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Model description Model
Spaces
Hypothesis

Impulsive delayed differential equation

» Impulsive functional differential equation:

X'(t) = —a(t)x(t) + f(t, xt), 0<t#tx 1)
{ Ax(te) i= x(6) - x(t) = Ie(xe), k=12, ¢
where

» a:[0,00) = [0,00), I : R — R are continuous;

> i<t << <t = o0

> x(s) = x(t+s), for s € (—0,0];

» f:[0,4+00) x BS — R is continuous or piecewise continuous.
With BS a convenient Banach space of functions
¢ 1 (—00,0] = R.
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Model description Model
Spaces
Hypothesis

Impulsive delayed differential equation

» Impulsive functional differential equation:

X'(t) = —a(t)x(t) + f(t, xt), 0<t#tx 1)
{ Ax(te) i= x(6) - x(t) = Ie(xe), k=12, ¢

where
» a:[0,00) = [0,00), Ik : R = R are continuous;
> 0<t; <t <--- <t — 00;
> x(s) = x(t+s), for s € (—0,0];
» f:[0,4+00) x BS — R is continuous or piecewise continuous.
With BS a convenient Banach space of functions
¢ 1 (—00,0] = R.
» We consider Bounded Initial Conditions:

X0 = ¢ € BBS, (bounded functions on BS). (2)
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Model description Model
Spaces
Hypothesis

*Spaces
> [v, 8] compact interval of R, PC([y, 8]; R) space of functions
¢ : [v, 8] = R continuous except for a finite points s,

d(s7), p(sT) exist, and ¢(s7) = ¢(s);
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Model description Model
Spaces
Hypothesis

*Spaces
> [v, 8] compact interval of R, PC([y, 8]; R) space of functions
¢ : [, 8] = R continuous except for a finite points s,
¢(s7), ¢(sT) exist, and ¢(s™) = ¢(s);
> R([v,8];R) = PC([, 5]; R) on the space of bounded
functions with sup norm;
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Model description Model
Spaces
Hypothesis

*Spaces
> [v, 8] compact interval of R, PC([y, 8]; R) space of functions
¢ : [, 8] = R continuous except for a finite points s,
¢(s7), ¢(sT) exist, and ¢(s™) = ¢(s);
> R([v,8];R) = PC([, 5]; R) on the space of bounded
functions with sup norm;
» PC:= PC((—o0,0;R) =

{1 (00,01 = Rly, 5 € R( A R), VI, B] € (=00, 0] };

Teresa Faria, José J. Oliveira Impulsive delayed scalar equations



Model description Model
Spaces
Hypothesis

*Spaces

> [v, 8] compact interval of R, PC([y, 8]; R) space of functions
¢ : [, 8] = R continuous except for a finite points s,
¢(s7), ¢(sT) exist, and ¢(s™) = ¢(s);

> R([v,8];R) = PC([, 5]; R) on the space of bounded
functions with sup norm;

» PC:= PC((—o0,0;R) =
{6 (=00,01 > Rlgy, ;€ Ry, BLR), VI, 8] € (00,01

» We consider,

BBS := BPC = {¢ € PC : ¢ is bounded on (—o0, 0]}

with sup norm ||| = sup |p(s)].
s<0
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Model description Model
Spaces
Hypothesis

*Spaces

> [v, 8] compact interval of R, PC([y, 8]; R) space of functions
¢ : [, 8] = R continuous except for a finite points s,
¢(s7), ¢(sT) exist, and ¢(s™) = ¢(s);

> R([v,8];R) = PC([, 5]; R) on the space of bounded
functions with sup norm;

» PC:= PC((—o0,0;R) =
{1 (00,01 = Rly, 5 € R( A R), VI, B] € (=00, 0] };
» We consider,
BBS := BPC = {¢ € PC : ¢ is bounded on (—o0, 0]}
with sup norm ||| = sup |p(s)].
s<0

