
Hopfield neural network models
Stability results

Exponential stability of discrete-time Hopfield models

Global exponential stability of discrete-time
Hopfield neural network models with unbounded

delays
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Hopfield Neural Network Models

I Pioneer Hopfield’s work (1984)

x ′i (t) = −aixi (t) +
n∑

j=1

bij fj(xj(t)), i = 1, . . . , n. (1)

I Generalized Hopfield neural network

x ′i (t) = −aixi (t) +
n∑

j=1

bij fj(xj(t)) +
n∑

j=1

cij fj(xj(t − σij(t)))

+
n∑

j=1

dij

∫ 0

−∞
kij(s)fj(xj(t + s))ds + Ii (t), (2)

n ∈ N number of neurons, t ≥ 0; σij(t) ≥ 0; diag(a1, . . . , an) > 0
self-feedback matrix; Ii external inputs; kij(s) ≥ 0 kernel functions;
fj activation functions; [bij ], [cij ], [dij ], connection matrices;
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I We take the approximation of (2)

x ′i (t) = −aixi (t) +
n∑

j=1

bij fj(xj([t/h]h)) +
n∑

j=1

cij fj

(
xj

(
[t/h]h −

[
σij([t/h]h)

h

]
h

))

+
n∑

j=1

dij

∫ 0

−∞
kij([s/h]h)fj(xj([t/h]h + [s/h]h))ds + Ii ([t/h]h),

for t ∈ [mh, (m + 1)h[ and m ∈ N0, where

• [r ] is the integer part of r ∈ R;
• h > 0 is the discretization step size;

I We have [t/h] = m, thus

x ′i (t) = −aixi (t) +
n∑

j=1

bij fj(xj(mh)) +
n∑

j=1

cij fj

(
xj

(
mh −

[
σij(mh)

h

]
h

))

+
n∑

j=1

dij

∫ 0

−∞
kij([s/h]h)fj(xj(mh + [s/h]h))ds + Ii (mh),
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I For s ∈]− lh,−(l − 1)h] and l ∈ N, we have [s/h] = −l

x ′i (t) = −aixi (t) +
n∑

j=1

bij fj(xj(mh)) +
n∑

j=1

cij fj

(
xj

(
mh −

[
σij(mh)

h

]
h

))

+
n∑

j=1

dij

∞∑
l=1

(kij(−lh)fj(xj(mh − lh))h) + Ii (mh),

I Jumping computations and t → (m + 1)h t ∈ [mh, (m + 1)h[

xi ((m + 1)h) = e−ai h xi (mh) + θi (h)Ii (mh) + θi (h)
n∑

j=1

(
bij fj(xj(mh))

+cij fj (xj ((m − τij(m))h)) + dij

∞∑
l=1

kij(−lh)fj(xj(mh − lh))h

)
,

where θi (h) = 1−e−ai h

ai
and τij(m) =

[
σij (mh)

h

]
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dij
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I Identifying mh ≡ m and lh ≡ l , we have

xi (m + 1) = e−ai h xi (m) + θi (h)Ii (m) + θi (h)
n∑

j=1
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bij fj(xj(m))

+cij fj (xj (m − τij(m))) + dij
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,
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José J. Oliveira Stability of discrete-time Hopfield Models



Hopfield neural network models
Stability results

Exponential stability of discrete-time Hopfield models

Hopfield neural network models
Discretization process
Hopfield discrete-time models

Low-order Hopfield neural network model

xi (m + 1) = aixi (m) +
n∑

j=1

bij fj(xj(m)) +
n∑

j=1

cij fj (xj (m − τij(m)))

+
n∑

j=1

dij

∞∑
l=1

ρijl fj(xj(m − l)), m ∈ N0 (3)

i = 1, . . . , n, with n ∈ N and

I ai ∈]− 1, 1[;

I bij , cij , dij ∈ R;

I fj : R→ R, τij : N0 → N0;

I (ρijl)l∈N non-negative sequence with
∞∑
l=1

ρijl <∞.
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High-order Hopfield neural network model

xi (m + 1) = aixi (m) +
n∑

j=1

bij fj(xj(m))

+
n∑

j=1

n∑
k=1

cijkgj (xj (m − τijk(m))) gk (xk (m − τijk(m)))

