Global stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model

Teresa Faria*, José J. Oliveira⁺

October 13, 2016

(*) Faculdade de Ciências da Universidade de Lisboa, CMAF
 (+) Departamento de Matemática e Aplicações, CMAT,
 Universidade do Minho

Model Spaces Hypothesis

Impulsive delayed differential equation

Impulsive functional differential equation:

$$\begin{cases} x'(t) = -a(t)x(t) + f(t, x_t), & 0 \le t \ne t_k \\ \Delta x(t_k) := x(t_k^+) - x(t_k) = l_k(x_{t_k}), & k = 1, 2, \cdots \end{cases}$$
(1)

where

4

▶
$$a: [0, \infty) \rightarrow [0, \infty)$$
, $I_k : \mathbb{R} \rightarrow \mathbb{R}$ are continuous;

•
$$0 < t_1 < t_2 < \cdots < t_k \rightarrow \infty;$$

•
$$x_t(s) = x(t+s)$$
, for $s \in (-\infty, 0]$;

• $f: [0, +\infty) \times \mathcal{BS} \to \mathbb{R}$ is continuous or piecewise continuous.

With \mathcal{BS} a convenient Banach space of functions $\varphi: (-\infty, 0] \to \mathbb{R}$.

イロン イヨン イヨン イヨン

Model Spaces Hypothesis

Impulsive delayed differential equation

Impulsive functional differential equation:

$$\begin{cases} x'(t) = -a(t)x(t) + f(t, x_t), & 0 \le t \ne t_k \\ \Delta x(t_k) := x(t_k^+) - x(t_k) = l_k(x_{t_k}), & k = 1, 2, \cdots \end{cases}$$
(1)

where

▶
$$a: [0, \infty) \rightarrow [0, \infty)$$
, $I_k : \mathbb{R} \rightarrow \mathbb{R}$ are continuous;

$$\bullet \quad 0 < t_1 < t_2 < \cdots < t_k \to \infty;$$

•
$$x_t(s) = x(t+s)$$
, for $s \in (-\infty, 0]$;

▶ $f : [0, +\infty) \times BS \to \mathbb{R}$ is continuous or piecewise continuous.

With \mathcal{BS} a convenient Banach space of functions $\varphi: (-\infty, 0] \to \mathbb{R}$.

• We consider Bounded Initial Conditions:

$$x_0 = \varphi \in BBS$$
, (bounded functions on BS). (2)

・ロン ・回と ・ヨン ・ヨン

*Spaces

• $[\gamma, \beta]$ compact interval of \mathbb{R} , $PC([\gamma, \beta]; \mathbb{R})$ space of functions $\phi: [\gamma, \beta] \to \mathbb{R}$ continuous except for a finite points s, $\phi(s^-), \phi(s^+)$ exist, and $\phi(s^-) = \phi(s)$;

- [γ, β] compact interval of ℝ, PC([γ, β]; ℝ) space of functions
 φ: [γ, β] → ℝ continuous except for a finite points s,
 φ(s⁻), φ(s⁺) exist, and φ(s⁻) = φ(s);
- ► R([γ, β]; ℝ) = PC([γ, β]; ℝ) on the space of bounded functions with sup norm;

- [γ, β] compact interval of ℝ, PC([γ, β]; ℝ) space of functions
 φ: [γ, β] → ℝ continuous except for a finite points s,
 φ(s⁻), φ(s⁺) exist, and φ(s⁻) = φ(s);
- ► R([γ, β]; ℝ) = PC([γ, β]; ℝ) on the space of bounded functions with sup norm;

►
$$PC := PC((-\infty, 0]; \mathbb{R}) =$$

 $\left\{ \phi : (-\infty, 0] \to \mathbb{R} |\phi|_{[\gamma, \beta]} \in R([\gamma, \beta]; \mathbb{R}), \forall [\gamma, \beta] \subseteq (-\infty, 0] \right\};$

- $[\gamma, \beta]$ compact interval of \mathbb{R} , $PC([\gamma, \beta]; \mathbb{R})$ space of functions $\phi : [\gamma, \beta] \to \mathbb{R}$ continuous except for a finite points s, $\phi(s^-), \phi(s^+)$ exist, and $\phi(s^-) = \phi(s)$;
- R([γ, β]; ℝ) = PC([γ, β]; ℝ) on the space of bounded functions with sup norm;

$$\mathsf{PC} := \mathsf{PC}((-\infty, 0]; \mathbb{R}) = \left\{ \phi : (-\infty, 0] \to \mathbb{R} |\phi|_{[\gamma, \beta]} \in \mathsf{R}([\gamma, \beta]; \mathbb{R}), \forall [\gamma, \beta] \subseteq (-\infty, 0] \right\};$$

