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Standard notations

I The delay: τ > 0

I Banach space: Cn := C ([−τ, 0];Rn)

‖ϕ‖ = sup
θ∈[−τ,0]

|ϕ(θ)|,

with |x | = |(x1, . . . , xn)| = max
i
|xi | for x ∈ Rn.

I For x ∈ C ([a− τ, b];Rn), where a < b, and t ∈ [a, b],
we define xt ∈ Cn by

xt(θ) = x(t + θ), θ ∈ [−τ, 0].
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Standard notations
Delay differential equation
Classical results

Delay differential equation

I The delay differential equation

x ′(t) = f (t, xt), t ≥ 0, (1)

where f : [0,+∞)× Cn → Rn is a function and
Cn is the phase space. (Rn is not the phase space)

I Initial condition

x0 = ϕ, ϕ ∈ Cn. (2)

I Why do we need the delay?
* Biological models:

To take into account the maturation period of the species.
* Neural network models:

To take into account the communication time between
neurons.
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I (Existence) If f (t, ϕ) is continuous then there is a solution
x : [−τ, a)→ Rn of IVP (1)-(2), for some a > 0.

I (Uniqueness) If f (t, ϕ) is continuous and locally Lipschitz on
ϕ, then the solution of (1)-(2) is unique.
We denote the solution by x(t, 0, ϕ).

I (Noncontinuable solution) If f (t, ϕ) is completely continuous,
then a maximal solution of (1) either exists on [−τ,+∞) or
becomes unbounded at some finite time.
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Global stability

* Definition: A solution x̄(t) of (1) is said globally attractive
on X ⊆ Cn if

|x(t, 0, ϕ)− x̄(t)| −→ 0, as t → +∞, ∀ϕ ∈ X ;

* Definition: The model (1) is said globally exponentially
stable if there exist δ > 0 and M ≥ 1

|x(t, 0, ϕ1)− x(t, 0, ϕ2)| ≤ M e−δt ‖ϕ1 − ϕ2‖,

for all t ≥ 0, ϕ1, ϕ2 ∈ Cn.
I Two kinds of hypotheses to get the global stability:

I Small delays;
I The growth function f (t, ϕ) has a dominant undelayed part.
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Logistic equation
Wright’s conjecture
References

* Scalar Logistic equation with delay

y ′(t) = ay(t)

(
1− 1

k
y(t − τ)

)
, t ≥ 0 (3)

where a > 0 is the growth rate, k > 0 is the carrying capacity
of the ecosystem, and τ > 0 is the maturation period.

I The change x(t) = −1 + y(t)/k transforms (3) into

x ′(t) = −(1 + x(t))ax(t − τ), t ≥ 0 (4)

I The linearization of (6) is

x ′(t) = −ay(t − τ), t ≥ 0 (5)

with characteristic equation λ+ a e−λτ = 0.
I If aτ > π

2 , then the equilibrium y(t) ≡ k of (3) is unstable.
If aτ < π

2 , then the equilibrium y(t) ≡ k of (3) is locally
asymptotically stable.
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Logistic equation
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References

* Theorem [Wright, 1955]: If

aτ <
3

2
,

then the equilibrium y(t) ≡ k of (3) globally attractive on
positive solutions.

* Wright’s conjecture, [1955](remains open):

The result holds with aτ <
π

2
instead of aτ <

3

2
.

* Theorem [Yoneyama, 1987]: For any α > 3
2 , there exists

a(t) ≤ α for all t ≥ 0 such that the equilibrium y(t) ≡ k of

y ′(t) = a(t)y(t)

(
1− 1

k
y(t − 1)

)
, t ≥ 0 (6)

is unstable. If α < 3
2 then y(t) ≡ k of (6) is globally

attractive on positive solutions.