+
n∑

j=1

n∑
k=1

dijk

(
∞∑
l=1

ρijlgj(xj(m − l))

)(
∞∑
l=1

ρijlgk(xk(m − l))

)
,

(4)

m ∈ N0, i = 1, . . . , n, with n ∈ N and

I ai ∈]− 1, 1[;

I bijk , cijk , dijk ∈ R;

I fj , gj : R→ R, τijk : N0 → N0;

I (ρijl)l∈N non-negative sequence with
∞∑
l=1

ρijl <∞.
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GOAL

Establish sufficient conditions for the global exponential stability of
discrete-time Hopfield models (3) and (4).
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General system of delay difference equations

xi (m + 1) = Fi (m, xm), m ∈ N0, i = 1, . . . , n,

where n ∈ N and

I X n
α convenient phase space of sequences in Rn;

I F : N0 × X n
α → Rn with

F(m, ϕ) = (F1(m, ϕ), . . . ,Fn(m, ϕ));

I For m ∈ N0, xm is a sequence in Rn which gives the historical
information of the solution from −∞ until m.
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I For α > 0 we define X n
α as the space of the functions

ϕ : Z−0 → Rn

j 7→ (ϕ1(j), . . . , ϕn(j))

such that

max
i∈1,...,n

(
sup
j∈Z−0

|ϕi (j)| eαj
)
<∞.

I Consider X n
α the normed space with the norm

‖ϕ‖α = max
i∈1,...,n

(
sup
j∈Z−0

|ϕi (j)| eαj
)
, ϕ ∈ X n

α .

I Consider x : Z→ Rn with sup
j∈Z−0

|x(j)|∞ eαj <∞,

For m ∈ N0, we define xm ∈ X n
α by

xm(j) = x(m + j), j ∈ Z−0 .

José J. Oliveira Stability of discrete-time Hopfield Models



Hopfield neural network models
Stability results

Exponential stability of discrete-time Hopfield models

General system and Phase Space
Exponential Stability

I For α > 0 we define X n
α as the space of the functions

ϕ : Z−0 → Rn

j 7→ (ϕ1(j), . . . , ϕn(j))

such that

max
i∈1,...,n

(
sup
j∈Z−0

|ϕi (j)| eαj
)
<∞.

I Consider X n
α the normed space with the norm

‖ϕ‖α = max
i∈1,...,n

(
sup
j∈Z−0

|ϕi (j)| eαj
)
, ϕ ∈ X n

α .

I Consider x : Z→ Rn with sup
j∈Z−0

|x(j)|∞ eαj <∞,

For m ∈ N0, we define xm ∈ X n
α by

xm(j) = x(m + j), j ∈ Z−0 .
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Let x : Z→ Rn
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For m = 3 the graph of x3 ∈ X n
α is

x3 : Z−0 → Rn

j 7→ x(3 + j)
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I Consider the delay difference system

xi (m + 1) = Fi (m, xm), m ∈ N0, i = 1, . . . , n, (5)

where
F : N0 × X n

α → Rn with F(m, ϕ) = (F1(m, ϕ), . . . ,Fn(m, ϕ))

I The initial condition

x0 = ϕ, for ϕ ∈ X n
α . (6)

I We denote by x(·, 0, ϕ) the unique solution

x : Z→ Rn

of (5)-(6).
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Main stability result

I Theorem 1 If

|Fi (m, ϕ)| ≤ e−α ‖ϕ‖α, (7)

for all ϕ ∈ X n
α , m ∈ N0, i = 1, . . . , n, then the zero solution of

(5)
xi (m + 1) = Fi (m, xm)

is globally exponentially stable,

I That is

‖xm‖α ≤ e−αm ‖ϕ‖α, ∀m ∈ N0. (8)
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I Proof: By induction we prove ‖xm‖α ≤ e−αm ‖ϕ‖α, ∀m ∈ N0

I For m = 0 is trivial.

I For m ∈ N0, assume

‖x r‖α ≤ e−αr ‖ϕ‖α, 0 ≤ r ≤ m.

