Stability of discrete-time Hopfield neural network with delay

José J. Oliveira

jjoliveira@math.uminho.pt

Santiago de Compostela, 4-7 September 2018

Joint work with António Bento (University of Beira Interior) César M. Silva (University of Beira Interior)

Generalized Hopfield model | Continuous Hopfield model

$$x_i'(t) = -a_i(t)x_i(t) + \sum_{j=1}^{N} k_{ij}(t, x_j(t - \alpha_{ij}(t))), \quad t \geqslant 0, \ i = 1, \dots, N$$

Generalized Hopfield model | Continuous Hopfield model

$$x_i'(t) = -a_i(t)x_i(t) + \sum_{j=1}^{N} k_{ij}(t, x_j(t - \alpha_{ij}(t))), \quad t \geqslant 0, \ i = 1, \dots, N$$

neuron state vector at time t

$$(x_1(t),\ldots,x_N(t))\in\mathbb{R}^N$$

neuron charging time

$$a_i: \mathbb{R}_0^+ \to \mathbb{R}_0^+$$
 continuous

neuron activation functions

 $k_{ij}: \mathbb{R}_0^+ \times \mathbb{R} \to \mathbb{R}$ continuous, Lip on the second variable

time delay

 $\alpha_{ii}: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ continuous, bounded

$$x_{i}'(t) = -a_{i}(t)x_{i}(t) + \sum_{j=1}^{N} k_{ij}(t, x_{j}(t - \alpha_{ij}(t)))$$

$$x'_{i}(t) = -a_{i}(t)x_{i}(t) + \sum_{j=1}^{N} k_{ij}(t, x_{j}(t - \alpha_{ij}(t)))$$

Discretization method in:

S. Mohamad, K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays, Appl. Math. Comput. 135 (1) (2003) 17–38

$$x_{i}'(t) = -a_{i}(t)x_{i}(t) + \sum_{j=1}^{N} k_{ij}(t, x_{j}(t - \alpha_{ij}(t)))$$

$$x_i'(t) = -a_i([t/h]h)x_i(t) + \sum_{j=1}^{N} k_{ij} \left([t/h]h, x_j \left([t/h]h - \left[\frac{\alpha_{ij} \left([t/h]h \right)}{h} \right] h \right) \right)$$

$$\forall m \in \mathbb{N}_0, \ t \in [mh, (m+1)h[\ \Rightarrow \ [t/h] = m; \quad \tau_{ij}(m) := \left[\frac{\alpha_{ij}(mh)}{h}\right]$$

$$e^{a_i(mh)t}x_i'(t) + a_i(mh)e^{a_i(mh)t}x_i(t) = e^{a_i(mh)t}\sum_{j=1}^{N} k_{ij} (mh, x_j ((m - \tau_{ij}(m)) h))$$

$$\int_{mh}^{t} (e^{a_i(mh)s}x_i(s))'ds = \frac{e^{a_i(mh)t} - e^{a_i(mh)mh}}{a_i(mh)} \sum_{j=1}^{N} k_{ij} (mh, x_j ((m - \tau_{ij}(m)) h))$$

$$x_{i}(m+1) = e^{-a_{i}(m)h}x_{i}(m) + \frac{1 - e^{-a_{i}(m)h}}{a_{i}(m)} \sum_{j=1}^{N} k_{ij} \left(m, x_{j}(m - \tau_{ij}(m))\right)$$

$$x_i(m+1) = c_i(m)x_i(m) + \sum_{j=1}^{N} h_{ij}(m, x_j(m-\tau_{ij}(m))), \quad i = 1, \dots, N$$

- $c_i : \mathbb{N}_0 \to]0, 1[, \tau_{ij} : \mathbb{N}_0 \to \mathbb{N}_0 \text{ bounded with } \tau := \max_{i,j,m} \{\tau_{ij}(m)\}$
- $h_{ij}: \mathbb{N}_0 \times \mathbb{R} \to \mathbb{R}$ are Lip on the second variable, i.e.,

$$|h_{ij}(m,u) - h_{ij}(m,v)| \leq H_{ij}(m)|u - v|, \ \forall u, v \in \mathbb{R}, \ m \in \mathbb{N}_0.$$

$$x_i(m+1) = c_i(m)x_i(m) + \sum_{j=1}^{N} h_{ij}(m, x_j(m-\tau_{ij}(m))), \quad i = 1, \dots, N$$

