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José J. Oliveiraa and Teresa Fariab

May 18, 2011
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Neural Network Models

*Pioneer Models:
I Cohen-Grossberg (1983)

ẋi (t) = −ai (xi (t))

(
bi (xi (t))−

n∑
j=1

cij fj(xj(t))

)
, i = 1, . . . , n. (1)

I Hopfield (1984)

ẋi (t) = −bi (xi (t)) +
n∑

j=1

cij fj(xj(t)), i = 1, . . . , n. (2)

where
ai amplification functions; bi controller functions;
fj activation functions; C = [cij ] conection matrix.
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*Neural Network Models with infinite time-delay:

I Cohen-Grossberg type model (2007)

ẋi (t) = −ai (xi (t))

(
bi (xi (t)) +

n∑
j=1

aij fj(xj(t)) +
n∑

j=1

cij

∫ 0

−∞
kij(−s)gj(xj(t + s))ds

)
(3)

I Interval cellular neural network model (2009)

ẋi (t) = −bi (xi (t)) +
n∑

j=1

aij fj(xj(t)) +
n∑

j=1

bij

∫ 0

−∞
gj(xj(t + s))dηj(s) (4)

I Bidirectional associative memory neural network model (2008)
ẋi (t) = −ai (xi (t))

(
bi (xi (t)) +

m∑
j=1

fij(yj(t − τij))
)
, i = 1, . . . , n,

ẏj(t) = −dj(yj(t))

(
cj(yj(t)) +

n∑
i=1

mji

∫ 0

−∞
kji (−s)gji (xi (t + s))ds

)
, j = 1, . . . ,m,

(5)
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ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))
ẋ(t) = f (t, xt )

*General Neural Network Model with infinite time-delay

ẋi (t) = −ai (xi (t))[bi (xi (t)) + fi (xt)], i = 1, . . . , n (6)

where, for t ≥ 0,

xt(s) = x(t + s), for s ≤ 0, i.e., xt = x|(−∞,t]
.

*Initial Condition

x0 = ϕ, ϕ ∈ BC (7)

where BC := {ϕ ∈ C ((−∞, 0]; Rn) : ϕ is bounded}

||ϕ||∞ = sup
s≤0
|ϕ(s)|

José J. Oliveira and Teresa Faria Global Stability of Neural Network Models



Model
Global asymptotic stability
Global exponential stability

Application

ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))
ẋ(t) = f (t, xt )

*Phase Space “admissible fading memory space”

UCg =

{
φ ∈ C ((−∞, 0]; Rn) : sup

s≤0

|φ(s)|
g(s)

<∞, φ(s)

g(s)
unif. cont.

}
,

‖φ‖g = sup
s≤0

|φ(s)|
g(s)

with |x | = |(x1, . . . , xn)| = max
1≤i≤n

|xi |

where:
(g1) g : (−∞, 0]→ [1,+∞) non-increasing, continuous, g(0) = 1;

(g2) lim
u→0−

g(s + u)

g(s)
= 1 uniformly on (−∞, 0];

(g3) g(s)→ +∞ as s → −∞.

Example: g(s) = e−αs , s ∈ (−∞, 0], with α > 0

BCg subspace of bounded continuous functions, BC , equipped
with the norm || · ||g .
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ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))
ẋ(t) = f (t, xt )

I FDE with ∞ delay in UCg

ẋ(t) = f (t, xt), t ≥ 0 (8)

xt ∈ UCg , xt(s) = x(t + s), s ≤ 0

with f = (f1, . . . , fn) : [0,+∞)× UCg → Rn continuous

I Lemma A [Haddock and Hornor (1988)] If y : R→ Rn is
such that y0 ∈ UCg , y(t) is bounded and uniformly
continuous on [0,+∞), and

|y(s)|
g(s)

→ 0, as s → −∞,

than the positive orbit {yt : t ≥ 0} is precompact in UCg .

J.R. Haddock, W. Hornor, Funkcial Ekvac. 31 (1988) 349-361.
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ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))
ẋ(t) = f (t, xt )

I Lemma B
Assume that f transforms closed bounded sets of
(−∞, 0]× UCg into bounded sets of Rn.
If
(H) ∀t > 0, ∀ϕ ∈ BCg :

∀s ∈ (−∞, 0), |ϕ(s)| < |ϕ(0)| ⇒ ϕi (0)fi (t, ϕ) < 0,

for some i ∈ {1, . . . , n} such that |ϕ(s)| = |ϕi (0)|,

then the solution x(t) = x(t, 0, ϕ), ϕ ∈ BCg , of (8) is defined
and bounded on [0,+∞) and

|x(t, 0, ϕ)| ≤ ||ϕ||∞.
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ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))
ẋ(t) = f (t, xt )

*Proof of Lemma B (idea)
I x(t) = x(t, 0, ϕ) solution on [−∞, a), a > 0, with ϕ ∈ BCg

k := sups≤0 |ϕ(s)|.

