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Boundedness of solutions
ẋ(t) = f (t, xt)

Global exponential stability
ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt)))

Application
Cohen-Grossberg neural network model with unbounded delays
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the case of neural networks with bounded distributed delays was
treated.
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Notation

I n ∈ N, x = (x1, . . . , xn) ∈ Rn, |x | = max
1≤i≤n

|xi |;

I We consider the “strong fading memory” space UCg

UCg =

{
φ ∈ C ((−∞, 0]; Rn) : sup

s≤0

|φ(s)|
g(s)

<∞, φ(s)

g(s)
unif. cont.

}
where g(s) = e−αs , s ∈ (−∞, 0], with α > 0, and the norm

‖φ‖g = sup
s≤0

|φ(s)|
g(s)

;

I BCg subspace of bounded continuous functions;

I A = [aij ] ∈ Rn×n is a non-singular M-matrix if aij ≤ 0, i 6= j
and Re σ(A) > 0.
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ẋ(t) = f (t, xt )

Boundedness of solutions

I FDE in UCg

ẋ(t) = f (t, xt), t ≥ 0, (1)

f = (f1, . . . , fn) : [0,+∞)× UCg → Rn continuous,
f (B) is bounded for all B ⊆ [0,+∞)× UCg closed bounded
xt(s) = x(t + s), s ∈ (−∞, 0],

I Proposition 1
(H) ∀t > 0, ∀ϕ ∈ BCg :

∀s ∈ (−∞, 0), |ϕ(s)| < |ϕ(0)| ⇒ ϕi (0)fi (t, ϕ) < 0,

for some i ∈ {1, . . . , n} such that |ϕ(s)| = |ϕi (0)|.
Then all solution of (1) with initial condition on BCg is
defined and bounded on [0,+∞) and

|x(t, 0, ϕ)| ≤ sup
s≤0
|ϕ(s)|.
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Proof of Proposition 1 (idea)
I x(t) = x(t, 0, ϕ) solution on [−∞, a), a > 0, with ϕ ∈ BCg

k := sups≤0 |ϕ(s)|.

I Suppose that |x(t1)| > k for some t1 > 0 and define

T = min

{
t ∈ [0, t1] : |x(t)| = max

s∈[0,t1]
|x(s)|

}
.

I We have |xT (s)| = |x(T + s)| < |x(T )|, for s < 0.
By (H) we conclude that,

xi (T )fi (T , xT ) < 0,

for some i ∈ {1, . . . , n} such that |xi (T )| = |x(T )|. If
xi (T ) > 0 (analogous if xi (T ) < 0), then ẋi (T ) < 0.

I xi (t) ≤ |x(t)| < |x(T )| = xi (T ), t ∈ [0,T ),

⇒ ẋi (T ) ≥ 0.

I Contradition. Thus x(t) is defined and bounded on [0,+∞).
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⇒ ẋi (T ) ≥ 0.

I Contradition. Thus x(t) is defined and bounded on [0,+∞).
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Global exponential stability

I Consider the general neural network model with unbounded
distributed delays in UCg , g(s) = e−αs , α > 0,

ẋi (t) = −ai (xi (t))[bi (xi (t)) + fi (xt)] (2)

where ai : R→ (0,+∞), bi : R→ R and fi : UCg → R are
continuous functions such that

I (A1) ∃a > 0,∀u ∈ R,∀i ∈ {1, . . . , n} : 0 < a ≤ ai (u);

I (A2) ∃βi > 0,∀u, v ∈ R, u 6= v :

(bi (u)− bi (v))/(u − v) ≥ βi ;

[In particular, for bi (u) = βiu.]

I (A3) fi is a Lipshitz function with constant li .
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I Theorem 1
Assume (A1), (A2), (A3). If

βi > li , ∀i ∈ {1, . . . , n},

then there is a unique equilibrium point of (2), which is
globally exponentially stable, i.e. there is ε > 0 such that

|x(t, 0, ϕ)| ≤ e−εt sup
s≤0
|ϕ(s)|, t ≥ 0, ϕ ∈ BCg .

I Proof (idea)
Existence and uniqueness of equilibrium point

H : Rn → Rn

x 7→ (bi (xi ) + fi (x))n
i=1

is homeomorphism.
Then there exists x∗ ∈ Rn, H(x∗) = 0, i.e. x∗ is the
equilibrium.
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ẋi (t) = −ai (xi (t)) (bi (xi (t)) + fi (xt )))

I Theorem 1
Assume (A1), (A2), (A3). If

βi > li , ∀i ∈ {1, . . . , n},

then there is a unique equilibrium point of (2), which is
globally exponentially stable, i.e. there is ε > 0 such that

|x(t, 0, ϕ)| ≤ e−εt sup
s≤0
|ϕ(s)|, t ≥ 0, ϕ ∈ BCg .

I Proof (idea)
Existence and uniqueness of equilibrium point

H : Rn → Rn

x 7→ (bi (xi ) + fi (x))n
i=1

is homeomorphism.
Then there exists x∗ ∈ Rn, H(x∗) = 0, i.e. x∗ is the
equilibrium.
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I We may assume x∗ ≡ 0, i.e. bi (0) + fi (0) = 0.

I βi > li ⇒ ε− a(βi − li ) < 0 for some ε ∈ (0, α)

I Let x(t, 0, ϕ) a solution of (2), ϕ ∈ BCg .
The change of variables

z(t) = eεtx(t)

transforms (2) into

żi (t) = Fi (t, zt), i = 1, . . . , n, (3)

where

Fi (t, φ) = εφi (0)− ai (e
−ε(t+·)φ)eεt

[
bi (e

−εtφi (0)) + fi (e
−ε(t+·)φ)

]
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I Let φ ∈ BCg such that |φ(s)| < |φ(0)|, for s ∈ (−∞, 0).
Consider i ∈ {1, . . . , n} such that |φi (0)| = |φ(0)|.