» For t > 0, we define PC(t) := PC([—7(t),0],R), where
7 :[0,00) — [0, 00) is a continuous function such that
tim (t —7(t)) = 0.
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Model description Model
Spaces
Hypothesis

*Hypothesis
(H1) 3 (ak)k, (bk)k positive sequences:

bix?® < x[x 4 I(x)] < axx®, x € R,k €N;
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Model description Model
Spaces
Hypothesis

*Hypothesis
(H1) 3 (ak)k, (bk)k positive sequences:

bix?® < x[x 4 I(x)] < axx®, x € R,k €N;

(H2) P, = H ak is bounded and / a(u)du = oo;
k=1 0
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Model description Model
Spaces
Hypothesis

*Hypothesis
(H1) 3 (ak)k, (bk)k positive sequences:

bx® < x[x + (x)] < akx®, x€R keN;
(H2) P, = H ak is bounded and / a(u)du = oo;
0

k=1
(H3) 3 A1, A2 :[0,00) — [0, 00) piecewise continuous:

— M(t)Me(p) < F(t,9) < Aa(t)Mi(—), t 20, 0 € PC(2), (3)

M(p) == max {O7sup0€[—7'(t),0] ap(ﬁ)} Yorke's functional;
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Model description Model
Spaces
Hypothesis

*Hypothesis
(H1) 3 (ak)k, (bk)k positive sequences:

bix?® < x[x 4 I(x)] < axx®, x € R,k €N;

(H2) P, = H ak is bounded and / a(u)du = oo;
k=1 0
(H3) 3 A1, A2 :[0,00) — [0, 00) piecewise continuous:

= M(HMe(p) < F(t,0) < Xa(t)Me(=¢), t 20, p € PC(2), (3)
M(p) == max {O7sup0€[—7'(t),0] ap(ﬁ)} Yorke's functional;
(H4) 3 T > 0 such that

10 < 1,

t t
where a; = ts;p_/t " Ai(s) e Js alu)du B(s)ds,j=1,2,

with B(t) := maxge[—r(1),0] (Hk t+0<t, <t b;1>'
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Main result
Global stability Proof of main result
Corollaries

Main result

(H1)+(H3) = x = 0 is an equilibrium point of (1).
» Theorem 1

Assume (H1)-(H4). Then the zero solution of (1) is globally
asymptotically stable.

[1] J. Yan, Nonlinear Anal. 63 (2005) 66-80.
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Main result
Global stability Proof of main result
Corollaries

Main result

(H1)+(H3) = x = 0 is an equilibrium point of (1).
» Theorem 1
Assume (H1)-(H4). Then the zero solution of (1) is globally
asymptotically stable.
> Yan's work [1]
(A1) bex® < x[x 4+ I (x)] £ x?, xcRkeN;
(A2) (H2)+extra condition to deal with
non-oscillatory solutions;
(A3) Yorke's condition with A(t) := A1(t) = A2(t);
(A4) 3/2-type condition
3

t S
@ = sup / A(s) el 2@ p(sy gs < 2.
7>0Jt—r(t) 2

[1] J. Yan, Nonlinear Anal. 63 (2005) 66-80.
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Main result
Global stability Proof of main result

Corollaries

* Lemma 1 [1] If x(t) is solution of (1) then

[T 5xw)x(o), (4)

k:0<t <t
with Jx(u) = ] (u # 0), is continuous and satisfies
YO +aty(t)= [ J&x))f(tx), t#t. (5)
k:0<ti <t

[1] J. Yan, Nonlinear Anal. 63 (2005) 66-80.
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Main result
Global stability Proof of main result

Corollaries

* Lemma 1 [1] If x(t) is solution of (1) then

[T 5xw)x(o), (4)

k:0<t <t
with Jx(u) = ] (u # 0), is continuous and satisfies
YO +aty(t)= [ J&x))f(tx), t#t. (5)
k:0<t, <t
* Remark
H)=a ' <Ah(u)<b' Vu#0keN (6)

