A mathematical periodic model for the hematopoiesis process with predictable abrupt changes

Teresa Faria^a, José J. Oliveira^b

November 2, 2022

(a) Faculdade de Ciências da Universidade de Lisboa, CMAF
 (b) Departamento de Matemática, CMAT, Universidade do Minho

Teresa Faria, José J. Oliveira Hematopoiesis periodic model with impulses

< ロ > < 同 > < 回 > < 回 >

Delay differential equation Biological models impulsive biological models

Delay differential equations

Delay differential equation Biological models impulsive biological models

Delay differential equations

• x(t) feeling of the water temperature

・ロト ・回ト ・ヨト ・ヨト

- $\tau > 0$ delay time
- $F : \mathbb{R} \to \mathbb{R}$ reaction men on the temperature regulator

Delay differential equation Biological models impulsive biological models

Delay differential equations

• x(t) feeling of the water temperature

・ロト ・回ト ・ヨト ・ヨト

- $\tau > 0$ delay time
- $F : \mathbb{R} \to \mathbb{R}$ reaction men on the temperature regulator

$$x'(t) = F(x(t))$$

Delay differential equation Biological models impulsive biological models

Delay differential equations

• x(t) feeling of the water temperature

・ロト ・回ト ・ヨト ・ヨト

- $\tau > 0$ delay time
- $F : \mathbb{R} \to \mathbb{R}$ reaction men on the temperature regulator

$$x'(t) = F(x(t-\tau))$$

Delay differential equation Biological models impulsive biological models

Delay differential equations

• x(t) feeling of the water temperature

イロト イポト イヨト イヨト

- $\tau > 0$ delay time
- $F : \mathbb{R} \to \mathbb{R}$ reaction men on the temperature regulator

▶ If the water speed depends of time. $\tau : [0, +\infty) \rightarrow [0, +\infty)$

$$x'(t) = F(x(t - \tau(t)))$$

Delay differential equation Biological models impulsive biological models

Delay differential equations

• For
$$\tau \in \mathbb{R}^+$$
 and $m \in \mathbb{N}$, consider

$$\mathcal{C} := C([-\tau, 0]; \mathbb{R}^m) = \left\{ \varphi : [-\tau, 0] \to \mathbb{R}^m \, \big| \, \varphi \text{ is continuous } \right\}$$

with the norm

$$\|\varphi\| = \sup_{\theta \in [-\tau, 0]} |\varphi(\theta)|_{\mathbb{R}^m}.$$

イロト イヨト イヨト イヨト

Delay differential equation Biological models impulsive biological models

Delay differential equations

• For
$$\tau \in \mathbb{R}^+$$
 and $m \in \mathbb{N}$, consider

$$\mathcal{C} := \mathcal{C}([-\tau, 0]; \mathbb{R}^m) = \left\{ \varphi : [-\tau, 0] \to \mathbb{R}^m \, \big| \, \varphi \text{ is continuous } \right\}$$

with the norm

$$\|\varphi\| = \sup_{\theta \in [-\tau, 0]} |\varphi(\theta)|_{\mathbb{R}^m}.$$

• The real space $(\mathcal{C}, \|\cdot\|)$ is a Banach space.

イロト イポト イヨト イヨト

Biological models Hematopoiesis model Stability criteria Delay differential equation Biological models impulsive biological models

For F : [0, +∞) × C → ℝ^m continuous, we call a delay differential equation to the equation

$$\left\{ egin{array}{ll} x'(t)=F(t,x_t), & t>0 \ x(t)=\phi(t), & t\in [- au,0] \end{array}
ight.$$

イロト イヨト イヨト イヨト

3

Biological models Hematopoiesis model Stability criteria Delay differential equation Biological models impulsive biological models

For F : [0, +∞) × C → ℝ^m continuous, we call a delay differential equation to the equation

$$\left\{ egin{array}{ll} x'(t)=F(t,x_t), & t>0 \ x(t)=\phi(t), & t\in [- au,0] \end{array}
ight.$$

Let b ∈ (0, +∞], and x : [−τ, b] → ℝ^m a continuous function. For t ∈ [0, b], the function x_t ∈ C is defined by

 $x_t(\theta) = x(t+\theta), \quad \forall \theta \in [-\tau, 0].$

Teresa Faria, José J. Oliveira Hematopoiesis periodic model with impulses

Delay differential equation Biological models impulsive biological models

Biological models

In what follows, we only consider the scalar case (m = 1) and non-negative time $(t \ge 0)$.

