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Delay differential equation Standard notations
Delay differential equation
Classical results

Standard notations

» The delay: 7 >0
» Banach space: C, := C([—7,0];R")

lell = sup |o(0)],
0e[—T,0]

with |x| = [(x1,..., xa)| = max |x;| for x € R".
I
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Delay differential equation
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Standard notations

» The delay: 7 >0
» Banach space: C, := C([—7,0];R")

lell = sup |o(0)],
0e[—T,0]

with |x| = [(x1,..., xa)| = max |x;| for x € R".
I

» For x € C([a— 7, b];R"), where a < b, and t € [a, b],
we define x; € C, by

xt(0) = x(t+0), 6¢€[-1,0].
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Delay differential equation Standard notations
Delay differential equation
Classical results

Delay differential equation

» The delay differential equation
X'(t) = f(t,x), t=>0, (1)

where f : [0, 4+00) x C, — R" is a function and
C, is the phase space. (R" is not the phase space)
> Initial condition

xo=¢, @¢€C,. (2)
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Delay differential equation
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Delay differential equation

» The delay differential equation
X'(t) = f(t,x), t=>0, (1)

where f : [0, 4+00) x C, — R" is a function and
C, is the phase space. (R" is not the phase space)

» Initial condition

xo=¢, @¢€C,. (2)

» Why do we need the delay?
* Biological models:
To take into account the maturation period of the species.
* Neural network models:
To take into account the communication time between
neurons.
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Delay differential equation Standard notations

Delay differential equation
Classical results

» (Existence) If f(t, ) is continuous then there is a solution
x:[=7,a) = R" of IVP (1)-(2), for some a > 0.

» (Uniqueness) If f(t, ) is continuous and locally Lipschitz on
¢, then the solution of (1)-(2) is unique.
We denote the solution by x(t, 0, ¢).

» (Noncontinuable solution) If f(t, ) is completely continuous,
then a maximal solution of (1) either exists on [—7,+00) or
becomes unbounded at some finite time.
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Delay differential equation Standard notations
Delay differential equation
Classical results

Global stability

* Definition: A solution x(t) of (1) is said globally attractive
on X C C, if

|x(t,0,¢) — x(t)] — 0, as t— +oo, VpedX,;
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Delay differential equation Standard notations
Delay differential equation
Classical results

Global stability

* Definition: A solution x(t) of (1) is said globally attractive
on X C C, if

|x(t,0,¢) — x(t)] — 0, as t— +oo, VpedX,;

* Definition: The model (1) is said globally exponentially
stable if there exist 6 >0 and M >1

[X(£,0,01) = x(t,0,02)] < Me™" [|p1 — 2],

forall t >0, ¢1,p2 € .

José J. Oliveira Global stability of delayed differential equations



Delay differential equation Standard notations
Delay differential equation
Classical results

Global stability

* Definition: A solution x(t) of (1) is said globally attractive
on X C C, if

|x(t,0,¢) — x(t)] — 0, as t— +oo, VpedX,;

* Definition: The model (1) is said globally exponentially
stable if there exist 6 >0 and M >1

[X(£,0,01) = x(t,0,02)] < Me™" [|p1 — 2],

forall t >0, ¢1,p2 € .
» Two kinds of hypotheses to get the global stability:

» Small delays;
» The growth function f(t,¢) has a dominant undelayed part.
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Logistic equation
Global Stability: Small delays Wright's conjecture

References

* Scalar Logistic equation with delay

y(t) = ()(1—1y(r—7)>, £>0 3)

where a > 0 is the growth rate, k > 0 is the carrying capacity
of the ecosystem, and 7 > 0 is the maturation period.
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Logistic equation
Global Stability: Small delays Wright's conjecture

References

* Scalar Logistic equation with delay

y(t) = ()(1—1y(r—7)>, £>0 3)

where a > 0 is the growth rate, k > 0 is the carrying capacity
of the ecosystem, and 7 > 0 is the maturation period.
» The change x(t) = —1 + y(t)/k transforms (3) into