I Suppose that |x(t1)| > k for some t1 > 0 and define

T = min

{
t ∈ [0, t1] : |x(t)| = max

s∈[0,t1]
|x(s)|

}
.

I We have |xT (s)| = |x(T + s)| < |x(T )|, for s < 0.
By (H) we conclude that,

xi (T )fi (T , xT ) < 0,

for some i ∈ {1, . . . , n} such that |xi (T )| = |x(T )|. If
xi (T ) > 0 (analogous if xi (T ) < 0), then ẋi (T ) < 0.

I xi (t) ≤ |x(t)| < |x(T )| = xi (T ), t ∈ [0,T ),

⇒ ẋi (T ) ≥ 0.

I Contradition. Thus x(t) is defined and bounded on [0,+∞).
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I xi (t) ≤ |x(t)| < |x(T )| = xi (T ), t ∈ [0,T ),
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ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))
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I Lemma B’
Assume that f transforms closed bounded sets (−∞, 0]×UCg

into bounded sets of Rn.
If
(H’) ∀t > 0,∀ϕ ∈ UCg :

∀s ∈ (−∞, 0),
|ϕ(s)|
g(s)

< |ϕ(0)| ⇒ ϕi (0)fi (t, ϕ) < 0,

for some i ∈ {1, . . . , n} such that |ϕ(s)| = |ϕi (0)|,

then the solution x(t) = x(t, 0, ϕ), ϕ ∈ UCg , of (8) is defined
and bounded on [0,+∞) and

|x(t, 0, ϕ)| ≤ ||ϕ||g .

I Remark: (H’)⇒(H), and ||ϕ||g ≤ ||ϕ||∞.
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ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))

Global asymptotic stability

I Consider in UCg ,

ẋi (t) = −ai (xi (t))[bi (xi (t)) + fi (xt)] (6)

where ai : R→ (0,+∞), bi : R→ R and fi : UCg → R are
continuous functions such that

I (A1) ∃βi > 0,∀u, v ∈ R, u 6= v :

(bi (u)− bi (v))/(u − v) ≥ βi ;

[In particular, for bi (u) = βiu.]
I (A2) fi is a Lipshitz function with Lipshitz constant li .
I Definition

A equilibrium x∗ ∈ Rn is said global asymptotic stable if it is
stable and

x(t, 0, ϕ)→ x∗ as t →∞, for all ϕ ∈ BCg .
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ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))

I Theorem 1 (GAS)
Assume (A1) and (A2). If

βi > li , ∀i ∈ {1, . . . , n},

then there is a unique equilibrium point of (6), which is
globally asymptotically stable.

I Proof (idea)
Existence and uniqueness of equilibrium point

H : Rn → Rn

x 7→ (bi (xi ) + fi (x))n
i=1

is homeomorphism.
Then there exists x∗ ∈ Rn, H(x∗) = 0, i.e. x∗ is the
equilibrium.
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ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))

I By translation, we may assume that x∗ = 0, i.e.,

bi (0) + fi (0) = 0, ∀i = 1, . . . , n

I For ϕ ∈ UCg such that ||ϕ||g = |ϕ(0)| = ϕi (0) > 0
(analogous if ϕi (0) < 0),

bi (ϕi (0)) + fi (ϕ) = [bi (ϕi (0))− bi (0)] + [fi (ϕ)− fi (0)]

≥ (βi − li )||ϕ||g > 0.

(H’) holds and from Lemma B’ we conclude
I x = 0 is uniform stable
I all solutions are defined and bounded on [0,+∞)

I It remains to prove that x = 0 is global attractive.
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ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))

I Let x(t) = x(t, 0, ϕ) a solution of (6), with ϕ ∈ BCg , and
define

−vi = lim inf
t→+∞

xi (t), ui = lim sup
t→+∞

xi (t)

v = max
i
{vi}, u = max

i
{ui},

u, v ∈ R, −v ≤ u. We have to show that max(u, v) = 0.

I Suppose |v | ≤ u. (|u| ≤ v is similar)
Let i ∈ {1, . . . , n} such that ui = u.

I By computations, we can show that exists (tk)k∈N such that

tk ↗ +∞, xi (tk)→ u, and bi (xi (tk)) + fi (xtk )→ 0.

