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Delay differential equations

(C'—'% e x(t) feeling of the water temperature

.

e 7 > 0 delay time
F <

e [ : R — R man reaction on
the temperature regulator

J

» This situation is modulated by the delay differential equation

X' (t) = F(x(t = 7))
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Delay differential equations

» For 7 € RT and n € N, consider
C:=C([-7,0;R") = {gp . [-7,0] = R"| ¢ is continuous }

with the norm

lell = sup |@(6)]gn-
0e[—7,0]
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Delay differential equations

» For 7 € RT and n € N, consider
C:=C([-7,0;R") = {gp . [-7,0] = R"| ¢ is continuous }

with the norm

lell = sup |@(6)]gn-
0e[—7,0]

» The normed space (C, || - ||) is a Banach space.
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» For a continuous function F : R xC — R" , we call a
delay differential equation to

X'(t) = F(t,xt), t>0. (1)
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» For a continuous function F : R xC — R" , we call a
delay differential equation to

X'(t) = F(t,xt), t>0. (1)

» For b € (0,+00], a continuous function x : [-7,b) — R" is a
solution of (1) if it is differentiable for t > 0 and verifies (1)
where, for each t € [0, b), the function x; € C is defined by

xe(s) =x(t+s), Vsel[-1,0].

pec R™

a(t) = a(t,0,)
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» Thus C = C([—7,0]; R") is the phase space of (1).
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» Thus C = C([—7,0]; R") is the phase space of (1).
» For the initial value problem

{ x'(t) = F(t,xt) >0, 2)

X0 = ¢ ’

where ¢ € C, the standard results about existence, uniqueness,
continuation (for the future), and continuous dependence of
solutions of (2) is available.

» J. Hale and V. Lunel, Introduction to Functional Differential Equations,
Springer-Verlag, 1993
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Infinite delay differential equations

» In case T = 400, the differential equation
X'(t) = F(t,xt), t>0,

allowed us to consider all history of the solution.
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Infinite delay differential equations

» In case T = 400, the differential equation
X'(t) = F(t,xt), t>0,

allowed us to consider all history of the solution.
» Here for t > 0 and a solution x : [—o0, b) — R", we denote

xt(s) =x(t+s), Vse(—o0,0].

peue, R

Ty

x(t) = x(t,0,¢)
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» To obtain the basic results of existence, uniqueness and
continuations of solutions of infinite delay differential
equations another phase space is needed.

[1] J. Hale and J. Kato, Funkcialaj Ekvacioj, 21 (1978) 11-41
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Memory systems
Differential equations with finite delays

Differential equations with infinite delays

» To obtain the basic results of existence, uniqueness and
continuations of solutions of infinite delay differential
equations another phase space is needed.

» Hale and Kato [1] introduced the Banach space

UG, = {¢ € C((—o0,0; R™) : iig ‘ng((i‘)w < 00, (ﬁésg unif. cont.}

, with |x|,, a norm in R"

_ o 19(8) e
bolle =222 g05)"

where:

(gl) g: ( 00, 0] — [1, 00) non-increasing, continuous, with g(0) = 1;
M = 1 uniformly on (—o0, 0];
(g3) g(s) = o0 as s — —o0.

[1] J. Hale and J. Kato, Funkcialaj Ekvacioj, 21 (1978) 11-41
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Differential equations witl nite delays

—Qs

For a > 0, the exponential function g(s) = e~ verifies

(g1)-(g3).

a>0

A4

In this case, the norm in UG, is

6l = sup 252 —supl(s)]o € € 0. +20)
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» In the phase space UC, consider the initial value problem

{ X’(t)z F(t,x) £>0, 3)

X0 —

where ¢ € UCg, and F : R x UC; — R" is a continuous
functions.
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Memory systems
Differential equations with finite delays

Differential equations with infinite delays

» In the phase space UC, consider the initial value problem

{ X'(t) = F(t,x) £>0, 3)

X0 = ¢ ’

where ¢ € UCg, and F : R x UC; — R" is a continuous
functions.

» The standard results about existence, uniqueness,
continuation (for the future), and continuous dependence of
solutions of (3) is available.

» Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations
with Infinite Delay, Springer-Verlag, 1991
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Hopfield Neural Network Models

> Pioneer Hopfield's work (1984)

X{(t) = —axi(t) + Y _ bifi(x(t), i=1,....n. (4)

Jj=1

n € N number of neurons, t > 0; o;j(t) > 0; diag(a1,...,an) >0
self-feedback matrix; /; external inputs; k,-j(s) > 0 kernel functions;
fj activation functions; [bj], [cjj], [djj], connection matrices;
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Hopfield Neural Network Models

> Pioneer Hopfield's work (1984)

X{(t) = —axi(t) + Y _ bifi(x(t), i=1,....n. (4)

j=1
» Generalized Hopfield neural network
n n
Xi(£) = —apxi(t) + ) byfig(t)) + Y fix(t — 04(t)))
j=1

j=1

+Zd,,/ VGGt +5)ds + i(2),  (5)

n € N number of neurons, t > 0; o;j(t) > 0; diag(a1,...,an) >0
self-feedback matrix; /; external inputs; k,-j(s) > 0 kernel functions;
fj activation functions; [bj], [cjj], [djj], connection matrices;
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Hopfield discrete-time models

» We take the approximation of (5)

10 = () + 32 sl + 3t (s ((e/mn — | 0 )
+Zdu [ kol ARy e/ + [/ s + (3¢ 1),

for t € [mh,(m+ 1)h[ and m € Ny, where
e [r] is the integer part of r € R;
e h > 0 is the discretization step size;

» Time line

[s/h]h s [t/h]h 4
Yy
o0—0@ O—O0—8—0—=0 O—@
— 00 b —(-DR - _2p 1 0 2 oh mh  (m+1h +00
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Hopfield neural network models Hopfield neural network models
Discretization process

Hopfield discrete-time models

» \We take the approximation of (5)

X(6) = —ax(t) + anbgﬁ(xj([t/hlh)) +Zf (3 (17— [22/01 1)

3y [ kolls MRS e/ M-+ s/ RS + e/ ),

for t € [mh,(m + 1)h[ and m € Ny, where
e [r] is the integer part of r € R;

e h > 0 is the discretization step size;
» We have [t/h] = m, thus

x!(t) = ax,(t)Jer,,ﬁ(xJ(mh +Zc,, ( <mh {@] h))

+Zdu/ ki([s/hlh)f;(xj(mh + [s/h]h))ds + l;(mh),
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Hopfield discrete-time models

» Forse€]—Ih,—(/—1)h] and | € N, we have [s/h] = —I

x[(8) = —awi(t) + Zn;baﬂ()q(mh)) + Zf (s (= |22 )
+ Zn: dj i (kij(=1h)fi(xj(mh — Ih))h) + l:(mh),
j=1 I=1

José J. Oliveira Stability of discrete-time Hopfield Models



Hopfield neural network models Hopfield neural network models
Discretization process

Hopfield discrete-time models

» Forse€]—Ih,—(/—1)h] and | € N, we have [s/h] = —I

n

=t

n oo

+> dy > (ki(—Ih)fi(x5(mh — Ih))h) + li(mh),
j=1 =1
» Jumping computations and t — (m + 1)h t € [mh, (m + 1)h]

n

xi((m +1)h) = e™*" x;(mh) + 6;(h)li(mh) + 6:(h) Y (buﬁ'(Xj(mh))

j=1

it (g ((m — 7(m)R)) + dly S ki(— ) g (b — /h))h),

I=1

where 6;(h) = 1—‘273"” and 7;(m) = {7‘70‘(;7””)}
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Discretization process

Hopfield discrete-time models

» Forse€]—Ih,—(/—1)h] and | € N, we have [s/h] = —

() = () + 3 byfy(mh) +Zf (o5 (mh— [0 1))

n

+> dy i (kij(—Ih)f;(x;j(mh — Ih))h) + l;(mh),
j=1 =1

» Identifying mh = m and /h =/, we have

n

xi(m+1) = ™" x;(m) + 6;(h)li(m) + 6:(h )Z(buﬁ'(Xj(m))

eif (g (m — T5(m))) + duzku( - /))h)

where 0;(h) = =5~ " and Tij(m) = {7"’3‘(;7"”)}
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Hopfield neural network models