For all i = 1, . . . , n, by induction hypotheses and (7)

|xi (m + 1)| = |Fi (m, xm)| ≤ e−α ‖xm‖α ≤ e−α(m+1) ‖ϕ‖α
I thus

‖xm+1‖α = max
i

{
sup

j≤−m−1
|xi (m + 1 + j)| eαj , max

−m≤j≤0
|xi (m + 1 + j)| eαj

}
≤ max

i

{
sup

j≤−m−1
|ϕi (j +m + 1)| eαj , max

−m≤j≤0
e−α(m+1+j)+αj ‖ϕ‖α

}
= max

i

{
sup
j≤0
|ϕi (j)| eα(j−m−1), e−α(m+1) ‖ϕ‖α

}
= e−α(m+1) ‖ϕ‖α.
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Low-order discrete-time Hopfield model

I Consider the Low-order Hopfield model (3)

xi (m + 1) = aixi (m) +
n∑

j=1

bij fj(xj(m)) +
n∑

j=1

cij fj (xj (m − τij(m)))

+
n∑

j=1

dij

∞∑
l=1

ρijl fj(xj(m − l)), m ∈ N0

with ai ∈]− 1, 1[, bij , cij , dij ∈ R, ρijl ≥ 0 and the hypothesis

I (H1) ∃Fj > 0 such that |fj(u)| ≤ Fj |u|;
I (H2) ∃τ > 0 such that τij(m) < τ ;

I (H3) ∃ξ > 0 such that
∞∑
l=1

eξl ρijl <∞ and
∞∑
l=1

ρijl = 1; ρijl ≥ 0
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José J. Oliveira Stability of discrete-time Hopfield Models



Hopfield neural network models
Stability results

Exponential stability of discrete-time Hopfield models

Low-order Hopfield model with unbounded delays
High-order Hopfield model with unbounded delays
Numerical example

I Theorem 2 Assume (H1)-(H3). If

M = diag(1− |a1|, . . . , 1− |an|)−
[
Fj(|bij |+ |cij |+ |dij |)

]
is a non-singular M-matrix, then the zero solution of (3) is
globally exponentially stable.
That is there are C ≥ 1 and α > 0:

‖xm(·, 0, ϕ)‖α ≤ C e−αm ‖ϕ‖α, ∀ϕ ∈ X n
α , ∀m ∈ N0.

I Lemma: Assume (H3).
If γ > 0, then there is η > 0 such that

∞∑
l=1

etl ρijl < 1 + γ, ∀t ∈ [0, η], i , j = 1, . . . , n.
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I Proof of Theorem 2: M is a non-singular M-matrix, thus
there is p = (p1, . . . , pn) ∈ Rn

+ such that MpT > 0, i.e.

pi − pi |ai | −
n∑

j=1

pjFj(|bij |+ |cij |+ |dij |) > 0, i = 1, . . . , n.

I Unless a change of variables, assume p = (1, . . . , 1), that is

1− |ai | −
n∑

j=1

Fj(|bij |+ |cij |+ |dij |) > 0, i = 1, . . . , n.

I Thus there is γ > 0 such that

e−γ −|ai | −
n∑

j=1

Fj(|bij |+ |cij | eγτ +|dij |(1 + γ)) > 0,

I By previous Lemma, there is α ∈]0, γ[ such that
∞∑
l=1

eαl ρijl < 1 + γ, ∀i , j = 1, . . . , n,
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I As 0 < α < γ we obtain

e−α > |ai |+
n∑

j=1

Fj
(
|bij |+ |cij | eατ +|dij |(1 + γ)

)
, i = 1, . . . , n. (9)

I Model (3), in the phase space X n
α , as the form

xi (m + 1) = Fi (m, xm), i = 1, . . . , n,

with

Fi (m, ϕ) = aiϕi (0) +
n∑

j=1

bij fj(ϕj(0)) +
n∑

j=1

cij fj(ϕj(−τij(m)))

+
n∑

j=1

dij

∞∑
l=1

ρijl fj(ϕj(−l))
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I As 0 < α < γ we obtain

e−α > |ai |+
n∑

j=1

Fj
(
|bij |+ |cij | eατ +|dij |(1 + γ)

)
, i = 1, . . . , n.