Scalar biological models

$$x'(t) = -\mathsf{Mortality} + \mathsf{Birth}, \quad t \ge 0,$$

where:

x(t) is the amount of living beings (animals, plants, cells, etc...);
 .
 .
 .

イロン 不同 とくほど 不同 とう

Delay differential equation Biological models impulsive biological models

Biological models

In what follows, we only consider the scalar case (m = 1) and non-negative time $(t \ge 0)$.

Scalar biological models

$$x'(t) = -ax(t) + \mathsf{Birth}, \quad t \ge 0,$$

where:

x(t) is the amount of living beings (animals, plants, cells, etc...);
a > 0
.
Mortality: ax(t)

イロト イヨト イヨト イヨト

Delay differential equation Biological models impulsive biological models

Biological models

In what follows, we only consider the scalar case (m = 1) and non-negative time $(t \ge 0)$.

Scalar biological models

$$x'(t) = -a(t)x(t) + \text{Birth}, \quad t \ge 0,$$

where:

x(t) is the amount of living beings (animals, plants, cells, etc...);

▶ $a: [0,\infty) \to \mathbb{R}^+$ is a periodic continuous function;

• Mortality: a(t)x(t)

Э

Delay differential equation Biological models impulsive biological models

Biological models

In what follows, we only consider the scalar case (m = 1) and non-negative time $(t \ge 0)$.

Scalar biological models

$$x'(t)=-a(t)x(t)+f(t,x_t), \hspace{1em} t\geq 0,$$

where:

- x(t) is the amount of living beings (animals, plants, cells, etc...);
- ▶ $a: [0,\infty) \to \mathbb{R}^+$ is a periodic continuous function;
- ▶ $\forall \phi \in C, t \mapsto f(t, \phi)$ is a periodic continuous function.
- Mortality: a(t)x(t)
- Birth: $f(t, x_t)$

3

Delay differential equation Biological models impulsive biological models

Biological models

Scalar biological models

$$x'(t) = -a(t)x(t) + f(t, x_t), \quad t \ge 0,$$
 (1)

where:

- x(t) is the amount of living beings (animals, plants, cells, etc...);
- $a: [0,\infty) \to \mathbb{R}^+$ is a periodic continuous function;
- ▶ $\forall \phi \in C, t \mapsto f(t, \phi)$ is a periodic continuous function.
- Mortality: a(t)x(t)
- Birth: $f(t, x_t)$

Only positive solutions are significant: x(t) > 0

Delay differential equation Biological models impulsive biological models

Impulsive biological models

Assume there are abrupt changes in x(t) at specific times in the future, (t_k)_{k∈ℕ}.

Delay differential equation Biological models impulsive biological models

Impulsive biological models

Assume there are abrupt changes in x(t) at specific times in the future, (t_k)_{k∈ℕ}.

Delay differential equation Biological models impulsive biological models

Impulsive biological models

Scalar impulsive delay differential equation

$$\begin{cases} x'(t) = -a(t)x(t) + f(t, x_t), & 0 \le t \ne t_k, \\ x(t_k^+) = x(t_k) + I_k(x(t_k)), & k = 1, 2, \dots \end{cases}$$
(2)

where

▶
$$(t_k)_{k \in \mathbb{N}}$$
 such that $0 < t_k \nearrow +\infty$;
▶ $I_k : \mathbb{R} \to \mathbb{R}$ continuous;
▶ $a : [0, \infty) \to (0, \infty)$ continuous;
▶ $f : [0, \infty) \times PC \to [0, \infty)$ with some regularities

イロト イヨト イヨト イヨト

Delay differential equation Biological models impulsive biological models

Impulsive biological models

Scalar impulsive delay differential equation

$$\begin{cases} x'(t) = -a(t)x(t) + f(t, x_t), & 0 \le t \ne t_k, \\ x(t_k^+) = x(t_k) + I_k(x(t_k)), & k = 1, 2, \dots \end{cases}$$
(2)

where

 Biological models
 Delay differential equation

 Hematopoiesis model
 Biological models

 Stability criteria
 impulsive biological models

The key step to deal with impulsive models.