I As x(t) is bounded, ẋ(t) is also bounded, from Lemma A
{xt : t ≥ 0} is precompact in UCg . Then

∃φ ∈ UCg : xtk → φ on UCg ,

with ‖φ‖g = φi (0) = u and bi (φi (0)) + fi (φ) = 0.
Then u = 0. �
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José J. Oliveira and Teresa Faria Global Stability of Neural Network Models



Model
Global asymptotic stability
Global exponential stability

Application
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Global exponential stability

I Consider in UCg , with g(s) = e−αs for some α > 0,

ẋi (t) = −ai (xi (t))[bi (xi (t)) + fi (xt)] (6)

Assume:

I (A0) a := inf{ai (y) : y ∈ R, 1 ≤ i ≤ n} > 0;
I (A1) ∃βi > 0,∀u, v ∈ R, u 6= v :

(bi (u)− bi (v))/(u − v) ≥ βi ;

I (A2) fi is a Lipshitz function with Lipshitz constant li .
I Definition

A equilibrium x∗ ∈ Rn is said global exponential stable if there
are ε,M > 0 such that

|x(t, 0, ϕ)− x∗| ≤ Me−εt ||ϕ− x∗||∞, for all t ≥ 0, ϕ ∈ BCg .
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I Theorem 2 (GES)
Assume (A0), (A1), and (A2). If

βi > li , ∀i ∈ {1, . . . , n},

then there is a unique equilibrium point of (6), which is
globally exponentially stable.

I Proof (idea)
We may assume x∗ ≡ 0, i.e. bi (0) + fi (0) = 0.
βi > li ⇒ ε− a(βi − li ) < 0 for some ε ∈ (0, α)
Let x(t, 0, ϕ) be a solution of (6) with ϕ ∈ BCg .

I The change of variables

z(t) = eεtx(t)

transforms (6) into

żi (t) = Fi (t, zt), i = 1, . . . , n, (9)
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ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))

where

Fi (t, φ) = εφi (0)− ai (e
−εtφi (0))eεt

[
bi (e

−εtφi (0)) + fi (e
−ε(t+·)φ)

]
I Let φ ∈ BCg such that |φ(s)| < |φ(0)|, for s ∈ (−∞, 0).

Consider i ∈ {1, . . . , n} such that |φi (0)| = |φ(0)|.

I If φi (0) > 0 (φi (0) < 0 is analogous)
From the hypotheses we conclude that

Fi (t, φ) ≤ εφi (0)− aeεt [bi (e
−εtφi (0))− bi (0)+

+fi (e
−ε(t+·)φ)− fi (0)

]
≤ εφi (0)− a

[
βiφi (0)− li sup

s≤0
e(α−ε)s |φ(s)|

]
≤ φi (0)[ε− a(βi − li )] < 0.

Then F = (F1, . . . ,Fn) satisfies (H)
I From Lemma B, z(t) is defined on [0,+∞) and

|x(t, 0, ϕ)| = |e−εtz(t, 0, eε·ϕ)| ≤ e−εt ||ϕ||∞.
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Cohen-Grossberg neural network model with unbounded delays

Generalized Cohen-Grossberg Model

Cohen-Grossberg model with unbounded distributed delays (10)

ẋi (t) = −ai (xi (t))

bi (xi (t)) +
n∑

j=1

P∑
p=1

f
(p)
ij

(∫ 0

−∞
g

(p)
ij (xj(t + s))dη

(p)
ij (s)

) (10)

I ai : R→ (0,+∞), are continuous functions;

I bi : R→ R are continuous satisfying (A1);

I f
(p)
ij , g

(p)
ij : R→ R are Lipschitzian with constant µ

(p)
ij , σ

(p)
ij ;

I η
(p)
ij : (−∞, 0]→ R are non-decreasing bounded normalized

functions so that

η
(p)
ij (0)− η(p)

ij (−∞) = 1;

I N := diag(β1, . . . , βn)− [lij ], where lij =
∑P

p=1 µ
(p)
ij σ

(p)
ij .
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I Theorem 3
(a)If N is a non-singular M-matrix, then there is a unique
equilibrium point of (10), which is globally asymptotically
stable.
(b) Assume, in addition, that ai satisfy (A0) and there is

γ > 0 such that each η
(p)
ij satisfies

∃γ > 0 :

∫ 0

−∞
e−γsdη

(p)
ij <∞.

If N is a non-singular M-matrix, then there is a unique
equilibrium point of (10), which is globally exponentially
stable.