Low-order Hopfield neural network model

xi(m+1) = axi(m) + > bfi(x(m)) + Z cifi (x (m — 73(m)))

j=1
+> di > pafi(x(m—1)), meNo  (6)
=1 =1
i=1,...,n, with n € N and
> a; G] — 1, l[;
> b,‘j,C,‘j,d,‘j e R;
» fi:R =R, 7 : No — Np;

o0
» (pij1)ien non-negative sequence with Zp,-j/ < 00.
=1

Stability of discrete-time Hopfield Models
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High-order Hopfield neural network model

xi(m+1) = anf(m)+ZbUﬁ(Xj(m))
+ZZCngj (x (m — 7ii(m))) gk (X (m — i (m))) (7)
"‘szuk <Z pingj(x;(m — /))> (Z Pin &k (xi(m — /))> ;

meNg, i=1,...,n, with n € N and
> a3, €] —1,1];

> bijk, Cijk, dijk € R;

> f,g8: R =R, 7 : No = No;

» (pij1)ien non-negative sequence with ZPU’ < 00.
I=1
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Establish sufficient conditions for the global exponential stability of
discrete-time Hopfield models (6) and (7).
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General system and Phase Space

ili | 4 m
Stability results Exponential Stability

General system of delay difference equations
xi(m+1)=Fi(mXm), meNy, i=1...,n,

where n € N and

» X[ convenient phase space of sequences in R";

> F:Npx X" — R" with
F(m, @) = (Fi(m,B), ..., Fa(m,P));

» For m € Ny, X, is a sequence in R" which gives the historical
information of the solution from —oc until m.
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General system and Phase Space

ili | 4 m
Stability results Exponential Stability

» Given a > 0, we define X as the space of sequences
p: Zy — R”
i (eal),-- s enh))

such that

“max | sup ]cp;(j)\eaj < 00.
i€l,...,n ez
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ili | 4 m
Stability results Exponential Stability

» Given a > 0, we define X as the space of sequences
p: Zy — R”
i (eal),-- s enh))
such that
‘max [ sup [@i(j)] e | < .
€Leon \ ez

» Consider X7 the normed space with the norm

[Plla = max | sup |pi(j)le¥ ], ®eX.
i€l,...,n €z
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General system and Phase Space

ili | 4 m
Stability results Exponential Stability

» Given a > 0, we define X as the space of sequences
p: Zg — R
i (eal),-- s enh))
such that
‘max | sup |¢i(j)]eY | < .
1€l,...,n 'GZO_
» Consider X7 the normed space with the norm
[@lla = max </5UP Iwi(j)leaj> , peX]
iel,... P
o\ jezg
» Consider X : Z — R" with sup [X(j)|s0 € < 00,
jezy
For m € Ny, we define X, € X[ by
$mli) = %(m+J), J € Zq.
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Stability results

Let x:Z — R"

R

~Q
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Exponential Stability

Stability results

For m = 3 the graph of X3 € X[ is

R®
®
° °
° 3
® o © b . e ° ¢
—00 -9 -8 -7 -8 -5 -4 -3 ‘ -1 ¥ ? 3 4 5 6 (o)
X3 Za — R”
i = x(3+))
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General system and Phase Space

ili | 4 m
Stability results Exponential Stability

» Consider the delay difference system
xi(m+1)=Fi(mXm), meNg, i=1,...,n, (8)

where

F :Nog x X" — R" with F(m, ) = (F1(m, ), ..., Fa(m,p))
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General system and Phase Space

ili | 4 m
Stability results Exponential Stability

» Consider the delay difference system
xi(m+1)=Fi(mXm), meNg, i=1,...,n, (8)

ﬂhere B
F :No x X! — R" with F(m,9) = (F1(m, ), ..., Fn(m,P))
» The initial condition

Xo=9p, for peX. (9)
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General system and Phase Space

ili | 4 m
Stability results Exponential Stability

» Consider the delay difference system
xi(m+1)=Fi(mXm), meNg, i=1,...,n, (8)

ﬂhere B
F :No x X! — R" with F(m,9) = (F1(m, ), ..., Fn(m,P))
» The initial condition

Xo=9p, for peX. (9)
» We denote by X(-,0,%) the unique solution
xX:7Z—R"

of (8)-(9).
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General system and Phase Space

Stability results Exponential Stability

Main stability result

» Theorem 1 If
| Fi(m, )| < e [[?]la (10)

forall p € X

(8) h

m € Np, i =1,...,n, then the zero solution of

xi(m+1) = Fi(m,Xm)

is globally exponentially stable,
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Stability results Exponential Stability

Main stability result

» Theorem 1 If

[Film, )| < e [[@la; (10)

forallp € X7, me Ny, i =1,...,n, then the zero solution of
(8)
xi(m+1) = Fi(m,Xm)

is globally exponentially stable,
» Thatis

[Xmllo < e [[@lla;  Vm € No. (11)
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Stability results General system and Phase Space

Exponential Stability

> Proof: By induction we prove |[Xm||o < e %" ||@la, Vm € Nog

José J. Oliveira Stability of discrete-time Hopfield Models



Stability results General system and Phase Space

Exponential Stability

» Proof: By induction we prove ||[Xm|la < e %™ |[B]la, VM € Nog

» For m =0 is trivial.
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Stability results General system and Phase Space

Exponential Stability

» Proof: By induction we prove |[Xml|lo < e " ||

ar VmGNo

» For m =0 is trivial.