For x(t) a solution of (2) on $[0,\infty)$, define

$$y(t) = \prod_{k: 0 \le t_k < t} \frac{x(t_k)}{x(t_k) + I_k(x(t_k))} x(t)$$

The function y(t) is continuous and it is solution of

$$y'(t) = -a(t)y(t) + \prod_{k:0 \leq t_k < t} J_k(x(t_k))f(t,x_t), \quad 0 \leq t \neq t_k.$$

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Hematopoiesis process

Process of production, multiplication, regulation, and specialization of blood cells in the bone marrow.

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Blood

Blood is made by 55% plasma and 45% blood cells.

イロト イヨト イヨト イヨト

Biological models	Hematopoiesis process
Hematopoiesis model	Hematopoiesis models
Stability criteria	Hematopoiesis model with impulses

cells	number cells/1 μl [2]	
thrombocytes (Platelets)	$15 imes 10^4 \leftrightarrow 40 imes 10^4$	
erythrocytes (red cells)	$\qquad \qquad $	
	women $35 imes 10^5 \leftrightarrow 55 imes 10^5$	
leukocytes (white cells)	$4500 \leftrightarrow 11000$	

- Platelets: 5,6%
- Red blood: 94,1%
- □ White blood: 0,3%

イロト イヨト イヨト イヨト

æ,

$1\mu l = 1mm^3$

[2] L. Dean, Blood Group and Red Cell Antigens, National Center for Biotechnology Information (US), 2005.

Biological models	Hematopoiesis process
Hematopoiesis model	Hematopoiesis models
Stability criteria	Hematopoiesis model with impulses

Maturation time in the bone marrow

cells	Maturation time
thrombocytes (Platelets)	\simeq 7 days [3]
erythrocytes (red blood)	\simeq 6 days [4]
neutrophils (60% of white blood cells)	${\simeq}15$ days [5]

[3] G.P. Langlois, M. Craig, A.R. Humphries et al., Normal and pathological dynamics of platelets in humans, J.
 Math. Biol. 75 (2017), 1411–1462.

[4] J. Bélair, M. C. Mackey, J. M. Mahaffy, Age-structured and two-delay models for erythropoiesis, Math. Biosci. 128 (1995), 317–346.

[5] Y. Yan, J. Sugie, Existence regions of positive periodic solutions for a discrete hematopoiesis model with unimodal production functions Appl. Math. Model. 68 (2019), 152–168.

イロト イヨト イヨト イヨト

3

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Hematopoiesis models

Consider the scalar biological model (1) periodic

$$x'(t) = -a(t)x(t) + f(t,x_t), \quad t \ge 0,$$

where:

- \blacktriangleright x(t) is the density of blood cells in circulation at time t;
- a(t) is the mortality rate at time t;
- f(t, x_t) is the release of new blood cells in the circulation bloodstream at time t;

Teresa Faria, José J. Oliveira Hematopoiesis periodic model with impulses

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Hematopoiesis models

Consider the scalar biological model periodic

$$x'(t) = -a(t)x(t) + \beta, \quad t \ge 0,$$

where:

x(t) is the density of blood cells in circulation at time t;
 a: [0, +∞) → ℝ⁺ is the mortality rate periodic function;
 β > 0 is the production;

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Hematopoiesis models

Consider the scalar biological model periodic

$$x'(t) = -a(t)x(t) + eta(t), \quad t \ge 0,$$

where:

x(t) is the density of blood cells in circulation at time t;
a: [0, +∞) → ℝ⁺ is the mortality rate periodic function;
β: [0, +∞) → ℝ⁺ is the production periodic function;
;
.

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Hematopoiesis models

Consider the scalar biological model periodic

$$x'(t)=-a(t)x(t)+rac{eta(t)}{x(t)}, \quad t\geq 0,$$

where:

x(t) is the density of blood cells in circulation at time t;
a: [0, +∞) → ℝ⁺ is the mortality rate periodic function;
β: [0, +∞) → ℝ⁺ is the production rate periodic function;
;
.