We consider,

 $BBS := BPC = \{ \varphi \in PC : \varphi \text{ is bounded on } (-\infty, 0] \}$

with sup norm $\|\varphi\| = \sup_{s \leq 0} |\varphi(s)|.$

- [γ, β] compact interval of ℝ, PC([γ, β]; ℝ) space of functions
 φ: [γ, β] → ℝ continuous except for a finite points s,
 φ(s⁻), φ(s⁺) exist, and φ(s⁻) = φ(s);
- ► R([γ, β]; ℝ) = PC([γ, β]; ℝ) on the space of bounded functions with sup norm;

$$\mathsf{PC} := \mathsf{PC}((-\infty, 0]; \mathbb{R}) = \left\{ \phi : (-\infty, 0] \to \mathbb{R} |\phi|_{[\gamma, \beta]} \in \mathsf{R}([\gamma, \beta]; \mathbb{R}), \forall [\gamma, \beta] \subseteq (-\infty, 0] \right\};$$

We consider,

 $BBS := BPC = \{ \varphi \in PC : \varphi \text{ is bounded on } (-\infty, 0] \}$

with sup norm $\|\varphi\| = \sup_{s < 0} |\varphi(s)|$.

For $t \ge 0$, we define $PC(t) := PC([-\tau(t), 0], \mathbb{R})$, where $\tau : [0, \infty) \to [0, \infty)$ is a continuous function such that $\lim_{t\to\infty} (t - \tau(t)) = \infty$.

Hypothesis

*Hypothesis

(H1) $\exists (a_k)_k, (b_k)_k$ positive sequences:

 $b_k x^2 \leq x[x+I_k(x)] \leq a_k x^2, \quad x \in \mathbb{R}, k \in \mathbb{N};$

Teresa Faria, José J. Oliveira Impulsive delayed scalar equations

イロン イヨン イヨン イヨン

æ

Model description Model Global stability Lasota-Wazewska model Hypothesis

*Hypothesis

(H1) $\exists (a_k)_k, (b_k)_k$ positive sequences:

$$b_k x^2 \leq x[x+I_k(x)] \leq a_k x^2, \quad x \in \mathbb{R}, k \in \mathbb{N};$$

(H2)
$$P_m = \prod_{k=1}^m a_k$$
 is bounded and $\int_0^\infty a(u) du = \infty$;

イロン イヨン イヨン イヨン

æ

Model descriptionModelGlobal stabilitySpacesLasota-Wazewska modelHypothesis

*Hypothesis

(H1) $\exists (a_k)_k, (b_k)_k$ positive sequences:

$$b_k x^2 \leq x[x + I_k(x)] \leq a_k x^2, \quad x \in \mathbb{R}, k \in \mathbb{N};$$

(H2) $P_m = \prod_{k=1}^m a_k$ is bounded and $\int_0^\infty a(u)du = \infty$; (H3) $\exists \lambda_1, \lambda_2 : [0, \infty) \to [0, \infty)$ piecewise continuous: $-\lambda_1(t)\mathcal{M}_t(\varphi) \le f(t, \varphi) \le \lambda_2(t)\mathcal{M}_t(-\varphi), t \ge 0, \varphi \in PC(t), (3)$

 $\mathcal{M}_t(\varphi) := \max \left\{ 0, \sup_{\theta \in [-\tau(t), 0]} \varphi(\theta) \right\}$ Yorke's functional;

▲圖▶ ▲屋▶ ▲屋▶

Hypothesis

*Hypothesis

(H1) $\exists (a_k)_k, (b_k)_k$ positive sequences:

$$b_k x^2 \leq x[x + I_k(x)] \leq a_k x^2, \quad x \in \mathbb{R}, k \in \mathbb{N}$$

(H2) $P_m = \prod a_k$ is bounded and $\int_{a}^{\infty} a(u) du = \infty$; (H3) $\exists \lambda_1, \lambda_2 : [0, \infty) \rightarrow [0, \infty)$ piecewise continuous:

 $-\lambda_1(t)\mathcal{M}_t(\varphi) < f(t,\varphi) < \lambda_2(t)\mathcal{M}_t(-\varphi), t > 0, \varphi \in PC(t), (3)$ $\mathcal{M}_t(\varphi) := \max \left\{ 0, \sup_{\theta \in [-\tau(t), 0]} \varphi(\theta) \right\} \text{ Yorke's functional};$ (H4) $\exists T > 0$ such that

 $\alpha_1 \alpha_2 < 1.$ where $\alpha_j = \sup_{s > \tau} \int_{t-\tau(t)}^{t} \lambda_j(s) e^{-\int_s^t a(u) du} B(s) ds, j = 1, 2,$ with $B(t) := \max_{\theta \in [-\tau(t),0]} \left(\prod_{k:t+\theta \leq t_k < t} b_k^{-1} \right).$

Main result Proof of main result Corollaries

Main result

(H1)+(H3) $\implies x = 0$ is an equilibrium point of (1).