X(t) = —(1+x(t))ax(t—7), t>0 (4)
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Logistic equation
Global Stability: Small delays Wright's conjecture
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* Scalar Logistic equation with delay

y(t) = ()(1—1y(r—7)>, £>0 3)

where a > 0 is the growth rate, k > 0 is the carrying capacity
of the ecosystem, and 7 > 0 is the maturation period.
» The change x(t) = —1 + y(t)/k transforms (3) into

X'(t) = —(1+x(t))ax(t—7), t>0 (4)
» The linearization of (6) is
X'(t)=—ay(t—7), t>0 (5)

with characteristic equation A + ae " = 0.
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Logistic equation
Global Stability: Small delays Wright's conjecture

References

Scalar Logistic equation with delay

VO =ar(e) (1= rie=n)). t20 3)

where a > 0 is the growth rate, k > 0 is the carrying capacity
of the ecosystem, and 7 > 0 is the maturation period.

» The change x(t) = —1 + y(t)/k transforms (3) into

X'(t) = —(1+x(t))ax(t—7), t>0 (4)
» The linearization of (6) is
X'(t)=—ay(t—7), t>0 (5)

with characteristic equation A + ae " = 0.

» If ar > 7, then the equilibrium y(t) = k of (3) is unstable.
If a7 < 7, then the equilibrium y(t) = k of (3) is locally
asymptotically stable.
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Logistic equation
Global Stability: Small delays Wright's conjecture

References

* Theorem [Wright, 1955]: If

ar < §

27

then the equilibrium y(t) = k of (3) globally attractive on
positive solutions.

[1] E.M. Wright, J. Reine Angew. Math. 194 (1955) 66-87.
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Logistic equation
Global Stability: Small delays Wright's conjecture

References

* Theorem [Wright, 1955]: If
ar < §
27
then the equilibrium y(t) = k of (3) globally attractive on
positive solutions.
* Wright’s conjecture, [1955](remains open):

The result holds with ar < g instead of at < 5

[1] E.M. Wright, J. Reine Angew. Math. 194 (1955) 66-87.

José J. Oliveira Global stability of delayed differential equations



Logistic equation
Global Stability: Small delays Wright's conjecture

References

* Theorem [Wright, 1955]: If

then the equilibrium y(t) = k of (3) globally attractive on
positive solutions.
* Wright’s conjecture, [1955](remains open):

The result holds with ar < g instead of at < 5

Theorem [Yoneyama, 1987]: For any o > % there exists
a(t) < « for all t > 0 such that the equilibrium y(t) = k of

YO =aoy) (1-pe-n). 20 ()

is unstable. If o < 3 then y(t) = k of (6) is globally
attractive on positive solutions.

[1] E.M. Wright, J. Reine Angew. Math. 194 (1955) 66-87.
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part Sl SEes

» Hopfield neural network model (1984)
n
<) = —bi(a(8) + Y ifCg(). i=L...n  (7)
j=1

where b; are controller functions, f; are activation functions,
and C = [¢jj] is the conection matrix.
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Hopfield’s model

Solutions bounded and defined on [— T, +00)
Global stability

Periodic systems

Global Stability: strong undelayed part

» Hopfield neural network model (1984)

(1) = ~bi(() + 3 cfCg(8).  i=1....n  (7)

j=1

where b; are controller functions, f; are activation functions,
and C = [¢jj] is the conection matrix.

