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Hopfield Neural Network Models

> Pioneer Hopfield's work (1984)

x|(t) = —axi(t) + Y _ bifi(x(t)), i=1,....n. (1)

j=1

n € N number of neurons, t > 0; o;j(t) > 0; diag(a1,...,an) >0
self-feedback matrix; /; external inputs; k,-j(s) > 0 kernel functions;
fj activation functions; [bj], [cjj], [djj], connection matrices;
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Hopfield Neural Network Models

> Pioneer Hopfield's work (1984)
n
() = —ai(8)+ Y byflg(8),  i=Ll.on (1
j=1
» Generalized Hopfield neural network

X/(t) = —ap(t) + ) bifi(xi(1)) + Z ciifi(x(t — (1))

=1

+3 o [ k0s(e+sNds+ i, @)

n € N number of neurons, t > 0; o;j(t) > 0; diag(a1,...,an) >0
self-feedback matrix; /; external inputs; k,-j(s) > 0 kernel functions;
fj activation functions; [bj], [cjj], [djj], connection matrices;
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Hopfield discrete-time models

» We take the approximation of (2)

X(t) = —a(t) + zjjbm(x,»([t/h]h)) +Zf (3 (1 [ 202210 )

+Zdu/ ki([s/hlh)fi(x;([t/hh + [s/hlh))ds + Ii([t/ h]h),

for t € [mh,(m+ 1)h[ and m € Ny, where
e [r] is the integer part of r € R;
e h > 0 is the discretization step size;
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» We take the approximation of (2)

X(t) = —a(t) + zjjbm(x,»([t/h]h)) +Zf (3 (1 [ 202210 )

+Zdu/ ki([s/hlh)fi(x;([t/hh + [s/hlh))ds + Ii([t/ h]h),

for t € [mh,(m+ 1)h[ and m € Ny, where
e [r] is the integer part of r € R;

e h > 0 is the discretization step size;
» We have [t/h] = m, thus

X (t) = —aix(t) +Zbu6(xj(mh +ZC'J ( <mh {w] h))

+Zd,,/ kii([s/h1h)f;(x;(mh + [s/h]h))ds + I;(mh),
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» Fors €] —Ih,—(I —1)h] and | € N, we have [s/h] = —

X(t) = —aixi(t) + 21 bif(x(mh)) + Zl cif (XJ (mh _ {@} ,,)>

+ Z d; Z (kij(—In)£:(x;(mh — In))h) + I:(mh),
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Hopfield discrete-time models

» Fors €] —Ih,—(I —1)h] and | € N, we have [s/h] = —

X(t) = —aixi(t) + 21 bif(x(mh)) + Zl cif (XJ (mh _ {@} ,,)>

+ Z d; Z (kij(—In)£:(x;(mh — In))h) + I:(mh),

» Jumping computations and t — (m + 1)h t < [mh, (m + 1)h[

n

xi((m+1)h) = e=*" x(mh) + 6,(h),(mh) + 6,(h) > (bmxj(mh))

it 05 ((m — my(m)R)) + S ki~ Ih) (xi(mh — /h))h),

ajh

where 0;(h) = =" and 7;(m) = [70”(;7'7)}
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Hopfield neural network models

» Fors €] —Ih,—(I —1)h] and | € N, we have [s/h] = —

X(t) = —aixi(t) + 21 bif(x(mh)) + Zl cif (XJ (mh _ {@} ,,)>

n oo}

+ Z d; Z (kij(—In)£:(x;(mh — In))h) + I:(mh),

» ldentifying mh = m and lh =/, we have

n

1) = & xlm) + 0,(D(m) + 0:(0) D (b,-,-ﬁ<xj<m))

e (g (m — my(m))) + dy Zku( - /))h)

oij(mh)

where 0;(h) = 1_‘:3",7 and 7;;(m) = [ ; }
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Low-order Hopfield neural network model

xi(m+1) = axi(m) + > bfi(x(m)) + Z cifi (x (m — 73(m)))