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Hematopoiesis models

Consider the scalar biological model periodic

$$x'(t)=-a(t)x(t)+rac{eta(t)\eta}{\eta+x(t)}, \hspace{1em} t\geq 0,$$

where:

- \blacktriangleright x(t) is the density of blood cells in circulation at time t;
- ▶ $a: [0, +\infty) \to \mathbb{R}^+$ is the mortality rate periodic function;
- β: [0, +∞) → ℝ⁺ is the maximal production rate periodic function;
- η > 0 a shape parameter;

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Hematopoiesis models

Consider the scalar biological model periodic

$$x'(t)=-a(t)x(t)+rac{eta(t)\eta}{\eta+x(t- au)}, \hspace{0.5cm} t\geq 0,$$

where:

- \blacktriangleright x(t) is the density of blood cells in circulation at time t;
- $a: [0, +\infty) \to \mathbb{R}^+$ is the mortality rate periodic function;
- β: [0, +∞) → ℝ⁺ is the maximal production rate periodic function;
- η > 0 a shape parameter;
- $\tau \ge 0$ is the time delay.

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Hematopoiesis models

Consider the scalar biological model periodic

$$x'(t) = -a(t)x(t) + \frac{\beta_1(t)\eta}{\eta + x(t-7)} + \frac{\beta_2(t)\eta}{\eta + x(t-6)} + \frac{\beta_3(t)\eta}{\eta + x(t-15)}$$

where:

- \blacktriangleright x(t) is the density of blood cells in circulation at time t;
- $a: [0, +\infty) \to \mathbb{R}^+$ is the mortality rate periodic function;
- β₁, β₂, β₃ : [0, +∞) → ℝ⁺ are the maximal production rate periodic functions;
- $\eta > 0$ a shape parameter;
- $\tau \ge 0$ is the time delay.

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Hematopoiesis model with several delays

Thus we can consider

$$x'(t)=-a(t)x(t)+\sum_{i=1}^mrac{eta_i(t)}{1+x(t- au_i(t))}, \hspace{0.5cm} t\geq 0$$

where $m \in \mathbb{N}$,

- x(t) is the density of blood cells in circulation at time t;
- $a: [0, +\infty) \to \mathbb{R}^+$ is the mortality rate periodic function;
- β_i: [0, +∞) → ℝ⁺ are the maximal production rate periodic functions;
- ▶ $\tau_i : [0, +\infty) \rightarrow [0, +\infty)$ are the periodic delay functions.

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Hematopoiesis model with several delays

Thus we can consider

$$x'(t)=-a(t)x(t)+\sum_{i=1}^mrac{eta_i(t)}{1+x(t- au_i(t))}, \hspace{0.5cm} t\geq 0$$

where $m \in \mathbb{N}$,

- x(t) is the density of blood cells in circulation at time t;
- $a: [0, +\infty) \to \mathbb{R}^+$ is the mortality rate periodic function;
- β_i: [0, +∞) → ℝ⁺ are the maximal production rate periodic functions;
- ▶ $\tau_i : [0, +\infty) \rightarrow [0, +\infty)$ are the periodic delay functions.
- Notation: The maximal delay is $\overline{\tau} = \max_{t} \tau(t)$, where

$$\tau(t) = \max_i \tau_i(t)$$

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Pioneers Hematopoiesis models

Mackey and Glass [1], proposed the following models to describe the hematopoiesis process:

Hematopoieses with monotone prodution rate

$$z'(t) = -\gamma z(t) + \frac{F_0 \eta^n}{\eta^n + z(t-\tau)^n}, \quad n > 0;$$
(3)

Hematopoiesis with unimodal prodution rate

$$z'(t) = -\gamma z(t) + \frac{F_0 \eta^n z(t-\tau)}{\eta^n + z(t-\tau)^n}, \quad n > 1;$$
(4)

z(t) density of cells at time t; τ time delay; F_0 maximal prodution rate (only for (3)); [1] M.C.Mackey, L. Glass, Science 197 (1977) 287-289. γ destruction rate; η a shape parameter.

Hematopoiesis process Hematopoiesis models Hematopoiesis model with impulses

Hematopoiesis model with linear impulses

For $(t_k)_k$ an increasing sequence such that $t_k o \infty$, we consider

$$\begin{cases} x'(t) = -a(t)x(t) + \sum_{i=1}^{m} \frac{\beta_i(t)}{1 + x(t - \tau_i(t))^n}, & 0 \le t \ne t_k, \end{cases}$$
(5)

$$\begin{array}{ll} \mathbf{x}(t_k^+) = (1+b_k)\mathbf{x}(t_k), & k \in \mathbb{N} \end{array}$$

with $n \in \mathbb{R}^+$ and the impulsive functions are linear, that is

$$I_k(u) = b_k u$$
, for $b_k \in \mathbb{R}$.