- $c_i : \mathbb{N}_0 \to]0, 1[, \tau_{ij} : \mathbb{N}_0 \to \mathbb{N}_0 \text{ bounded with } \tau := \max_{i,j,m} \{\tau_{ij}(m)\}$
- $h_{ij}: \mathbb{N}_0 \times \mathbb{R} \to \mathbb{R}$ are Lip on the second variable, i.e., $|h_{ij}(m,u) h_{ij}(m,v)| \leq H_{ij}(m)|u-v|, \ \forall u,v \in \mathbb{R}, \ m \in \mathbb{N}_0.$

Generalizes:

$$x_i(m+1) = x_i(m) e^{-a_i(m)h} + \theta_i(m) \left(\sum_{j=1}^N b_{ij}(m) f_j(x_j(m-\tau(m))) + I_i(m) \right)$$

where
$$\theta_i(m) = \frac{1 - e^{-a_i(m)h}}{a_i(m)}$$
.

H. Xu, R. Wu, Periodicity and exponential stability of discrete-time neural networks with variable coefficients and delays, Adv. Difference Equ. (2013) 2013:226.

- $r \in \mathbb{N}_0$; $N \in \mathbb{N}$
- $I_{\mathbb{Z}} = I \cap \mathbb{Z}$, where I is a real interval
- Y Banach space with norm $|\cdot|$
- X space of $\alpha: [-r,0]_{\mathbb{Z}} \to Y$, with the norm $\|\alpha\| = \max_{j \in [-r,0]_{\mathbb{Z}}} |\alpha(j)|$
- X^N and Y^N equipped with the supremum norm
- Given $m \in \mathbb{N}_0$ and

$$\overline{x}: [-r, +\infty[\mathbb{Z} \to Y^N \\ s \mapsto (x_1(s), \dots, x_N(s))$$

define $x_{i,m} \in X$ and $\overline{x}_m \in X^N$ respectively by

$$x_{i,m}(j) = x_i(m+j), \quad j = -r, -r+1, \dots, 0, \quad i = 1, \dots, N,$$

$$\overline{x}_m(j) = \overline{x}(m+j), \quad j = -r, -r+1, \dots, 0.$$

Consider the general nonautonomous delay difference equation

$$x_i(m+1) = L^{(i)}(m)x_{i,m} + f^{(i)}(m, \overline{x}_m), \quad m \in \mathbb{N}_0, \ i = 1, \dots, N$$

- $L^{(i)}(m): X \to Y$ are bounded linear operators;
- $f^{(i)}(m,\cdot):X^N\to Y$ are Lip perturbations with $f^{(i)}(m,0)=0;$
- given $n \in \mathbb{N}_0$ and $\overline{\alpha} = (\alpha_1, \dots, \alpha_N) \in X^N$, there is a unique solution $\overline{x}(\cdot, n, \overline{\alpha}) \colon [n r, +\infty)_{\mathbb{Z}} \to Y^N$ such that $\overline{x}_n = \overline{\alpha}$;
- for $m, n \in \mathbb{N}_0$ with $m \ge n$, define the evolution operator $\overline{\mathcal{F}}_{m,n}: X^N \to X^N$ by

$$\overline{\mathcal{F}}_{m,n}(\overline{\alpha}) = \overline{x}_m(\cdot, n, \overline{\alpha}), \quad \overline{\alpha} \in X^N.$$

$$v_i(m+1) = L^{(i)}(m)v_{i,m}, \quad i = 1, \dots, N$$

- $v_{im}(j) = v_i(m+j), \quad j = -r, -r+1, \ldots, 0;$
- for $n \in \mathbb{N}_0$ and $\alpha_i \in X$, we obtain a unique solution $v_i(\cdot, n, \alpha_i) : [n - r, +\infty[\mathbb{Z} \to Y \text{ such that } v_{i,m}(\cdot, n, \alpha_i) = \alpha_i;$
- for $m, n \in \mathbb{N}_0$ with $m \ge n, i = 1, \dots, N$, define evolution operator $A_{m,n}^{(i)}:X\to X$ by

$$\mathcal{A}_{m,n}^{(i)}\alpha_i = v_{i,m}(\cdot, n, \alpha_i), \ \alpha_i \in X.$$

Lemma | Properties of $A^{(i)}(m,n)$

- $\mathcal{A}_{m,n}^{(i)}$ is linear for $m \ge n$;
- $\mathcal{A}_{mm}^{(i)} = \operatorname{Id}_{\mathbf{Y}}$:
- $\mathcal{A}_{l,m}^{(i)}\mathcal{A}_{m,n}^{(i)} = \mathcal{A}_{l,n}^{(i)}$ for $l \geqslant m$ and $m \geqslant n$.

