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José J. Oliveira Stability of discrete-time Hopfield Models



Hopfield neural network models
Stability results

Exponential stability of discrete-time Hopfield models

Memory systems
Differential equations with finite delays
Differential equations with infinite delays

Memory systems

• x(t) feeling of the water temperature

• τ > 0 delay time

• F : R → R reaction men on
the temperature regulator

▶
x ′(t) = F (x(t))
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Delay differential equations

• x(t) feeling of the water temperature

• τ > 0 delay time

• F : R → R man reaction on
the temperature regulator

▶ This situation is modulated by the delay differential equation

x ′(t) = F (x(t − τ))
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Delay differential equations

▶ For τ ∈ R+ and n ∈ N, consider

C := C ([−τ, 0];Rn) =

{
φ : [−τ, 0] → Rn

∣∣φ is continuous

}
with the norm

∥φ∥ = sup
θ∈[−τ,0]

|φ(θ)|Rn .

▶ The normed space (C, ∥ · ∥) is a Banach space.
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▶ For a continuous function F : R× C → Rn , we call a
delay differential equation to

x ′(t) = F (t, xt), t ≥ 0. (1)

▶ For b ∈ (0,+∞], a continuous function x : [−τ, b) → Rn is a
solution of (1) if it is differentiable for t ≥ 0 and verifies (1)
where, for each t ∈ [0, b), the function xt ∈ C is defined by

xt(s) = x(t + s), ∀s ∈ [−τ, 0].
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▶ Thus C = C ([−τ, 0];Rn) is the phase space of (1).

▶ For the initial value problem{
x ′(t) = F (t, xt)
x0 = ϕ

, t ≥ 0, (2)

where ϕ ∈ C, the standard results about existence, uniqueness,
continuation (for the future), and continuous dependence of
solutions of (2) is available.

▶ J. Hale and V. Lunel, Introduction to Functional Differential Equations,

Springer-Verlag, 1993

José J. Oliveira Stability of discrete-time Hopfield Models



Hopfield neural network models
Stability results

Exponential stability of discrete-time Hopfield models

Memory systems
Differential equations with finite delays
Differential equations with infinite delays

▶ Thus C = C ([−τ, 0];Rn) is the phase space of (1).

▶ For the initial value problem{
x ′(t) = F (t, xt)
x0 = ϕ

, t ≥ 0, (2)

where ϕ ∈ C, the standard results about existence, uniqueness,
continuation (for the future), and continuous dependence of
solutions of (2) is available.

▶ J. Hale and V. Lunel, Introduction to Functional Differential Equations,

Springer-Verlag, 1993
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Infinite delay differential equations

▶ In case τ = +∞, the differential equation

x ′(t) = F (t, xt), t ≥ 0,

allowed us to consider all history of the solution.

▶ Here for t ≥ 0 and a solution x : [−∞, b) → Rn, we denote

xt(s) = x(t + s), ∀s ∈ (−∞, 0].
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▶ To obtain the basic results of existence, uniqueness and
continuations of solutions of infinite delay differential
equations another phase space is needed.

▶ Hale and Kato [1] introduced the Banach space

UCg =

{
ϕ ∈ C ((−∞, 0];Rn) : sup

s≤0

|ϕ(s)|Rn
g(s)

< ∞,
ϕ(s)

g(s)
unif. cont.

}
,

∥ϕ∥g = sup
s≤0

|ϕ(s)|Rn
g(s)

, with |x |Rn a norm in Rn

where:
(g1) g : (−∞, 0] → [1,∞) non-increasing, continuous, with g(0) = 1;

(g2) lim
u→0−

g(s + u)

g(s)
= 1 uniformly on (−∞, 0];

(g3) g(s) → ∞ as s → −∞.

[1] J. Hale and J. Kato, Funkcialaj Ekvacioj, 21 (1978) 11-41
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For α > 0, the exponential function g(s) = e−αs verifies
(g1)-(g3).

In this case, the norm in UCg is

∥ϕ∥g = sup
s≤0

|ϕ(s)|Rn
g(s)

= sup
s≤0

|ϕ(s)|Rn e
αs ∈ [0,+∞)
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▶ In the phase space UCg consider the initial value problem{
x ′(t) = F (t, xt)
x0 = ϕ

, t ≥ 0, (3)

where ϕ ∈ UCg , and F : R× UCg → Rn is a continuous
functions.