j=1
+> di Yy pufig(m—1), meNo  (3)
=1 =1
i=1,...,n, with n € N and
aj G] - ]-7 ]-[.
b,‘j, Cij, d,'j e R;
f}:R—)R, TU:N0—>N0;

v

v

v

o0
> (piji)ien non-negative sequence with Zp,-j/ < 00.
=1
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High-order Hopfield neural network model

xi(m+1) = anf(m)+ZbUﬁ(Xj(m))
+ZZCngj (x (m — 7ii(m))) gk (X (m — i (m))) (4)
"‘szuk <Z pingj(x;(m — /))> (Z Pin &k (xi(m — /))> ;

meNg, i=1,...,n, with n € N and
aj 6]—1,1[;

> bUk)CUkadijk eR;

fi,g : R = R, 7j : No — No;

v

v

v

(piji)1en non-negative sequence with ZPU’ < 00.
I=1
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Establish sufficient conditions for the global exponential stability of
discrete-time Hopfield models (3) and (4).
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General system of delay difference equations
xi(m+1) = Fi(mXm), meNy,i=1...,n,

where n € N and

» X convenient phase space of sequences in R";

» F:Ngx X7 — R" with
F(m, @) = (Fi(m,B), ..., Fa(m,P));

» For m € Ny, X, is a sequence in R" which gives the historical
information of the solution from —oc until m.

José J. Oliveira Stability of discrete-time Hopfield Models



General system and Phase Space

Stability results Exponential Stability

» For a > 0 we define X as the space of the functions
p: Zy — R"
Joo= (el en()

such that

‘max | sup |@i(j)|e¥ | < oc.
i€l,...,n ezy
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General system and Phase Space

Stability results Exponential Stability

» For a > 0 we define X as the space of the functions
p: Zy — R"
i = (ea0)s-- s enlh))
such that
‘max | sup |@i(j)|e¥ | < oc.
€L \ ez
» Consider X7 the normed space with the norm

7l = max ( sup lpi()le |, we Xz
w\jezy
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General system and Phase Space
Exponential Stability

Stability results

» For a > 0 we define X as the space of the functions
p: Zy — R"
Joo= (el en()
such that
‘max | sup |@i(j)|e¥ | < oc.
i€l,...,n jczy
» Consider X! the normed space with the norm
[Plla = max { sup lgi(j)le™ |, BeX].
i€l,...,n \ . _.,—
€z,
» Consider X : Z — R” with sup |X(j)|s0 €¥ < o0,
jezy
For m € Ny, we define X, € X by
$m(i) = %(m+J), ) € Zg.
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Let x:Z — R"
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For m = 3 the graph of X3 € X[ is

R"
° )
° >
o« o * e o ® ° °
o 9 -8 7 - -5 -4 ) ¢ po) 1 z 3 4 5
)
X3 Za — R”
i = x(3+))

José J. Oliveira Stability of discrete-time Hopfield Models



General system and Phase Space

Stability results Exponential Stability

» Consider the delay difference system
xi(m+1) = Fi(mXm), meNy,i=1,...,n, (5)

where
F :No x X" — R" with F(m, %) = (F1(m, ®),. .., Fa(m,p))
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Stability results Exponential Stability

» Consider the delay difference system
xi(m+1) = Fi(mXm), meNy,i=1,...,n, (5)

where
F :No x X" — R" with F(m, %) = (F1(m, ®),. .., Fa(m,p))

» The initial condition

Xo=p, for weXl (6)
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Exponential Stability

» Consider the delay difference system
xi(m+1) = Fi(mXm), meNy,i=1,...,n, (5)

where
F :No x X" — R" with F(m, %) = (F1(m, ®),. .., Fa(m,p))

» The initial condition
Xo=p, for weXl (6)
» We denote by X(+,0,%) the unique solution
x:7Z—R"

of (5)-(6).
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Main stability result

» Theorem 1 If

[Fi(m, @) < e [[@la; (7)

for all p € X/,
(5)

m € Ng, i =1,...,n, then the zero solution of

xi(m+1) = Fi(m,Xm)

is globally exponentially stable,
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Main stability result