I A = [aij ] ∈ Rn×n is a non-singular M-matrix if aij ≤ 0, i 6= j
and Re σ(A) > 0.
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José J. Oliveira and Teresa Faria Global Stability of Neural Network Models



Model
Global asymptotic stability
Global exponential stability

Application

Cohen-Grossberg neural network model with unbounded delays

I Proof of (a) (idea)
N non-singular M-matrix ⇒ ∃d = (d1, . . . , dn) > 0: Nd > 0
⇒ ∃δ > 0:

βi > d−1
i

n∑
j=1

lij(1 + δ)dj , i = 1, . . . , n; (11)

I By a technical Lemma, we can find g : (−∞, 0]→ [1,+∞)
satisfying (g1)-(g3) such that∫ 0

−∞
g(s)dη

(p)
ij (s) < 1 + δ,

and we consider UCg as the phase space of (10).
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I The change of variables

yi (t) = d−1
i xi (t)

transforms (10) into

ẏi (t) = −āi (yi (t))
[
b̄i (yi (t)) + f̄i (yt)

]
, (12)

where

f̄i (φ) = d−1
i

n∑
j=1

P∑
p=1

f
(p)
ij

(∫ 0

−∞
g

(p)
ij (djφj(s))dη

(p)
ij (s)

)
, φ ∈ UCg

b̄i (u) = d−1
i bi (di (u)), āi = ai (di (u)), u ∈ R.
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I After some computations,

|f̄i (φ)−f̄i (ψ)| ≤

d−1
i

n∑
j=1

lij(1 + δ)dj

 ‖φ−ψ‖g , φ, ψ ∈ UCg ,

then f̄i is Lipschitz with constant li = d−1
i

n∑
j=1

lij(1 + δ)dj

I Once b̄i satisfies (A1) with β̄i = βi and βi > li , thus the
result follows from (11) and Theorem 1.�

I The global exponential stability follows in the same way,
considering UCg with g(s) = e−αs , for some α ∈ (0, γ), such
that ∫ 0

−∞
e−αsdη

(p)
ij (s) < 1 + δ.
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ij (s) < 1 + δ.
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Example

Cohen-Grossberg neural network with unbounded distributed delays

ẋi (t) = −ai (xi (t))

bi (xi (t)) +
n∑

j=1

aij fj

(∫ 0

−∞
kij(−s)xj(t + s)ds

) (13)

I aij ∈ R, and ai : R→ (0,+∞), bi : R→ R are continuous
functions and (A1) holds;

I fj : R→ R are Lipschitz with Lipschitz constant µj ;

I The delay kernel functions kij : [0,+∞)→ R+
0 satisfy∫ +∞

0
kij(t)dt = 1;

I N := diag(β1, . . . , βn)− [lij ], where lij = |aij |µj .
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I Corollary(GAS)
If N is a non-singular M-matrix, then there is a unique
equilibrium point of (13), which is globally asymptotically
stable.

I Proof (idea)

System (10) reduces to (13) if P = 1, f
(1)
ij (u) = aij fj(u) and

η
(1)
ij (s) =

∫ s

−∞
kij(−ζ)dζ,

then the result follows from Theorem 3 (a).
I In [1] assumed the additional conditions:

fj is bounded; 0 < ai ≤ ai (u) ≤ ai ;
The kernels functions satisfy

∫∞
0 tkij(t)dt <∞

N := BA− A[lij ] is a non-singular M-matrix, where
A = diag(a1, . . . , an), A = diag(a1, . . . , an).

[1] L. Wang, Appl. Math. Comput. 160 (2005) 93-110.

José J. Oliveira and Teresa Faria Global Stability of Neural Network Models



Model
Global asymptotic stability
Global exponential stability

Application

Cohen-Grossberg neural network model with unbounded delays

I Corollary(GAS)
If N is a non-singular M-matrix, then there is a unique
equilibrium point of (13), which is globally asymptotically
stable.

I Proof (idea)

System (10) reduces to (13) if P = 1, f
(1)
ij (u) = aij fj(u) and

η
(1)
ij (s) =

∫ s

−∞
kij(−ζ)dζ,

then the result follows from Theorem 3 (a).

I In [1] assumed the additional conditions:
fj is bounded; 0 < ai ≤ ai (u) ≤ ai ;
The kernels functions satisfy

∫∞
0 tkij(t)dt <∞

N := BA− A[lij ] is a non-singular M-matrix, where
A = diag(a1, . . . , an), A = diag(a1, . . . , an).

[1] L. Wang, Appl. Math. Comput. 160 (2005) 93-110.
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I Corollary(GES)
Assume (A0) and that there is γ > 0 such that∫ ∞

0
kij(t)eγtdt <∞.

If N is a non-singular M-matrix, then there is a unique
equilibrium point of (13), which is globally exponentially
stable.
Proof Analogous to the previous corollary

I In [2] assumed the additional conditions:
0 < ai ≤ ai (u) ≤ ai ;
N := BA− A[lij ] is a non-singular M-matrix, where
A = diag(a1, . . . , an), A = diag(a1, . . . , an).

[2] W. Wu, B.T. Cui, X.Y. Lou, Math. Comput. Modelling, 47 (2008) 868-873.
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Thank you
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