» Generalized Hopfield's model with delays
xi(t) = —bi(t, xi(t)) + fi(t,xt), i=1,....n, (8)

where

* b; 1 [0,+00) x R — R are continuous functions;
* ;1 [0,+00) x C; — R are continuous functions.
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Hopfield’s model
Solutions bounded and defined on [—7, +c0)

Global stability

Global Stability: strong undelayed part Sl SEes

» In C,, consider the DDE
xi(t) = Fi(t,x;), t>0, i=1,...,n, (9)

]

with F = (F1,...,Fp) : [0,+00) x C; — R" continuous

[8] T. Faria, J.J. Oliveira, J. Diff. Equ. (2008) 1049-1079.
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Hopfield’s model
Solutions bounded and defined on [—7, +c0)

Global stability

Global Stability: strong undelayed part Sl SEes

» In C,, consider the DDE
xi(t) = Fi(t,x;), t>0, i=1,...,n, (9)

]

with F = (F1,...,Fp) : [0,+00) x C; — R" continuous
* Lemma [TF, JJO, 8]: If
(H) YVt > 0,Vp € Cp:

V0 € [-7,0), [0(0)] < @(0)] = wi(0)Fi(t, ) <O,
for some i € {1,..., n} such that ||¢|| = |¢(0)| = |i(0)],

then the solution x(t) = x(t,0,¢), ¢ € Cp, of (9) is defined
and bounded on [—7,+00) and

x(t,0,9)| < lell

[8] T. Faria, J.J. Oliveira, J. Diff. Equ. (2008) 1049-1079.
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Hopfield’s model
Solutions bounded and defined on [—7, +c0)

Global stability

Global Stability: strong undelayed part Sl SEes

*Proof of Lemma (idea)
» x(t) = x(t,0, ) solution on [—7, ), a > 0, with p € C,
» Suppose that |x(t1)| > |||l for some t; > 0 and define

T = min {t € [0,t1] : |x(t)] = max yx(s)|}.

SE[O,t]_]
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Hopfield’s model
Solutions bounded and defined on [—7, +c0)

Global stability

Global Stability: strong undelayed part Sl SEes

*Proof of Lemma (idea)
» x(t) = x(t,0, ) solution on [—7, ), a > 0, with p € C,
» Suppose that |x(t1)| > |||l for some t; > 0 and define
T = min {t € [0, t1] : [x(t)] = max ]x(s)|} .
SE[O,t]_]
» We have |x7(0)| = |x(T 4+ 0)| < |x(T)|, for 8 € [-7,0).
By (H) we conclude that,
X,'(T)F,'(T,XT) < 0,

for some i € {1,...,n} such that |x;(T)| = |x(T)|. If
xi(T) > 0 (analogous if x;(T) < 0), then x/(T) < 0.
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Hopfield’s model
Solutions bounded and defined on [—7, +c0)

Global stability

Global Stability: strong undelayed part Sl SEes

*Proof of Lemma (idea)
» x(t) = x(t,0, ) solution on [—7, ), a > 0, with p € C,
» Suppose that |x(t1)| > |||l for some t; > 0 and define

T = min {t € [0,t1] : |x(t)] = max yx(s)|}.

SE[O,t]_]
» We have |x7(0)| = |x(T 4+ 0)| < |x(T)|, for 8 € [-7,0).
By (H) we conclude that,
X,'(T)F,'(T,XT) < 0,
for some i € {1,...,n} such that |x;(T)| = |x(T)|. If
xi(T) > 0 (analogous if x;(T) < 0), then x/(T) < 0.
> xi(t) < [x(8)] < [x(T)| = x(T), t €[0, T),
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Hopfield’s model
Solutions bounded and defined on [—7, +c0)

Global stability

Global Stability: strong undelayed part Sl SEes

*Proof of Lemma (idea)
» x(t) = x(t,0, ) solution on [—7, ), a > 0, with p € C,
» Suppose that |x(t1)| > |||l for some t; > 0 and define
T = min {t € [0, t1] : [x(t)] = max ]x(s)|} .
SE[O,t]_]

» We have |x7(0)| = [x(T + 60)| < |x(T)|, for 6 € [-,0).
By (H) we conclude that,