• $\Gamma: Y \to X$ defined by $\Gamma u: [-r, 0]_{\mathbb{Z}} \to Y$ where

$$\Gamma u(j) = \begin{cases} u & \text{if } j = 0, \\ 0 & \text{if } j < 0, \end{cases}$$

• For all $\overline{\alpha} = (\alpha_1, \dots, \alpha_N) \in X^N$,

$$\mathcal{F}_{m,n}^{(i)}(\overline{\alpha}) = \mathcal{A}_{m,n}^{(i)} \alpha_i + \sum_{k=n}^{m-1} \mathcal{A}_{m,k+1}^{(i)} \Gamma f^{(i)}(k, \overline{x}_k), \quad i = 1, \dots, N$$

Lemma (Barreira & Valls 2007) | equation for
$$\mathcal{F}^{(i)}(m,n)$$

$$\overline{\mathcal{F}}_{m,n}(\overline{\alpha}) = \left(\mathcal{F}_{m,n}^{(1)}(\overline{\alpha}), \dots, \mathcal{F}_{m,n}^{(N)}(\overline{\alpha})\right)$$

Theorem Abstract result

Assume

- $f^{(i)}(m,\cdot): X^N \to Y^N$ are Lip functions with $f^{(i)}(m,0) = 0, \forall i$
- $\|\mathcal{A}_{m,n}^{(i)}\| \leqslant a_{m,n}^{(i)} \leqslant a_{m,n}', \quad m \geqslant n, \ i = 1..., N$

•
$$\lambda := \max_{i=1,\dots,N} \left[\sup_{m \geqslant n} \left\{ \frac{1}{a'_{m,n}} \sum_{k=n}^{m-1} a_{m,k+1}^{(i)} \operatorname{Lip}(f^{(i)}(k,\cdot)) a'_{k,n} \right\} \right] < 1$$

Then

$$\|\overline{\mathcal{F}}_{m,n}(\overline{\alpha})\| \leqslant \frac{1}{1-\lambda} a'_{m,n} \|\overline{\alpha}\|$$

for every $\overline{\alpha} = (\alpha_1, \dots, \alpha_N) \in X^N$ and $m \ge n \ge 0$.

Proof

Banach fixed point theorem in suitable complete metric space...

Stability of Hopfield models | Stability of the general model

Coming back to the Hopfield model

$$x_i(m+1) = c_i(m)x_i(m) + \sum_{j=1}^{N} h_{ij}(m, x_j(m-\tau_{ij}(m))), \quad i = 1, \dots, N$$

Theorem General stability for Hopfield model

Assume

•
$$a_{m,n}^{(i)} := \prod_{s=0}^{m-1} c_i(s) \leqslant a'_{m,n}, \qquad i = 1, \dots, N, \ m \geqslant n \geqslant 0$$

•
$$\lambda := \max_{i=1,\dots,N} \left[\sup_{m \geqslant n} \left\{ \frac{1}{a'_{m,n}} \sum_{k=n}^{m-1} a_{m,k+1}^{(i)} a'_{k,n} \sum_{j=1}^{N} H_{ij}(k) \right\} \right] < 1$$

Then, for every $\overline{\alpha}, \overline{\alpha}^* : [-r, 0]_{\mathbb{Z}} \to \mathbb{R}^N$ and $m \ge n \ge 0$

$$\|\overline{x}_m(\cdot, n, \overline{\alpha}) - \overline{x}_m(\cdot, n, \overline{\alpha}^*)\| \leqslant \frac{1}{1-\lambda} a'_{m,n} \|\overline{\alpha} - \overline{\alpha}^*\|$$

Stability of Hofield models | Proof of the general stability theorem

Proof

• The change $\overline{y}(m) = \overline{x}(m, n, \overline{\alpha}) - \overline{x}(m, n, \overline{\alpha}^*)$ transforms

$$x_{i}(m+1) = c_{i}(m)x_{i}(m) + \sum_{j=1}^{N} h_{ij}(m, x_{j}(m-\tau_{ij}(m))) \text{ into}$$
$$y_{i}(m+1) = c_{i}(m)y_{i}(m) + \sum_{j=1}^{N} \tilde{h}_{ij}(m, y_{j}(m-\tau_{ij}(m)))$$

