¢ € BG,.

The change of variables

z(t) = e"'x(t)
transforms (6) into

Z(t) = Fi(t,z:), i=1,...,n,
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—aj(xi(t)) (bj(xi(2)) + fi(xt)))

where

Fi(t.9) = £61(0) — ai(e™6,(0))e"" [bi(e™*¢1(0)) + fi(e™**))|

> Let ¢ € BC, such that [¢(s)| < |¢(0)], for s € (—o0,0).
Consider i € {1,..., n} such that |¢;(0)| = |#(0)|.
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xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

Global exponential stability

where

Fi(t.9) = £61(0) — ai(e™6,(0))e"" [bi(e™*¢1(0)) + fi(e™**))|

> Let ¢ € BC, such that [¢(s)| < |¢(0)], for s € (—o0,0).
Consider i € {1, ..., n} such that |¢;(0)| = |¢(0)|.

> If ¢;(0) > 0 (¢i(0) < 0 is analogous)
From the hypotheses we conclude that

Fi(t,9) < e¢i(0) — ae** [bi(e™*¢;(0)) — bi(0)+
+fi(e==(tH)g) — £(0)]

< €¢i(0)—a [ﬁiﬁbi(o) — sup (@795 (s)]
< $i(0)e—a(B — ] < 0.

Then F = (Fq, ..., F,) satisfies (H)
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xi(8) = —ai(xi(t)) (bi(xi(1)) + fi(xt)))

Global exponential stability

where

Fi(t.9) = £61(0) — ai(e™6,(0))e"" [bi(e™*¢1(0)) + fi(e™**))|

> Let ¢ € BC, such that [¢(s)| < |¢(0)], for s € (—o0,0).
Consider i € {1, ..., n} such that |¢;(0)| = |¢(0)|.

> If ¢;(0) > 0 (¢i(0) < 0 is analogous)
From the hypotheses we conclude that

Fi(t,9) < e¢i(0) — ae** [bi(e™*¢;(0)) — bi(0)+
+fi(e==(tH)g) — £(0)]

< €¢i(0)—a [ﬁiﬁbi(o) — sup (@795 (s)]
< $i(0)e—a(B — ] < 0.

Then F = (Fq, ..., F,) satisfies (H)
» From Lemma B, z(t) is defined on [0, +00) and

[x(,0,0)] = e 2(t,0, %) | < e [0 oc-
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Cohen-Grossberg neural network model with unbounded delays

Application

Generalized Cohen-Grossberg Model

Cohen-Grossberg model with unbounded distributed delays (10)

P

0
xi(t) = —ai(x(t)) +ZZ £P) </ gy )(xj(r+s))dn§;”(s)> (1C

Jj=1 p=1 -

» a;: R — (0,4+00), are continuous functions;
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Cohen-Grossberg neural network model with unbounded delays

Application

Generalized Cohen-Grossberg Model

Cohen-Grossberg model with unbounded distributed delays (10)

P

0
xi(t) = —ai(x(t)) +ZZ £P) </ gy )(xj(r+s))dn§;”(s)> (1C

Jj=1 p=1 -

» a;: R — (0,4+00), are continuous functions;
» b; : R — R are continuous satisfying (Al);
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Cohen-Grossberg neural network model with unbounded delays
Application

Generalized Cohen-Grossberg Model

Cohen-Grossberg model with unbounded distributed delays (10)

n P

0
xi(t) = —ai(xi(t)) 0)+> Y AP </ gy )(xj(r+s))dn€f”(s)> (1C

)
Jj=1 p=1

» a;: R — (0,4+00), are continuous functions;

» b; : R — R are continuous satisfying (Al);

> f(p),gép) : R — R are Lipschitzian with constant ngp), (P),

oy’
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Generalized Cohen-Grossberg Model

Cohen-Grossberg model with unbounded distributed delays (10)

n P 0
xi(t) = —ai(xi(t)) )+ ZZ £(P) </ g )(xj(tJrs))dn,(jp)(s)) (10
Jj=1 p=1 -
» a;: R — (0,4+00), are continuous functions;

v

b; : R — R are continuous satisfying (Al);

f(p),gép) R — R are Lipschitzian with constant u(p), ,(J ).