X,'( T)F,( T, XT) < 0,

for some i € {1,...,n} such that |x;(T)| = |x(T)|. If
xi(T) > 0 (analogous if x;(T) < 0), then x/(T) < 0.
> xi(t) < [x(8)] < [x(T)| = x(T), t €[0, T),

= x/(T)>0.
» Contradition. Thus x(t) is defined and bounded on [0, +00).
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part [

For (8) we assume the following hypotheses:
Foreachi=1,...,n,

» (A1) Ix* = (x{,...,x;) € R" a equilibrium point of (8);
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global Stability: strong undelayed part Global stability

Periodic systems

For (8) we assume the following hypotheses:
Foreachi=1,...,n,

» (A1) Ix* = (x{,...,x;) € R" a equilibrium point of (8);

rtn

» (A2) 36;:[0,+00) = (0,400), Yu,v ER u # v:
(bi(t, u) — bi(t,v))/(u—v) > Bi(t), Vt=>0;

[In particular, for b;(t, u) = Bi(t)u.]
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part [

For (8) we assume the following hypotheses:
Foreachi=1,...,n,

» (A1) Ix* = (x{,...,x;) € R" a equilibrium point of (8);

rtn

» (A2) 36;:[0,+00) = (0,400), Yu,v ER u # v:
(bi(t, u) — bi(t,v))/(u—v) > Bi(t), Vt=>0;

[In particular, for b;(t, u) = Bi(t)u.]
» (A3) 3 /; : [0,400) — (0,+00)

fi(t, ) = fi(t, )] < li(t)lle —¢ll, Vt>0, Vo, € Cp;
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part [

For (8) we assume the following hypotheses:
Foreachi=1,...,n,

» (A1) Ix* = (x{,...,x;) € R" a equilibrium point of (8);

rtn

» (A2) 36;:[0,+00) = (0,400), Yu,v ER u # v:
(bi(t, u) — bi(t,v))/(u—v) > Bi(t), Vt=>0;

[In particular, for b;(t, u) = Bi(t)u.]
» (A3) 3 /; : [0,400) — (0,+00)

fi(t, ) = fi(t, )] < li(t)lle —¢ll, Vt>0, Vo, € Cp;

» (A4) 3¢ >0 and A : R — (0, +00) a continuous function:

: t
Bi(t) — (£)el = X% 5 \(¢) and / As)ds > et, t > 0.
0
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Hopfield’s model
Solutions bounded and defined on |
Global stability

Global Stability: strong undelayed part [

Global exponential stability

Theorem [SE, EG, JJO 9]: Assume (Al)-(A4)
Then the equilibrium of (8) is globally exponentially stable.

[9] S. Esteves, E. Gokmen, J.J. Oliveira, Appl. Math. Comput. 219 (2013) 2861-2870.
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Hopfield’s model
Solutions bounded and defined on [—T, +c
Global stability

Global Stability: strong undelayed part [

Global exponential stability

Theorem [SE, EG, JJO 9]: Assume (Al)-(A4)
Then the equilibrium of (8) is globally exponentially stable.

* Proof of Theorem (idea)

» The change of variables z(t) = elo M) dux(t) transforms (8)
into

) =g(tz), t=0 (10)
with
gi(t, ) = A(t)pi(0) — o MO by, 45(1)(0)) — fi(t, v(t))]
and ¥(£)(0) = e~ Jo MW duy9) 0 € [—1, 0]
> (t) € Gy

[9] S. Esteves, E. Gokmen, J.J. Oliveira, Appl. Math. Comput. 219 (2013) 2861-2870.
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part [

» Take t > 0 and ¢ € C, such that
lp(0)] < lp(0)] = ll¢ll = wi(0) >0, VO €[-7,0).
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part [

» Take t > 0 and ¢ € C, such that
lp(0)] < lp(0)] = ll¢ll = wi(0) >0, VO €[-7,0).