» Theorem 1 If

[Fi(m, @) < e [[@la; (7)

forall o € X!, me Ny, i =1,...,n, then the zero solution of
()
xi(m+1) = Fi(m,Xm)

is globally exponentially stable,
> That is

[Xmlla < e [[@lla;  Vm € No. (8)
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Stability results General system and Phase Space

Exponential Stability

» Proof: By induction we prove |[Xpm|la < e " ||@]la, Vm € Ny
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Stability results General system and Phase Space

Exponential Stability

» Proof: By induction we prove |[Xpm|la < e " ||@]la, Vm € Ny
» For m =0 is trivial.
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Stability results General system and Phase Space

Exponential Stability

» Proof: By induction we prove ||Xm|la < €7 ||@]la, Ym € Np

» For m =0 is trivial.
» For m € Ny, assume

[Xrlla < e [[@lla, 0<r<m.
For all i =1,...,n, by induction hypotheses and (7)

pxi(m + 1)| = |Fi(m,Xm)| < e [Xmlla < e |[5]|a
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Exponential Stability

v

Proof: By induction we prove |[Xm|la < e ™ ||@]la, Vm € Ny

v

For m = 0 is trivial.

v

For m € Ny, assume
[Xrlla < e [[@lla, 0<r<m.
For all i =1,...,n, by induction hypotheses and (7)

pxi(m + 1)| = |Fi(m,Xm)| < e [Xmlla < e |[5]|a

» thus
Xmiilla = { sup |xi(m+1+4j) e, m<a_x |x;(m+1+j)|e"j}
j<—m—1 —m<;j<0
< { sup @il + m+ )|, max e*aw*”f”“fuaua}
<—m—1 —m<;<0
_ max{sup\so, eali=m=D) g=a(mi) uana}

= e "V 5.
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Low-order discrete-time Hopfield model

» Consider the Low-order Hopfield model (3)
xi(m+1) = apxi(m) + Y _ bifi(x(m)) + Y _ cifi (3 (m — m3(m)))
j=1 j=1

+Y iy pifi(m — 1), m € No

j=1 =1

with a; €] — 1, 1], b, ¢jj, djj € R, pj > 0 and the hypothesis
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Low-order discrete-time Hopfield model

» Consider the Low-order Hopfield model (3)
xi(m+1) = apxi(m) + Y _ bifi(x(m)) + Y _ cifi (3 (m — m3(m)))
j=1 j=1

+Y iy pifi(m — 1), m € No

j=1  I=1
with a; €] — 1, 1], b, ¢jj, djj € R, pj > 0 and the hypothesis
» (H1) 3F; > 0 such that |fj(u)| < Fjlul;
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Low-order discrete-time Hopfield model

» Consider the Low-order Hopfield model (3)
xi(m+1) = apxi(m) + Y _ bifi(x(m)) + Y _ cifi (3 (m — m3(m)))
j=1 j=1

+Y iy pifi(m — 1), m € No

j=1  I=1
with a; €] — 1, 1], b, ¢jj, djj € R, pj > 0 and the hypothesis

» (H1) 3F; > 0 such that |fj(u)| < Fjlul;

» (H2) 37 > 0 such that 7;;(m) < 7;
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Low-order discrete-time Hopfield model

» Consider the Low-order Hopfield model (3)
xi(m+1) = apxi(m) + Y _ bifi(x(m)) + Y _ cifi (3 (m — m3(m)))
j=1 j=1

+Y iy pifi(m — 1), m € No

j=1  I=1
with a; €] — 1, 1], b, ¢jj, djj € R, pj > 0 and the hypothesis

» (H1) 3F; > 0 such that |fj(u)| < Fjlul;

» (H2) 37 > 0 such that 7;;(m) < 7;

oo oo
» (H3) 3¢ > 0 such that Zeflp,-j/ < 0o and Zp,-j, =1; py>0
=1 =1
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» Theorem 2 Assume (H1)-(H3). If
M = diag(1 — |a1],..., 1~ |an|) — [Fi(|by| + |c5] + [dy])]

is a non-singular M-matrix, then the zero solution of (3) is
globally exponentially stable.
That is there are C > 1 and o > O:

Xm(0,P)la < Ce™ " [[@lla; VP € XJ, ¥m € No.
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» Theorem 2 Assume (H1)-(H3). If
M = diag(1 — |a1],..., 1~ |an|) — [Fi(|by| + |c5] + [dy])]

is a non-singular M-matrix, then the zero solution of (3) is
globally exponentially stable.
That is there are C > 1 and o > O:

Xm(0,P)la < Ce™ " [[@lla; VP € XJ, ¥m € No.