- $\operatorname{Lip}(\widetilde{h}_{ij}(m,\cdot)) = H_{ij}(m)$ and $\overline{y} = 0$ is an equilibrium point
- For $Y = \mathbb{R}$, by the abstract result (previous Theorem)

$$\|\overline{y}_m(\cdot, n, \overline{\beta})\| \leqslant \frac{1}{1-\lambda} a'_{m,n} \|\overline{\beta}\|$$

• Setting $\overline{\beta} = \overline{\alpha} - \overline{\alpha}^*$, we conclude that

$$\|\overline{x}_m(\cdot, n, \overline{\alpha}) - \overline{x}_m(\cdot, n, \overline{\alpha}^*)\| = \|\overline{y}_m(\cdot, n, \overline{\alpha} - \overline{\alpha}^*)\| \leqslant \frac{1}{1 - \lambda} a'_{m,n} \|\overline{\alpha} - \overline{\alpha}^*\|$$

Stability of Hopfield models | Stability of the Xu-Wu model

$$x_i(m+1) = x_i(m) e^{-a_i(m)h} + \theta_i(m) \left(\sum_{j=1}^N b_{ij}(m) f_j(x_j(m-\tau(m))) + I_i(m) \right)$$

$$a_i^- = \inf_m a_i(m) \quad \ b_{ij}^+ = \sup_m |b_{ij}(m)| \quad \ \theta_i^+ = \sup_m \theta_i(m) \quad \ F_j \text{ Lip. constant of } f_j$$

Corollary Stability

Assume

$$a_i^- > \sum_{j=1}^N b_{ij}^+ F_j, \quad i = 1, \dots, N$$

Then

model Xu-Wu is globally exponentially stable, i.e., there are $\mu > 0$ and C > 1such that, for every $\overline{\alpha}, \overline{\alpha}^* : [-\tau, 0]_{\mathbb{Z}} \to \mathbb{R}^N, m \geqslant n \geqslant 0$,

$$\|\overline{x}_m(\cdot, n, \overline{\alpha}) - \overline{x}_m(\cdot, n, \overline{\alpha}^*)\| \leqslant C e^{-\mu(m-n)} \|\overline{\alpha} - \overline{\alpha}^*\|,$$

Stability of Hopfield models | Stability of the Xu-Wu model

Proof

- $c_i(m) = e^{-a_i(m)h} \Rightarrow a_{m,n}^{(i)} = \prod e^{-a_i(s)h} \leqslant e^{-\nu_i(m-n)} \leqslant e^{-\mu(m-n)} = a'_{m,n}$ where $\nu_i := a_i^- h$ and $0 < \mu < \min_i \nu_i$ such that
- $\frac{e^{\nu_i \mu} 1}{e^{\nu_i} 1} a_i^- > \sum_{i=1}^N b_{ij}^+ F_j$, for all $i = 1, \dots N$
- by computations we have

$$\begin{split} \lambda &= \max_{i=1,\dots,N} \left[\sup_{m \geqslant n} \left\{ \frac{1}{a'_{m,n}} \sum_{k=n}^{m-1} a'_{m,k+1} a'_{k,n} \, \theta_i(k) \sum_{j=1}^{N} |b_{ij}(k)| F_j \right\} \right] \\ &< \max_{i=1,\dots,N} \left[\sup_{m \geqslant n} \left\{ \sum_{k=n}^{m-1} \mathrm{e}^{(\nu_i - \mu)(k-m)} \right\} \, \mathrm{e}^{\nu_i} \, \, \frac{1 - \mathrm{e}^{-\nu_i}}{a_i^-} \frac{\mathrm{e}^{\nu_i - \mu} - 1}{\mathrm{e}^{\nu_i} - 1} a_i^- \right] \\ &= \max_{i=1,\dots,N} \left[\sup_{m \geqslant n} \left\{ \frac{1 - \mathrm{e}^{(\nu_i - \mu)(n-m)}}{\mathrm{e}^{\nu_i - \mu} - 1} \right\} \left(\mathrm{e}^{\nu_i - \mu} - 1 \right) \right] = 1 \end{split}$$

Corollary | Stability

Assume

$$\mathcal{M} = diag(a_1^-, \dots, a_N^-) - \left[b_{ij}^+ F_j\right]$$
 is an M-matrix

Then

model Xu-Wu is global exponential stable, i.e., there are $\mu > 0, C > 1$ such that

$$\|\overline{x}_m(\cdot, n, \overline{\alpha}) - \overline{x}_m(\cdot, n, \overline{\alpha}^*)\| \leqslant C e^{-\mu(m-n)} \|\overline{\alpha} - \overline{\alpha}^*\|.$$

for every $\overline{\alpha}, \overline{\alpha}^* : [-\tau, 0]_{\mathbb{Z}} \to \mathbb{R}^N$ and $m \ge n \ge 0$.