Theorem 1

Assume (H1)-(H4). Then the zero solution of (1) is globally asymptotically stable.

[1] J. Yan, Nonlinear Anal. 63 (2005) 66-80.

(ロ) (同) (E) (E) (E)

Main result Proof of main result Corollaries

Main result

(H1)+(H3) $\implies x = 0$ is an equilibrium point of (1).

Theorem 1

Assume (H1)-(H4). Then the zero solution of (1) is globally asymptotically stable.

(A1)
$$b_k x^2 \leq x[x+I_k(x)] \leq x^2, \quad x \in \mathbb{R}, k \in \mathbb{N};$$

(A2) (H2)+extra condition to deal with non-oscillatory solutions;

(A3) Yorke's condition with $\lambda(t) := \lambda_1(t) = \lambda_2(t)$; (A4) 3/2-type condition

$$\overline{\alpha} = \sup_{T \ge 0} \int_{t-\tau(t)}^{t} \lambda(s) e^{\int_{t-\tau(t)}^{s} a(u) \, du} B(s) \, ds < \frac{3}{2}.$$

(ロ) (同) (E) (E) (E)

[1] J. Yan, Nonlinear Anal. 63 (2005) 66-80.

Main result Proof of main result Corollaries

* Lemma 1 [1] If x(t) is solution of (1) then

$$y(t) = \prod_{k:0 \le t_k < t} J_k(x(t_k))x(t),$$
 (4)

with $J_k(u) = \frac{u}{u+l_k(u)}$ $(u \neq 0)$, is continuous and satisfies

$$y'(t) + a(t)y(t) = \prod_{k:0 \le t_k < t} J_k(x(t_k))f(t, x_t), \quad t \ne t_k.$$
 (5)

[1] J. Yan, Nonlinear Anal. 63 (2005) 66-80.

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Main result Proof of main result Corollaries

* Lemma 1 [1] If x(t) is solution of (1) then

$$y(t) = \prod_{k:0 \le t_k < t} J_k(x(t_k))x(t),$$
 (4)

with $J_k(u) = \frac{u}{u+l_k(u)}$ $(u \neq 0)$, is continuous and satisfies $y'(t) + a(t)y(t) = \prod_{k:0 \le t_k < t} J_k(x(t_k))f(t, x_t), \quad t \neq t_k.$ (5)

* Remark

$$(H1) \Rightarrow a_k^{-1} \le J_k(u) \le b_k^{-1} \quad \forall \ u \ne 0, \ k \in \mathbb{N}$$
(6)

(日) (四) (王) (王) (王)

[1] J. Yan, Nonlinear Anal. 63 (2005) 66-80.

Main result Proof of main result Corollaries

* Lemma 1 [1] If x(t) is solution of (1) then

$$y(t) = \prod_{k:0 \le t_k < t} J_k(x(t_k))x(t),$$
 (4)

with $J_k(u) = \frac{u}{u+I_k(u)}$ $(u \neq 0)$, is continuous and satisfies $y'(t) + a(t)y(t) = \prod_{k:0 \leq t_k < t} J_k(x(t_k))f(t, x_t), \quad t \neq t_k.$ (5)

* Remark

$$(\mathsf{H1}) \Rightarrow a_k^{-1} \le J_k(u) \le b_k^{-1} \quad \forall \ u \ne 0, \ k \in \mathbb{N}$$
(6)

* Definition

A solution x(t) is oscillatory if it is not eventually zero and it has arbitrarily large zeros; otherwise x(t) is non-oscillatory.

* Notation

$$A(t) := \int_0^t a(u) du$$

[1] J. Yan, Nonlinear Anal. 63 (2005) 66-80.