> From the hypotheses and assuming x* =0
gi(t.o) = AB)pi(0) — el X [by(£,45(t);(0)) — bi(t.0)
+h(t, () — f-(t 0)1

< At )go,-(O) - efo .
[ (¢ #i(0) = h(t)e™ T M g

)e~
[A (5,(t ~(t)e ff—ﬂ(“““)} <0

A

IN
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part [

» Take t > 0 and ¢ € C, such that
()] < l(0)| = llll = ¢i(0) >0, VO €[-7,0).
> From the hypotheses and assuming x* =0
gi(t,9) = A)pi(0) — o MW [by(t,4(£);(0)) — bi(t,0)
+1i(t, () — fi(t, 0)]

< At )so,-(O)—efo .
[ i(t)e #i(0) = h(t)e™ T M g
< [A (ﬂ,(t —h(pel= W) | <o
» Then (H) holds and, from the Lemma,
X(£,0.¢)] = |e7h M z(2,0,4(0))|

S e—Et

z (1,0, e M) | < oot

José J. Oliveira Global stability of delayed differential equations



Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part [

Corollary 1: Assume (A2)-(A4)
Then the system (8)

xi(t) = —bi(t, xi(t)) + fi(t, xt), t>0,

1

is globally exponentially stable.
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Hopfield’s model

Solutions bounded and defined on [— T, +00)
Global stability

Periodic systems

Global Stability: strong undelayed part

Corollary 1: Assume (A2)-(A4)
Then the system (8)

xi(t) = —bi(t, xi(t)) + fi(t, xt), t>0,

1

is globally exponentially stable.
* Proof (idea)
» Let x(t) = x(t,0,p). The change of variables
z(t) = x(t) — x(t) transforms (11) into
ZI(t) = —bi(t, zi(t)) + fi(t,z), t>0 (11)
with
Ei(t7 u) = bi(t7 u+)_(l'(t)) and f_;(t7<)0) = f;'(ta <p+)_<t)+b/(t7)_</(t))_ﬁ(ta)_Q)

José J. Oliveira Global stability of delayed differential equations



Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part [

Corollary 1: Assume (A2)-(A4)
Then the system (8)
xi(t) = —bi(t, xi(t)) + fi(t, xt), t>0,

1

is globally exponentially stable.
* Proof (idea)
» Let x(t) = x(t,0,p). The change of variables
z(t) = x(t) — x(t) transforms (11) into
ZI(t) = —bi(t, zi(t)) + fi(t,z), t>0 (11)
with
Ei(t7 u) = bi(t7 u+)_(l'(t)) and f_;(t7<)0) = f;'(ta <p+)_<t)+b/(t7)_</(t))_ﬁ(ta)_Q)
» Zero is an equilibrium of (11) and from the
Theorem [SE, EG, JJO 9]

x(t) = x(t)] = |z(t)| < e ™|zl = e lle -2, Vt=0.
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part [

* Corollary 2: Assume (A2) and (A3).
If /;(t) are bounded and there exists a > 0:

Bi(t) — li(t) > a, Vt>0, (12)

then the system (8) is globally exponentially stable.
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part [

* Corollary 2: Assume (A2) and (A3).
If /;(t) are bounded and there exists a > 0:

Bi(t) — li(t) > a, Vt>0, (12)

then the system (8) is globally exponentially stable.

» Proof (idea)
By computation, it is easy to see that (12) implies that there
exists € > 0 such that (A4) holds with \(t) =¢, i.e.