▶ The standard results about existence, uniqueness,
continuation (for the future), and continuous dependence of
solutions of (3) is available.

▶ Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations

with Infinite Delay, Springer-Verlag, 1991
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Hopfield Neural Network Models

▶ Pioneer Hopfield’s work (1984)

x ′i (t) = −aixi (t) +
n∑

j=1

bij fj(xj(t)), i = 1, . . . , n. (4)

▶ Generalized Hopfield neural network

x ′i (t) = −aixi (t) +
n∑

j=1

bij fj(xj(t)) +
n∑

j=1

cij fj(xj(t − σij(t)))

+
n∑

j=1

dij

∫ 0

−∞
kij(s)fj(xj(t + s))ds + Ii (t), (5)

n ∈ N number of neurons, t ≥ 0; σij(t) ≥ 0; diag(a1, . . . , an) > 0
self-feedback matrix; Ii external inputs; kij(s) ≥ 0 kernel functions;
fj activation functions; [bij ], [cij ], [dij ], connection matrices;
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▶ We take the approximation of (5)

x ′
i (t) = −aixi (t) +

n∑
j=1

bij fj(xj([t/h]h)) +
n∑

j=1

cij fj

(
xj

(
[t/h]h −

[
σij([t/h]h)

h

]
h

))

+
n∑

j=1

dij

∫ 0

−∞
kij([s/h]h)fj(xj([t/h]h + [s/h]h))ds + Ii ([t/h]h),

for t ∈ [mh, (m + 1)h[ and m ∈ N0, where

• [r ] is the integer part of r ∈ R;
• h > 0 is the discretization step size;

▶ Time line
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• [r ] is the integer part of r ∈ R;
• h > 0 is the discretization step size;

▶ We have [t/h] = m, thus

x ′
i (t) = −aixi (t) +

n∑
j=1

bij fj(xj(mh)) +
n∑

j=1

cij fj

(
xj

(
mh −

[
σij(mh)

h

]
h

))
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dij

∫ 0

−∞
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▶ For s ∈]− lh,−(l − 1)h] and l ∈ N, we have [s/h] = −l

x ′
i (t) = −aixi (t) +

n∑
j=1

bij fj(xj(mh)) +
n∑

j=1

cij fj

(
xj

(
mh −

[
σij(mh)

h

]
h

))

+
n∑

j=1

dij

∞∑
l=1

(kij(−lh)fj(xj(mh − lh))h) + Ii (mh),

▶ Jumping computations and t → (m + 1)h t ∈ [mh, (m + 1)h[

xi ((m + 1)h) = e−ai h xi (mh) + θi (h)Ii (mh) + θi (h)
n∑

j=1

(
bij fj(xj(mh))

+cij fj (xj ((m − τij(m))h)) + dij

∞∑
l=1

kij(−lh)fj(xj(mh − lh))h

)
,

where θi (h) =
1−e−ai h

ai
and τij(m) =

[
σij (mh)

h

]
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Low-order Hopfield neural network model

xi (m + 1) = aixi (m) +
n∑

j=1

bij fj(xj(m)) +
n∑

j=1

cij fj (xj (m − τij(m)))

+
n∑

j=1

dij

∞∑
l=1

ρijl fj(xj(m − l)), m ∈ N0 (6)

i = 1, . . . , n, with n ∈ N and

▶ ai ∈]− 1, 1[;

▶ bij , cij , dij ∈ R;
▶ fj : R → R, τij : N0 → N0;

▶ (ρijl)l∈N non-negative sequence with
∞∑
l=1

ρijl < ∞.
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High-order Hopfield neural network model

xi (m + 1) = aixi (m) +
n∑

j=1

bij fj(xj(m))

+
n∑

j=1

n∑
k=1

cijkgj (xj (m − τijk(m))) gk (xk (m − τijk(m)))

+
n∑

j=1

n∑
k=1

dijk

(
∞∑
l=1

ρijlgj(xj(m − l))

)(
∞∑
l=1

ρijlgk(xk(m − l))

)
,

(7)

m ∈ N0, i = 1, . . . , n, with n ∈ N and

▶ ai ∈]− 1, 1[;

▶ bijk , cijk , dijk ∈ R;
▶ fj , gj : R → R, τijk : N0 → N0;