Note that

$$x(t_k^+) = (1+b_k)x(t_k) \Leftrightarrow x(t_k^+) = x(t_k) + b_k x(t_k)$$

$$PC_0^+ = \left\{ \varphi \in PC : \varphi(\theta) \ge 0 \text{ for } \theta \in [-\overline{\tau}, 0), \, \varphi(0) > 0 \right\}$$

Biological models Hematopoiesis process Hematopoiesis model Stability criteria Hematopoiesis model with impulses

Periodic Hematopoiesis model with linear impulses

$$\begin{cases} x'(t) = -a(t)x(t) + \sum_{i=1}^{m} \frac{\beta_i(t)}{1 + x(t - \tau_i(t))^n}, & 0 \le t \ne t_k, \\ x(t_k^+) = (1 + b_k)x(t_k), & k \in \mathbb{N} \end{cases}$$

イロン イロン イヨン イヨン 三日

 Biological models
 Hematopoiesis process

 Hematopoiesis model
 Hematopoiesis models

 Stability criteria
 Hematopoiesis model with impulses

Periodic Hematopoiesis model with linear impulses

$$\begin{cases} x'(t) = -a(t)x(t) + \sum_{i=1}^{m} \frac{\beta_i(t)}{1 + x(t - \tau_i(t))^n}, & 0 \le t \ne t_k, \\ x(t_k^+) = (1 + b_k)x(t_k), & k \in \mathbb{N} \end{cases}$$

▶ (H1) $a, \beta_i : [0, +\infty) \to (0, \infty)$ and $\tau_i : [0, +\infty) \to [0, +\infty)$ are ω -periodic continuous functions, for some $\omega > 0$;

イロト イヨト イヨト イヨト 三日

Biological models Hematopoiesis process Hematopoiesis model Stability criteria Hematopoiesis model with impulses

Periodic Hematopoiesis model with linear impulses

$$\left\{ egin{array}{ll} x'(t) = -a(t)x(t) + \sum_{i=1}^m rac{eta_i(t)}{1+x(t- au_i(t))^n}, & 0 \leq t
eq t_k, \ x(t_k^+) = (1+b_k)x(t_k), & k \in \mathbb{N} \end{array}
ight.$$

► (H1) $a, \beta_i : [0, +\infty) \to (0, \infty)$ and $\tau_i : [0, +\infty) \to [0, +\infty)$ are ω -periodic continuous functions, for some $\omega > 0$;

▶ (H2)
$$\exists p \in \mathbb{N}$$
 such that $0 < t_1 < \cdots < t_p < \omega$ and

$$t_{k+p} = t_k + \omega, \quad b_{k+p} = b_k, \quad k \in \mathbb{N};$$

イロト イボト イヨト イヨト

Biological models Hematopoiesis process Hematopoiesis model Hematopoiesis models Stability criteria Hematopoiesis model with impulses

Periodic Hematopoiesis model with linear impulses

$$\left\{egin{array}{ll} x'(t)=-a(t)x(t)+\sum_{i=1}^mrac{eta_i(t)}{1+x(t- au_i(t))^n}, & 0\leq t
eq t_k,\ x(t_k^+)=(1+b_k)x(t_k), & k\in\mathbb{N} \end{array}
ight.$$

- ► (H1) $a, \beta_i : [0, +\infty) \to (0, \infty)$ and $\tau_i : [0, +\infty) \to [0, +\infty)$ are ω -periodic continuous functions, for some $\omega > 0$;
- ▶ (H2) $\exists p \in \mathbb{N}$ such that $0 < t_1 < \cdots < t_p < \omega$ and

$$t_{k+p} = t_k + \omega, \quad b_{k+p} = b_k, \quad k \in \mathbb{N};$$

▶ (H3) $1 + b_k > 0$, $\forall k \in \mathbb{N}$;

イロト 不得下 イヨト イヨト 二日

Biological models Hematopoiesis process Hematopoiesis model Hematopoiesis models Stability criteria Hematopoiesis model with impulses

Periodic Hematopoiesis model with linear impulses

$$\left\{egin{array}{ll} x'(t)=-a(t)x(t)+\sum_{i=1}^mrac{eta_i(t)}{1+x(t- au_i(t))^n}, & 0\leq t
eq t_k,\ x(t_k^+)=(1+b_k)x(t_k), & k\in\mathbb{N} \end{array}
ight.$$