[1] E.M. Wright, J. Reine Angew. Math. 194 (1955) 66-87.
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3/2 conditions

I Main contributions
* [1] E.M. Wright, J. Reine Angew. Math. 194 (1955) 66-87.
* [2] J.A. Yorke, J. Differential Equations 7 (1970) 189-202.
* [3] T. Yoneyama, J. Math. Anal. Appl. 125 (1987) 161-173.
* [4] J. Sugie, Proc. Roy. Soc. Edinburgh 120A (1992) 179-184.
* [5] E. Liz, V. Tkachenko, & S. Trofimchuk, Discrete Contin.

Dyn. Syst. (Suppl.) (2003) 580-589.

I Small contributions
* [6] J.J. Oliveira, T. Faria, E. Liz, & S. Trofimchuk, Discrete

Contin. Dyn. Syst. 12 (2005) 481-500.
* [7] J.J. Oliveira & T. Faria, J. Math. Anal. Appl. 329 (2007)
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Hopfield’s model
Solutions bounded and defined on [−τ,+∞)
Global stability
Periodic systems

I Hopfield neural network model (1984)

x ′i (t) = −bi (xi (t)) +
n∑

j=1

cij fj(xj(t)), i = 1, . . . , n, (7)

where bi are controller functions, fj are activation functions,
and C = [cij ] is the conection matrix.

I Generalized Hopfield’s model with delays

x ′i (t) = −bi (t, xi (t)) + fi (t, xt), i = 1, . . . , n, (8)

where

* bi : [0,+∞)× R→ R are continuous functions;
* fi : [0,+∞)× Cn → R are continuous functions.
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I In Cn, consider the DDE

x ′i (t) = Fi (t, xt), t ≥ 0, i = 1, . . . , n, (9)

with F = (F1, . . . ,Fn) : [0,+∞)× Cn → Rn continuous

* Lemma [TF, JJO, 8]: If
(H) ∀t > 0, ∀ϕ ∈ Cn:

∀θ ∈ [−τ, 0), |ϕ(θ)| < |ϕ(0)| ⇒ ϕi (0)Fi (t, ϕ) < 0,

for some i ∈ {1, . . . , n} such that ‖ϕ‖ = |ϕ(0)| = |ϕi (0)|,

then the solution x(t) = x(t, 0, ϕ), ϕ ∈ Cn, of (9) is defined
and bounded on [−τ,+∞) and

|x(t, 0, ϕ)| ≤ ||ϕ||.

[8] T. Faria, J.J. Oliveira, J. Diff. Equ. (2008) 1049-1079.
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*Proof of Lemma (idea)
I x(t) = x(t, 0, ϕ) solution on [−τ, α), α > 0, with ϕ ∈ Cn

I Suppose that |x(t1)| > ‖ϕ‖ for some t1 > 0 and define

T = min

{
t ∈ [0, t1] : |x(t)| = max

s∈[0,t1]
|x(s)|

}
.

I We have |xT (θ)| = |x(T + θ)| < |x(T )|, for θ ∈ [−τ, 0).
By (H) we conclude that,

xi (T )Fi (T , xT ) < 0,

for some i ∈ {1, . . . , n} such that |xi (T )| = |x(T )|. If
xi (T ) > 0 (analogous if xi (T ) < 0), then x ′i (T ) < 0.

I xi (t) ≤ |x(t)| < |x(T )| = xi (T ), t ∈ [0,T ),

⇒ x ′i (T ) ≥ 0.

I Contradition. Thus x(t) is defined and bounded on [0,+∞).
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For (8) we assume the following hypotheses:
For each i = 1, . . . , n,

I (A1) ∃ x∗ = (x∗1 , . . . , x
∗
n ) ∈ Rn a equilibrium point of (8);

I (A2) ∃βi : [0,+∞)→ (0,+∞), ∀u, v ∈ R u 6= v :

(bi (t, u)− bi (t, v))/(u − v) ≥ βi (t), ∀t ≥ 0;

[In particular, for bi (t, u) = βi (t)u.]