▶ (ρijl)l∈N non-negative sequence with
∞∑
l=1

ρijl < ∞.
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GOAL

Establish sufficient conditions for the global exponential stability of
discrete-time Hopfield models (6) and (7).
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General system of delay difference equations

xi (m + 1) = Fi (m, xm), m ∈ N0, i = 1, . . . , n,

where n ∈ N and

▶ X n
α convenient phase space of sequences in Rn;

▶ F : N0 × X n
α → Rn with

F(m, φ) = (F1(m, φ), . . . ,Fn(m, φ));

▶ For m ∈ N0, xm is a sequence in Rn which gives the historical
information of the solution from −∞ until m.
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▶ Given α > 0, we define X n
α as the space of sequences

φ : Z−
0 → Rn

j 7→ (φ1(j), . . . , φn(j))

such that

max
i∈1,...,n

(
sup
j∈Z−

0

|φi (j)| eαj
)

< ∞.

▶ Consider X n
α the normed space with the norm

∥φ∥α = max
i∈1,...,n

(
sup
j∈Z−

0

|φi (j)| eαj
)
, φ ∈ X n

α .

▶ Consider x : Z → Rn with sup
j∈Z−

0

|x(j)|∞ eαj < ∞,

For m ∈ N0, we define xm ∈ X n
α by

xm(j) = x(m + j), j ∈ Z−
0 .
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Let x : Z → Rn

José J. Oliveira Stability of discrete-time Hopfield Models



Hopfield neural network models
Stability results

Exponential stability of discrete-time Hopfield models

General system and Phase Space
Exponential Stability

For m = 3 the graph of x3 ∈ X n
α is

x3 : Z−
0 → Rn

j 7→ x(3 + j)
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▶ Consider the delay difference system

xi (m + 1) = Fi (m, xm), m ∈ N0, i = 1, . . . , n, (8)

where
F : N0 × X n

α → Rn with F(m, φ) = (F1(m, φ), . . . ,Fn(m, φ))

▶ The initial condition

x0 = φ, for φ ∈ X n
α . (9)

▶ We denote by x(·, 0, φ) the unique solution

x : Z → Rn

of (8)-(9).
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Main stability result

▶ Theorem 1 If

|Fi (m, φ)| ≤ e−α ∥φ∥α, (10)

for all φ ∈ X n
α , m ∈ N0, i = 1, . . . , n, then the zero solution of

(8)
xi (m + 1) = Fi (m, xm)

is globally exponentially stable,

▶ That is

∥xm∥α ≤ e−αm ∥φ∥α, ∀m ∈ N0. (11)
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▶ Proof: By induction we prove ∥xm∥α ≤ e−αm ∥φ∥α, ∀m ∈ N0

▶ For m = 0 is trivial.

▶ For m ∈ N0, assume

∥x r∥α ≤ e−αr ∥φ∥α, 0 ≤ r ≤ m.

For all i = 1, . . . , n, by induction hypotheses and (10)

|xi (m + 1)| = |Fi (m, xm)| ≤ e−α ∥xm∥α ≤ e−α(m+1) ∥φ∥α
▶ thus

∥xm+1∥α = max
i

{
sup

j≤−m−1
|xi (m + 1 + j)| eαj , max

−m≤j≤0
|xi (m + 1 + j)| eαj

}
≤ max

i

{
sup

j≤−m−1
|φi (j +m + 1)| eαj , max

−m≤j≤0
e−α(m+1+j)+αj ∥φ∥α

}
= max

i

{
sup
j≤0

|φi (j)| eα(j−m−1), e−α(m+1) ∥φ∥α
}

= e−α(m+1) ∥φ∥α.
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Low-order discrete-time Hopfield model

▶ Consider the Low-order Hopfield model (6)

xi (m + 1) = aixi (m) +
n∑

j=1

bij fj(xj(m)) +
n∑

j=1

cij fj (xj (m − τij(m)))

+
n∑

j=1

dij

∞∑
l=1

ρijl fj(xj(m − l)), m ∈ N0

with ai ∈]− 1, 1[, bij , cij , dij ∈ R, ρijl ≥ 0 and the hypothesis

▶ (H1) ∃Fj > 0 such that |fj(u)| ≤ Fj |u|;
▶ (H2) ∃τ > 0 such that τij(m) < τ ;