- (H1) $a, \beta_i : [0, +\infty) \to (0, \infty)$ and $\tau_i : [0, +\infty) \to [0, +\infty)$ are ω -periodic continuous functions, for some $\omega > 0$;
- ▶ (H2) $\exists p \in \mathbb{N}$ such that $0 < t_1 < \cdots < t_p < \omega$ and

$$t_{k+p} = t_k + \omega, \quad b_{k+p} = b_k, \quad k \in \mathbb{N};$$

(H3) 1 + b_k > 0, ∀k ∈ N;
(H4)
$$\prod_{k=1}^{p} (1 + b_k) < e^{\int_0^{\omega} a(t)dt}$$

イロト 不得 トイラト イラト・ラ

Existence of periodic solution Stability criteria for the case $n \in (0, 1]$ Stability criteria for the case n > 1

Existence of periodic solution

 Theorem 1 Faria & Oliveira [3]: Assume (H1)-(H4). Then system (5)

$$\left\{egin{array}{l} x'(t)=-a(t)x(t)+\sum_{i=1}^mrac{eta_i(t)}{1+x(t- au_i(t))^n}, & 0\leq t
eq t_k,\ x(t_k^+)=(1+b_k)x(t_k), & k\in\mathbb{N} \end{array}
ight.$$

has at least one positive $\omega\text{-periodic solution.}$

[3] T. Faria and J.J. Oliveira, Existence of positive periodic solution for scalar delay differential equations with and

without impulses, J. Dyn. Differ. Equ., 31 (2019), 1223-1245.

Existence of periodic solution Stability criteria for the case $n \in (0, 1]$ Stability criteria for the case n > 1

Existence of periodic solution

 Theorem 1 Faria & Oliveira [3]: Assume (H1)-(H4). Then system (5)

$$\left\{egin{array}{l} x'(t)=-a(t)x(t)+\sum_{i=1}^mrac{eta_i(t)}{1+x(t- au_i(t))^n}, & 0\leq t
eq t_k,\ x(t_k^+)=(1+b_k)x(t_k), & k\in\mathbb{N} \end{array}
ight.$$

has at least one positive $\omega\text{-periodic solution.}$

In what follows, we denote by x*(t) a positive ω-periodic solution of system (5).

[3] T. Faria and J.J. Oliveira, Existence of positive periodic solution for scalar delay differential equations with and without impulses, J. Dyn. Differ. Equ., 31 (2019), 1223-1245.

Biological modelsExistence of periodic solutionHematopoiesis modelStability criteriaStability criteria for the case $n \in (0, 1]$ Stability criteriaStability criteria for the case n > 1

► Theorem 2: Assume (H1)-(H4) and n ∈ (0, 1]. The periodic solution x*(t) of (5) is GAS, in the set of positive solutions, if there is T > 0 such that

$$lpha_1^* lpha_2^* < 1 \quad ext{ or } \quad lpha_1 lpha_2 < rac{9}{2},$$

where
$$\alpha_j^* = \sup_{t \ge T} \alpha_j^*(t)$$
, $\alpha_j = \sup_{t \ge T} \alpha_j^*(t) e^{\int_{t-\tau(t)}^t a(u)du}$ $(j = 1, 2)$,

and

$$\alpha_1^*(t) = \int_{t-\tau(t)}^t \sum_{i=1}^m \beta_i(s) \frac{nx^*(s-\tau_i(s))^{n-1}}{[1+x^*(s-\tau_i(s))^n]^2} B_i(s) e^{-\int_s^t a(u) \, du} \, ds$$

$$\alpha_2^*(t) = \int_{t-\tau(t)}^t \sum_{i=1}^m \beta_i(s) \frac{x^*(s-\tau_i(s))^{n-1}}{1+x^*(s-\tau_i(s))^n} B_i(s) e^{-\int_s^t a(u) \, du} \, ds$$

with
$$B_i(s) = \prod_{k:t-\tau_i(t) \le t_k < t} (1+b_k)^{-1}, \quad i = 1, ..., m.$$

Biological modelsExistence of periodic solutionHematopoiesis modelStability criteria for the case $n \in (0, 1]$ Stability criteriaStability criteria for the case n > 1