» Lemma: Assume (H3).
If v > 0, then there is n > 0 such that

oo
el py<i+y, Vteom], ij=1,...,n
1=1
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> Proof of Theorem 2: M is a non-singular M-matrix, thus
there is p = (p1,...,pn) € RY such that MpT >0, ie

— pilail - ij (|by| + |cij| + |dy]) > i=1,...,n
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> Proof of Theorem 2: M is a non-singular M-matrix, thus
there is p = (p1,...,pn) € RY such that MpT >0, ie

— pilail - ij (|by| + |cij| + |dy]) > i=1,...,n
» Unless a change of variables, assume p = (1,...,1), that is

n
L lail = 3" Fillbyl + legl +1dz)) >0, i=1....,n.
j=1
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> Proof of Theorem 2: M is a non-singular M-matrix, thus
there is p = (p1,...,pn) € RY such that MpT >0, ie

— pilail - ij (|by| + |cij| + |dy]) > i=1,...,n
» Unless a change of variables, assume p = (1,...,1), that is

n
1—Jail = 3 Fi(lbyl+ gl + ldgl) >0, i=1,....n.
j=1
> Thus there is v > 0 such that

T Jail = S Flbyl + gl € +ldzl (1 +4)) > 0,
j=1
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> Proof of Theorem 2: M is a non-singular M-matrix, thus
there is p = (p1,...,pn) € RY such that MpT >0, ie.

n
pi — pilail — ijl‘_](’b,]’ + |C,J’ + ’du|) >0, i=1,...,n
Jj=1

» Unless a change of variables, assume p = (1,...,1), that is
n
1—[ail = 3 Fillbyl + legl +dgl) >0, i=1,....n
j=1
> Thus there is v > 0 such that

e —lail = 3 Fi(|byl + ezl €7 +]dyl(L +7)) > 0,
j=1

» By previous Lemma, there is « €]0, [ such that

o0
> eMpp<l4y, Vij=1,...,n,
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> As 0 < a < v we obtain

e > |ai| + Y Fi(|by| + |yl e +]dyl(1+7)), i=1,...,n. (9)
j=1
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> As 0 < a < v we obtain
n
e > |ai| + Y Fi(|by| + |yl e +]dyl(1+7)), i=1,...,n. (9)
j=1

» Model (3), in the phase space X, as the form
xi(m+1)=Fi(mXxm), i=1,...,n,

with
n n

Film®) = aii(0) + Y byfi(2;(0)) + D _ cyfi(j(~73(m)))

J=1 J=1

n o0
+ di > pifi(wi(=1))
j=1 =1
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» As 0 < a < 7y we obtain
n
e > |ai| + > Fi(lbyl + |cjl e +]dyl(1+7)), i=1,....n.
j=1

» By hypothesis (H1): |f;j(u) < F;|u]

IFi(m @) < laii(0) + D byllfi(pi(0)] + Z |cijl £ (0j (=75(m)))

Jj=1

+ 1dil > pil(i(=1)]
j=1 =1

n
_ _ e
< laill@lla+ Y E(\bvll\wlla + lej|

Jj=1

(=ry(m)| e

efa‘r,‘j(m)

0 0 .y e—al
+|dU|ZPfj/7| J(e,)i, )
I=1
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» Thus, (recall Ze“//),-j/ <1+ 7)

I=1

IN

| Fi(m, @)]