» For m € Ny, assume
||?rHa <e ||¢||a, 0<r<m
For all i =1,...,n, by induction hypotheses and (10)

pi(m + 1)| = |Fi(m, %m)| < e [Xmlla < e |[5]|q
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Stability results General system and Phase Space

Exponential Stability

» Proof: By induction we prove ||[Xm|la < e %™ |[B]la, VM € Nog

» For m =0 is trivial.

» For m € Ny, assume
||?rHa <e ||¢||a, 0<r<m
For all i =1,...,n, by induction hypotheses and (10)

pi(m + 1)| = |Fi(m, %m)| < e [Xmlla < e |[5]|q

» thus
Roirlla = { sup(m + 1+ ) e, _m |x,-(m+1+j)|eaf}
j<—m— —m<j<0
< { i+ m+ 1), max e—“<m+l+f’+“f||¢ua}
_/< m—1 —m<j<0
- max{sup\soo golimm1) g-almi1 HsOII}

= e "5
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Low-order Hopfield model with unbounded delays
High-order Hopfield model with unbounded delays
Exponential stability of discrete-time Hopfield models Numerical example

Low-order discrete-time Hopfield model

» Consider the Low-order Hopfield model (6)

xi(m+1) = aixi(m) + > bifi(x(m)) + Y _ ijfi (x5 (m — 5(m)))

j=t j=t

+) di Y pifi(xi(m—1)), m € No

j=1 =1

with a; €] — 1,1, by, ¢jj, djj € R, pjy > 0 and the hypothesis
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Low-order discrete-time Hopfield model

» Consider the Low-order Hopfield model (6)

xi(m+1) = aixi(m) + > bifi(x(m)) + Y _ ijfi (x5 (m — 5(m)))

=1 j=1
+> di Y pufilg(m—1)), meNo

j=1 =1

with a; €] — 1,1, by, ¢jj, djj € R, pjy > 0 and the hypothesis
» (H1) 3F; > 0 such that |f;(u)| < Fjlul;
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Low-order discrete-time Hopfield model

» Consider the Low-order Hopfield model (6)

xi(m+1) = aixi(m) + > bifi(x(m)) + Y _ ijfi (x5 (m — 5(m)))

j=1 j=1
+) di Y pifi(xi(m—1)), m € No
j=1  I=1
with a; €] — 1,1, by, ¢jj, djj € R, pjy > 0 and the hypothesis
» (H1) 3F; > 0 such that |f;(u)| < Fjlul;
» (H2) 37 > 0 such that 7;;(m) < 7;
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Low-order discrete-time Hopfield model

» Consider the Low-order Hopfield model (6)

xi(m+1) = aixi(m) + > bifi(x(m)) + Y _ ijfi (x5 (m — 5(m)))

j=1 j=1
+) di Y pifi(xi(m—1)), m € No
j=1  I=1
with a; €] — 1,1, by, ¢jj, djj € R, pjy > 0 and the hypothesis
» (H1) 3F; > 0 such that |f;(u)| < Fjlul;
» (H2) 37 > 0 such that 7;;(m) < 7;

o0 o0
» (H3) 3¢ > 0 such that Zeglp,-j/ < o0 and prf’ =1; py>0
=1 =1
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Low-order Hopfield model with unbounded delays
High-order Hopfield model with unbounded delays

Exponential stability of discrete-time Hopfield models Numerical example

» Theorem 2 Assume (H1)-(H3). If
M = diag(1—|ai,..., 1 [an]) — [Fi(lbyl + |c5l + |dy])]

is a non-singular M-matrix, then the zero solution of (6) is
globally exponentially stable.
That is there are C > 1 and a > 0:

[Xm(,0,@)la < Ce™ ™ [[@lla, Vg € X3, ¥m € No.
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Low-order Hopfield model with unbounded delays
High-order Hopfield model with unbounded delays

Exponential stability of discrete-time Hopfield models Numerical example

» Theorem 2 Assume (H1)-(H3). If
M = diag(1—|ai,..., 1 [an]) — [Fi(lbyl + |c5l + |dy])]

is a non-singular M-matrix, then the zero solution of (6) is
globally exponentially stable.
That is there are C > 1 and a > 0:

[Xm(,0,@)la < Ce™ ™ [[@lla, Vg € X3, ¥m € No.