[1] J. Yan, Nonlinear Anal. 63 (2005) 66-80.
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Main result
Global stability Proof of main result

Corollaries

* Lemma 1 [1] If x(t) is solution of (1) then

[T 5xw)x(o), (4)

k:0<t <t
with Jx(u) = ] (u # 0), is continuous and satisfies
YO +aty(t)= [ J&x))f(tx), t#t. (5)
k:0<t, <t
* Remark
H)=a ' <Ah(u)<b' Vu#0keN (6)

* Definition
A solution x(t) is oscillatory if it is not eventually zero and it
has arbitrarily large zeros; otherwise x(t) is non-oscillatory.

* Notation

A(t) fo

[1] J. Yan, Nonlinear Anal. 63 (2005) 66-80.

Teresa Faria, José J. Oliveira Impulsive delayed scalar equations



Main result
Global stability Proof of main result

Corollaries

* Proof of main result (idea)
Case 1: x(t) is non-oscillatory (assume x(t) > 0 for large t)
x(t) > 0= y(t) > 0 and from Yorke's condition (H3)

y'(t) <y'(t) +a(t)y(t) <O.

Thus y(t) \, ¢ and e*()y(t) \, w, for some c,w > 0.
Now,

=y(t) [ J4* y®) ] a <y(t)Mm,

k:0<t <t k:0<t <t
with M = maxq, ([T5-; ak).
(H2) = lim A(t) = oo, consequently
t—00

lim x(t) = lim y(t) =0.

t—00 t—00
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Main result
Global stability Proof of main result

Corollaries

Case 2: x(t) is oscillatory

* Lemma 2 Assume (H1), (H3), and (H4)
Let to > T such that y(ty) = 0. For any n > 0:
(i) If —n < y(t) < nay for all t € [to — 7(to), to], then
—n < y(t) < nay for all t > ty;
(ii) If —mag < y(t) < nfor all t € [ty — 7(to), tp], then
—nag < y(t) < nforall t > tp.
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Main result
Global stability Proof of main result

Corollaries

Case 2: x(t) is oscillatory

* Lemma 2 Assume (H1), (H3), and (H4)
Let to > T such that y(ty) = 0. For any n > 0:
(i) If —n < y(t) < nay for all t € [to — 7(to), to], then
—n < y(t) < nay for all t > ty;
(ii) If —mag < y(t) < nfor all t € [ty — 7(to), tp], then
—nag < y(t) < nforall t > tp.
» Proof of (i) (idea).
By contradiction, suppose that there exists Ty > to:

y(To) > nag and —n < y(t) < y(To), YVt < Tp.
It is easy to show that exists {y € [Top — 7(To), To] such that
y(é0) =0 and y(t) > 0 for all t € (&, To)-

Clearly, to < &.

Teresa Faria, José J. Oliveira Impulsive delayed scalar equations



Main result
Global stability Proof of main result

Corollaries

» By hypotheses, for s € [, To] \ {tk},

G ) [T s(x(t))e©(s,x)

k:0<t <s
<e s)>\2 H Jk ( )
k:0<ty,<s
= eA(s))\z(s) max< 0, sup —y(s+6) H Je(x(tx))
0€[—7(s),0] kis+0<t <s

< e Ny (5)B(s) Ms(—ys).
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Main result
Global stability Proof of main result

Corollaries

» By hypotheses, for s € [, To] \ {tk},

G ) [T s(x(t))e©(s,x)

k:0<t <s
<e s)>\2 H Jk ( )
k:0<ty,<s
= eA(s))\z(s) max< 0, sup —y(s+6) H Je(x(tx))
0€[—7(s),0] kis+0<t <s

< eA(s))\z(s)B(s)Ms(—ys).
» As —ys < for all s € [, To], thus

(#y(5))" < ne"ra(5)B().
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Main result
Global stability Proof of main result