Main result Proof of main result Corollaries

* Proof of main result (idea)

<u>Case 1</u>: x(t) is non-oscillatory (assume x(t) > 0 for large t) $x(t) > 0 \Rightarrow y(t) > 0$ and from Yorke's condition (H3)

$$y'(t) \leq y'(t) + a(t)y(t) \leq 0.$$

Thus $y(t) \searrow c$ and $e^{A(t)}y(t) \searrow w$, for some c, w > 0. Now,

$$x(t) = y(t) \prod_{k:0 \le t_k < t} J_k^{-1}(x(t_k)) \le y(t) \prod_{k:0 \le t_k < t} a_k \le y(t)M,$$

with $M = \max_{m} (\prod_{k=1}^{m} a_k)$. (H2) $\Rightarrow \lim_{t \to \infty} A(t) = \infty$, consequently

$$\lim_{t\to\infty} x(t) = \lim_{t\to\infty} y(t) = 0.$$

Main result Proof of main result Corollaries

<u>*Case 2*</u>: x(t) is oscillatory

* Lemma 2 Assume (H1), (H3), and (H4)
Let
$$t_0 > T$$
 such that $y(t_0) = 0$. For any $\eta > 0$:
(i) If $-\eta \le y(t) \le \eta \alpha_2$ for all $t \in [t_0 - \tau(t_0), t_0]$, then
 $-\eta \le y(t) \le \eta \alpha_2$ for all $t > t_0$;
(ii) If $-\eta \alpha_1 \le y(t) \le \eta$ for all $t \in [t_0 - \tau(t_0), t_0]$, then
 $-\eta \alpha_1 \le y(t) \le \eta$ for all $t > t_0$.

<ロ> (四) (四) (三) (三) (三) (三)

Main result Proof of main result Corollaries

<u>*Case 2*</u>: x(t) is oscillatory

* Lemma 2 Assume (H1), (H3), and (H4)
Let
$$t_0 > T$$
 such that $y(t_0) = 0$. For any $\eta > 0$:
(i) If $-\eta \le y(t) \le \eta \alpha_2$ for all $t \in [t_0 - \tau(t_0), t_0]$, then
 $-\eta \le y(t) \le \eta \alpha_2$ for all $t > t_0$;
(ii) If $-\eta \alpha_1 \le y(t) \le \eta$ for all $t \in [t_0 - \tau(t_0), t_0]$, then
 $-\eta \alpha_1 \le y(t) \le \eta$ for all $t > t_0$.

Proof of (i) (idea). By contradiction, suppose that there exists T₀ > t₀:

$$y(T_0) > \eta \alpha_2$$
 and $-\eta \leq y(t) < y(T_0), \ \forall t < T_0.$

It is easy to show that exists $\xi_0 \in [T_0 - \tau(T_0), T_0]$ such that

$$y(\xi_0) = 0$$
 and $y(t) > 0$ for all $t \in (\xi_0, T_0]$.

Clearly, $t_0 \leq \xi_0$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Main result Proof of main result Corollaries

• By hypotheses, for $s \in [\xi_0, T_0] \setminus \{t_k\}$,

$$\begin{split} \left(e^{A(s)}y(s)\right)' &= \prod_{k:0 \le t_k < s} J_k(x(t_k))e^{A(s)}f(s, x_s) \\ &\leq e^{A(s)}\lambda_2(s) \prod_{k:0 \le t_k < s} J_k(x(t_k))\mathcal{M}_s(-x_s) \\ &= e^{A(s)}\lambda_2(s) \max\left\{0, \sup_{\theta \in [-\tau(s),0]} \left(-y(s+\theta) \prod_{k:s+\theta \le t_k < s} J_k(x(t_k))\right)\right)\right\} \\ &\leq e^{A(s)}\lambda_2(s)B(s)\mathcal{M}_s(-y_s). \end{split}$$

・ロト ・回 ト ・ヨト ・ヨト

æ

Main result Proof of main result Corollaries

• By hypotheses, for $s \in [\xi_0, T_0] \setminus \{t_k\}$,

$$\begin{split} \left(e^{\mathcal{A}(s)}y(s)\right)' &= \prod_{k:0 \le t_k < s} J_k(x(t_k))e^{\mathcal{A}(s)}f(s, x_s) \\ &\leq e^{\mathcal{A}(s)}\lambda_2(s) \prod_{k:0 \le t_k < s} J_k(x(t_k))\mathcal{M}_s(-x_s) \\ &= e^{\mathcal{A}(s)}\lambda_2(s) \max\left\{0, \sup_{\theta \in [-\tau(s),0]} \left(-y(s+\theta) \prod_{k:s+\theta \le t_k < s} J_k(x(t_k))\right)\right)\right\} \\ &\leq e^{\mathcal{A}(s)}\lambda_2(s)\mathcal{B}(s)\mathcal{M}_s(-y_s). \\ &\text{As } -y_s \le \eta \text{ for all } s \in [\xi_0, T_0], \text{ thus} \\ &\qquad \left(e^{\mathcal{A}(s)}y(s)\right)' \le \eta e^{\mathcal{A}(s)}\lambda_2(s)\mathcal{B}(s). \end{split}$$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Model description Main result Global stability Proof of main result Lasota-Wazewska model Corollaries