I (A3) ∃ li : [0,+∞)→ (0,+∞)

|fi (t, ϕ)− fi (t, ψ)| ≤ li (t)||ϕ− ψ||, ∀t ≥ 0, ∀ϕ,ψ ∈ Cn;

I (A4) ∃ε > 0 and λ : R→ (0,+∞) a continuous function:

βi (t)− li (t)e
∫ t
t−τ λ(s) ds > λ(t) and

∫ t

0
λ(s) ds ≥ εt, ∀t ≥ 0.
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José J. Oliveira Global stability of delayed differential equations



Delay differential equation
Global Stability: Small delays

Global Stability: strong undelayed part

Hopfield’s model
Solutions bounded and defined on [−τ,+∞)
Global stability
Periodic systems

For (8) we assume the following hypotheses:
For each i = 1, . . . , n,

I (A1) ∃ x∗ = (x∗1 , . . . , x
∗
n ) ∈ Rn a equilibrium point of (8);

I (A2) ∃βi : [0,+∞)→ (0,+∞), ∀u, v ∈ R u 6= v :

(bi (t, u)− bi (t, v))/(u − v) ≥ βi (t), ∀t ≥ 0;

[In particular, for bi (t, u) = βi (t)u.]

I (A3) ∃ li : [0,+∞)→ (0,+∞)

|fi (t, ϕ)− fi (t, ψ)| ≤ li (t)||ϕ− ψ||, ∀t ≥ 0, ∀ϕ,ψ ∈ Cn;

I (A4) ∃ε > 0 and λ : R→ (0,+∞) a continuous function:

βi (t)− li (t)e
∫ t
t−τ λ(s) ds > λ(t) and

∫ t

0
λ(s) ds ≥ εt, ∀t ≥ 0.
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Global exponential stability

Theorem [SE, EG, JJO 9]: Assume (A1)-(A4)
Then the equilibrium of (8) is globally exponentially stable.

* Proof of Theorem (idea)

I The change of variables z(t) = e
∫ t
0 λ(u) dux(t) transforms (8)

into

z ′i (t) = gi (t, zt), t ≥ 0 (10)

with

gi (t, ϕ) = λ(t)ϕi (0)− e
∫ t
0
λ(u) du[bi (t, ψ(t)i (0))− fi (t, ψ(t))]

and ψ(t)(θ) = e−
∫ t+θ
0 λ(u) duϕ(θ), θ ∈ [−τ, 0]

I ψ(t) ∈ Cn

[9] S. Esteves, E. Gökmen, J.J. Oliveira, Appl. Math. Comput. 219 (2013) 2861-2870.
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I Take t ≥ 0 and ϕ ∈ Cn such that

|ϕ(θ)| < |ϕ(0)| = ‖ϕ‖ = ϕi (0) > 0, ∀θ ∈ [−τ, 0).

I From the hypotheses and assuming x∗ = 0

gi (t, ϕ) = λ(t)ϕi (0)− e
∫ t
0
λ(u) du[bi (t, ψ(t)i (0))− bi (t, 0)

+fi (t, ψ(t))− fi (t, 0)]

≤ λ(t)ϕi (0)− e
∫ t
0
λ(u) du ·

·
[
βi (t)e−

∫ t
0
λ(u) duϕi (0)− li (t)e−

∫ t−τ
0

λ(u) du‖ϕ‖
]

≤ ϕi (0)
[
λ(t)−

(
βi (t)− li (t)e

∫ t
t−τ

λ(u) du
)]

< 0

I Then (H) holds and, from the Lemma,

|x(t, 0, ϕ)| =
∣∣∣e− ∫ t

0 λ(u) duz(t, 0, ψ(0))
∣∣∣

≤ e−εt
∣∣∣z (t, 0, e− ∫ 0

· λ(u) duϕ
)∣∣∣ ≤ e−εt‖ϕ‖.
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Corollary 1: Assume (A2)-(A4)
Then the system (8)

x ′i (t) = −bi (t, xi (t)) + fi (t, xt), t ≥ 0,

is globally exponentially stable.