Corollaries

> Integrating over [{p, To], we get
To
y(To) < ne=AT0) e”) )\, (s)B(s) ds
To
= 77/ e I AW du), (5)B(s) ds < azn,
3

0

which contradicts the definition of Tg.
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Main result
Global stability Proof of main result

Corollaries

> Integrating over [{p, To], we get
To
y(To) < ne=AT0) e”) )\, (s)B(s) ds

To
= 77/ e I AW du), (5)B(s) ds < azn,
&

0

which contradicts the definition of Tg.

» Analogously, we obtain a contradiction if we assume that
there exists Ty > tg:

y(To) < —n and y(To) < y(t) < naz, Vt < To.
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Main result
Global stability Proof of main result

Corollaries

> Integrating over [{p, To], we get
To
y(To) < ne=AT0) e”) )\, (s)B(s) ds

To
= 77/ e I AW du), (5)B(s) ds < azn,
&

0

which contradicts the definition of Tg.

» Analogously, we obtain a contradiction if we assume that
there exists Ty > tg:

y(To) < —n and y(To) < y(t) < naz, Vt < To.

» The proof of (ii) is similar.C
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Main result
Global stability Proof of main result

Corollaries

» By Lemma 2, y(t) is bounded.
x(t) oscillatory, implies y(t) oscillatory. Thus

—v = I|tnl|or<13fy(t), u = limsup y(t)

t—o0

with 0 < u, v < co. We have to show that u = v = 0.
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Main result
Global stability Proof of main result

Corollaries

» By Lemma 2, y(t) is bounded.
x(t) oscillatory, implies y(t) oscillatory. Thus

—v = I|tnl|or<13fy(t), u = limsup y(t)

t—o0
with 0 < u, v < co. We have to show that u = v = 0.
> Fix € > 0. We have

—v.i=—(v+e) <y(t) <u+e:= u for large t (7)
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Main result
Global stability Proof of main result

Corollaries

» By Lemma 2, y(t) is bounded.
x(t) oscillatory, implies y(t) oscillatory. Thus

—v = I|£Lgfy(t), u = limsup y(t)

t—o0
with 0 < u, v < co. We have to show that u = v = 0.
> Fix € > 0. We have

—v.i=—(v+e) <y(t) <u+e:= u for large t (7)
» y(t) is continuous, there exists s,  oo:
y(sn) > 0,y(sp) are local maxima, and y(s,) — u, as n — oo.
As above, there exists &, € [s, — 7(sp), sn) such that
y(&n) =0 and y(s) > 0 for all s € (&, sp].
By (7), we have
y(s) > —ve, Vs e [&n — T(&n), sn] for large n.
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Main result
Global stability Proof of main result

Corollaries

» Arguing as in the proof of Lemma 2 (i), we conclude that
y(sn) < anve.
Letting n — oo and € — 0™, we obtain

u<apv.
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Main result
Global stability Proof of main result

Corollaries

» Arguing as in the proof of Lemma 2 (i), we conclude that
y(sn) < anve.
Letting n — oo and € — 0™, we obtain
u<apv.
» Similar arguments lead to
v < ayu.
Now, we have

u< aiaou, v < ajaov.
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Main result
Global stability Proof of main result

Corollaries

» Arguing as in the proof of Lemma 2 (i), we conclude that
y(sn) < anve.
Letting n — oo and € — 0™, we obtain
u<apv.
» Similar arguments lead to
v < ayu.
Now, we have
u< aiaou, v < ajaov.