5,‘(1‘) — /,-(t)e” > €.
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Hopfield’s model
Solutions bounded and defined on [—T, +c
Global stability

Global Stability: strong undelayed part Tl S Es

Periodic systems

Assume that the system (8)
x{(t) = =bi(t, xi(t)) + fi(t,x), >0

is w-periodic, w > 0, that is:

bi(t,u) = bi(t +w,u), Vt>0, VueR,;

fi(t,o) =fi(t+w,p), Vt>0, Vpe C,.
Theorem [SE, EG, JJO 9]: Assume (A2), (A3), and
Bi(t) — li(t) >0, Vtel0,w]

Then (8) has a w-periodic solution which is globally exponentially

stable.
[9] S. Esteves, E. Gokmen, J.J. Oliveira, Appl. Math. Comput. 219 (2013) 2861-2870.
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part Tl S Es

* (Proof) Show the existence of a periodic solution.
From Corollary 2

Ixe(p) = xe(@) < el = @ll, Ve, Vo, 5 € Co.
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part Tl S Es

* (Proof) Show the existence of a periodic solution.
From Corollary 2

() — xe(@)| < e o — @, Vt>71, Vo, B € G
» Let k € N such that e~ (kv=7) < % and define
P:C,— C,by P(p) =x,(p).

1P“(2) = PX(@)Il = [IXke(0) — xku(P)]| < %II@ - &ll;

P* is a contraction map on Banach space C,. Thus, P¥ has a

*

unique fixed point p* € C,: PK(¢*) = ¢*.
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Hopfield’s model
Solutions bounded and defined on [— T, +00)

Global stability

Global Stability: strong undelayed part Tl S Es

* (Proof) Show the existence of a periodic solution.
From Corollary 2

() — xe(@)| < e o — @, Vt>71, Vo, B € G
» Let k € N such that e~ (kv=7) < % and define
P:C,— C,by P(p) =x,(p).

1P“(2) = PX(@)Il = [IXke(0) — xku(P)]| < %II@ - &ll;

P* is a contraction map on Banach space C,. Thus, P¥ has a
unique fixed point ¢* € C,: PK(¢*) = ¢*.
> As PX(P(¢*)) = P(P(¢*)) = P(¢*), then

ES

P(¢*) = ¢" & x,(¢") = ¢

and x(t,0, ¢*) is the periodic solution of (11).
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Example: For the periodic model:

xi(t) = —bi(t)xi(t) + Z 2 (£)f(x (1)) + D by(t)fi(x(t — (1)) + 1i(2) (13)

J=1

[10] M. Tan, Y. Tan, Appl. Math. Model. 33 (2009) 373-385.
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Global Stability: strong undelayed part

Example: For the periodic model:

xi(t) = — +Zau(t fi(xi(t )+Zbu(t fi((t = 735())) + 1i(2) (13)

j=1

> bj, ajj, bjj, i 1 [0,4+00) = R, 7(t) > 0 are w-periodic

continuous;
» i R— R are Lipschitz functions with constant /;;
> Z/ la(t)] + |by(t)]) >0, Vi, Vt €[0,w].

Then (13) has a global exponential stable w-periodic solution.

[10] M. Tan, Y. Tan, Appl. Math. Model. 33 (2009) 373-385.
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Example: For the periodic model:

xi(t) = — +Zau(t fi(xi(t )+Zbu(t fi((t = 735())) + 1i(2) (13)

j=1

> bj, ajj, bjj, i 1 [0,4+00) = R, 7(t) > 0 are w-periodic
continuous;
» i R— R are Lipschitz functions with constant /;;

> Z/ la(t)] + |by(t)]) >0, Vi, Vt €[0,w].

Then (13) has a global exponential stable w-periodic solution.
> In [10] assumed the additional hypothesis

Z/ (lag(8)] + Ib(B)]) > 0, ), ¥t € [0,e].

[10] M. Tan, Y. Tan, Appl. Math. Model. 33 (2009) 373-385.
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Thank you

José J. Oliveira y of delayed differential equations



	Delay differential equation
	Standard notations
	Delay differential equation
	Classical results

	Global Stability: Small delays
	Logistic equation
	Wright's conjecture
	References

	Global Stability: strong undelayed part
	Hopfield's model
	Solutions bounded and defined on [-,+)
	Global stability
	Periodic systems