» Lemma: Assume (H3).
If v > 0, then there is n > 0 such that

oo
Zet’p;j/<1+’y, Vte[0,n], i,j=1,...,n.
=1
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Low-order Hopfield model with unbounded delays
High-order Hopfield model with unbounded delays

Exponential stability of discrete-time Hopfield models Numerical example

» Proof of Theorem 2: M is a non-singular M-matrix, thus
there is p = (p1,...,pn) € R such that Mp’ >0, i.e

— pilail — ij (163 + |ciil + [dy]) > i=1...,n

José J. Oliveira Stability of discrete-time Hopfield Models



Low-order Hopfield model with unbounded delays
High-order Hopfield model with unbounded delays

Exponential stability of discrete-time Hopfield models Numerical example

» Proof of Theorem 2: M is a non-singular M-matrix, thus
there is p = (p1,...,pn) € R such that Mp’ >0, i.e

— pilail — ij (163 + |ciil + [dy]) > i=1...,n

P> Unless a change of variables, assume p = (1,...,1), that is

n
1—lail =Y Fillbyl +legl +1dsl) >0, i=1,....n.
j=1
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Low-order Hopfield model with unbounded delays
High-order Hopfield model with unbounded delays

Exponential stability of discrete-time Hopfield models Numerical example

» Proof of Theorem 2: M is a non-singular M-matrix, thus
there is p = (p1,...,pn) € R such that Mp’ >0, i.e

— pilail — ij (163 + |ciil + [dy]) > i=1...,n

P> Unless a change of variables, assume p = (1,...,1), that is
n
1—lail =Y Fi(lbyl + eyl +|dg)) >0, i=1,....n.
j=1
» Thus there is v > 0 such that

n
T —lail = D Filbg| + ezl €7 +dyl(1+ 7)) > 0,
j=1
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Low-order Hopfield model with unbounded delays
High-order Hopfield model with unbounded delays

Exponential stability of discrete-time Hopfield models Numerical example

» Proof of Theorem 2: M is a non-singular M-matrix, thus
there is p = (p1, ..., pn) € R such that Mp’ >0, i.e.

— pilail — ij (163 + |ciil + [dy]) > i=1...,n

P> Unless a change of variables, assume p = (1,...,1), that is
n
1—lail =Y Fi(lbyl + eyl +|dg)) >0, i=1,....n.
j=1
» Thus there is v > 0 such that

n
e —lail =Y Fi(|byl + |cy| € +|dyl (L +7)) > 0,
j=1
» By previous Lemma, there is « €]0, [ such that

oo
> epy<l4y, Vij=1,...n,
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> As 0 < a < 7y we obtain

n
e > [aj| + Y Fi(|by| + [cjl €™ +|dz|(1+7)), i =1,...,n.(12)
j=1
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> As 0 < a < 7y we obtain
n
e > |aj| + > Fi(|by| + Iyl e +|dyl(1+7)), i =1,...,n.(12)
j=1

» Model (6), in the phase space X, as the form
xi(m+1) = Fi(m %), i=1,....n,

with
n

Film,p) = aipi(0)+ Y byfi(2(0)) + Y cifi(p;(—75(m)))
j=1 j=1

+Y di > pifi(ei(=1))
j=1 =1
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> As 0 < a < 7y we obtain
n
& > Jail + 3 (151 + <€ Hjl(L+ 7). P =L
j=1

» By hypothesis (H1): |f;(u)| < Fj|ul

i1 (0)] + > b1 (0D + D lesllfi (i (—75(m)))]

|Fi(m, @)l <

j=1 j=1

+ > 1di] > pul (i (= 1)

j=1 =1

_ < _ lpi(—Tii(m e—oi(m)
< fallele + 3 6 (Ioslipl + o 2L
=1
o —al

pi(—=N]e

+|du|zpij/7| J(e_),l, )

=1
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oo
» Thus, <reca|l Ze”//),-j/ <1+ ”,>