Stability of Hopfield models | Stability of the Xu-Hu model

Proof

• \mathcal{M} is an M-matrix \Leftrightarrow there is $\overline{d} = (d_1, \dots, d_N) > 0$ such that $\mathcal{M} \overline{d} > 0$, i.e.,

$$d_i a_i^- > \sum_{j=1}^N d_j b_{ij}^+ F_j$$

• The change $y_i(m) = d_i^{-1} x_i(m) \Rightarrow$

$$y_i(m+1) = y_i(m) e^{-a_i(m)h} + \theta_i(m) \left[\sum_{j=1}^N \tilde{b}_{ij}(m) \tilde{f}_j(y_j(m-\tau(m))) + \tilde{I}_i(m) \right]$$

where
$$\tilde{b}_{ij}(m) = d_i^{-1}b_{ij}(m)$$
, $\tilde{f}_j(u) = f_j(d_ju)$, and $\tilde{I}_i(m) = d_i^{-1}I_i(m)$

- f_j Lip with constant $F_j \Rightarrow \tilde{f}_j$ Lip with constant $\tilde{F}_j = d_j F_j$
- $a_i^- > \sum_{j=1}^N d_i^{-1} b_{ij}^+ d_j F_j \quad \Leftrightarrow \quad a_i^- > \sum_{j=1}^N \tilde{b}_{ij}^+ \tilde{F}_j$

Theorem | Existence and stability of periodic solution

Assume

- a_i, b_{ij}, I_i, τ are ω -periodic functions
- $\mathcal{M} = diag(a_1^-, \dots, a_N^-) \left[b_{ij}^+ F_j\right]$ is an M-matrix

Then

the $\omega\text{-periodic}$ Xu-Wu model has a unique $\omega\text{-periodic}$ solution which is globally exponentially stable.

Xu-Wu assume:

- a_i, b_{ij}, I_i, τ are ω -periodic functions
- $\exists \bar{d} > 0: d_i a_i^- > \sum_{i=1}^N d_j b_{ij}^+ F_j, i = 1, \dots, N \quad (\Leftrightarrow \mathcal{M} \text{ is an } M\text{-matrix})$
- $\hat{a}_{i} > F_{i} \sum_{j=1}^{N} |\hat{b}_{ji}|, i = 1, \dots, N, \text{ where } \hat{a}_{i} := \frac{1}{\omega} \sum_{n=1}^{\omega-1} a_{i}(n), \hat{b}_{ij} := \frac{1}{\omega} \sum_{n=1}^{\omega-1} b_{ij}(n)$

Stability of Hopfield models | Existence of periodic orbits for the Xu-Wu model

Proof

• Previous Corollary \Rightarrow there are $\mu > 0, C > 1$ such that

$$\|\overline{x}_m(\cdot, n, \overline{\alpha}) - \overline{x}_m(\cdot, n, \overline{\alpha}^*)\| \leqslant C e^{-\mu(m-n)} \|\overline{\alpha} - \overline{\alpha}^*\|$$

- choose $k \in \mathbb{N}$ such that $C e^{-\mu k\omega} < 1$
- Define $P: X^N \to X^N$ by $P(\overline{\alpha}) = \overline{x}_{n+\omega}(\cdot, n, \overline{\alpha})$
- $||P^k(\overline{\alpha}) P^k(\overline{\alpha}^*)|| \le C e^{-\mu k\omega} ||\overline{\alpha} \overline{\alpha}^*||$
- P^k contraction on $X^N \Rightarrow$ there is a unique $\overline{\varphi} \in X^N$ such that $P^k(\overline{\varphi}) = \overline{\varphi} \Leftrightarrow \overline{x}_{n+\omega}(\cdot, n, \overline{\varphi}) = \overline{\varphi}$
- $\overline{x}(m, n, \overline{\varphi}) = \overline{x}(m, n, \overline{x}_{n+\omega}(\cdot, n, \overline{\varphi})) = \overline{x}(m+\omega, n, \overline{\varphi})$
- $\overline{x}(m, n, \overline{\varphi})$ is a ω -periodic solution and all other solutions converge to it with exponential rates.

40 140 140 15 1000

Thank you

A.Bento, J.J.Oliveira, C.Silva, Nonuniform behavior and stability of Hopfield neural networks with delays Nonlinearity 30 (2017) 3088-3103.