• Integrating over $[\xi_0, T_0]$, we get

$$egin{aligned} & y(T_0) \leq \eta e^{-A(T_0)} \int_{\xi_0}^{T_0} e^{A(s)} \lambda_2(s) B(s) \, ds \ &= \eta \int_{\xi_0}^{T_0} e^{-\int_s^{T_0} a(u) \, du} \lambda_2(s) B(s) \, ds \leq lpha_2 \eta, \end{aligned}$$

which contradicts the definition of T_0 .

・ロン ・回 と ・ヨン ・ヨン

Model description Main result Global stability Proof of main result Lasota-Wazewska model Corollaries

• Integrating over $[\xi_0, T_0]$, we get

$$egin{aligned} & y(T_0) \leq \eta e^{-\mathcal{A}(T_0)} \int_{\xi_0}^{T_0} e^{\mathcal{A}(s)} \lambda_2(s) B(s) \, ds \ &= \eta \int_{\xi_0}^{T_0} e^{-\int_s^{T_0} a(u) \, du} \lambda_2(s) B(s) \, ds \leq lpha_2 \eta, \end{aligned}$$

which contradicts the definition of T_0 .

Analogously, we obtain a contradiction if we assume that there exists T₀ > t₀:

$$y(au_0) < -\eta$$
 and $y(au_0) \leq y(t) < \eta lpha_2, \; orall t < au_0.$

・ロット (四) (日) (日)

• Integrating over $[\xi_0, T_0]$, we get

$$egin{aligned} & y(T_0) \leq \eta e^{-\mathcal{A}(T_0)} \int_{\xi_0}^{T_0} e^{\mathcal{A}(s)} \lambda_2(s) B(s) \, ds \ &= \eta \int_{\xi_0}^{T_0} e^{-\int_s^{T_0} a(u) \, du} \lambda_2(s) B(s) \, ds \leq lpha_2 \eta, \end{aligned}$$

which contradicts the definition of T_0 .

Analogously, we obtain a contradiction if we assume that there exists T₀ > t₀:

$$y(au_0) < -\eta$$
 and $y(au_0) \leq y(t) < \eta lpha_2, \; orall t < au_0.$

▶ The proof of (ii) is similar.□

・ロト ・回ト ・ヨト ・ヨト

Main result Proof of main result Corollaries

By Lemma 2, y(t) is bounded.
 x(t) oscillatory, implies y(t) oscillatory. Thus

$$-v := \liminf_{t \to \infty} y(t), \quad u := \limsup_{t \to \infty} y(t)$$

with $0 \le u, v < \infty$. We have to show that u = v = 0.

・ロン ・回 と ・ ヨ と ・ ヨ と

Main result Proof of main result Corollaries

By Lemma 2, y(t) is bounded. x(t) oscillatory, implies y(t) oscillatory. Thus

$$-v := \liminf_{t \to \infty} y(t), \quad u := \limsup_{t \to \infty} y(t)$$

with $0 \le u, v < \infty$. We have to show that u = v = 0. Fix $\varepsilon > 0$. We have

$$-v_{arepsilon} := -(v + arepsilon) < y(t) < u + arepsilon := u_{arepsilon}$$
 for large t (7)

Main result Proof of main result Corollaries

By Lemma 2, y(t) is bounded. x(t) oscillatory, implies y(t) oscillatory. Thus

$$-v := \liminf_{t \to \infty} y(t), \quad u := \limsup_{t \to \infty} y(t)$$

with $0 \le u, v < \infty$. We have to show that u = v = 0. Fix $\varepsilon > 0$. We have

$$-v_{\varepsilon} := -(v + \varepsilon) < y(t) < u + \varepsilon := u_{\varepsilon}$$
 for large t (7)

y(t) is continuous, there exists s_n ∧ ∞:
y(s_n) > 0, y(s_n) are local maxima, and y(s_n) → u, as n → ∞.
As above, there exists ξ_n ∈ [s_n − τ(s_n), s_n) such that
y(ξ_n) = 0 and y(s) > 0 for all s ∈ (ξ_n, s_n].
By (7), we have

$$y(s) > -v_{\varepsilon}, \ \forall s \in [\xi_n - \tau(\xi_n), s_n] \text{ for large } n.$$

Arguing as in the proof of Lemma 2 (i), we conclude that

 $y(s_n) \leq \alpha_2 v_{\varepsilon}.$

Letting $n \to \infty$ and $\varepsilon \to 0^+$, we obtain

 $u \leq \alpha_2 v.$

・ロン ・回 と ・ ヨ と ・ ヨ と

Arguing as in the proof of Lemma 2 (i), we conclude that

 $y(s_n) \leq \alpha_2 v_{\varepsilon}.$

Letting $n \to \infty$ and $\varepsilon \to 0^+$, we obtain

 $u \leq \alpha_2 v$.