I If φi (0) > 0 (φi (0) < 0 is analogous)
From the hypotheses we conclude that

Fi (t, φ) ≤ εφi (0)− aeεt [bi (e
−εtφi (0))− bi (0)+

+fi (e
−ε(t+·)φ)− fi (0)

]
≤ εφi (0)− a

[
βiφi (0)− li sup

s≤0
e(α−ε)s |φ(s)|

]
≤ φi (0)[ε− a(βi − li )] < 0.

Then F = (F1, . . . ,Fn) satisfies (H)

I From Proposition 1, z(t) is defined on [0,+∞) and

|x(t, 0, ϕ)| = |e−εtz(t, 0, eε·ϕ)| ≤ e−εt sup
s≤0
|ϕ(s)|.
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Teresa Faria and José J. Oliveira Global Exponential Stability of Neural Network Models



Boundedness of solutions
Global exponential stability

Application
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Generalized Cohen-Grossberg Model

Cohen-Grossberg model with unbounded distributed delays (4)

ẋi (t) = −ai (xi (t))

bi (xi (t)) +
n∑

j=1

P∑
p=1

f
(p)
ij

(∫ 0

−∞
g

(p)
ij (xj(t + s))dη

(p)
ij (s)

)
I ai : R→ (0,+∞), are continuous satisfying (A1);

I bi : R→ R are continuous satisfying (A2);

I f
(p)
ij , g

(p)
ij : R→ R are Lipschitzian with constant µ

(p)
ij , σ

(p)
ij ;

I η
(p)
ij : (−∞, 0]→ R are non-decreasing bounded normalized

functions such that

∃γ > 0 :

∫ 0

−∞
e−γsdη

(p)
ij <∞;

I N := diag(β1, . . . , βn)− [lij ], where lij =
∑P

p=1 µ
(p)
ij σ

(p)
ij .
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I Theorem 2
If N is a non-singular M-matrix, then there is a unique
equilibrium point of (4), which is globally exponentially stable
in the set of bounded initial conditions.

I Proof (idea)
N non-singular M-matrix ⇒ ∃d = (d1, . . . , dn) > 0: Nd > 0
⇒ ∃δ > 0:

βi > d−1
i

n∑
j=1

lij(1 + δ)dj , i = 1, . . . , n; (5)

I There is α ∈ (0, γ) such that∫ 0

−∞
e−αsdη

(p)
ij (s) < 1 + δ.

I Taking g(s) = e−αs , s ∈ (−∞, 0], we consider UCg the phase
space of (4).
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I The change of variables

yi (t) = d−1
i xi (t)

transforms (4) into

ẏi (t) = −āi (yi (t))
[
b̄i (yi (t)) + f̄i (yt)

]
, (6)

where

f̄i (φ) = d−1
i

n∑
j=1

P∑
p=1

f
(p)
ij

(∫ 0

−∞
g

(p)
ij (djφj(s))dη

(p)
ij (s)

)
, φ ∈ UCg

b̄i (u) = d−1
i bi (di (u)), āi = ai (di (u)), u ∈ R.

Teresa Faria and José J. Oliveira Global Exponential Stability of Neural Network Models



Boundedness of solutions
Global exponential stability

Application
Cohen-Grossberg neural network model with unbounded delays

I After some computations,

|f̄i (φ)−f̄i (ψ)| ≤

d−1
i

n∑
j=1

lij(1 + δ)dj

 ‖φ−ψ‖g , φ, ψ ∈ UCg ,

then f̄i is Lipschitz with constant li = d−1
i

∑n
j=1 lij(1 + δ)dj

I Once b̄i satisfies (A2) with β̄i = βi , the conclusion follows
from (5) and Theorem 1.
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Example

Cohen-Grossberg neural network with unbounded distributed delays

ẋi (t) = −ai (xi (t))

bi (xi (t)) +
n∑

j=1

aij fj

(∫ 0

−∞
kij(−s)xj(t + s)ds

) (7)

I aij ∈ R, ai : R→ (0,+∞) and bi : R→ R are continuous
satisfying (A1) and (A2) respectively;

I fj : R→ R are Lipschitzian with constant µj ;

I The delay kernel functions kij : [0,+∞)→ R+
0 satisfy∫ +∞

0
kij(t)dt = 1, ∃γ > 0 :

∫ +∞

0
kij(t)eγtdt <∞;

I N := diag(β1, . . . , βn)− [lij ], where lij = |aij |µj .
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I Corollary
If N is a non-singular M-matrix, then there is a unique
equilibrium point of (7), which is globally exponentially stable.

I Proof (idea)

System (4) reduces to (7) if P = 1, f
(1)
ij (u) = aij fj(u) and

η
(1)
ij (s) =

∫ s

−∞
kij(−ζ)dζ,

then the result follows from Theorem 2.

I In [1] assumed the additional conditions:
0 < ai ≤ ai (u) ≤ ai ;
N := BA− A[lij ] is a non-singular M-matrix, where
A = diag(a1, . . . , an), A = diag(a1, . . . , an).

[1] W. Wu, B.T. Cui, X.Y. Lou, Global exponential stability of Cohen-Grossberg neural networks with distributed

delays, Math. Comput. Modelling, 47 (2008) 868-873.
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Thank you
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