B -
Fi(m7) < \a:!HSOHaJrZ (|bu|||soua 5z,
o0
+rdU|Zea’pmuso||a)
=1
n
< (|a,-|+ZFj(rb,-j|+|c,-jrem+|d,-,-|(1+v))
j=1
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oo
» Thus, <reca|l Ze”//),-j/ <1+ ”,>

B -
Fi(m7) < \a:!HSOHaJrZ (|bu|||soua 5z,

o0
Ty Zea’pmuwna)

=1
n

< (Iai|+ZFj(!bij|+|Cij!e°”+|dul(1+7)))||<P|!a
j=1

» and from (12) we obtain
[Film, @) <e™|[@lla;

and the conclusion follows from Theorem 1.
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High-order discrete-time Hopfield model

» Consider the High-order Hopfield model (7)

xi(m+1) = aiXi(m)+Zbaﬁ(Xj(m))
+ Z Z cigj (x; (m — i (m))) g (xic (m — Tijj(m)))
+szuk <Zpu1gj xj(m — /))> (Zpiﬂgk(xk(m— /))> ;

with a; €] — 1,1, by, cjjk, dijk € R, pjyj > 0 and the
hypothesis (H1), (H2), (H3), and
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High-order discrete-time Hopfield model

» Consider the High-order Hopfield model (7)
xi(m+1) = axi(m)+ Y bifi(x(m))
j=1

D0 cing (x5 (m = 7ig(m))) gk (xk (m — 7i(m)))

Jlkl

+szuk <Zpu1gj xj(m — /))> (Zpiﬂgk(xk(m— /))> ;

j=1 k=1 I=1

with a; €] — 1,1, by, cjjk, dijk € R, pjyj > 0 and the
hypothesis (H1), (H2), (H3), and
» (H4) 3Gj, M; > 0 such that

lgj(u)] < min {M;, Gjlul} .
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» Theorem 3 Assume (H1)-(H4). If

diog(1-[arls. - 1-laal)~ [F(lEsl] - | & Mellcse| + el
k=1

is a non-singular M-matrix, then the zero solution of

x(m+1) = aixi(m)+ Z bijfj(xj(m))
+ Z Z cigj (X (m — ij(m))) g (xic (m — Tijx(m)))
+szuk <Zpu/& x(m )) (Z pijgk (i (m — /))> ;

is globally exponentially stable.
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» In [2], the global exponential stability of the zero solution of

xi(m+1) = ax(m)+ Z bijfj(xj(m))
+> > cing (x5 (m — i (m))) gk (xk (m — i (m)))
j=1 k=1

was obtained assuming that:
> diag(l—|ai,...,1— |as]) — [Fj|bs|] — {G Z/\/Mc,,k@

is a non-singular M-matrix;
» Tk are bounded;

gj(u)|l < M;
fi(u) = (V)| < Filu—vl, |gi(u) — gi(v)| < Gjlu—v],
Yu,v € R,

and £;(0) =0, g;j(0) = 0.

[2] Z.Dong, X. Wang, and X. Zhang, Appl. Math. Comput. 385 (2020) p.125401
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» Numerical example

xi(t) = —10xi(t) + 2tanh(x(t — 1)) + 15 /0 4° tanh(x(t + s))ds
x5(t) = —10x2(t) + tanh(x1(t — 3)) + 2/0 2°tanh(xi(t + s))ds
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» Numerical example

xi(t) = —10xi(t) + 2tanh(x(t — 1)) + 15 /0 4° tanh(x(t + s))ds
x5(t) = —10x2(t) + tanh(x1(t — 3)) + 2/0 2°tanh(xi(t + s))ds

» After the discretization process, we obtain

_ 1—e 10
xi(m+1) = e 10><1(m)—|—T .
. (2 tanh(xe(m — 1)) + 52 % tanh(xe(m — I))>
- - (13)
1_ e 10

10
. <tanh(x1(m -3))+ 22 %tanh(xl(m - l)))

=1

xx(m+1) = e ¥x(m)+
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We have
—10
1— e—lO _7(1—e )
M — 10 10
_3(176 ) 1— eflo
10

which is a non-singular M-matrix, thus the zero solution of (13) is
globally exponentially stable.

—e—x_1(m)

x_2(m)

o T 0—t0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0

%) =1 (0.0), j€]l—o00,—10]NZ
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Thank you

This work is published in Journal of Difference Equations and
Applications, 28(2022) 725-751.
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