Similar arguments lead to

 $v \leq \alpha_1 u$.

Now, we have

 $u \leq \alpha_1 \alpha_2 u, \quad v \leq \alpha_1 \alpha_2 v.$

(ロ) (同) (E) (E) (E)

Arguing as in the proof of Lemma 2 (i), we conclude that

 $y(s_n) \leq \alpha_2 v_{\varepsilon}.$

Letting $n \to \infty$ and $\varepsilon \to 0^+$, we obtain

 $u \leq \alpha_2 v$.

Similar arguments lead to

 $v \leq \alpha_1 u$.

Now, we have

$$u \leq \alpha_1 \alpha_2 u, \quad v \leq \alpha_1 \alpha_2 v.$$

(ロ) (同) (E) (E) (E)

Finally, hypotheses (H4), i.e. $\alpha_1\alpha_2 < 1$, implies $u = v = 0.\Box$

Main result Proof of main result Corollaries

Theorem 1 can be slightly improved form models

$$\begin{cases} x'(t) = -a(t)x(t) + \sum_{i=1}^{n} f_i(t, x_t^i), & 0 \le t \ne t_k \\ \Delta x(t_k) := x(t_k^+) - x(t_k) = I_k(x_{t_k}), & k = 1, 2, \cdots \end{cases}$$
(8)

where $f_i(t, x_t^i) = f_i(t, x_{|_{[t-\tau_i(t),t]}})$ and $\tau_i(t)$ are delay functions.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Main result Proof of main result Corollaries

Theorem 1 can be slightly improved form models

$$\begin{cases} x'(t) = -a(t)x(t) + \sum_{i=1}^{n} f_i(t, x_t^i), & 0 \le t \ne t_k \\ \Delta x(t_k) := x(t_k^+) - x(t_k) = I_k(x_{t_k}), & k = 1, 2, \cdots \end{cases}$$
(8)

where $f_i(t, x_t^i) = f_i(t, x_{|_{[t-\tau_i(t),t]}})$ and $\tau_i(t)$ are delay functions.

► Theorem 2 Assume (H1), (H2), there exist piecewise continuous λ_{1,i}, λ_{2,i} : [0,∞) → [0,∞) such that

$$-\lambda_{1,i}(t)\mathcal{M}_t^i(\varphi) \le f_i(t,\varphi_{|_{[-\tau_i(t),0]}}) \le \lambda_{2,i}(t)\mathcal{M}_t^i(-\varphi), \quad (9)$$

and $\alpha_1 \alpha_2 < 1$ with

$$\alpha_j(T) := \sup_{t \ge T} \int_{t-\tau(t)}^t \sum_{i=1}^n \lambda_{j,i}(s) e^{-\int_s^t a(u) du} B_i(s) ds, \ j = 1, 2,$$

and $B_i(t) := \max_{\theta \in [-\tau_i(t),0]} \left(\prod_{k:t+\theta \le t_k < t} b_k^{-1} \right), i = 1, \dots, n.$ Then the zero solution of (8) is globally asymptotically stable.

* Corollary 1 Assume (H1), (H2), f_i satisfy (9), and

$$\sum_{i=1}^n \lambda_{j,i}(t) B_i(t) \leq c_j a(t), \quad j=1,2,$$

with $c_1, c_2 > 0$. If either (i) $\mathcal{A} := \limsup_{t \ge 0} \int_{t-\tau(t)}^t a(u) \, du < \infty$ with $c_1 c_2 < \frac{1}{(1-e^{-\mathcal{A}})^2}$ or (ii) $\mathcal{A} = \infty$ with $c_1 c_2 < 1$,

then the zero solution of (8) is globally asymptotically stable.

[2] X.H. Tang, J. Math. Anal. Appl. 302 (2005) 342-359.