I By hypothesis (H1): |fj(u)| ≤ Fj |u|

|Fi (m, ϕ)| ≤ |aiϕi (0)|+
n∑

j=1

|bij ||fj(ϕj(0))|+
n∑

j=1

|cij ||fj(ϕj(−τij(m)))|

+
n∑

j=1

|dij |
∞∑
l=1

ρijl |fj(ϕj(−l))|

≤ |ai |‖ϕ‖α +
n∑

j=1

Fj

(
|bij |‖ϕ‖α + |cij |

|ϕj(−τij(m))| e−ατij (m)

e−ατij (m)

+|dij |
∞∑
l=1

ρijl
|ϕj(−l)| e−αl

e−αl

)
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I Thus,

(
recall

∞∑
l=1

eαl ρijl < 1 + γ

)

|Fi (m, ϕ)| ≤ |ai |‖ϕ‖α +
n∑

j=1

Fj

(
|bij |‖ϕ‖α +

|cij |
e−ατ

‖ϕ‖α

+|dij |
∞∑
l=1

eαl ρijl‖ϕ‖α
)

≤
(
|ai |+

n∑
j=1

Fj(|bij |+ |cij | eατ +|dij |(1 + γ))

)
‖ϕ‖α

I and from (9) we obtain

|Fi (m, ϕ)| ≤ e−α ‖ϕ‖α,

and the conclusion follows from Theorem 1.
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High-order discrete-time Hopfield model

I Consider the High-order Hopfield model (4)

xi (m + 1) = aixi (m) +
n∑

j=1

bij fj(xj(m))

+
n∑

j=1

n∑
k=1

cijkgj (xj (m − τijk(m))) gk (xk (m − τijk(m)))

+
n∑

j=1

n∑
k=1

dijk

(
∞∑
l=1

ρijlgj(xj(m − l))

)(
∞∑
l=1

ρijlgk(xk(m − l))

)
,

with ai ∈]− 1, 1[, bij , cijk , dijk ∈ R, ρijl ≥ 0 and the
hypothesis (H1), (H2), (H3), and

I (H4) ∃Gj ,Mj > 0 such that

|gj(u)| ≤ min {Mj ,Gj |u|} .
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I Theorem 3 Assume (H1)-(H4). If

diag(1−|a1|, . . . , 1−|an|)−
[
Fj(|bij |

]
−

[
Gj

n∑
k=1

Mk(|cijk |+ |dijk |)

]

is a non-singular M-matrix, then the zero solution of (4) is
globally exponentially stable.

I In [1] model (4) was studied with finite delays and the
additional Lipschitz conditions

|fj(u)−fj(v)| ≤ Fj |u−v |, |gj(u)−gj(v)| ≤ Gj |u−v |, ∀u, v ∈ R,

and fj(0) = 0, gj(0) = 0.

[1] Z.Dong, X. Wang, and X. Zhang, Appl. Math. Comput. 385 (2020) p.125401
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I Numerical example:
x ′1(t) = −10x1(t) + 2 tanh(x2(t − 1)) + 15

∫ 0

−∞
4s tanh(x2(t + s))ds

x ′2(t) = −10x2(t) + tanh(x1(t − 3)) + 2

∫ 0

−∞
2s tanh(x1(t + s))ds

I After the discretization process, we obtain

x1(m + 1) = e−10 x1(m) +
1− e−10

10

·

(
2 tanh(x2(m − 1)) + 5

∞∑
l=1

3

4l
tanh(x2(m − l))

)

x2(m + 1) = e−10 x2(m) +
1− e−10

10

·

(
tanh(x1(m − 3)) + 2

∞∑
l=1

1

2l
tanh(x1(m − l))

)
. (10)
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We have

M =

 1− e−10 −7(1−e−10)
10

−3(1−e−10)
10 1− e−10


which is a non-singular M-matrix, thus the zero solution of (10) is
globally exponentially stable.

Figure: Solution (x1(t), x2(t)) of system (10) with initial condition

x0(j) =

{
(cos(j), sin(j)), j = −9, . . . , 0
(0, 0), j ∈]−∞,−10] ∩ Z ..
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Thank you

This work is published in Journal of Difference Equations and
Applications, 28(2022) 725-751.
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