▶ (H3) ∃ξ > 0 such that
∞∑
l=1

eξl ρijl < ∞ and
∞∑
l=1

ρijl = 1; ρijl ≥ 0
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▶ Theorem 2 Assume (H1)-(H3). If

M = diag(1− |a1|, . . . , 1− |an|)−
[
Fj(|bij |+ |cij |+ |dij |)

]
is a non-singular M-matrix, then the zero solution of (6) is
globally exponentially stable.
That is there are C ≥ 1 and α > 0:

∥xm(·, 0, φ)∥α ≤ C e−αm ∥φ∥α, ∀φ ∈ X n
α , ∀m ∈ N0.

▶ Lemma: Assume (H3).
If γ > 0, then there is η > 0 such that

∞∑
l=1

etl ρijl < 1 + γ, ∀t ∈ [0, η], i , j = 1, . . . , n.
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▶ Proof of Theorem 2: M is a non-singular M-matrix, thus
there is p = (p1, . . . , pn) ∈ Rn

+ such that MpT > 0, i.e.

pi − pi |ai | −
n∑

j=1

pjFj(|bij |+ |cij |+ |dij |) > 0, i = 1, . . . , n.

▶ Unless a change of variables, assume p = (1, . . . , 1), that is

1− |ai | −
n∑

j=1

Fj(|bij |+ |cij |+ |dij |) > 0, i = 1, . . . , n.

▶ Thus there is γ > 0 such that

e−γ −|ai | −
n∑

j=1

Fj(|bij |+ |cij | eγτ +|dij |(1 + γ)) > 0,

▶ By previous Lemma, there is α ∈]0, γ[ such that
∞∑
l=1

eαl ρijl < 1 + γ, ∀i , j = 1, . . . , n,
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▶ As 0 < α < γ we obtain

e−α > |ai |+
n∑

j=1

Fj
(
|bij |+ |cij | eατ +|dij |(1 + γ)

)
, i = 1, . . . , n.(12)

▶ Model (6), in the phase space X n
α , as the form

xi (m + 1) = Fi (m, xm), i = 1, . . . , n,

with

Fi (m, φ) = aiφi (0) +
n∑

j=1

bij fj(φj(0)) +
n∑

j=1

cij fj(φj(−τij(m)))

+
n∑

j=1

dij

∞∑
l=1

ρijl fj(φj(−l))
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▶ As 0 < α < γ we obtain

e−α > |ai |+
n∑

j=1

Fj
(
|bij |+ |cij | eατ +|dij |(1 + γ)

)
, i = 1, . . . , n.

▶ By hypothesis (H1): |fj(u)| ≤ Fj |u|

|Fi (m, φ)| ≤ |aiφi (0)|+
n∑

j=1

|bij ||fj(φj(0))|+
n∑

j=1

|cij ||fj(φj(−τij(m)))|

+
n∑

j=1

|dij |
∞∑
l=1

ρijl |fj(φj(−l))|

≤ |ai |∥φ∥α +
n∑

j=1

Fj

(
|bij |∥φ∥α + |cij |

|φj(−τij(m))| e−ατij (m)

e−ατij (m)

+|dij |
∞∑
l=1

ρijl
|φj(−l)| e−αl

e−αl

)
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▶ Thus,

(
recall

∞∑
l=1

eαl ρijl < 1 + γ

)

|Fi (m, φ)| ≤ |ai |∥φ∥α +
n∑

j=1

Fj

(
|bij |∥φ∥α +

|cij |
e−ατ

∥φ∥α

+|dij |
∞∑
l=1

eαl ρijl∥φ∥α
)

≤
(
|ai |+

n∑
j=1

Fj(|bij |+ |cij | eατ +|dij |(1 + γ))

)
∥φ∥α

▶ and from (12) we obtain

|Fi (m, φ)| ≤ e−α ∥φ∥α,

and the conclusion follows from Theorem 1.
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High-order discrete-time Hopfield model

▶ Consider the High-order Hopfield model (7)

xi (m + 1) = aixi (m) +
n∑

j=1

bij fj(xj(m))

+
n∑

j=1

n∑
k=1

cijkgj (xj (m − τijk(m))) gk (xk (m − τijk(m)))