・ロン ・回 と ・ 回 と ・ 回 と

* Corollary 1 Assume (H1), (H2), f_i satisfy (9), and

$$\sum_{i=1}^n \lambda_{j,i}(t) B_i(t) \leq c_j a(t), \quad j=1,2,$$

with $c_1, c_2 > 0$. If either (i) $\mathcal{A} := \limsup_{t \ge 0} \int_{t-\tau(t)}^t a(u) \, du < \infty$ with $c_1 c_2 < \frac{1}{(1-e^{-\mathcal{A}})^2}$ or

(ii) $\mathcal{A} = \infty$ with $c_1 c_2 < 1$,

then the zero solution of (8) is globally asymptotically stable.

Considering the model (1), n = 1, without impulses, I_k(u) ≡ 0, and taking c₁ = c₂ = 1 in Corollary 1, we obtain the criterion presented by X.H. Tang [2].

[2] X.H. Tang, J. Math. Anal. Appl. 302 (2005) 342-359.

(ロ) (同) (E) (E) (E)

Periodic Lasota-Wazewska model Stability criteria

Periodic Lasota-Wazewska model

$$\begin{cases} N'(t) + a(t)N(t) = \sum_{i=1}^{n} b_i(t)e^{-\beta_i(t)N(t-\tau_i(t))}, \ t \neq t_k, \\ \Delta N(t_k) = I_k(N(t_k)), \ k = 1, 2, \dots, \end{cases}$$
(10)

where

(f₀) $a(t), b_i(t), \beta_i(t), \tau_i(t)$ are continuous, positive and ω -periodic; (i₀) $l_k : [0, \infty) \to \mathbb{R}$ are continuous, $u + l_k(u) > 0$, and $\exists p \in \mathbb{N}$

$$t_{k+p} = t_k + \omega, \quad I_{k+p}(u) = I_k(u), \quad k \in \mathbb{N}, u > 0;$$

 $(i_1) \exists a_1, \ldots, a_p, b_1, \ldots, b_p$, with $b_k > -1$, such that

$$b_k \leq rac{l_k(x) - l_k(y)}{x - y} \leq a_k, \quad x, y \geq 0, x
eq y, k = 1, \dots, p;$$

 $(i_2) \ \prod_{k=1}^p (1+a_k) \leq 1.$

Periodic Lasota-Wazewska model Stability criteria

æ

Some criteria for the existence of an ω-periodic solution to (10) have been established. For example in Li et al.[3]. We assume that there exists a positive ω-periodic solution N*(t).

[3] X. Li, X. Lin, D. Jiang, X. Zhang, Nonlinear Anal. 62 (2005) 683-701.

3

- Some criteria for the existence of an ω-periodic solution to (10) have been established. For example in Li et al.[3]. We assume that there exists a positive ω-periodic solution N*(t).
- With the change of variables x(t) = N(t) − N*(t), model (10) is transformed into

$$\begin{cases} x'(t) = -a(t)x(t) + f(t, x_t), & 0 \le t \ne t_k \\ \Delta x(t_k) = \tilde{l}_k(x_{t_k}), & k \in \mathbb{N}, \cdots \end{cases}$$
(11)

[3] X. Li, X. Lin, D. Jiang, X. Zhang, Nonlinear Anal. 62 (2005) 683-701.

- Some criteria for the existence of an ω-periodic solution to (10) have been established. For example in Li et al.[3]. We assume that there exists a positive ω-periodic solution N*(t).
- With the change of variables x(t) = N(t) − N*(t), model (10) is transformed into

$$\begin{cases} x'(t) = -a(t)x(t) + f(t, x_t), & 0 \le t \ne t_k \\ \Delta x(t_k) = \tilde{l}_k(x_{t_k}), & k \in \mathbb{N}, \cdots \end{cases}$$
(11)

where

$$f(t,\varphi) = \sum_{i=1}^{n} b_i(t) e^{-c_i(t)} \Big[e^{-\beta_i(t)\varphi(-\tau_i(t))} - 1 \Big],$$

$$c_i(t) = \beta_i(t) N^*(t - \tau_i(t)), \quad i = 1, \dots, n,$$

$$\tilde{l}_k(u) = l_k \big(N^*(t_k) + u \big) - l_k \big(N^*(t_k) \big), \quad k = 1, \dots, p.$$
(12)

[3] X. Li, X. Lin, D. Jiang, X. Zhang, Nonlinear Anal. 62 (2005) 683-701. 🕢 🗇 🖓 🖉 🖓 🔩 👘 👘 👘 👘 👘 👘 👘 👘

Teresa Faria, José J. Oliveira Impulsive delayed scalar equations

Periodic Lasota-Wazewska model Stability criteria

From (i_0) and (i_1) we have

$$ilde{b}_k:=b_k+1\leq rac{u+ ilde{l}_k(u)}{u}\leq a_k+1=: ilde{a}_k,\,\,u
eq 0,u>-N^*(t_k),$$

thus (H1) holds for (11);