* Proof (idea)
I Let x̄(t) = x(t, 0, ϕ̄). The change of variables

z(t) = x(t)− x̄(t) transforms (11) into

z ′i (t) = −b̄i (t, zi (t)) + f̄i (t, zt), t ≥ 0 (11)

with

b̄i (t, u) = bi (t, u+x̄i (t)) and f̄i (t, ϕ) = fi (t, ϕ+x̄t)+bi (t, x̄i (t))−fi (t, x̄t)

I Zero is an equilibrium of (11) and from the
Theorem [SE, EG, JJO 9]

|x(t)− x̄(t)| = |z(t)| ≤ e−εt‖z0‖ = e−εt‖ϕ− ϕ̄‖, ∀t ≥ 0.
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* Corollary 2: Assume (A2) and (A3).
If li (t) are bounded and there exists α > 0:

βi (t)− li (t) > α, ∀t ≥ 0, (12)

then the system (8) is globally exponentially stable.

I Proof (idea)
By computation, it is easy to see that (12) implies that there
exists ε > 0 such that (A4) holds with λ(t) = ε, i.e.

βi (t)− li (t)eετ > ε.
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Periodic systems

Assume that the system (8)

x ′i (t) = −bi (t, xi (t)) + fi (t, xt), t ≥ 0

is ω-periodic, ω > 0, that is:

bi (t, u) = bi (t + ω, u), ∀t ≥ 0, ∀u ∈ R;

fi (t, ϕ) = fi (t + ω, ϕ), ∀t ≥ 0, ∀ϕ ∈ Cn.

Theorem [SE, EG, JJO 9]: Assume (A2), (A3), and

βi (t)− li (t) > 0, ∀t ∈ [0, ω].

Then (8) has a ω-periodic solution which is globally exponentially
stable.
[9] S. Esteves, E. Gökmen, J.J. Oliveira, Appl. Math. Comput. 219 (2013) 2861-2870.
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* (Proof) Show the existence of a periodic solution.
From Corollary 2

‖xt(ϕ)− xt(ϕ̄)‖ ≤ e−ε(t−τ)‖ϕ− ϕ̄‖, ∀t ≥ τ, ∀ϕ, ϕ̄ ∈ Cn.

I Let k ∈ N such that e−(kω−τ) ≤ 1
2 and define

P : Cn → Cn by P(ϕ) = xω(ϕ).

‖Pk(ϕ)− Pk(ϕ̄)‖ = ‖xkω(ϕ)− xkω(ϕ̄)‖ ≤ 1

2
‖ϕ− ϕ̄‖,

Pk is a contraction map on Banach space Cn. Thus, Pk has a
unique fixed point ϕ∗ ∈ Cn: Pk(ϕ∗) = ϕ∗.

I As Pk(P(ϕ∗)) = P(Pk(ϕ∗)) = P(ϕ∗), then

P(ϕ∗) = ϕ∗ ⇔ xω(ϕ∗) = ϕ∗

and x(t, 0, ϕ∗) is the periodic solution of (11).
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Example: For the periodic model:

x ′i (t) = −bi (t)xi (t) +
n∑

j=1

aij(t)fj(xj(t)) +
n∑

j=1

bij(t)fj(xj(t − τij(t))) + Ii (t) (13)

I bi , aij , bij , Ii : [0,+∞)→ R, τij(t) ≥ 0 are ω-periodic
continuous;

I fj : R→ R are Lipschitz functions with constant lj ;

I bi (t)−
n∑

j=1

lj(|aij(t)|+ |bij(t)|) > 0, ∀i , ∀t ∈ [0, ω].

Then (13) has a global exponential stable ω-periodic solution.
I In [10] assumed the additional hypothesis

bj(t)−
n∑

i=1

lj(|aij(t)|+ |bij(t)|) > 0, ∀j , ∀t ∈ [0, ω],

[10] M. Tan, Y. Tan, Appl. Math. Model. 33 (2009) 373-385.
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Thank you
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