+
n∑

j=1

n∑
k=1

dijk

(
∞∑
l=1

ρijlgj(xj(m − l))

)(
∞∑
l=1

ρijlgk(xk(m − l))

)
,

with ai ∈]− 1, 1[, bij , cijk , dijk ∈ R, ρijl ≥ 0 and the
hypothesis (H1), (H2), (H3), and

▶ (H4) ∃Gj ,Mj > 0 such that

|gj(u)| ≤ min {Mj ,Gj |u|} .
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j=1

n∑
k=1

cijkgj (xj (m − τijk(m))) gk (xk (m − τijk(m)))

+
n∑

j=1

n∑
k=1

dijk

(
∞∑
l=1

ρijlgj(xj(m − l))

)(
∞∑
l=1

ρijlgk(xk(m − l))

)
,

with ai ∈]− 1, 1[, bij , cijk , dijk ∈ R, ρijl ≥ 0 and the
hypothesis (H1), (H2), (H3), and

▶ (H4) ∃Gj ,Mj > 0 such that

|gj(u)| ≤ min {Mj ,Gj |u|} .
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▶ Theorem 3 Assume (H1)-(H4). If

diag(1−|a1|, . . . , 1−|an|)−
[
Fj(|bij |

]
−

[
Gj

n∑
k=1

Mk(|cijk |+ |dijk |)

]

is a non-singular M-matrix, then the zero solution of

xi (m + 1) = aixi (m) +
n∑

j=1

bij fj(xj(m))

+
n∑

j=1

n∑
k=1

cijkgj (xj (m − τijk(m))) gk (xk (m − τijk(m)))

+
n∑

j=1

n∑
k=1

dijk

(
∞∑
l=1

ρijlgj(xj(m − l))

)(
∞∑
l=1

ρijlgk(xk(m − l))

)
,

is globally exponentially stable.
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▶ In [2], the global exponential stability of the zero solution of

xi (m + 1) = aixi (m) +
n∑

j=1

bij fj(xj(m))

+
n∑

j=1

n∑
k=1

cijkgj (xj (m − τijk(m))) gk (xk (m − τijk(m))) ,

was obtained assuming that:

▶ diag(1− |a1|, . . . , 1− |an|)−
[
Fj |bij |

]
−

[
Gj

n∑
k=1

Mk |cijk |

]
is a non-singular M-matrix;

▶ τijk are bounded;
▶ |gj(u)| ≤ Mj

▶ |fj(u)− fj(v)| ≤ Fj |u − v |, |gj(u)− gj(v)| ≤ Gj |u − v |,
∀u, v ∈ R,
and fj(0) = 0, gj(0) = 0.

[2] Z.Dong, X. Wang, and X. Zhang, Appl. Math. Comput. 385 (2020) p.125401
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▶ Numerical example
x ′
1(t) = −10x1(t) + 2 tanh(x2(t − 1)) + 15

∫ 0

−∞
4s tanh(x2(t + s))ds

x ′
2(t) = −10x2(t) + tanh(x1(t − 3)) + 2

∫ 0

−∞
2s tanh(x1(t + s))ds

▶ After the discretization process, we obtain

x1(m + 1) = e−10 x1(m) +
1− e−10

10

·

(
2 tanh(x2(m − 1)) + 5

∞∑
l=1

3

4l
tanh(x2(m − l))

)

x2(m + 1) = e−10 x2(m) +
1− e−10

10

·

(
tanh(x1(m − 3)) + 2

∞∑
l=1

1

2l
tanh(x1(m − l))

)
. (13)
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·

(
2 tanh(x2(m − 1)) + 5

∞∑
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3
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)

x2(m + 1) = e−10 x2(m) +
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·

(
tanh(x1(m − 3)) + 2

∞∑
l=1

1

2l
tanh(x1(m − l))

)
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We have

M =

 1− e−10 −7(1−e−10)
10

−3(1−e−10)
10 1− e−10


which is a non-singular M-matrix, thus the zero solution of (13) is
globally exponentially stable.

Figure: Solution (x1(t), x2(t)) of system (13) with initial condition

x0(j) =

{
(cos(j), sin(j)), j = −9, . . . , 0
(0, 0), j ∈]−∞,−10] ∩ Z ..
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Thank you

This work is published in Journal of Difference Equations and
Applications, 28(2022) 725-751.
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