In case that $x^*(t)$ is unknown, we have the estimate

$$\mathfrak{m} \leq x^*(t) \leq \mathfrak{M}, \quad t \geq 0,$$

where

$$\mathfrak{M} = \min\left\{M\beta\overline{B}, M\overline{B}(e^{A(\omega)}-1)e^{A(\omega)}\left(\max_{t\in[0,\omega]}\frac{\sum_{i=1}^{m}\beta_{i}(t)}{a(t)}\right)\right\}$$
$$\mathfrak{m} = \frac{e^{-A(\omega)}M\underline{B}}{1+\mathfrak{M}^{n}}\max\left\{\beta, (e^{A(\omega)}-1)\left(\min_{t\in[0,\omega]}\frac{\sum_{i=1}^{m}\beta_{i}(t)}{a(t)}\right)\right\}$$
with $\beta = \int_{0}^{\omega}\sum_{i=1}^{m}\beta_{i}(s)ds, A(\omega) = \int_{0}^{\omega}a(u)du,$
$$M = \left(\prod_{k=1}^{p}(1+b_{k})^{-1} - e^{-A(\omega)}\right)^{-1},$$
$$\overline{B} = \max\left\{1, \prod_{k=j}^{j+l}(1+b_{k})^{-1}: j=1, \dots, p, l=0, \dots, p-1\right\}, \text{ and }$$
$$\underline{B} = \min\left\{1, \prod_{k=j}^{j+l}(1+b_{k})^{-1}: j=1, \dots, p, l=0, \dots, p-1\right\}.$$

Biological modelsExistence of periodic solutionHematopoiesis modelStability criteria for the case $n \in (0, 1]$ Stability criteriaStability criteria for the case n > 1

1

Э

Theorem 3: Assume **(H1)-(H4)** and n > 1. The periodic solution $x^*(t)$ of (5) is GAS (in PC_0^+) if, for some T > 0, one of the following conditions holds:

(i)
$$(\alpha_1 \gamma < \frac{9}{4} \text{ or } \alpha_1^* \gamma^* < 1)$$
 and $\inf_t \{x^*(t)\} \ge \left(\frac{n-1}{n+1}\right)^{\frac{1}{n}}$;
(ii) $(\alpha_1 \gamma < \frac{9}{4} \text{ or } \alpha_1^* \gamma^* < 1)$ and $\sup_t \{x^*(t)\} \le \left(\frac{n-1}{n+1}\right)^{\frac{1}{n}}$;
(iii) $\gamma < \frac{3}{2} \text{ or } \gamma^* < 1$,
where $\gamma^* = \sup_{t \ge T} \gamma^*(t)$, $\gamma = \sup_{t \ge T} \gamma^*(t) e^{\int_{t-\tau(t)}^t a(u) du}$, with
 $\gamma^*(t) = \rho_n \int_{t-\tau(t)}^t \sum_{i=1}^m \beta_i(s) B_i(s) e^{-\int_s^t a(u) du} ds$,

with $\rho_n = \frac{(n+1)^2}{4n} \left(\frac{n-1}{n+1}\right)^{\frac{n-1}{n}}$, $B_i(s)$, α_1 , and α_1^* as above.

 Biological models
 Existence of periodic solution

 Hematopoiesis model
 Stability criteria for the case $n \in (0, 1]$

 Stability criteria
 Stability criteria for the case n > 1

▶ No impulsive case $(b_k = 0, \forall k \in \mathbb{N})$

$$x'(t) = -a(t)x(t) + \sum_{i=1}^{m} rac{eta_i(t)}{1 + x(t - au_i(t))^n}, \ t \ge 0,$$
 (6)

[7] G. Liu, J. Yan and F. Zhang, J. Math. Anal. Appl. 334 (2007), 157-171. 🧃 🕞 א א 🗐 א א 🚊 א א 🚊 א א 🚊 א א

Biological modelsExistence of periodic solutionHematopoiesis modelStability criteria for the case $n \in (0, 1]$ Stability criteriaStability criteria for the case n > 1

▶ No impulsive case $(b_k = 0, \forall k \in \mathbb{N})$

$$x'(t) = -a(t)x(t) + \sum_{i=1}^{m} \frac{\beta_i(t)}{1 + x(t - \tau_i(t))^n}, \ t \ge 0,$$
 (6)

Theorem 5: Consider n > 1 and assume (H1). If

$$\rho_n \sup_{t \in [0,\omega]} \int_{t-\tau(t)}^t \sum_{i=1}^m \beta_i(s) \, \mathrm{e}^{-\int_s^t a(u) du} \, ds < \max\left\{1, \frac{3}{2} \, \mathrm{e}^{-\mathcal{A}}\right\},$$

$$\mathcal{A} = \sup_{t \in [0,\omega]} \int_{t-\tau(t)}^{t} a(u) du \text{ and } \rho_n = \frac{(n+1)^2}{4n} \left(\frac{n-1}{n+1}\right)^{\frac{n-1}{n}}$$
then there is a GAS positive ω -periodic solution of (6).