IN

C
wm%+z @mmx’ﬁwa

o0
HMZWwM@

I=1

(W+Z mumwwMMMWWm
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» Thus, (recall Ze“//),-j/ <1+ 7)

I=1

C
mmm|smwmg5(wwm’ﬂwm

o0
HMZWwM@

I=1

S(W+Z mumwwMMMWWm

» and from (9) we obtain

[ Fi(m, @) < e [[@]la

and the conclusion follows from Theorem 1.
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High-order discrete-time Hopfield model

» Consider the High-order Hopfield model (4)
xi(m+1) = axi(m)+ Y bifi(x(m))

+ 0 cingy (55 (m — Tir(m))) gk (xk (m — 7i(m)))

J 1 k=1
+sz0k <Zpu1gj xj(m — /))> (Zpijlgk(xk(m /))> )

with a; E] -1, 1[, b,‘j, Cijk s dijk € R, Pijl > 0 and the
hypothesis (H1), (H2), (H3), and
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High-order discrete-time Hopfield model

» Consider the High-order Hopfield model (4)
xi(m+1) = axi(m)+ Y bifi(x(m))

+ 0 cingy (55 (m — Tir(m))) gk (xk (m — 7i(m)))

J 1 k=1
+sz0k <Zpu1gj xj(m — /))> (Zpijlgk(xk(m /))> )

with a; E] -1, 1[, b,‘j, Cijk s dijk € R, Pijl > 0 and the
hypothesis (H1), (H2), (H3), and
» (H4) 3G;, M; > 0 such that

|gj(u)] < min{M;, Gj|ul} .
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» Theorem 3 Assume (H1)-(H4). If

diog (1 lanl, . 1 lanl)— [F(B5l]— | G S Mellciul + el
k=1

is a non-singular M-matrix, then the zero solution of (4) is
globally exponentially stable.

[1] Z.Dong, X. Wang, and X. Zhang, Appl. Math. Comput. 385 (2020) p.125401
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» Theorem 3 Assume (H1)-(H4). If
diog (1 lanl, . 1 lanl)— [F(B5l]— | G S Mellciul + el
k=1

is a non-singular M-matrix, then the zero solution of (4) is
globally exponentially stable.

» In [1] model (4) was studied with finite delays and the
additional Lipschitz conditions

()= (V)| < Filu=v|, lg;(u)—gi(v)| < Gjlu=v],  Vu,veR,

and £;(0) =0, gj(0) = 0.

[1] Z.Dong, X. Wang, and X. Zhang, Appl. Math. Comput. 385 (2020) p.125401
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» Numerical example:

x1(t) = —10x(t) + 2tanh(x(t — 1)) + 15 /0 4° tanh(x(t + s))ds
x5(t) = —10x2(t) + tanh(xi(t — 3)) + 2/0 2° tanh(x1(t + s))ds

José J. Oliveira Stability of discrete-time Hopfield Models



Low-order Hopfield model with unbounded delays
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» Numerical example:

x1(t) = —10x(t) + 2tanh(x(t — 1)) + 15 /0 4° tanh(x(t + s))ds
x5(t) = —10x2(t) + tanh(xi(t — 3)) + 2/0 2° tanh(x1(t + s))ds

» After the discretization process, we obtain
_ 10
10 -

(2tanh(xz(m —-1)) + Z tanh(xo(m — /))>

xi(m+1) = e x(m)+

B . (10)
xx(m+1) = e Vx(m)+ 1_% R
. (tanh(xl(m -3)) + 22 % tanh(xi(m — l)))
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Exponential stability of discrete-time Hopfield models Numerical example
We have
—10
1— e—lO _7(1—e )
M — 10 10
_3(176 ) 1— eflo
10

which is a non-singular M-matrix, thus the zero solution of (10) is
globally exponentially stable.

—e—x_1(m)

x_2(m)

YO(,/') — (go;(j)vsm(j))v ./ =-9,... 7](-)0
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High-order Hopfield model with unbounded delays

Exponential stability of discrete-time Hopfield models Numerical example

Thank you

This work is published in Journal of Difference Equations and
Applications, 28(2022) 725-751.
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