"7,5- 2 (—00,0] — R are non-decreasing bounded normalized
functions so that

v

v

7P (0) — ) (—o00) = 1;
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Application

Generalized Cohen-Grossberg Model

Cohen-Grossberg model with unbounded distributed delays (10)

*ZXP: ;) </0 g (Xj(t+5))dn§j”’(s)>] (1€

Jj=1 p=1 -

X,‘(l’) = 73,'(X,(

» a;: R — (0,4+00), are continuous functions;
» b; : R — R are continuous satisfying (Al);

f(p),gép) R — R are Lipschitzian with constant u(p), (P),

o
> "7,5- 2 (—00,0] — R are non-decreasing bounded normalized
functions so that

7P (0) — ) (—o00) = 1;

> N = diag(B,....Bn) — [I], where Iy = S0 pPolp).

José J. Oliveira and Teresa Faria Global Stability of Neural Network Models



Cohen-Grossberg neural network model with unbounded delays
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» Theorem 3
(a)lf N is a non-singular M-matrix, then there is a unique
equilibrium point of (10), which is globally asymptotically
stable.

(b) Assume, in addition, that a; satisfy (AO) and there is
(p)

i satisfies

~ > 0 such that each n

0

Iy>0: / e_Vsdn,(-J-p) < 0.
—0o0

If N is a non-singular M-matrix, then there is a unique

equilibrium point of (10), which is globally exponentially

stable.
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Application

» Theorem 3
(a)lf N is a non-singular M-matrix, then there is a unique
equilibrium point of (10), which is globally asymptotically
stable.

(b) Assume, in addition, that a; satisfy (AO) and there is
(p)

i satisfies

~ > 0 such that each n

0
Iy>0: / e_Vsdn,(-J-p) < 0.
—0o0

If N is a non-singular M-matrix, then there is a unique
equilibrium point of (10), which is globally exponentially
stable.

> A= [a;] € R™" is a non-singular M-matrix if a; <0, i # j
and Re o(A) > 0.
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» Proof of (a) (idea)
N non-singular M-matrix = 3d = (di,...,d,) > 0: Nd >0
= 30 > 0:

Bi>di M (1 +08)d;, i=1,....n (11)
j=1
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» Proof of (a) (idea)
N non-singular M-matrix = 3d = (di,...,d,) > 0: Nd >0
= 30 > 0:

Bi>di M (1 +08)d;, i=1,....n (11)
j=1

» By a technical Lemma, we can find g : (—o0,0] — [1, +00)
satisfying (g1)-(g3) such that

0
/ g(s)dnP(s) < 1+,

and we consider UG, as the phase space of (10).
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> The change of variables
yi(t) = d;7 xi(t)
transforms (10) into
yi(t) = =ai(yi(t)) [Bilyi(1) + filye)] (12)

where

330 ([ P an@a o) 0c ug

j=1p=1

E,-(u) = dl-flb,'(d,'(u)), a; = a,-(d;(u)), ueR.
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» After some computations,

F(@)—F@) < | 7D i1+ 0)d; | lo—vllg .0 € UG,

then f; is Lipschitz with constant /; = d;! Z li(1+46)d;
j=1
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» After some computations,

F(@)—F@) < | 7D i1+ 0)d; | lo—vllg .0 € UG,
j=1

then f; is Lipschitz with constant /; = d;! Z li(1+46)d;
j=1
» Once b; satisfies (A1) with 3; = 3; and ; > I;, thus the
result follows from (11) and Theorem 1.0J
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» After some computations,

F(@)—F@) < | 7D i1+ 0)d; | lo—vllg .0 € UG,
j=1

then f; is Lipschitz with constant /; = d;! Z li(1+46)d;
j=1

» Once b; satisfies (A1) with 3; = 3; and ; > I;, thus the
result follows from (11) and Theorem 1.0J

» The global exponential stability follows in the same way,
considering UC, with g(s) = e~**, for some « € (0,7), such
that
0

/ e_asdn,(jp)(s) <1+409.