» Finally, hypotheses (H4), i.e. ayap < 1, implies u = v = 0.0
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Main result
Global stability Proof of main result

Corollaries

» Theorem 1 can be slightly improved form models

() = —a(Bx(O) + 3 f(Ex),  0<tAn
Ax(t) = x(6) — x(8) = () k=12,

(8)

k
where fi(t,x!) = fi(t, X, ) @and 7i(t) are delay functions.
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Main result
Global stability Proof of main result

Corollaries

» Theorem 1 can be slightly improved form models

(8 = a(x(t) + Y (txd).  0<t#n,
Ax(t) = x(6) — x(8) = () k=12,

(8)

where fi(t,x!) = fi(t, X, ) @and 7i(t) are delay functions.
» Theorem 2 Assume (H1), (H2), there exist piecewise
continuous Ay j, A2j 1 [0,00) — [0, 00) such that

“MLOMIR) < it ) < A OMi(—0), (9)
and ajas < 1 with

t t
o5(7) = S”p/ ( )Zm(s)e*fs AUy (s)ds, j=1,2,
t—7(t

and B; (t) = MaXge[—r;(t),0] Hk <t <t b_ > =1,...,n

Then the zero solution of (8) is globally asymptotically stable.
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Main result
Global stability Proof of main result

Corollaries
* Corollary 1 Assume (H1), (H2), f; satisfy (9), and

ZAJ, Bi(t) < ga(t), j=1,2,

with ¢, o > 0. If either

(i) A :=limsup;>q ftt_T(t) a(u) du < oo with cio < m
or

(i) A = oo with 1 < 1,

then the zero solution of (8) is globally asymptotically stable.

[2] X.H. Tang, J. Math. Anal. Appl. 302 (2005) 342-359.
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Main result
Global stability Proof of main result

Corollaries

* Corollary 1 Assume (H1), (H2), f; satisfy (9), and

ZAJ, Bi(t) < ga(t), j=1,2,

with ¢, o > 0. If either

(i) A :=limsup;>q ftt_T(t) a(u) du < oo with c1ep < m

or

(i) A = oo with 1 < 1,

then the zero solution of (8) is globally asymptotically stable.
» Considering the model (1), n = 1, without impulses,

Ix(u) =0, and taking ¢; = ¢ = 1 in Corollary 1, we obtain

the criterion presented by X.H. Tang [2].

[2] X.H. Tang, J. Math. Anal. Appl. 302 (2005) 342-359.
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Periodic Lasota-Wazewska model

Lasota-Wazewska model Skl

Periodic Lasota-Wazewska model

N’(t) Zb —ﬂ, (t)N(t—T; t) t# ty,
AN(tx) = /k(N(tk)) k=1,2,..

where

(10)

)

(fo) a(t), bi(t), Bi(t), 7i(t) are continuous, positive and w-periodic;

(io) Ik : [0,00) — R are continuous, u+ lx(u) >0, and Ip € N
tkop =tk tw,  leap(u) = h(u),  keN,u>0;

(h) Fa1,...,ap, b1,..., by, with by > —1, such that

/ —1
kaMSaku X)y207x#y7k:17”'7p
X—=Yy

(i2) Tlher (T +ax) < 1.
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Periodic Lasota-Wazewska model

Stability criteria

Lasota-Wazewska model

» Some criteria for the existence of an w-periodic solution to
(10) have been established. For example in Li et al.[3].

We assume that there exists a positive w-periodic solution
N*(t).

[3] X. Li, X. Lin, D. Jiang, X. Zhang, Nonlinear Anal. 62 (2005) 683-701.
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Periodic Lasota-Wazewska model

Stability criteria

Lasota-Wazewska model

» Some criteria for the existence of an w-periodic solution to
(10) have been established. For example in Li et al.[3].
We assume that there exists a positive w-periodic solution
N*(t).

» With the change of variables x(t) = N(t) — N*(t), model
(10) is transformed into

{ x'(t) = —a(t)x(t) + f(t,x), 0<t#ty (1)

AX(tk) = Ik(th), k € N, s

[3] X. Li, X. Lin, D. Jiang, X. Zhang, Nonlinear Anal. 62 (2005) 683-701.
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Periodic Lasota-Wazewska model
Stability criteria

Lasota-Wazewska model

» Some criteria for the existence of an w-periodic solution to
(10) have been established. For example in Li et al.[3].
We assume that there exists a positive w-periodic solution
N*(t).