◆□▶ ◆□▶ ◆≧▶ ◆≧▶

æ

Periodic Lasota-Wazewska model Stability criteria

▶ From (*i*₀) and (*i*₁) we have

$$ilde{b}_k:=b_k+1\leq rac{u+ ilde{l}_k(u)}{u}\leq \mathsf{a}_k+1=: ilde{a}_k,\,\,u
eq 0,u>-\mathsf{N}^*(t_k),$$

thus (H1) holds for (11);

• (*i*₂) implies that $P_m = \prod_{k=1}^m \tilde{a}_k$ is bounded. (*f*₀) implies that $\int_0^\infty a(t)dt = \infty$. Consequently, (H2) also holds for (11);

・ロン ・回 と ・ ヨ と ・ ヨ と

イロト イポト イヨト イヨト

▶ From (*i*₀) and (*i*₁) we have

$$ilde{b}_k:=b_k+1\leq rac{u+ ilde{l}_k(u)}{u}\leq \mathsf{a}_k+1=: ilde{a}_k,\,\,u
eq 0,u>-\mathsf{N}^*(t_k),$$

thus (H1) holds for (11);

• (*i*₂) implies that $P_m = \prod_{k=1}^m \tilde{a}_k$ is bounded. (*f*₀) implies that $\int_0^\infty a(t)dt = \infty$. Consequently, (H2) also holds for (11);

▶ The model (11) satisfies the York's condition (9) with

$$egin{aligned} \lambda_{1,i}(t) &:= eta_i(t) b_i(t) e^{-eta_i(t) N^*(t- au_i(t))}, \ \lambda_{2,i}(t) &= eta_i(t) b_i(t), \end{aligned}$$

for all $t \ge 0$, and $i = 1 \dots n$. This means that (H3) holds.

Periodic Lasota-Wazewska model Stability criteria

Theorem 3 Assume (f₀), (i₀)-(i₂), and that there is a positive ω-periodic solution N*(t) of (10). If there is T > 0 such that α₁α₂ < 1 with</p>

$$\alpha_1 := \sup_{t \ge T} \int_{t-\tau(t)}^t \sum_{i=1}^n \beta_i(s) b_i(s) e^{-\beta_i(s)N^*(s-\tau_i(s))} B_i(s) e^{-\int_s^t a(u) \, du} \, ds$$

$$\alpha_2 := \sup_{t \geq T} \int_{t-\tau(t)}^t \sum_{i=1}^n \beta_i(s) b_i(s) B_i(s) e^{-\int_s^t a(u) du} ds,$$

where $B_i(t) = \max_{\theta \in [-\tau_i(t),0]} \left(\prod_{k:t+\theta \le t_k < t} (1+b_k)^{-1} \right)$, then $N^*(t)$ is globally asymptotically stable i.e., it is stable and any positive solution N(t) of (10) satisfies

$$\lim_{t\to\infty} \left(N(t) - N^*(t) \right) = 0.$$

イロン イヨン イヨン イヨン

Model description Global stability Lasota-Wazewska model Stability criteria

▶ **Theorem 4** Consider $\tau_i(t) \equiv m_i \omega$ $(m_i \in \mathbb{N} \text{ and } \bar{m} = \max_{1 \leq i \leq n} m_i)$. Assume (f_0) , $(i_0)-(i_2)$ with $I_k(0) = 0$, and that there is a positive ω -periodic solution $N^*(t)$. If

$$B^{\bar{m}}\left(\overline{\beta N^*}(e^{\overline{\beta N^*}}-1)\right)^{\frac{1}{2}}\left(1-e^{-\bar{m}\int_0^\omega a(u)\,du}\right)\cdot\\\cdot\left[1-\left(1-e^{-\int_0^\omega a(u)\,du}\right)^{-1}\sum_{k=1}^p\min(b_k,0)\right]<1,$$

where
$$\overline{\beta} = \max_{t \in [0,\omega]} \beta(t)$$
, $\overline{N^*} = \max_{t \in [0,\omega]} N^*(t)$, and
 $B = \max_{1 \le l,j \le \rho} \prod_{k=1}^{j} (1 + b_{l+k})^{-1}$, then $N^*(t)$ attracts any positive solution $N(t)$ of (10).

・ロン ・回 と ・ 回 と ・ 回 と

< 口 > < 回 > < 回 > < 回 > < 回 > <

3

Thank you

Work published at *Discrete Contin. Dyn. Syst. series B* Vol. 21, n8 (2016) 2451-2472.