—00
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Application

Example

Cohen-Grossberg neural network with unbounded distributed delays

n 0
Xi(t) = —ai(xi(1)) | Bi(xi(t) + > af (/ kij(—s)x;(t + 5)d5> (13)

» a; € R, and a; : R — (0, +00), b; : R — R are continuous
functions and (A1) holds;
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Example

Cohen-Grossberg neural network with unbounded distributed delays

n 0
Xi(t) = —ai(xi(1)) | Bi(xi(t) + > af (/ kij(—s)x;(t + 5)d5> (13)

» a; € R, and a; : R — (0, +00), b; : R — R are continuous
functions and (A1) holds;

» f; : R — R are Lipschitz with Lipschitz constant p;;
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Example

Cohen-Grossberg neural network with unbounded distributed delays

n 0
Xi(t) = —ai(xi(1)) | Bi(xi(t) + > af (/ kij(—s)x;(t + 5)d5> (13)

» a; € R, and a; : R — (0, +00), b; : R — R are continuous
functions and (A1) holds;

» f; : R — R are Lipschitz with Lipschitz constant p;;
» The delay kernel functions k; : [0, +00) — Ry satisfy

+o0o
/ kij(t)dt =1,
0
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Cohen-Grossberg neural network model with unbounded delays

Application

Example

Cohen-Grossberg neural network with unbounded distributed delays
n 0
Xi(t) = —ai(x(1)) | bix()) + Y ayf; (/ kij(=s)x(t + 5)d5> (13)

» a; € R, and a; : R — (0, +00), b; : R — R are continuous
functions and (A1) holds;

» f; : R — R are Lipschitz with Lipschitz constant p;;
» The delay kernel functions k; : [0, +00) — Ry satisfy

+o0o
/ kij(t)dt =1,
0

> N:= diag(ﬁl, B ,ﬂn) — [/U]' where /,J = |a,-j\,uj.
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Application

» Corollary(GAS)
If N is a non-singular M-matrix, then there is a unique
equilibrium point of (13), which is globally asymptotically
stable.

[1] L. Wang, Appl. Math. Comput. 160 (2005) 93-110.
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» Corollary(GAS)
If N is a non-singular M-matrix, then there is a unique
equilibrium point of (13), which is globally asymptotically
stable.

» Proof (idea)

System (10) reduces to (13) if P =1, ﬁ.}l)(u) = ajifi(v) and

7 (s) = / ki(—C)dC,

then the result follows from Theorem 3 (a).

[1] L. Wang, Appl. Math. Comput. 160 (2005) 93-110.
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» Corollary(GAS)
If N is a non-singular M-matrix, then there is a unique
equilibrium point of (13), which is globally asymptotically
stable.

» Proof (idea)
System (10) reduces to (13) if P =1, ﬁ.}l)(u) = ajifi(v) and

7 (s) = / ki(—C)dC,

then the result follows from Theorem 3 (a).
» In [1] assumed the additional conditions:
fj is bounded; 0 < a; < aj(u) < 3j;
The kernels functions satisfy [, tk;i(t)dt < oo
N := BA — A[l;] is a non-singular M-matrix, where
A=diag(ay,...,a,), A= diag(a,...,an).

[1] L. Wang, Appl. Math. Comput. 160 (2005) 93-110.
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» Corollary(GES)
Assume (A0) and that there is 7 > 0 such that

/ kij(t)eTdt < oo.
0

If Nis a non-singular M-matrix, then there is a unique
equilibrium point of (13), which is globally exponentially
stable.

Proof Analogous to the previous corollary

[2] W. Wu, B.T. Cui, X.Y. Lou, Math. Comput. Modelling, 47 (2008) 868-873.
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» Corollary(GES)
Assume (A0) and that there is 7 > 0 such that

/ kij(t)eTdt < oo.
0

If Nis a non-singular M-matrix, then there is a unique
equilibrium point of (13), which is globally exponentially
stable.

Proof Analogous to the previous corollary

> In [2] assumed the additional conditions:
0<a; <aj(u) <3aj;
N := BA— A[l;] is a non-singular M-matrix, where
A = diag(él? s 7§n)' Z = diag(éb s 75n)'

[2] W. Wu, B.T. Cui, X.Y. Lou, Math. Comput. Modelling, 47 (2008) 868-873.
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Thank you
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