[7] G. Liu, J. Yan and F. Zhang, J. Math. Anal. Appl. 334 (2007), 157-171. 🧃 🕞 🌾 📑 🛌 🚊

Biological modelsExistence of periodic solutionHematopoiesis modelStability criteria for the case $n \in (0, 1]$ Stability criteriaStability criteria for the case n > 1

▶ No impulsive case $(b_k = 0, \forall k \in \mathbb{N})$

$$x'(t) = -a(t)x(t) + \sum_{i=1}^{m} rac{eta_i(t)}{1 + x(t - au_i(t))^n}, \ t \ge 0,$$
 (6)

▶ **Theorem 5**: Consider *n* > 1 and assume (H1). If

$$\rho_n \sup_{t \in [0,\omega]} \int_{t-\tau(t)}^t \sum_{i=1}^m \beta_i(s) \, \mathrm{e}^{-\int_s^t a(u) du} \, ds < \max\left\{1, \frac{3}{2} \, \mathrm{e}^{-\mathcal{A}}\right\},$$

 $\mathcal{A} = \sup_{t \in [0,\omega]} \int_{t-\tau(t)}^{t} a(u) du \text{ and } \rho_n = \frac{(n+1)^2}{4n} \left(\frac{n-1}{n+1}\right)^{\frac{n-1}{n}}$ then there is a GAS positive ω -periodic solution of (6). Liu et al [7] proved the the same assuming **(H1)**, n > 1, and

$$(n-1)^{\frac{n-1}{n}} rac{\mathrm{e}^{\mathcal{A}(\omega)}}{\mathrm{e}^{\mathcal{A}(\omega)}-1} \int_0^{\omega} \sum_{i=1}^m \beta_i(s) ds \leq 1.$$

[7] G. Liu, J. Yan and F. Zhang, J. Math. Anal. Appl. 334 (2007), 157-171.

Existence of periodic solution Stability criteria for the case $n \in (0, 1]$ Stability criteria for the case n > 1

Numerical example

Consider the 1-periodic model

$$\begin{aligned} \mathsf{x}'(t) &= -\left(1 + \frac{1}{2}\cos(2\pi t)\right)\mathsf{x}(t) + \frac{c_1\left(1 + \frac{1}{2}\cos(2\pi t)\right)}{1 + \mathsf{x}(t - 6 - \cos(2\pi t))^n} \\ &+ \frac{c_2\left(1 + \frac{1}{2}\sin(2\pi t)\right)}{1 + \mathsf{x}(t - 7 - \cos(2\pi t))^n} + \frac{c_3\left(1 + \frac{1}{2}\cos(2\pi t)\right)}{1 + \mathsf{x}(t - 15 - \cos(2\pi t))^n}, \end{aligned}$$

where c_1, c_2, c_3 are positive real numbers.

イロト イヨト イヨト イヨト

Figure: Numerical simulation of three solutions where $c_1 = 1.1$, $c_2 = 0.03$, $c_3 = 0.001$ and n = 1.03, with initial condition $\varphi(\theta) = 0.67$, $\varphi(\theta) = 0.65(1 + 0.02\cos(\theta))$, and $\varphi(\theta) = 0.69(1 + 0.02\sin(\theta))$, for $\theta \in [-16, 0]$, respectively.

Biological models	Existence of periodic solution
Hematopoiesis model	Stability criteria for the case $n \in (0, 1]$
Stability criteria	Stability criteria for the case $n > 1$

Thank you

The presented results are published in

 [8] T. Faria and J.J. Oliveira, Global asymptotic stability for a periodic delay hematopoiesis model with impulses, Applied Mathematical Modelling 79 (2020) 843-864.

・ロト ・回ト ・ヨト ・ヨト