» With the change of variables x(t) = N(t) — N*(t), model
(10) is transformed into

X(t) = —a(t)x(t) + f(t, %), 0<t#¢
{ Ax(tk) = rk(th), keN,-- .k (11)

» where

f(t, gp Z b *C,(t |: —Bi(t)p(—7i(t)) _ 1:|’

ci(t) :B,-( )N*(t—T,-( ), i=1....n,
le(u) = (N*(t) + u) — I (N*(t)), k=1,...,p.

(12)

[3] X. Li, X. Lin, D. Jiang, X. Zhang, Nonlinear Anal. 62 (2005) 683-701.
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Periodic Lasota-Wazewska model

Lasota-Wazewska model Stablliticitea

» From (ip) and (i1) we have

. ]
by == bx+1 < U‘i‘uk(u) <ak+l=:8x, u#0,u> —N*(tk),

thus (H1) holds for (11);
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Periodic Lasota-Wazewska model
Stability criteria

Lasota-Wazewska model

» From (ip) and (i1) we have

Bk = br+1 < < akg+1=: 3, u;éO,u>—N*(tk),

u+ I (v)
u
thus (H1) holds for (11);
> (i) implies that Pp, = [[}_; 3 is bounded.
(fo) implies that [ a(t)dt = oco.
Consequently, (H2) also holds for (11);
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Periodic Lasota-Wazewska model
Stability criteria

Lasota-Wazewska model

» From (ip) and (i1) we have

be = be+1 <

]
u+ (u) <akt+l =8k u#0,u>—-N(t),
u

thus (H1) holds for (11);
> (i) implies that Pp, = [[}_; 3 is bounded.
(fo) implies that [ a(t)dt = oco.
Consequently, (H2) also holds for (11);
» The model (11) satisfies the York's condition (9) with

Ai(t) == 6[.(t)bi(t)e_ﬁi(t)N*(t_Ti(t)),

A2,i(t) = Bi(t)bi(t),
forall t >0, and i =1...n. This means that (H3) holds.

Teresa Faria, José J. Oliveira Impulsive delayed scalar equations



Periodic Lasota-Wazewska model
Stability criteria

Lasota-Wazewska model

» Theorem 3 Assume (fy), (io)—(i2), and that there is a
positive w-periodic solution N*(t) of (10). If thereis T >0
such that apap < 1 with

t n .
o = sup/ ZB,’(s)b;(s)e_ﬂ"(s)lv*(S_T’(s))B;(S)e_ Js a(u)du o
t>T Jt—7(t) 1

t n .
ap 1= sup / Z Bi(s)bi(s)Bj(s)e ) A1) du gs.
t>T Jt—7(t) |2
where Bj(t) = maxge[—r(¢).,0] <Hk2t+€§tk<t(1 + bk)_1>, then

N*(t) is globally asymptotically stable i.e., it is stable and any
positive solution N(t) of (10) satisfies

lim (N(t) — N*(t)) = 0.

t—o0
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Periodic Lasota-Wazewska model
Stability criteria

Lasota-Wazewska model

» Theorem 4 Consider 7;(t) = mjw (m; € N and
m = maxi<j<p m;j). Assume (fy), (io)—(i2) with /,(0) =0, and
that there is a positive w-periodic solution N*(t). If

B™ (BNF( — 1))é (1- el st o).
. [1 — (1 e Jo aw) du) 1 i min(bk,O)] <1,
k=1

where B = max_3(t), N* = max_N*(t), and

te[0,w] te[0,w]
J
B = max H(l + biyx) 71, then N*(t) attracts any positive
1SIy<p o

solution N(t) of (10).
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